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The very beginnings of cryptography can already be found in ancient times.
It is said that Julius Caesar used a shift cipher1 to communicate with his gener-
als.

For the most part of history, cryptography was the art of encrypting (enci-
phering) messages. Even if the techniques got more elaborate—e.g. substitu-
tion ciphers more complicated than the Caesar cipher, Vigenère cipher, or the
one-time pad—the goal was the same: to hide a message from the unwanted
eye. In modern language this part of cryptography is called private-key cryp-
tography; To achieve security a private key has to be exchanged between the
communicating parties.

Only in recent times cryptography became so widespread, most people on
earth use cryptography every day. Wheneverwe use a secure httpswebsite, we
use cryptography, whenever we use a credit card, we use cryptography, when-
ever we use an on-line messaging service, we use cryptography. One reason for
how widespread cryptography is are the advances in information technology:
the Internet, smartphones, etc.. Another reason are the advances in theory of
computer science.

In 1976 Whitfield Diffie and Martin Hellman [DH76] published their find-
ings that changed the world. They showed that it is possible for two parties
communicating solely over a public channel and using only publicly known
techniques to create a secure connection. Meaning, since that time it was no
longer necessary to share a secret private key with the recipient of our mes-
sage. These ideas are the core of what is now called public-key cryptography.
The actual discovery of public-key cryptography is dated back to 1970, when
James H. Ellis wrote a classified document discussing the possibility of “non-
secret encryption” [Ell70].

Public-key cryptography offers a plethora of applications: public-key en-
cryption (widely used schemes are RSA and Diffie-Hellman), digital signa-
tures (based on the RSA and Diffie-Hellman encryption schemes), identifica-
tion schemes (the Schnorr identification scheme), andmany others. All of these
systems are, to some hidden, but to all useful, almost indispensable aspects of
everyday life. The schemes we listed allow to securely shop online, update
software, access private data online, and many other things. One could say, life
without public-key cryptography seems impossible.

This apocalyptic scenario, however, is exactly what comes into the picture
when we consider the possibility of developing a large-scale quantum computer.
Quantum computing is based on a different set of rules, instead of treating in-
formation as encoded into bits2 we now apply the laws of quantum physics.
Quantum mechanics allow for encoding in states that are not limited to just

1A shift cipher is a type of a substitution cipher, where the alphabet is shifted by a fixed
number of letters, e.g. “ab”→“cd”

2Variables with two possible values 0 or 1.
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two values, but form a continuous spectrum of complex numbers.
In his seminalwork from 1994 [Sho94], Peter Shor showed an algorithm that

can efficiently3 break the security of the RSA and Diffie-Hellman encryption
and key-exchange schemes and signature schemes based on them. Using Shor’s
algorithm one can use the publicly available key to break the encryption or
forge a signature. The implications of this algorithm are indeed huge, when a
quantum computer is developed, most of the current security infrastructure of
the internet can be broken.

There is light at the end of the tunnel, though, and it shines from post-
quantum cryptography [BBD09]. Post-quantum cryptography is resilient to at-
tacks that use quantum (and classical) computers. In case of public-key cryp-
tography it is based on mathematics that is resistant against quantum comput-
ers4 (at least as far as we know).

The field of post-quantum cryptography treats also private-key
cryptographic schemes that resist quantum attacks. These are often
primitives5 used together with the systems we mentioned before, like
encryption or digital signatures.

This thesis is dedicated to studying post-quantum security of some private-
key primitives forming the backbone of the post-quantum secure infrastruc-
ture. In what follows we dive into more details of cryptographic constructions
that are used to build these primitives and security claims in cryptography.

1.1 Cryptographic Constructions
In this thesis we focus on cryptographic hash functions. At a glance, hash func-
tions are functions that map long inputs (often arbitrarily long) to short out-
puts. Cryptographic hash functions, that are equipped with some security fea-
tures6, are one of the central primitives in cryptography. They are used virtually
everywhere: As cryptographically secure checksums to verify integrity of soft-
ware or data packages, as building block in security protocols, including TLS,
SSH, IPSEC, as part of any efficient variable-input-length signature scheme, to
build full-fledged hash-based signature schemes, in transformations for CCA-
secure7 encryption, and many more.

3In time polynomial in the length of the input.
4Examples of mathematical concepts that are (probably) suitable to build post-quantum

cryptography include: lattices [Pei16], codes [Sen17], multivariate polynomials [DP17], isoge-
nies [Gal+16], and hash functions [BDS09]

5Cryptographic primitives are the basic parts of cryptographic systems, such as hash func-
tions or pseudorandom functions.

6One of the most desired security features of a cryptographic hash function is collision re-
sistance. A collision is a pair of inputs that map to the same output. For a collision resistant
hash function, it is hard for any adversary to find a collision.

7CCA stands for Chosen Ciphertext Attack, more on that can be found in [KL14]
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Cryptographic practice almost always requires constructing hash functions
out of fixed-input-length primitives. The reason for that is the fact that it is
much easier to engineer a secure function with limited domain and codomain.
Cryptographic constructions are a prescription for building a function out of
“smaller” building blocks. By reusing the internal function we get a function
with domain and codomain more suitable to our needs. We can construct
hash functions, but also functions that do not accept arbitrarily long inputs
but have other sought-after features.

The biggest challenge in designing cryptographic constructions is making
sure that the security features of the internal function are preserved. Security
of constructions is derived from the security of the internal function. Mathe-
matically establishing this derivation is often challenging and is the main topic
of this thesis.

One of the most notable examples of cryptographic constructions is the
Merkle-Damgård construction [Mer90; Dam90]. It is used in the standardized
hash function SHA2 [NIS15]. The construction that we focus on is the sponge
construction [Ber+07], prominently used in SHA3 [NIS14].

1.2 Security in Cryptography
Themodern approach to cryptography calls formathematical rigor in all claims
of security. The three necessary elements of this rigor are: formal definitions
of the claimed security, assumptions that we base the security on, and the ad-
versary model, formalizing the adversarial attacks that the primitive can with-
stand. First we go over some important assumptions. Bear in mind, however,
that the adversaries we discuss in detail later are all quantum. This means that
some standard assumptions can be immediately dismissed.

Commonly, assumptions are of number-theoretic nature (these are mainly
used in public-key cryptography) or stating that a primitive is in fact an ideal
version of itself (more common in private-key cryptography). First of all,
the most important cryptographic assumptions are computational, meaning
they assume a problem is hard for efficient algorithms. Prominent examples
of number-theoretic assumptions are that of hardness of factoring and the
discrete-logarithm assumption. They are used in security proofs of RSA and
Diffie-Hellman systems respectively. These are also the assumptions that are
broken by Shor’s algorithm that can be run on a quantum computer. This
situation is exactly the fact that gave birth to post-quantum cryptography.

The answer of the community is to make mathematical assumptions
resilient against quantum computers. Prominent examples are: learning with
errors [Reg09], coding theory [BMV78; AFS05], multivariate polynomials
[PG97], and others. It is worth noting that in recent years the National
Institute of Standards and Technology (NIST) started a Post-Quantum
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Cryptography Standardization process [NIS17] that aims at developing
standards for cryptography resilient against quantum computers.

While all widely deployed public-key cryptography is threatened by the rise
of quantum computers, hash functions are believed to be only mildly affected.
The reason for this effect is twofold: On the one hand, generic quantum attacks
achieve at most a square-root speed up compared to their pre-quantum coun-
terparts and can be proven asymptotically optimal [Ben+96; BHT98; Zha15a;
HRS16]. On the other hand, there do not exist any dedicated quantum attacks
on any specific hash function that perform better than the generic quantum at-
tacks (except, of course, for hash functions based on number theory like, e.g.,
VSH [CLS06]). Nonetheless, the fact that we use constructions to build new
primitives is sometimes a source of quantum attacks, so there is still work to
be done in the field of proving security. Throughout this thesis we focus on
hash functions that rely on assumptions of ideal primitives. Among the as-
sumptions of an ideal primitive is the Random Oracle Model [BR93], where
we assume the hash function or the internal function is a uniformly random
function—a primitive that is naturally resistant to all but generic attacks. Inter-
estingly, the Quantum Random-Oracle Model [Bon+11] is an extension of this
classic assumption to the quantum world.

We have already mentioned attacks on cryptosystems but not formally de-
scribed the adversary model. The third part of the security discussion focuses
on the capabilities of the adversary, trying to break the security of the cryp-
tosystem. The adversary model is the set of adversaries that should not break
the security. First of all the adversarymodel includes only efficient algorithms8,
as we treat only computational assumptions.

The adversaries in the post-quantum setting9 are also considered to have
access to a large-scale quantum computer. First of all this setting implies that
number-theoretic assumptions might not hold, factoring or discrete logarithms
are easy when having access to a quantum computer. Second of all, the adver-
sary has quantum access to all public primitives, like hash functions. A post-
quantum adversary can just implement the hash function of interest on their
quantummachine, the code of all standard hash functions is available on-line10.
An adversary can use a quantum circuit implementing SHA3 and can thereby
query the function in superposition. The adversary could evaluate the under-
lying sponge construction on the uniform superposition over all messages of a
certain length, possibly helping her to, e.g., find a collision.

8Query algorithms are assumed to make a limited number of queries, polynomial in the
security parameter. The security parameter is usually just the length of the secret key or the
output of a hash function.

9We mean a situation in which the protocols and primitives that are studied are classical,
but the attacker can perform quantum computations.

10Note that due to the Kerckhoffs’s principle (we refer to, e.g., section 1.2 of [KL14]) this
cannot be avoided.
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An interesting generalization of the post-quantum setting is the fully quan-
tum setting, where the adversary has quantum access to secretly keyed prim-
itives as well. These are usually considered off-limits (in terms of quantum
queries) to post-quantum adversaries. There are attacks that exploit quantum
mechanics to attack constructions in this setting [Kap+16; SS17].

There are a number of security notions that we cover in this thesis, starting
from collision-resistance, a standard security notion important for all crypto-
graphic hash functions. We go throughmore advanced notions like pseudoran-
dom functions—functions that look like uniformly random functions to compu-
tationally bounded adversaries. The last chapters treat one of the strongest se-
curity notions suitable for hash functions: indifferentiability. Under the strong
assumption that the internal function is fully random, the notion captures the
situation that the internal function is publicly available but the constructed hash
function is still random to any efficient adversary. This situation is closest to real
life, among the idealized security notions in the literature.

