4,240 research outputs found

    Decentralized energy management of power networks with distributed generation using periodical self-sufficient repartitioning approach

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we propose a decentralized model predictive control (MPC) method as the energy management strategy for a large-scale electrical power network with distributed generation and storage units. The main idea of the method is to periodically repartition the electrical power network into a group of self-sufficient interconnected microgrids. In this regard, a distributed graph-based partitioning algorithm is proposed. Having a group of self-sufficient microgrids allows the decomposition of the centralized dynamic economic dispatch problem into local economic dispatch problems for the microgrids. In the overall scheme, each microgrid must cooperate with its neighbors to perform repartitioning periodically and solve a decentralized MPC-based optimization problem at each time instant. In comparison to the approaches based on distributed optimization, the proposed scheme requires less intensive communication since the microgrids do not need to communicate at each time instant, at the cost of suboptimality of the solutions. The performance of the proposed scheme is shown by means of numerical simulations with a well-known benchmark case. © 2019 American Automatic Control Council.Peer ReviewedPostprint (author's final draft

    Development of a smart transformer to control the power exchange of a microgrid

    Get PDF
    A smart transformer enables to control the power exchange between a microgrid and the utility network by controlling the voltage at the microgrid side within certain limits. The distributed generation units in the microgrid are equipped with a voltage-based droop control strategy. This controller reacts on the voltage change, making the smart transformer an element that controls power exchange without the need for communication to other elements in the microgrid. To build a smart transformer, several concepts are possible. In a smart transformer with continuous turns ratio, hereafter referred to as continuous smart transformer, the transformer's microgrid-side voltage can be controlled without voltage steps and the accuracy of the voltage control can be very high. The voltage control of a smart transformer with discrete turns ratio, hereafter referred to as discrete smart transformer, is less accurate, as the output voltage is regulated between several discrete values. In this paper, the development of a continuous and discrete smart transformer will be elaborated. Their validity will be proven by implementing these smart transformers in an experimental test setup. Also, some concepts to improve the control accuracy will be proposed

    Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging

    Get PDF
    In this work we present new distributed controllers for secondary frequency and voltage control in islanded microgrids. Inspired by techniques from cooperative control, the proposed controllers use localized information and nearest-neighbor communication to collectively perform secondary control actions. The frequency controller rapidly regulates the microgrid frequency to its nominal value while maintaining active power sharing among the distributed generators. Tuning of the voltage controller provides a simple and intuitive trade-off between the conflicting goals of voltage regulation and reactive power sharing. Our designs require no knowledge of the microgrid topology, impedances or loads. The distributed architecture allows for flexibility and redundancy, and eliminates the need for a central microgrid controller. We provide a voltage stability analysis and present extensive experimental results validating our designs, verifying robust performance under communication failure and during plug-and-play operation.Comment: Accepted for publication in IEEE Transactions on Industrial Electronic

    Overlay networks for smart grids

    Get PDF

    Asynchronous Networks and Event Driven Dynamics

    Get PDF
    Real-world networks in technology, engineering and biology often exhibit dynamics that cannot be adequately reproduced using network models given by smooth dynamical systems and a fixed network topology. Asynchronous networks give a theoretical and conceptual framework for the study of network dynamics where nodes can evolve independently of one another, be constrained, stop, and later restart, and where the interaction between different components of the network may depend on time, state, and stochastic effects. This framework is sufficiently general to encompass a wide range of applications ranging from engineering to neuroscience. Typically, dynamics is piecewise smooth and there are relationships with Filippov systems. In the first part of the paper, we give examples of asynchronous networks, and describe the basic formalism and structure. In the second part, we make the notion of a functional asynchronous network rigorous, discuss the phenomenon of dynamical locks, and present a foundational result on the spatiotemporal factorization of the dynamics for a large class of functional asynchronous networks

    Beyond Power over Ethernet : the development of Digital Energy Networks for buildings

    Get PDF
    Alternating current power distribution using analogue control and safety devices has been the dominant process of power distribution within our buildings since the electricity industry began in the late 19th century. However, with advances in digital technology, the seeds of change have been growing over the last decade. Now, with the simultaneous dramatic fall in power requirements of digital devices and corresponding rise in capability of Power over Ethernet, an entire desktop environment can be powered by a single direct current (dc) Ethernet cable. Going beyond this, it will soon be possible to power entire office buildings using dc networks. This means the logic of “one-size fits all” from the existing ac system is no longer relevant and instead there is an opportunity to redesign the power topology to be appropriate for different applications, devices and end-users throughout the building. This paper proposes a 3-tier classification system for the topology of direct current microgrids in commercial buildings – called a Digital Energy Network or DEN. The first tier is power distribution at a full building level (otherwise known as the microgrid); the second tier is power distribution at a room level (the nanogrid); and the third tier is power distribution at a desktop or appliance level (the picogrid). An important aspect of this classification system is how the design focus changes for each grid. For example; a key driver of the picogrid is the usability of the network – high data rates, and low power requirements; however, in the microgrid, the main driver is high power and efficiency at low cost
    • 

    corecore