14 research outputs found

    Revisiting LFSMs

    Full text link
    Linear Finite State Machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is Linear Feedback Shift Registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill LFSRs case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach.Comment: Submitted to IEEE-I

    Constructing a Ternary FCSR with a Given Connection Integer

    Get PDF
    FCSRs have been proposed as an alternative to LFSRs for the design of stream ciphers. In 2009, a new ring representation of FCSRs was presented. This new representation preserves the statistical properties and circumvents the weaknesses of the Fibonacci and the Galois FCSRs. Moreover an extension of the ring FCSRs called ternary FCSRs has been proposed. They are suitable for hardware and software implementations of FCSRs. In this paper, we show a method of constructing a ternary FCSR with a given connection integer for hardware implementation. The construction is simple and convenient. And the ternary FCSRs we get are able to meet the hardware criteria

    STATISTICAL PROPERTIES OF PSEUDORANDOM SEQUENCES

    Get PDF
    Random numbers (in one sense or another) have applications in computer simulation, Monte Carlo integration, cryptography, randomized computation, radar ranging, and other areas. It is impractical to generate random numbers in real life, instead sequences of numbers (or of bits) that appear to be ``random yet repeatable are used in real life applications. These sequences are called pseudorandom sequences. To determine the suitability of pseudorandom sequences for applications, we need to study their properties, in particular, their statistical properties. The simplest property is the minimal period of the sequence. That is, the shortest number of steps until the sequence repeats. One important type of pseudorandom sequences is the sequences generated by feedback with carry shift registers (FCSRs). In this dissertation, we study statistical properties of N-ary FCSR sequences with odd prime connection integer q and least period (q-1)/2. These are called half-â„“-sequences. More precisely, our work includes: The number of occurrences of one symbol within one period of a half-â„“-sequence; The number of pairs of symbols with a fixed distance between them within one period of a half-â„“-sequence; The number of triples of consecutive symbols within one period of a half-â„“-sequence. In particular we give a bound on the number of occurrences of one symbol within one period of a binary half-â„“-sequence and also the autocorrelation value in binary case. The results show that the distributions of half-â„“-sequences are fairly flat. However, these sequences in the binary case also have some undesirable features as high autocorrelation values. We give bounds on the number of occurrences of two symbols with a fixed distance between them in an â„“-sequence, whose period reaches the maximum and obtain conditions on the connection integer that guarantee the distribution is highly uniform. In another study of a cryptographically important statistical property, we study a generalization of correlation immunity (CI). CI is a measure of resistance to Siegenthaler\u27s divide and conquer attack on nonlinear combiners. In this dissertation, we present results on correlation immune functions with regard to the q-transform, a generalization of the Walsh-Hadamard transform, to measure the proximity of two functions. We give two definitions of q-correlation immune functions and the relationship between them. Certain properties and constructions for q-correlation immune functions are discussed. We examine the connection between correlation immune functions and q-correlation immune functions

    Design et Analyse de sécurité pour les constructions en cryptographie symétrique

    Get PDF
    The work done during this Ph.D. lies at the crossroads of symmetric cryptography and constraints environments. The goal of such cryptography, called lightweight cryptography, is to propose and evaluate symmetric algorithms that can be implemented on very ressource limited devices. The contributions of this thesis are first on the security evaluations of feedback with carry shift registers (FCSR) to some new attacks and second on a unified vision of generalized Feistel networks (GFNs) that allows to better understand their cryptographic properties. These studies gave rise to two new lightweight algorithms: first GLUON a hash function based upon FCSRs and second the cipher LILLIPUT based on a family further extanding the notion of generalized Feistel network. Finally, a generic method for carrying out a differential fault attack on GFNs is outlined.Les travaux réalisés au cours de cette thèse se situent au carrefour de la cryptographie symétrique et du monde des environnements contraints. Le but de cette cryptographie, dite cryptographie à bas coût, est de fournir et d'évaluer des algorithmes symétriques pouvant être implémentés sur des systèmes très limités en ressources. Les contributions de cette thèse portent d'une part sur l'évaluation de la sécurité des registres à décalage à rétroaction avec retenue (FCSR) face à de nouvelles attaques et d'autre part sur une vision unifiée des différents schémas de Feistel généralisés (GFN) qui permet de mieux cerner leurs propriétés cryptographiques. Ces études ont donné lieu à deux nouveaux algorithmes à bas coût~; d'une part GLUON une fonction de hachage à base de FCSR et d'autre part le chiffrement LILLIPUT basé sur une famille étendant plus avant la notion de GFN. Enfin, une méthode générique permettant de réaliser des attaques différentielles en fautes sur des GFN est esquissée

    Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report is a deliverable for the ECRYPT European network of excellence in cryptology. It gives a brief summary of some of the research trends in symmetric cryptography at the time of writing. The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the recently proposed algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    Analyse et Conception d'Algorithmes de Chiffrement LĂ©gers

    Get PDF
    The work presented in this thesis has been completed as part of the FUI Paclido project, whose aim is to provide new security protocols and algorithms for the Internet of Things, and more specifically wireless sensor networks. As a result, this thesis investigates so-called lightweight authenticated encryption algorithms, which are designed to fit into the limited resources of constrained environments. The first main contribution focuses on the design of a lightweight cipher called Lilliput-AE, which is based on the extended generalized Feistel network (EGFN) structure and was submitted to the Lightweight Cryptography (LWC) standardization project initiated by NIST (National Institute of Standards and Technology). Another part of the work concerns theoretical attacks against existing solutions, including some candidates of the nist lwc standardization process. Therefore, some specific analyses of the Skinny and Spook algorithms are presented, along with a more general study of boomerang attacks against ciphers following a Feistel construction.Les travaux présentés dans cette thèse s’inscrivent dans le cadre du projet FUI Paclido, qui a pour but de définir de nouveaux protocoles et algorithmes de sécurité pour l’Internet des Objets, et plus particulièrement les réseaux de capteurs sans fil. Cette thèse s’intéresse donc aux algorithmes de chiffrements authentifiés dits à bas coût ou également, légers, pouvant être implémentés sur des systèmes très limités en ressources. Une première partie des contributions porte sur la conception de l’algorithme léger Lilliput-AE, basé sur un schéma de Feistel généralisé étendu (EGFN) et soumis au projet de standardisation international Lightweight Cryptography (LWC) organisé par le NIST (National Institute of Standards and Technology). Une autre partie des travaux se concentre sur des attaques théoriques menées contre des solutions déjà existantes, notamment un certain nombre de candidats à la compétition LWC du NIST. Elle présente donc des analyses spécifiques des algorithmes Skinny et Spook ainsi qu’une étude plus générale des attaques de type boomerang contre les schémas de Feistel

    D.STVL.9 - Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report gives a brief summary of some of the research trends in symmetric cryptography at the time of writing (2008). The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    Post-quantum security of hash functions

    Get PDF

    Post-quantum security of hash functions

    Get PDF
    The research covered in this thesis is dedicated to provable post-quantum security of hash functions. Post-quantum security provides security guarantees against quantum attackers. We focus on analyzing the sponge construction, a cryptographic construction used in the standardized hash function SHA3. Our main results are proving a number of quantum security statements. These include standard-model security: collision-resistance and collapsingness, and more idealized notions such as indistinguishability and indifferentiability from a random oracle. All these results concern quantum security of the classical cryptosystems. From a more high-level perspective we find new applications and generalize several important proof techniques in post-quantum cryptography. We use the polynomial method to prove quantum indistinguishability of the sponge construction. We also develop a framework for quantum game-playing proofs, using the recently introduced techniques of compressed random oracles and the One-way-To-Hiding lemma. To establish the usefulness of the new framework we also prove a number of quantum indifferentiability results for other cryptographic constructions. On the way to these results, though, we address an open problem concerning quantum indifferentiability. Namely, we disprove a conjecture that forms the basis of a no-go theorem for a version of quantum indifferentiability

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license
    corecore