1.3 Plan of the Thesis
In Chapter 2 we go over the preliminary notions that will be important in the
rest of the thesis. Next we explore the post-quantum security of the sponge
construction. In this thesis we discuss a number of security definitions and
prove that the sponge construction fulfills them. In general we cover security
notions in the order of increasing security guarantees.

In Chapter 3 we discuss the standard security notions of the sponge con-
struction, that is collision-resistance and collapsingness. We state these results
for sponges constructedwith one-way functions. We also present two collision-
finding algorithms for the sponge construction. This chapter mainly covers the
results of [Cza+18].

In Chapter 4 we prove quantum indistinguishability of the sponge construc-
tion, a result initially published in [CHS19]. Our proof works for both random
functions and permutations, i.e., two classes of internal functions important for
the sponge construction.

In Chapter 5 we discuss in detail the conjectured impossibility of the notion
of quantum indifferentiability, teh chapter covers the results of [CG21].

After some initial doubts about the validity of quantum indifferentiability
it became apparent that the notion is in fact achievable. In Chapter 6 we dis-
cuss our findings on the compressed-oracle technique—crucial in discussing
quantum indifferentiability. There we also develop a framework for quantum
game-playing proofs.

In Chapter 7 we prove a number of results on indifferentiability, including
of the sponge construction. We also prove quantum indifferentiability of: the
composition of compression functions, the rate 1/3 construction based on three
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internal functions, Encrypted Davis Meyer, and its dual. Chapter 6 and Sec-
tion 7.6 are results from [Cza+19].

In Chapter 8 we analyze a more fine-grained security notion than indiffer-
entiability, that of memory-restricted quantum indifferentiability. We show the
importance of the multi-stage setting for quantum indifferentiability by ana-
lyzing a quantum version of the counterexample based on the external-storage
game that is the first step in the discussion of the problem in classical cryptog-
raphy.

In Chapter 9 we discuss some open problems that the author encountered
during his research. We present open questions and partial results on impor-
tant issues concerning general quantum indistinguishability of distributions
and quantum lazy-sampling of random permutations.

We close with a short concluding chapter.
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2.1. Basic Notions 13

In this chapter we introduce basic concepts that we will use throughout the
thesis. In Section 2.1 we describe general mathematical notions. In what fol-
lows, we focus on notions from the field of cryptography. In Section 2.2 we de-
scribe standard security notions and in Section 2.3 idealized security notions.
In Section 2.4 we go over some important proof techniques used in the thesis.
Finally, in Section 2.5 we describe important cryptographic constructions.

2.1 Basic Notions
In this section we introduce notation and basic mathematical notions used in
the thesis.

2.1.1 Notation
Throughout this thesis we follow some general rules of notation, that we hope
help in comprehending the presentedmaterial. First of all let us list the different
fonts we use to name different mathematical objects. We use

ab small letters to denote parameters and variables,

AB capital letters to denote quantum registers,

AB capital calligraphic letters to denote sets,

ab small boldface letters to denote functions,

AB capital boldface letters to denote arrays and some special functions (func-
tionals),

Ab sans serif letters to denote quantum operators,

Ab small caps letters to denote algorithms,

AB capital fraktur letters to denote distributions.

There are of course some exceptions to these rules but we hope they do not
introduce misunderstandings and we always explain what a given symbol de-
notes. In the Symbol Index we list all the important symbols used in this thesis.

We write [N ] := {0, 1, . . . , N −1} for the set of sizeN . Whenever we discuss
indices starting from 1 we use NN := {1, 2, . . . , N} and when N is clear from
the context we just write N . By N, Z, R, and C we denote the set of natural
numbers, integers, reals, and complex numbers respectively. For S ⊆ N , we
denote by S(i) the i-th element of the set S in ascending order. For some fixed
sets X1, ...,XN , we denote by ~x an element of X1 × · · · XN and for S ⊆ N we



14 Chapter 2. Preliminaries

have ~xS := (xS(1), . . . , xS(|S|)). We denote the set of all t-element permutations
by Iper({1, 2, . . . , t}). We write YX to denote {f : X → Y}.

We use the following notation for a set of arbitrary finite-length strings:

X ∗ =
⋃
l≥0
X l, (2.1)

where X is an arbitrary finite set. For X = {0, 1} we usually denote this set by
M.
⊕ denotes the group action in the group (A,⊕). In the case of Zn2 it is the

bitwise XOR. By {0, 1}n we denote the set of all bitstrings of length n. |m| de-
notes the length of a string and for setsA, |A| is the cardinality of A. ‖ denotes
concatenation of symbols in a set.

For P ∈ A∗, such that P = P1‖P2‖ · · · ‖P|P|, |P| denotes the number of sym-
bols in P, Pi is the i-th symbol of P and bZc` are the first ` symbols of Z.

For some complex number c = a + bi, we define Re(c) = a as its real part.
We denote the Euclidean norm of a vector |ψ〉 ∈ Cd by ‖|ψ〉‖ .

Let range f denote the range of the function f , and im f its image (i.e., im f
contains all values that the function f actually attains, while range f refers to the
set into which f maps according to the declaration of f). The sign function is
defined from R→ {−1, 0, 1} as follows:

sgn(x) :=


−1 if x < 0
0 if x = 0
1 if x > 0

. (2.2)

We call a non-negative function fromN→ R negligible if and only if for every
positive integer c, there exists an integer Nc such that for all x > Nc, f(x) < 1

xc
.

We call f ≤ 1 overwhelming if 1− f is negligible.
For algorithms A (classical or quantum), we use the notation (a, b, c) ←

A(d, e, f) to denote that A is executed with inputs d, e, f , and the output triple
is assigned to the variables a, b, c. We writeAH when an algorithmA has access
to the function H as an oracle. By square brackets we also denote (classical
or quantum) oracle access to some algorithm. We have A[H] ≡ AH. When
discussing adversaries that make quantum or classical queries we sometimes
write A|f〉 or Af to denote quantum or classical query-access to f respectively.

We write P[C : G] to denote the probability that the condition C holds after
executing the steps in game G1. E.g., P[b = 1 : b← A()] denotes the probability
that the bit b returned by A() is 1.

When referring to quantum registers, i.e., subsystems of the quantum state
of the whole system, we use two types of notation. Let us say we have a quan-
tum register Q holding elements of the Hilbert space H = ⊗

x∈S(HX
x ⊗ HY

x )
1More on games in cryptography can be found in Section 2.4.2.
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(more details on this can be found in Section 2.1.5). Our Hilbert space is a ten-
sor product of |S| pairs ofHX

x ⊗HY
x , we assume that there is a natural order in S

and the tensor product is applied in this order. When we want to refer to the i-
th register from the left, we writeQi. When wewant to access registers holding
all X-parts of Q we write QX , with a superscript QX

i we access just the X-part
of Qi. Sometimes, however, we want to access the register corresponding to a
particular x ∈ S, then we write Q(x) and similarly the superscript marks the
part ofHX

x ⊗HY
x we want to specifically discuss.

For registers F that hold multiple entries we refer to the particular entries
by giving them as argument to F , for example:

|f〉F =
⊗
x∈X
|f(x)〉F (x). (2.3)

In the algorithms in this chapterwe denote quantum and classical databases
(that is arrays of input-output pairs) corresponding to different internal func-
tions, by D. Inputs in databases are accessed by referring to DX , outputs by
DY .

2.1.2 Distributions
AdistributionD on a setX is a functionD : X → [0, 1] such that∑x∈X D(x) = 1.
We denote sampling x from X according to D by x ← D. If D is a distribution
on Y then DX denotes a distribution on YX where the output for each input is
chosen independently according toD. By $← X we denote sampling uniformly
at random from the set X .

2.1.3 Model of Computation
An efficient algorithm is a procedure with runtime that is polynomial in the
length of its input. When the input is left implicit, we just assume efficient al-
gorithms run in timepolynomial in the security parameter k. Quantumefficient
algorithms run in quantum polynomial-time, this means the number of quantum
basic operations2 is limited to a polynomial number in the input length. In re-
sults with asymptotic statements (referring, e.g., to quantum-polynomial-time
adversaries), we assume a security parameter that is implicitly provided to all
adversaries, and that all parameters and functions may implicitly depend on.

Often the only important parameter of the adversary’s interaction with the
analyzed cryptographic protocol is the number of queries that shemakes. Then
we limit the adversary’s computational capabilities by just assuming shemakes
a polynomial number of queries but her computation time is not limited.

2Basic operations are just quantumgates from a predefined set of quantumoperations, more
on this topic can be found in [NC10].
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2.1.4 Quantifying Security
In general, throughout this thesis we state security of cryptographic systems
by indistinguishability of two worlds. Usually they are the real and the ideal
world. The former is the actual protocol we analyze and the latter the system
we hope to simulate with our protocol. This is a common approach to security
in cryptography. The actual claims are made on the difference of probabilities
that an adversary or environment outputs 1 when interacting with one world
or the other. The final result is a bound on the difference of probabilities.

By stating results in this way we can prove average-case security. In the
average-case approach we average over random variables, such as the key. This
approach can be compared to worst-case security where we state the number
of queries (made to the analyzed primitive) necessary to achieve a constant
difference in probabilities. In general the average-case approach is much more
natural in cryptography than the worst-case approach.

2.1.5 Quantum Computing and the Quantum Threat Model
With the increased interest and efforts in the field of quantum computing, it is
evident that cryptographic threat models should allow attackers to carry out
quantum computations which defines the research area of post-quantum cryp-
tography [Ber09]. An attacker of the future can run Shor’s algorithm [Sho94]
on a quantum machine to break the security of schemes based on RSA or dis-
crete logarithms. However, conventional security proofs in the random-oracle
model might also break down in the light of quantum attackers who are al-
lowed to ask queries in superposition [Bon+11] (the random oracle models
the hash function, which in turn can be implemented on the adversary’s quan-
tum machine). Furthermore, tasks like preimage or collision finding can be
sped up using quantum search algorithms [Gro96; Amb07].

We assume the reader is familiar with the usual notation in quantum com-
putation, but we give a very short introduction here. A quantum system A is
a complex finite-dimensional Hilbert space H, together with an inner product
〈·|·〉.The pure state of a quantum system is given by a vector |Ψ〉 of unit norm
(〈Ψ|Ψ〉 = 1). A joint system of H1 and H2 is denoted by H = H1 ⊗ H2, with
elements |Ψ〉 = |Ψ1〉|Ψ2〉 for |Ψ1〉 ∈ H1, |Ψ2〉 ∈ H2. More generally, quantum
states are represented by positive semi-definite operators with unit trace, i.e.,
ρ � 0,Tr(ρ) = 1, called density operators. We denote the set of all density oper-
ators by D(H). In the language of density operators, pure states are rank-one
density operators. Mixed states are linear combinations of pure states. Opera-
tions on quantum states are represented by unitary operations U or more gen-
erally by Completely Positive Trace Preserving maps. In this thesis we focus
on the former. A unitary transformation U over a d-dimensional Hilbert space
H is a d × d matrix U such that UU† = 1d, where U† represents the conjugate
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transpose. We assume familiarity with these concepts throughout the technical
parts of this thesis. For an introduction, we refer the reader to a textbook on
quantum computation or quantum information such as [NC10].

The quantum threat model we consider allows the adversary to query or-
acles in superposition. Oracles are modeled as unitary operators Uh acting on
computational basis states as follows

Uh|x, y〉 = |x, y ⊕ h(x)〉. (2.4)

The adversary is considered to have access to a fault-tolerant (perfect) quan-
tum computer. More details on quantum accessible oracles can be found in
Section 6.2. An oracle algorithm Ah can evaluate the unitary Uh in a single
step. Any quantum algorithm making q queries can then be written as a final
transformation UqUh · · ·U1UhU0 for unitaries Ui applied between oracle queries
Uh.

Let us define theQuantum Fourier Transform (QFT), a unitary change of basis
that wewill make heavy use of. ForN ∈ N>0 and x, ξ ∈ [N ] = ZN the transform
is defined as

QFTN |x〉 := 1√
N

∑
ξ∈[N ]

ωξ·xN |ξ〉, (2.5)

where ωN := e
2πi
N is the N -th root of unity. An important identity for some

calculations is ∑
ξ∈[N ]

ωx·ξN · ω̄
x′·ξ
N = Nδx,x′ , (2.6)

where ω̄N = e−
2πi
N is the complex conjugate of ωN and δx,x′ is the Kronecker

delta function.
If we talk about n qubits, the identity on their Hilbert space is denoted by

1n, we also use this notation to denote the dimension of the identity operator,
the actual meaning will be clear from the context. We write UA to denote that
we act with U on register A.

2.1.5.1 QuantumMeasurements

A projective measurement is specified by a family of projectors {Pi} that are
mutually orthogonal and sum up to 1d, one projector Pi for each possible mea-
surement outcome i. For any quantum state |Ψ〉, let 〈Ψ| denote the adjoint of
|Ψ〉. In particular, |Ψ〉〈Ψ| denotes the orthogonal projector onto |Ψ〉.

To describe general measurements we are going to introduce the notion of
Positive Operator Valued Measure (POVM). The only requirement of POVMs
is that they consist of positive operators and sum up to the identity operator so
that measurement probabilities sum to one. More formally, a POVM with set
of outcomes X is described by a set of operatorsM = {Qx}x∈X , where ∀x ∈ X :
Qx � 0,∑x Qx = 1.
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We denote the probability of getting the outcome xwhen measuring ρwith
the measurementM by P[x ← M(ρ)] := Tr(Qxρ). To describe the post mea-
surement state, we can write down operators ofM as products of linear op-
erators on H (denoted by L(H)), Qx = Ax†Ax (which is always possible since
Qx � 0), where Ax ∈ L(H). The decomposition of Qx into the square of Ax
is not unique, note that we can produce the same Qx by multiplying Ax with
a unitary operator. This ambiguity, however, does not change the probability
of getting the outcome x, moreover we usually assume Ax to be positive. The
post-measurement state when the outcome ofM on ρ is x is given by

ρx := AxρAx†
Tr(Qxρ) . (2.7)

The operator Ax is called the square root3 of Qx.
For a sequence of measurements (Mi)i, we can define the conditional prob-

ability of measuring xi2 withMj after measuring xi1 withMi in the following
way

P[xi2 ←Mj(ρxi1 )] := Tr
Qxi2

j

Axi1i ρA†xi1i

TrQxi1
i ρ

 . (2.8)

It is important to note that with conditional probabilities defined as above, in
general the order of measurements matters for the outcome, this is the main
subject of Chapter 5.

2.1.6 Entropy
The notion of entropy is one of themost basic notions in physics and information
theory. In this thesis, in Chapter 8, we use it to quantify the number of bits that
can be held by a quantummemory register. In this section we provide a limited
number of definitions that will be useful in that part of this work.

When an adversary has access to a quantum state ρBx that depends on a
classical random variableX the situation is described by a classical-quantum (c-
q) state:

ρ = ρXB :=
∑
x

PX [x← X]|x〉X〈x| ⊗ ρBx , (2.9)

where {|x〉}x is a family of mutually orthogonal vectors representing the classi-
cal values ofX . If ρBx is a trivial state in Cwe call the state classical, such a state
is just a description of a classical random variable.

The amount of information held by a quantum state is described by quan-
tum entropy. Min and max entropy of a quantum state is defined as

Hmin(ρ) := − log(λmax(ρ)), (2.10)
3When we talk about general quantum maps, (not-necessarily positive) square-root opera-

tors of POVM elements are often referred to as Kraus operators.
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Hmax(ρ) := log(rank(ρ)), (2.11)

where λmax(ρ) is the maximal eigenvalue of ρ. Max entropy is the logarithm of
the rank of ρ, note that rank(ρ) ≤ dim(ρ), where dim is the dimension of the
space ρ acts on. Whenever ρ is a classical state then we write Hmin(X). A good
reference for this and the following definitions can be found in [Ren08; Sch07].

Definition 2.1 (Definitions 3.1.1 and 3.1.2 in [Ren08]). Let ρAB ∈ D(HA ⊗HB)
and σB ∈ D(HB). The min-entropy of ρAB relative to σB is

Hmin(ρAB | σB) := − log λ, (2.12)

where λ is the minimum real number such that λ · 1A ⊗ σB − ρAB is non-negative.
The min-entropy of ρABgivenHB is

Hmin(ρAB | B) := sup
σB

Hmin(ρAB | σB), (2.13)

where the supremum ranges over all σB ∈ D(HB).
For such a c-q state the conditional min entropy is written as just Hmin(X |

B)ρ
Now we need a couple of lemmas. We present versions of lemmas simpli-

fied to our needs. Below we skip one quantum register and omit the smooth
entropies.

Lemma 2.2 (Lemma 3.2.9 in [Ren08]). Let ρXB ∈ D(HX⊗HB) and σB ∈ D(HB)
be the fully mixed state on the image of ρB. Then

Hmin(ρXB)−Hmax(ρB) ≤ Hmin(ρXB | σB). (2.14)

Additionally we need a lemma that dropping a quantum register cannot
increase the min-entropy.

Lemma 2.3 (Lemma 2.20 in [Sch07]). Let ρXB ∈ D(HX⊗HB) be a c-q state. Then

Hmin(ρXB) ≥ Hmin(X). (2.15)

Lemma 2.4. IfHB = (C2)⊗n and ρXB ∈ D(HX ⊗HB) is a c-q state, then

Hmin(X | B) ≥ Hmin(X)− n. (2.16)

Proof. First note that fromDefinition 2.1wehaveHmin(ρXB | σB) ≤ Hmin(X | B)
for any state σB. Then from Lemma 2.2 we have

Hmin(ρXB)−Hmax(ρB) ≤ Hmin(X | B). (2.17)

We can further bound Hmin(X) ≤ Hmin(ρXB) as in Lemma 2.3, we bound
Hmax(ρB) ≤ n using Equation 2.11 and the comment below it.
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2.2 Standard Security Notions
By standard security we mean notions that focus on the hardness of specific
tasks, not assuming specific probability distributions for the primitives. These
tasks are possible adversarial attacks, often it is sufficient to exclude a specific
attack to achieve security of a cryptographic system. Notions of pseudoran-
domness are also included in this class as they avoid the assumption that a
primitive is truly random—instead it just “looks” random.

An interesting framework that captures standard notions of security (and
beyond) is the framework of Universally Composable (UC) security [Can01].
The UC framework is used to define security that holds even when a proto-
col is used in larger systems. For example considering many instances of the
same cryptosystem operating in the same moment can make new attacks pos-
sible. In the UC framework we define the ideal functionality and show that our
protocol is indistinguishable from the ideal protocol for any adversaries and
environments from a given set.

In the rest of this section, we analyze the notions of pseudorandom func-
tions, preimage-resistance, collision-resistance, and collapsingness.

2.2.1 Pseudorandom Functions and Permutations
A common primitive that we want to use in cryptography is a random func-
tion, i.e. a function that outputs a random output on every input. However, it
is highly inefficient to sample a random function: We would basically need to
store a table of all input-output pairs. Thankfully, we can make use of the fact
that we often consider computationally bounded adversaries. We decrease the
randomness specifying the function, instead of sampling all outputs at random
we just sample a random key. Pseudorandom functions (PRF) are families of
keyed functions, where the key is k ∈ Kn. The feature that justifies using a PRF
instead of a fully random function—called pseudorandomness—is that no effi-
cient adversary can distinguish between a PRF and a random function without
knowing the secret key. The security parameter is n := blog |Kn|c.

Following [Zha12], let us define quantum-secure pseudorandom functions
and pseudorandom permutations (PRPs). They are the pseudorandom primi-
tives that are secure even when the adversary makes quantum queries.
Definition 2.5 (Quantum-secure PRF/PRP). Say {f : Kn × S → S}n is a family
of functions (permutations) indexed by n ∈ N with blog |Kn|c = n. This family is a
quantum-secure pseudorandom function (permutation) if for every quantum algorithm
running in polynomial time (hence making at most a polynomial number of quantum
queries to its oracles), there is a negligible function εPR such that∣∣∣∣∣∣ P

k
$←Kn

[
A|fk〉(1n) = 1

]
− P

g $←SS

[
A|g〉(1n) = 1

]∣∣∣∣∣∣ ≤ εPR(n), (2.18)
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where g is sampled uniformly from the set of functions (permutations) from S to S.
Below, we refer to εPR as advantage.

In [Zha12] Zhandry showed how to construct a quantum-secure PRF and
proved that indeed it retains its security when the adversary is quantum. Clas-
sical PRFs are analyzed in much depth in [KL14].

2.2.2 Preimage and Collision Resistance
A preimage of a particular output y of a function h is an input x that yields
h(x) = y. Collision is a pair of distinct inputs to h that give the same output.
A common feature of secure hash functions is the hardness of finding any col-
lisions or preimages of given values. Below we provide formal definitions of
security established by the resistance of a hash function against attacks finding
these sets.

Throughout this thesis we analyze mainly randomness of functions that
comes from external random functions. Having this in mindwe present defini-
tions different from the classic ones. Classic definitions of preimage-resistance
and collision-resistance [KL14], for hash functions that are not based on ora-
cle access to a random primitive, state that it is hard to find a preimage or a
collision for a uniformly random key. In the following we consider families of
distributions Dn indexed by n ∈ N.

There are several variants of preimage-resistance, we focus on preimages of
a fixed value.
Definition 2.6 (Zero-preimage-resistance). For a random H distributed according
toDn, we call a function hH : X → Y zero-preimage-resistant if and only if for any
quantum-polynomial-time adversaryAH making quantum queries, there is a negligible
function ε such that

P
H←D

[
hH(x) = 0 : x← AH,h(1n)

]
< ε(n). (2.19)

One of the most important properties of a hash function h is
collision-resistance. That is, it is infeasible to find x 6= x′ with h(x) = h(x′).
Intuitively, collision-resistance guarantees some kind of computational
injectivity—given h(x), the value x is effectively determined. Of course,
information-theoretically, x is not determined, but in many situations, we can
treat the preimage x as unique, because we will never see another value with
the same hash. A formal definition is
Definition 2.7 (Collision resistance). For a random H distributed according toDn,
we call a function hH : X → Y collision-resistant if and only if for any quantum-
polynomial-time adversary AH making quantum queries, there is a negligible function
ε such that

P
H←D

[
hH(x) = hH(x′) ∧ x 6= x′ : (x, x′)← AH,h(1n)

]
< ε(n). (2.20)
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We say that h has a collision inM if the image of h underM is smaller than
M

|h(M)| < |M| . (2.21)

For uniformly random functions h : X → Y we have explicit bounds on
the probability of finding preimages and collisions. For classical adversaries, h
is zero-preimage-resistant with ε = q

|Y| and collision-resistant with ε = (q−1)q
2|Y|

[KL14], where q is the maximal number of queries the adversary can make.
Quantum access to h helps the adversary in finding a preimage or a col-

lision. A random function is preimage-resistant against quantum adversaries
with ε = 8 (2q+1)2

|Y| . This result can be achieved with a reduction to finding the
1-preimage in a Boolean function that outputs 1 with probability γ = 1

|Y| . Every
query to h is simulated as 0 if the Boolean function outputs 1 and the output
of a random function h′ : X → Y \ {0} otherwise. A query to h is calculated
using two queries to the Boolean function (one to compute the output and one
to uncompute it). The bound comes from Theorem 1 in [HRS16], which shows
that a 2q-query quantum adversary can find a 1-preimage in h with probability
at most 8γ(2q + 1)2.

The success probability of a collision-finding algorithm for a uniformly ran-
dom h : S → Y is at most π2

3
(q+2)3

|Y| , as proved by Zhandry in Theorem 7 in
[Zha15a].

2.2.3 Collapsing Hash Functions
Collapsingness is a security notion defined in [Unr16b]; It is a purely quantum
notion strengthening collision-resistance. It was developed to capture the re-
quired feature of hash functions used in cryptographic commitment protocols.

Collision-resistant hashes can be used to extend the message space of sig-
nature schemes (by signing the hash of the message), or to create commitment
schemes (e.g., sending h(x‖r) for random r commits us to x; we cannot change
our mind about x because we cannot find another preimage).

In the post-quantum setting, it was shown by Unruh [Unr16b] that
collision-resistance is weaker than expected: For example, the commitment
scheme sketched in the previous paragraph is not binding: it is possible for
an attacker to send a hash h, then to be given a value x, and then to send a
random value r such that h(x‖r) = h, thus opening the commitment to any
desired value—even if h is collision-resistant against quantum adversaries4.

4More precisely, [Unr16b] shows that relative to certain oracles, a collision-resistant hash
function exists that allows such attacks. In particular, this means that there cannot be a rela-
tivizing proof that the commitment scheme is binding assuming a collision-resistant hash func-
tion. In a recent paper Zhandry [Zha19b] improved this result by presenting a standardmodel
instantiation of a collision-resistant function that also allows attacks from [Unr16b].
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This example contradicts the intuitive requirement that h(x) determines x.
Fortunately, Unruh [Unr16b] also presented a strengthened security

definition for post-quantum secure hash functions: collapsing hash functions.
Roughly speaking, a hash function is collapsing if, given a superposition
of values m, measuring h(m) has the same effect as measuring m (at least
from the point of view of a computationally limited observer). Collapsing
hash functions serve as a drop-in replacement for collision-resistant ones
in the post-quantum setting: Unruh showed that several natural classical
commitment schemes (namely the scheme sketched above, and the
statistically-hiding schemes from [HM96]) become post-quantum secure
when using a collapsing hash function instead of a collision-resistant one. The
collapsing property also directly implies collision-resistance.

In light of these results, it is desirable to find hash functions that are collaps-
ing. Unruh [Unr16b] showed that a random oracle is collapsing. That is, a hash
function h is collapsing when it is a random oracle. However, this example has
little relevance for real-world hash functions: A practical hash function is typi-
cally constructed by iteratively applying some elementary building block (e.g.,
a “compression function”) in order to hash large messages. So even if we are
willing to model the elementary building block as a random oracle, the over-
all hash-function construction should arguably not be modeled as a random
oracle5.

For hash functions based on the Merkle-Damgård construction (such as
SHA2 [Nat15]), Unruh [Unr16a] showed: If the compression function is col-
lapsing, so is the hash function resulting from the Merkle-Damgård construc-
tion. In particular, if we model the compression function as a random oracle
(as is commonly done in the analysis of practical hash functions), we have that
hash functions based on the Merkle-Damgård construction are collapsing and
thus suitable for use in the post-quantum setting.

As mentioned above, intuitively, we wish that h(m) uniquely identifies m
in some sense. In the classical setting, this wish naturally leads to the require-
ment that it is hard to find m 6= m′ with h(m) = h(m′). Then we can treat
h(m) as if it had only a single preimage (even though, of course, a compress-
ing h will have many preimages, we just cannot find them). In the quantum
setting, there is another interpretation of the requirement that h(m) identifies
m. Namely, if we are given a registerM that contains a superposition of many
valuesm, then measuring h(m) on that register should—intuitively—fully de-
termine m. That is, the effect on the registerM should be the same, no matter
whether we measure just the hash h(m) or the whole message m. One can
see that for any compressing function h, it is impossible that measuring h(m)

5For example, hash functions using theMerkle-Damgård construction are not well modeled
as a random oracle. If we useMAC(k,m) := h(k‖m) as a message authentication code (MAC)
with key k, we have that this MAC is secure (unforgeable) when h is a random oracle, but
easily broken when h is a hash function built using the Merkle-Damgård construction.
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and m has information-theoretically the same effect on the state 6. However,
what we can hope for is that for a computationally limited adversary, the two
situations are indistinguishable. In other words, we require that no quantum-
polynomial-time adversary can distinguish whether we measure h(m) or m.
This property is useful in proofs, because we can replace h(m)-measurements
bym-measurements and vice versa.

We can slightly simplify this condition if we require that the registerM al-
ready contains a superposition of valuesm that all have the same hash h(m). In
this case, measuring h(m) has no effect on the state, so we can state the require-
ment as: IfM contains a superposition of messagesmwith the same h(m) = h,
then no quantum-polynomial-time adversary can distinguishwhetherwemea-
sureM in the computational basis, or whether we do not measure it at all.

Or slightly more formally: We let the adversaryA produce a registerM and
a hash value h (subject to the promise that measuring M would lead to an m
with h(m) = h). The adversary additionally keeps an internal state in regis-
ter S. Then we either measure M in the computational basis (Collapse 1, de-
picted in Figure 2.1), or we do not perform any suchmeasurement (Collapse 2,
depicted in Figure 2.1). Finally, we give registers S (the internal state) and
M (the potentially measured message register) to the adversary’s second part
B. We call h collapsing if no quantum-polynomial-time (A,B) can distinguish
Collapse 1 and Collapse 2.

A
S

M

h

M

m

B b

Collapse 1

A
S

M

h

B b

Collapse 2

Figure 2.1: Games from the definition of collapsing hash functions. M repre-
sents a measurement in the computational basis. (A,B) is assumed to satisfy
the property that M always returns m with h(m) = h. A function is collapsing
if the probability of b = 1 is negligibly close in both games.

This idea is formalized by the following definition. For quantum algorithms
A, B with quantum access to h, consider the following games:

Collapse 1 : (S,M, h)← Ah(), m← M(M), b← Bh(S,M), (2.22)
Collapse 2 : (S,M, h)← Ah(), b← Bh(S,M). (2.23)

6E.g., M could contain
∑
m 2−|m|/2|m〉. Then measuring h(m) will lead to the state∑

m s.t. h(m)=h
1√
|h−1(h)|

|m〉 which is almost orthogonal for large
∣∣h−1(h)

∣∣ to the state |m〉 we

get when measuringm.
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Here S,M are quantum registers. M(M) is a measurement ofM in the compu-
tational basis. The intuitive meaning of the above games is that part A of the
adversary prepares a quantum registerM that holds a superposition of inputs
to h that all map to h. Then she sendsM along with the side information S to
B. The task of the second part of the adversary is to decide whether measure-
ment M of the register M occurred or not. We call an adversary (A,B) valid if
and only if P[h(m) = h] = 1 when we run (S,M, h)← Ah() in Collapse 1 from
Equation (2.22) and measureM in the computational basis asm.

Definition 2.8 (Collapsing [Unr16b]). A function h is collapsing with advantage
ε if for any valid quantum-polynomial-time adversary (A,B)

|P[b = 1 : Collapse 1]− P[b = 1 : Collapse 2]| < ε. (2.24)

We say that h is collapsing if the collapsing-advantage ε is negligible.

A more in-depth analysis of this security notion can be found in [Unr16b;
Unr16a; Cza+18; Feh18].

One can achieve tighter results of security by directly analyzing the security
of t parallel evaluations of the hash function (see [Unr16a]). For a setM, we
call an adversary (A,B) t-valid onM for hH if and only if Pr[∀ihH(mi) = hi ∧
mi ∈ M] = 1 when we run (S,M1, . . . ,Mt, h1, . . . , ht) ← AH() and measure all
Mi in the computational basis as mi. If we omit “onM”, we assumeM to be
the domain of hH. This definition is from [Unr16a], with the only difference
that now adversaries and hash functions may depend on an oracle H, instead
of depending on a public parameter. We do not focus on this generalization but
in [Cza+18] we treat in more details collapsingness for parallel queries to h.

2.2.3.1 Miscellaneous Facts

The following properties of collapsing hash functions will be useful in this the-
sis. We present a number of results from [Unr16b], note however that theywere
originally proven in a settingwithout oracleH, but all proofs from [Unr16b] rel-
ativize. All results here hold both if runtime is measured in computation steps,
and when time is measured in the number oracle queries.

If hH is injective, then hH is collapsing:

Lemma 2.9 (Lemma 24 in [Unr16b]). If hH is injective, and (AH,BH) is a valid
adversary with collapsing-advantage ε against hH, then ε = 0.

If gH ◦hH is collapsing, and gH is quantum-polynomial-time computable,
then hH is collapsing:

Lemma 2.10 (Lemma 12 in [Cza+18]). Fix oracle functions gH and hH. Let (A,B)
be a valid adversary against some functionhH with runtime τ and collapsing-advantage
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ε against hH. Then there is an adversary (A′,B′) that is valid for gH ◦hH, has runtime
τ + τg, and collapsing-advantage ε against gH ◦hH. Here τg is the time required for
computing gH.

If gH and hH are collapsing, and hH is quantum-polynomial-time
computable, then gH ◦hH is collapsing:

Lemma 2.11 (Lemma 37 in [Unr16a]). Fix oracle functions gH and hH. If there
is a τ -time adversary (A,B), valid for gH ◦hH, with collapsing-advantage ε against
gH ◦hH, then there are:

• a (τ + O(τh))-time adversary (A′,B′), valid for gH on im hH, with some
collapsing-advantage ε′ against gH,

• a (τ + O(τh))-time adversary (A′′,B′′), valid for hH, with some
collapsing-advantage ε′′ against hH.

such that ε ≤ ε′+ ε′′. Here τh is an upper bound on the time for evaluating hH (on the
messages that A outputs on the registersMj).

In [Unr16b], this lemma had an additionalO(`mid) in the runtime of (A′′,B′′)
where `mid denotes the length of the output of hH. Since this is always domi-
nated by O(τh), we omit this term here.

It was shown in [Unr16b] that if H is a random oracle then is it collapsing:

Lemma 2.12 (Lemma 37 in [Unr16b]). Let H : X → Y be a random oracle, then
any valid adversary (AH,BH)making q quantum queries toH has collapsing-advantage
ε ∈ O

(√
q3

|Y|

)
.

2.3 Idealized Security Notions
When discussing idealized security we assume some primitive to be ideal,
which most commonly means fully random. The reason for introducing
such a model is to simplify the cryptographic primitives enough so that it is
possible to rigorously prove security without going into the details of actual
implementations.

Assuming ideal functions in cryptography brings our focus to generic at-
tacks. Generic attacks do not exploit implementation flaws, instead just focus
on the anticipated functionality and try to find flaws in it. In the case of crypto-
graphic constructions, we often assume the internal function to be ideal. This
scenario allows us to analyze the construction itself.

A framework that is interesting in the discussion of idealized security is the
framework of Abstract Cryptography (AC). Developed byUeli Maurer and Re-
nato Renner [Mau10; Mau11; MR11], it forms a kind of a dual framework to
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the UC framework. Whereas the latter captures security of interacting systems
by carefully defining the notion of Interacting Turing Machines that exchange
tapes to communicate, the former is oblivious to the computation model and
focuses on the algebraic relations of the involved protocols. One can say UC is
a bottom-up and AC a top-to-bottom approach. We mention AC because indif-
ferentiability is a simple notion well placed in the more general AC framework.

In the following we introduce the random-oracle model and its generaliza-
tions. Next, in sections 2.3.2 and 2.3.3 we discuss two security notions that
will be the among the main subjects of this thesis, indistinguishability and in-
differentiability respectively. All these notions are best suited to formalize the
security of hash functions.

2.3.1 Random-Oracle Model
The best known idealized security notion is the Random-OracleModel (ROM).
In the ROM one assumes that publicly accessible hash functions are random
[BR93]. This is a very useful assumption as it simplifies proofs, and also cryp-
tographic constructions designed with the ROM in mind are more efficient. It
might be possible to prove that the randomness assumption is false, but good
cryptographic hash functions indeed behave as if they were random.

A generalization of the ROM to the quantum world was introduced in
[Bon+11] under the name of the quantum-accessible random oracle model,
we, however, follow the simplified name of the Quantum Random-Oracle
Model (QROM). The assumption of this model is that an adversary can access
the random oracle in superposition. An interesting separation of the classical
and quantum models has been recently shown in [YZ20]. Another treatment
of the classical and quantum models can be found in [Gri+20].

We formally define a random oracle by the following distribution:

Definition 2.13 (Random Oracle). A random oracle is sampled from a distribution
R on functions fromM× N toM, whereM := A∗. We define h← R as follows:

• Choose g uniformly at random from {g :M→M}.
• For each (x, `) ∈ M × N set h(x, `) := bg(x)c`, that is, output the first `

characters of the output of g.
We denote a random oracle, that provides access to a function distributed

according to R, by R. We often omit the second input to the random oracle,
assuming that all outputs have the same length.

2.3.2 Indistinguishability
Indistinguishability is an computational notion of distance between two distri-
butions. By computational, wemean that no adversary is able to distinguish the
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distributions, not that they are necessarily close in statistical distance. In this
thesis we focus on distributions of functions, and the model we have in mind
is such that the adversary can make queries to the function sampled according
to one distribution or the other.

When discussing cryptographic constructions, indistinguishability from a
random oracle is a security notion for the constructed hash functions. We do
not, however, give the adversary access to the internal functions. Hence, the
notion is not perfectly suited to capture the real world. For keyed primitives,
though, it is much more useful, as we illustrate in Chapter 4.

By classical indistinguishability we mean a feature of two distributions that
are hard to distinguish if only polynomially many classical queries are allowed.
Technicallywe consider families of distributions indexed by the security param-
eter n ∈ N, the adversary knows the security parameter through the input 1n
that she is provided. For the sake of simplicity, we omit these details in the
following definitions. The mentioned polynomial is evaluated on the security
parameter. Note however that we have not yet specified this parameter. For
now though we leave it implicit, the security parameter will be specified for
the particular construction we are going to analyze. A common versions of the
following definitions assume the adversary to be computationally bounded (so
not only the number of queries is bounded but alsoA’s runtime). We, however,
use stronger definitions in this thesis, as we do not analyze distributions related
to hardness of computational problems.

Definition 2.14 (Classical Indistinguishability). Two distributionsD1 andD2 over
a set YX are computationally classically indistinguishable if no quantum algorithm A
can distinguish D1 from D2 using a polynomial number of classical queries. That is,
for all A, there is a negligible function ε such that∣∣∣∣ P

g←D1
[b = 1 : b← Ag]− P

g←D2
[b = 1 : b← Ag]

∣∣∣∣ ≤ ε. (2.25)

We write Ag to denote that adversary A has classical oracle access to g.
We will use the following generalization of the above definition to specify a

notion valid for quantum adversaries.

Definition 2.15 (Quantum Indistinguishability [Zha12]). Two distributions D1
and D2 over a set YX are computationally quantumly indistinguishable if no quan-
tum algorithm A can distinguishD1 fromD2 using a polynomial number of quantum
queries. That is, for all A, there is a negligible function ε such that∣∣∣∣ P

g←D1

[
b = 1 : b← A|g〉

]
− P

g←D2

[
b = 1 : b← A|g〉

]∣∣∣∣ ≤ ε. (2.26)

We write A|g〉 to denote that adversary A has quantum oracle access to g,
i.e. she can query g on a superposition of inputs.
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In this thesis we often focus on indistinguishability from a random oracle.
The first distribution is the one analyzed (e.g. the distribution of the crypto-
graphic construction of interest) and the other is the uniform distribution over
the set of all functions from X to Y .

2.3.3 Indifferentiability

An important generalization of indistinguishability is indifferentiability. The
main difference between these notions is the fact that we give the adversary ac-
cess to the internal function of the cryptographic construction. This one change,
although formally quite impactful, makes the security notion applicable to a
wide range of realistic scenarios.

The notionwas introduced byMaurer, Renner, andHolenstein in [MRH04].
Indifferentiability is one of the strongest security notions possible assuming
that the internal function is random, while giving the distinguisher realistic ca-
pabilities in terms of access to public primitives. In the case of hash functions
like SHA-2 [NIS15] and SHA-3 [NIS14], the specification of the internal func-
tion is in fact freely available.

Indifferentiability captures indistinguishability of two worlds: the real and
the ideal world. The former is the real construction using an ideal primitive.
The latter is the ideal version of the construction (often the random oracle) and
a simulator. The simulator is an algorithm that simulates the public primitives
(e.g. the internal functions) to the adversary. Assuming the internal functions
to be ideal is the standard way of treating primitives in this class of security
notions, showing that the constructed function is close to ideal is our goal.

The importance of indifferentiability lies in the fact that it captures the real
applications of the constructions but also the fact that it guarantees compos-
ability. A system that is secure according to a composable security notion can
be used in a larger system, without losing security guarantees.

Many constructions have been proven indifferentiable from a random or-
acle: Merkle-Damgård construction [Cor+05], sponge construction [Ber+08],
Feistel networks [DS16], an many others [KM07; LLG12; Can+12; Bal14; GL16;
Dai+17].

In recent years it was shown that the notion can be generalized to the quan-
tum world. Although at first Carstens, Ebrahimi, Tabia, and Unruh gave argu-
ments for the impossibility of proving quantum indifferentiability [Car+18],
Zhandry later showed that it is indeedpossible [Zha19a]. Zhandry developed a
technique that allows to prove indifferentiability for the Merkle-Damgård con-
struction. His result does not contradict the result of [Car+18], as it handles
the imperfect case, albeit with a negligible error. We have also proven indiffer-
entiability of the sponge construction in [Cza+19]. More details on [Car+18]
can be found in Chapter 5.
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An interesting observation has been made by Ristenpart, Shacham, and
Shrimpton in [RSS11] on the applicability of indifferentiability to the setting of
multiple interacting but distinct adversaries. They observed that the regular
indifferentiability notion might not be enough in this setting, we cover this
topic in more detail in Section 2.3.3.2 and prove some new results in Chapter 8.
Since the publication of [RSS11] many generalizations of the notion have been
made to mitigate the problem by specifying the computational capabilities of
the simulators.

2.3.3.1 Regular Indifferentiability

Access to the publicly known internal function and the hash function
constructed from it is handled by interfaces. An interface to a system is an
access structure defined by the format of inputs and expected outputs.
Let us illustrate this definition by an example, let the system C under
consideration be a hash function Hf : {0, 1}∗ → {0, 1}n, constructed using a
function f : {0, 1}n → {0, 1}n. Then the private interface of the system accepts
finite-length strings as inputs and outputs n-bit long strings. Outputs from the
private interface are generated by the hash function, so we can write (slightly
abusing notation) Cpriv = Hf . The public interface accepts n-bit long strings
and outputs n-bit strings as well. We have that Cpub = f . The motivation
for calling the interfaces private and public is that the internal function f
is usually a publicly specified function (like in e.g. SHA-3 [NIS14]). The
construction is run locally by the distinguisher.

A cryptographic system is an algorithm possibly calling subroutines. In this
thesis we understand it as a cryptographic construction.

The following definitions and Theorem 2.18 are the rephrased versions of
definitions and theorems from [MRH04; Cor+05]. We also make explicit the
fact that the definitions are independent of the threat model we consider—
whether it is the classical model or the quantum model. To expose those two
cases we write “classical or quantum” next to algorithms that can be classical
or quantum machines; Communication between algorithms (systems, adver-
saries, and environments) can also be of two types, where quantum communi-
cation will involve quantum states (consisting of superpositions of inputs).

Definition 2.16 (Indifferentiability, Definition 3 in [MRH04], rephrased). A
cryptographic (classical or quantum) system C is (q, ε)-indifferentiable from R, if
there is an efficient (classical or quantum) simulator S such that for any efficient (clas-
sical or quantum) distinguisher D with binary output (0 or 1) that makes at most q
(classical or quantum) queries there is a negligible function ε′ ∈ O(ε) such that the
advantage∣∣∣P [b = 1 : b← D[Cpriv

k [Cpub
k ],Cpub

k ]
]
− P

[
b = 1 : b← D[Rpriv

k , S[Rpub
k ]]

]∣∣∣ ≤ ε′(k) ,
(2.27)
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Figure 2.2: A schematic representation of the notion of indifferentiability, Def-
inition 2.16. Arrows denote “access to” the pointed system.

where k is the security parameter.

It is important to note that ifR is the randomoracle (which is often the case),
then both its interfaces are the same and output random outputs of appropriate
given length. The definitions are still valid and the theorem below holds also
if we interpret efficiency in terms of queries made by the algorithms. Note that
then we can allow the algorithms to be unbounded with respect to runtime,
the distinction between quantum and classical queries is still of crucial impor-
tance though. In Figure 2.2 we present a scheme of the situation captured by
Definition 2.16.

Indifferentiability is a strong notion of security mainly because if fulfilled it
guarantees composability of the secure cryptosystem. The “as secure as” rela-
tion is important in proving composability:

Definition 2.17 (As secure as, Definition 1 in [MRH04], rephrased). A cryp-
tographic (classical or quantum) system C is said to be as secure as C′ if for all effi-
cient (classical or quantum) environments Env the following holds: For any efficient
(classical or quantum) attacker A accessing C there exists another efficient (classical
or quantum) attacker A′ accessing C′ such that the difference between the probability
distributions of the binary outputs of Env[C,A] and Env[C′,A′] is negligible, i.e.

|P [b = 1 : b← Env[C,A]]− P [b = 1 : b← Env[C′,A′]]| ≤ ε(k) , (2.28)

where ε is a negligible function.

In the following we say that a cryptosystem T is compatible with C if the
interfaces for interaction of Twith C are matching.
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Theorem 2.18 (Composability, Theorem 1 in [MRH04], rephrased). Let T range
over (classical or quantum) cryptosystems compatible with C and R, then C is (q, ε)-
indifferentiable from R if and only if for all T, T[C] is as secure as T[R].

2.3.3.2 Resource-Restricted Indifferentiability

In [RSS11] the authors identify a problem with the regular notion of indiffer-
entiability. They show that the original definition does not guarantee security
for games that have multiple stages. A solution the authors of [RSS11] pro-
pose is reset indifferentiability. This notion allows the distinguisher to reset
the simulator to her initial state. In [Dem+13] the authors propose an interest-
ing alternative to regular indifferentiability: memory-aware indifferentiability
where we explicitly limit the memory of the simulators. It is also shown in
[RSS11; Dem+13] that reset indifferentiability is equivalent to regular indiffer-
entiability with stateless simulators. It is proved in [BBM13] that multi-stage
indifferentiability (indifferentiability with stateless simulators) is equivalent to
reset indifferentiability. Moreover allowing just one reset is enough to capture
the security guaranteed by reset indifferentiability.

By resource-restricted indifferentiability we mean in general the notion of
indifferentiability where we restrict the simulator in some way. The most im-
portant restriction is by allowing only some number of (quantum) bits of in-
ternal memory. In the classical case the simulator has just the t classical bits
of memory. In the quantum case these bits are quantum, but S does not have
any additional classical memory. Moreover, any randomness generated by the
simulator has to be stored in her memory.
Definition 2.19 (Memory-Restricted Indifferentiability). A cryptographic (clas-
sical or quantum) systemC is (q, ε)-indifferentiable fromR in the presence of t (quan-
tum) bits of adversarial memory, if there is an efficient (classical or quantum) simula-
tor Swith memory restricted to t (quantum) bits such that for any efficient (classical or
quantum) distinguisherDwith binary output (0 or 1) that makes at most q (classical
or quantum) queries there is a negligible function ε′ ∈ O(ε) such that the advantage∣∣∣P [b = 1 : b← D[Cpriv

k [Cpub
k ],Cpub

k ]
]
− P

[
b = 1 : b← D[Rpriv

k , S[Rpub
k ]]

]∣∣∣ ≤ ε′(k),
(2.29)

where k is the security parameter.
Stateless indifferentiability is just memory-restricted indifferentiability

when we give the simulator t = 0 bits of memory.
In [JM18] the authors propose a solution to the problem of multi-stage

games that is done in the spirit of abstract cryptography [MR11; Mau11]. They
propose a security notion that combines indifferentiability with Universal
Computational Extractors [BHK13; BHK14]. This notion captures a similar
level of security as indifferentiability but in a limited context. A context is
understood as the scenarios in which security is valid.
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2.4 Useful Proof Techniques
In this section we describe three techniques and frameworks that are especially
useful in the reminder of the thesis. We focus on the polynomial method (Sec-
tion 2.4.1), the game-playing framework (Section 2.4.2), and the one-way to
hiding lemma (Section 2.4.3). The second framework is a standard classical
approach to proving security of a variety of cryptosystems. The other two are
useful methods in quantum cryptography.

2.4.1 The Polynomial Method
The polynomial method uses the rich mathematical structure of polynomials
to prove closeness of probability distributions. The polynomial method was
first developed by Nisan and Szegedy [NS94] and then extended to bound
the query complexity of quantum algorithms in [Bea+01]. Later, a similar ap-
proach was applied to average case complexity, more useful in cryptography
[Zha15b; Zha12; SY17].

In this section we describe the proof technique—based on approximating
polynomials—that proves useful when dealing with notions like quantum in-
distinguishability.

Theorem 2.20 (Theorem 3.1 in [Zha15b]). Let A be a quantum algorithm making
q quantum queries to an oracle h : X → Y . If we draw h from some distribution D,
then the quantity Ph←D[b = 1 : b ← A|h〉] is a linear combination of the quantities
Ph←D[∀i ∈ [2q] : h(X i) = Y i], where ∀i ∈ [2q] : (X i, Y i) ∈ X × Y . Moreover the
coefficients of the linear combination depend only on A and not h.

The intuition behind the above theorem is that with q queries the ampli-
tudes of the quantum state of the algorithm depend on at most q input-output
pairs. The probability of any outcome is a linear combination of squares of am-
plitudes, that is why we have 2q input-output pairs in the probability function.
Finally as the probability of any measurement depends on just 2q input-output
pairs the same holds for the algorithm’s output probability. All the information
about h comes from the queries A made.

We use the above theorem together with statements about approximating
polynomials to connect the probability of some input-output behavior of a func-
tion from a given distributionwith the probability of the adversary distinguish-
ing two distributions.

Theorem 2.21 (Theorem 7.3 in [Zha12]). Fix q, and let Ft be a family of
distributions on YX indexed by t ∈ Z+ ∪ {∞}. Suppose there is an integer
d such that for every 2q pairs ∀i ∈ [2q] : (X i, Y i) ∈ X × Y , the function
p(1/t) = Ph←Ft [∀i ∈ [2q] : h(X i) = Y i] is a polynomial of degree at most d in 1/t
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(for t = ∞ the inverse is 0). Then for any quantum algorithm A making at most q
quantum queries, the output distribution under Ft and F∞ are π2d3/3t-close:

∣∣∣∣ P
h←Ft

[
b = 1 : b← A|h〉

]
− P

h←F∞

[
b = 1 : b← A|h〉

]∣∣∣∣ < π2d3

6t . (2.30)

This theorem is an average-case version of the polynomial method often
used in complexity theory. If the polynomial approximating the ideal behavior
of h← F∞ is of low degree the distance between the output distributions must
be small.

2.4.2 Game-Playing Proofs
The modern approach to cryptography relies on mathematical rigor: Trust
in a given cryptosystem is mainly established by proving that, given a set of
assumptions, it fulfills a security definition formalizing real-world security
needs. Apart from the definition of security, the mentioned assumptions
include the threat model, specifying the type of adversaries we want to be
protected against. One way of formalizing the above notions is via games, i.e.
programs interacting with the adversaries and outputting a result signifying
whether there has been a breach of security or not. Adversaries in this
picture are also modeled as programs, or more formally as interacting Turing
machines.

The framework of game-playing proofs introduced by Bellare and
Rogaway in [BR06]—modeling security arguments as games, played by the
adversaries—is especially useful because it makes proofs easier to verify.
Probabilistic considerations might become quite involved when talking about
complex systems and their interactions; the structure imposed by games,
however, simplifies them. In the game-playing framework, randomness can
be, for example, considered to be sampled on the fly, making conditional
events easier to analyze. A great example of that technique is given in the
proof of the PRP/PRF switching lemma in [BR06].

Many proofs of security in cryptography follow the Game-Playing frame-
work, proposed in [BR06]. It is a very powerful technique as cryptographic
security proofs tend to be simpler to follow and formulate in this framework.
The central idea of this approach are identical-until-bad games. Say games G and
H are two programs that are syntactically identical except for code that follows
after setting a flag Bad to one, then we call those games identical-until-bad.
Usually in cryptographic proofs G and H will represent two functions that an
adversary A will have oracle access to. In the following we denote the situa-
tion when A interacts with H by AH. Then we can say the following about the
adversary’s view.
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Lemma 2.22 (Fundamental lemma of game-playing, Lemma 2 of [BR06]). Let
G and H be identical-until-bad games and let A be an adversary that outputs a bit b.
Then ∣∣∣P[b = 1 : b← AH]− P[b = 1 : b← AG]

∣∣∣ ≤ P[Bad = 1 : AG]. (2.31)

2.4.3 One-Way to Hiding Lemma
The One-way To Hiding (O2H) lemma is the quantum counterpart of the fun-
damental game-playing lemma (Lemma 2.22). One of the common use-cases
of the game-playing framework is reprogramming random oracles. By that we
mean changing the output of a random oracle to some chosen value on some
input. The original O2H lemmawas used in that exact way. A new formulation
of the lemma generalized modifying the random oracle to a set S of inputs that
differ in the two oracles that are being distinguished by the adversary.

The original O2H lemma, Lemma 5 in [Unr14], is phrased in terms of repro-
gramming a random oracle. The statement is that the distinguishing advantage
of algorithms given as input h(x) and some uniformly random y is bounded by
2q
√
PB. The quantity PB is the probability that for a randomly chosen query

(i.e. one of the q queries the adversary makes) A queries x (when her query
register is measured in the computational basis).

The new formulation is based on the idea of punctured oracles: quantum
accessible oracles that include a measurement of the adversary’s query register
after every query that checks if x ∈ S is measured. If the check succeeds, i.e. the
measurement detects that the adversary queried x ∈ S, then the measurement
outputs 1. Such oracles are denoted by h \S. By Find we denote the event that
any of these measurements outputs 1. The statement of this new formulation
of the O2H lemma is as follows:

Theorem 2.23 (Theorem 1 in [AHU19]). Let S ⊆ X be random. Let g,h : X → Y
be random functions satisfying ∀x 6∈ S : g(x) = h(x). Let z be a random bitstring.
(S, g, h, z may have arbitrary joint distribution.) Let A be an oracle algorithm (not
necessarily unitary) of query depth d, then∣∣∣P [b = 1 : b← Ah(z)

]
− P

[
b = 1 : b← Ag(z)

]∣∣∣ ≤ 2
√

(d+ 1)P
[
Find : Ah \S(z)

]
,

(2.32)∣∣∣P [b = 1 : b← Ah(z)
]
− P

[
b = 1 : b← Ah \S(z)

]∣∣∣ ≤ √(d+ 1)P
[
Find : Ah \S(z)

]
.

(2.33)

More results can be found in the original paper. Another interesting gener-
alization of the O2H lemma can be found in [Bin+19]. In [Cza+19] we gener-
alize the technique to include the results of [Zha19a], Chapter 6 is dedicated to
this generalization.
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An interesting lemma that we are going to use in this thesis gives a bound
on probability of finding.

Lemma 2.24 (Corollary 1 in [AHU19]). Suppose h, S, and z are independent, and
that A is a q-query algorithm. Let Pmax := maxx P

[
x ∈ S

]
. Then

P
[
Find : Ah \S(z)

]
≤ 4q · Pmax. (2.34)

The statement in [AHU19] considers semi-classical oracles, oracles that only
answer if x ∈ S , but Lemma 2.24 is a straight forward corollary of that. Note
thatAwith access to the semi-classical oracle can easily simulate h \S by using
just two queries to the semi-classical oracle.

We also state a generalization of Lemma 2.24 valid for adversaries that get
quantum input.

Lemma 2.25. Let A be any quantum oracle algorithm making at most q quantum
queries to a punctured oracle with domain X . Let S ⊆ X and |st〉 ∈ C2n. (S and |st〉
may have arbitrary joint distribution independent from h.) Let B be an algorithm that
on input |st〉 chooses i $← {1, . . . , q} ; runs Ah until (just before) the i-th query; then
measures the query input register in the computational basis and outputs the measure-
ment output x.

Then

P
[
Find : Ah \S(|st〉)

]
≤ 4q · Pguess, (2.35)

where Pguess is the the guessing probability of S (treated as a random variable) given
the quantum side-information |st〉.

Proof. Theorem 2 in [AHU19] states

P
[
Find : Ah \S(z)

]
≤ 4q · P

[
S ∩ T = ∅ : T ← B(z)

]
(2.36)

for a random z (with arbitrary joint distribution). Following the proof of this
theorem one can easily generalize the statement to quantum inputs. The proof
of Theorem 2 in [AHU19] does not depend on the sort of input the algorithms
have, just that B can simulate A.

The next step is the observation (made in the proof of Lemma 2.24 in
[AHU19]) that the probability P

[
S ∩ T = ∅ : T ← B(|st〉)

]
is bounded by the

probability that B outputs an element of S :

P
[
S ∩ T = ∅ : T ← B(|st〉)

]
≤ P

[
x ∈ S : x← B(|st〉)

]
≤ Pguess (2.37)

The final bound comes from introducing Pguess.
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2.5 Cryptographic Constructions
One of themost versatile cryptographic primitives are cryptographic hash func-
tions. A hash function is supposed to map arbitrary-length inputs to some
fixed-length output. Moreover, for it to be useful in cryptography, it should
also posses other features, e.g. collision-resistance. A hash function is said to
be collision-resistant if no probabilistic polynomial time adversary can find two
inputs mapping to the same output with non-negligible probability.

More concretely, a hash function is a function hH : X → Y for some range
X and domain Y . Typically, Y consists of fixed-length strings, and X consists
of fixed-length strings or arbitrary-length strings, e.g. A∗. h can depend on an
oracle H. Typically, H will be a random function, a random permutation, or
simply be missing if we are in the standard model. Unless specified otherwise,
we make no assumptions about the distribution of H.

It is rather hard to design a function that maps arbitrary-length strings and
is collision resistant. It is possible though to make a good compression func-
tion. That is a function that takes as input only fixed-length strings and maps
them to shorter strings while being collision-resistant. But is having such a
“small” function sufficient? The answer is yes. The reason is the existence of
constructions that apply the “small” function many times in a way that one can
input arbitrary-length strings and still get the desired behavior, e.g. collision-
resistance.

Among the most famous and widely used constructions for hash functions
is the Merkle-Damgård construction [Mer90; Dam90] used in the SHA-17 and
SHA-2 standardized hash functions [NIS15].

In this section we also discuss constructions for functions with fixed-length
inputs. A common type of constructions in cryptography build a one-way func-
tion out of permutations. The reason for why such conversion is popular is
that in practice it is easier to build a secure (colloquially saying: behaving ran-
domly) permutation.

2.5.1 Composition of Compression Functions
The composition compression function is used in the proof of indifferentiability
of the Merkle-Damgård construction in Lemma 3.2 in [Cor+05]. It is a simple
compression function that can be used to exemplify proof techniques, for exam-
ple for indifferentiability. The composition of compression functions is defined
as

Comph1,h2(x1, x2) := h2(h1(x1), x2). (2.38)

7This is no longer considered a secure hash function, note the first collision found in 2017
[Ste+17].
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In [Cor+05] the authors provide a sketch of the indifferentiability proof of
Comp.

This construction is used by us as an example of our methods for proving
quantum indifferentiability. Moreover the construction is used in the External
Storage Game, discussed in Chapter 8. In Figure 2.3 we present a scheme of the
construction.

x1

x2

h1

h2 yy1
y2

Figure 2.3: A schematic representation of composition of two hash functions
Comph1,h2(x1, x2) = y.

2.5.2 The Sponge Construction
Another important construction is the sponge construction [Ber+07],
underlying for example the current international hash function standard
SHA-3 [NIS14], but also other hash functions such as Quark [Aum+10],
Photon [GPP11], Spongent [Bog+13], Gluon [Ber+12a], KangarooTwelve
[Ber+18], or the extendable-output function SHAKE [NIS14]. The sponge
construction builds a hash function h from an internal function8 f .

The sponge construction has been proven indifferentiable from a random
oracle [Ber+08]. From indifferentiability, most other security guarantees can
been derived. Quantum security of the sponge construction has been proven
in [Cza+18; CHS19; Cza+19], these results are presented in detail in chapters 3,
4, and 7.

The sponge construction is an extendable-output function that maps
arbitrary-length inputs to outputs of a length specified by an additional
input. The construction operates on states s ∈ A × C, where A and C are
finite sets. The parameter r := blog2(|A|)c is called the rate and the parameter
c := blog2(|C|)c is called the capacity. The part in A of the state is called the
outer part or outer state, the remaining part in C is called the inner part or inner
state. The sponge uses an internal function f : A × C → A × C. To process a
message consisting of several symbols (elements of A), the sponge alternates
between mixing a new message block into the outer state and applying f , as

8f is not called a compression function, since the domain and range of f are identical.
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shown in Figure 2.4. When all message blocks are processed (i.e. absorbed
into the internal state) the sponge can be squeezed to produce ` outputs in A
by alternating between applying f and outputting the outer state. We write
Spongef for the sponge using f as internal function. The function constructed
in that way behaves as follows, Spongef : A∗ × N → A∗. We call the sponge
construction using some f simply the Sponge.

Technically the sponge construction is defined together with a padding
function pad :M→A∗. In our discussion padding does not play an important
role so we often omit it. The requirement on pad put in [Ber+07] is that the
mapping pad(m) must be injective, and must be such that |pad(m)| ≥ 1 and
that the last character of pad(m) is never 0 (this ensures injectivity for inputs
of different lengths).

In Figure 2.4 we present a scheme of the sponge construction evaluated on
input M = (M1‖M2‖M3).

0

0

⊕

M1

f
⊕

M2

f
⊕

M3

f

Z1

f

Z2

Absorbing phase Squeezing phase

Input: M = M1‖M2‖M3 Output: Z = Z1‖Z2

Figure 2.4: A schematic representation of the sponge construction:
Spongef (M1‖M2‖M3, 2) = Z1‖Z2.

InAlgorithm 2.1we present the definition of Sponge. We assume that the set
of outer statesA is a finite Abelian group. The action of this group is denoted by
⊕. The initial value of the state in the construction is (0, 0) ∈ A×C, 0 ∈ A is the
neutral element and 0 ∈ C is an arbitrary fixed element of C. In the following
we denote the part of the entire state S in A by S̄ and the part in C by Ŝ. To
denote the internal function with output limited to the part in A and C we use
the same notation as for states, f̄ and f̂ respectively. We oftenwrite S := A×C to
denote the combined set of states. We also write Spongef [pad,A, C, `] to denote
Spongef [pad,A, C] that takes arguments in M and always outputs strings of
length `.

The absorbing phase of the sponge construction is defined in Algorithm 2.2.

Note that we use a general formulation of the construction, using any finite
sets for A and C. This is the way sponges are defined in [Ber+07]. In most of
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Algorithm 2.1 Spongef [pad,A, C]
input: M ∈M, ` ≥ 0
output: Z ∈ A`

1: P := pad(M)
2: S := (0, 0) ∈ A× C . Initial Value
3: for i = 1 to |P| do . Absorbing phase
4: S := (S̄ ⊕ Pi, Ŝ)
5: S := f(S)
6: Z := S̄ . Squeezing phase
7: while |Z| < ` do
8: S := f(S)
9: Z := Z‖S̄

10: return bZc`

Algorithm 2.2 Absorbf

input: P ∈ A∗
output: S ∈ A× C

1: S := (0, 0) ∈ A× C . Initial Value
2: for i = 1 to |P| do
3: S := (S̄ ⊕ Pi, Ŝ)
4: S := f(S)
5: return S

the other literature, e.g. [Ber+11b; NIS14], the sponge construction is defined
on A = {0, 1}r and C = {0, 1}c. All our results also work for Sponge defined
with bit-strings and bitwise XOR, as specified in [NIS14]. In Algorithm 2.1
we use bZc`, for a general A this operation does not do anything; For A = An0
(whereA0 is some finite set), however, bZc` denotes the first ` symbols inZ. For
example when A = {0, 1}r then Sponge outputs the first ` bits—it is important
to interpret this notation like that and not as the first ` blocks of r bits.

For sponges defined on bit-strings the commonly used padding is of the
form pad(M) = M‖p̃ad(|M| − b|M|c), where p̃ad denotes the function out-
putting a string, such that the length of the padded message is a multiple of
r. For instance, the padding used in Keccak [NIS14] is M‖pad(M) = M‖10∗1
which appends to message M the bitstring 10∗1 with a suitable number of 0’s
(possibly none) such that the padded message is a multiple of r. Note that at-
taching a binary encoding of the message length |M| is not possible according
to this assumption.
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2.5.2.1 Sponge Graph

An important feature of the sponge construction is that one can associate to the
internal function f a graph G = (V , E) [Ber+07]. It is called the sponge graph;
The set of nodes V := A×C corresponds to all possible states of the sponge. A
directed edge connects any two nodes (s, t) whenever f(s) = t, hence there are
|A × C| edges in E . From each node starts exactly one edge. We group the nodes
with the same inner-part values into supernodes, so that we have |C| supernodes
and each such supernode consists of |A| nodes. Edges between nodes are also
edges between supernodes.

Whenever the adversary queries Sponge, she starts at the (0, 0) node. This
node is called the root. Next the first character (or block of characters, depend-
ing onA) p1 in the paddedmessage p = pad(m) is added to the outer part of the
state and queried to the internal function f(p1, 0) = s2. The node s2 is the node
in the edge ((p1, 0), s2) ∈ E . The same operation is repeated for all characters in
p, concluding the absorbing phase. When Sponge starts generating output, we
no longer modify the state, or just add 0 to the outer part. Note that knowing
just p and Gwe can get to the last node traversed by Spongef (m). This leads us
to the definition of a sponge path.

Definition 2.26 (Sponge Path, Definition 3 in [Ber+08]). First, the empty string
is a sponge path to the node (0, 0). Then, if p is a sponge path to node s = (s̄, ŝ) and
there is an edge ((s̄+ a, ŝ), t) in the sponge graph G, p′ = p‖a is a sponge path to node
t.

Given the above definition, let us say that if p is a sponge path to s, then we
define a function

SpPath(s,G) := p. (2.39)

The output of the above function is the input to the construction Spongef (., ` =
1) (so the sponge that outputs a single symbol from A, or r bits if A = {0, 1}r)
that yields the output s̄.

When we talk about the simulator in a proof of indifferentiability, we define
the simulator graph. The graph kept by the simulator differs from the sponge
graph discussed above by the number of edges in it. As the simulator lazy
samples the internal function f , the set of edges E grows by at most one edge
per one adversary’s query. Other than that, all definitions and features of the
sponge graph hold for the simulator graph as well. We refer to the simulator
graph G as just the (sponge) graph whenever it is clear from context.

A supernode is called rooted if there is a path (that is just a set of connected
edges) leading to it that starts at the root (the 0-supernode). The setR is the set
of all rooted supernodes inG. By U we denote the set of supernodes containing
a node with an outgoing edge.
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A simulator graph is called saturated if R ∪ U = C. It means that for every
inner state in C there is a path in G that leads to it from 0 (the root) or leads
from it to another node. Saturation will be important in the proof of indiffer-
entiability as the simulator wants to pick outputs of f without colliding inner
parts (so not inR) and making the path leading from 0 to the output longer by
just one edge (so not in U).

2.5.2.2 Keyed Sponges

Sponges can be keyed in several ways. For example, the state can be initial-
ized with the key, referred to as root-keyed sponge in [And+15]. Another
option is to just apply the sponge on the concatenation of key and message.
This was called the keyed sponge in [Ber+11a] and the outer-keyed sponge
in [And+15]. The last and for us most relevant concept is keying the sponge by
replacing f with a keyed function fK . For the special case of fK being a single-
key Even-Mansour construction thiswas called E-Mkeyed sponge construction
in [Cha+12] and later the inner-keyed sponge in [And+15]. We refer to the
general case for any keyed function fK as keyed-internal-function sponge.

2.5.2.3 Sponge Collisions

An inner-collision is a pair of input messagesm1,m2 6= m1 such that

Âbsorb(pad(m1)) = Âbsorb(pad(m2)). (2.40)

Let us assumeA = An0 for some finite setA0. With a padding rule that depends
only on |m| − b|m|/nc and works by just appending a string tom, it is possible
to construct a collision in Sponge given an inner collision.

Claim 2.27. Given the above assumptions about pad, from an inner collision one can
construct a full collision of arbitrary length.

Proof. We havem1 andm2 6= m1 such that Âbsorb(pad(m1))
= Âbsorb(pad(m2)). Then we definem3 := pad(m2)‖(
Absorb(pad(m2))⊕Absorb(pad(m1))

)
. When adding the last block to the

state, we modify it to Absorb(pad(m1))‖Âbsorb(pad(m2)). Thanks to our
assumption the state is then the same as when evaluating pad(m1). The full
state after absorbingm3 is the same as after absorbing pad(m1)‖0n. The second
padded message we define is m′3 = pad(m1)‖0n. The output-collision is
(m′3,m3) and it works for any length output. Note that m3 and m′3 are distinct,
the padding rule is injective and m1 6= m2. Moreover m3 and m′3 have length
being a multiple of n so pad will just append an identical full block to both
messages, preserving the collision.
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2.5.3 Rate-1/3 Compression Function
This construction (that we denote by Rate-1/3) of a compression function has
been first defined in [SS08]. The authors explore constructing a compression
function out of three functions. They also prove that if the internal functions
are random, then the constructed hash function is collision resistant. Also note
[MT07], for a discussion on security beyond the birthday-bound9 barrier for
other constructions based on random functions.

The construction is defined as follows:

Rate-1/3f1,f2,f3(x1, x2) := f3 (f1(x1)⊕ f2(x2))⊕ f1(x1), (2.41)

where f1 : X1 → Y , f2 : X2 → Y , f3 : X3 → Y , and X3 := Y , Y is an
Abelian group. Without loss of generality for all results in this thesis concern-
ing Rate-1/3 we can set Y = {0, 1}n and ⊕ is the bitwise XOR. When referring
to Rate-1/3, N = 2n.

In Figure 2.5 we present the scheme of the construction.

x1 f1 y1

x2 f2 f3y2 x3 y3⊕ ⊕ y

Figure 2.5: A schematic representation of the rate-1/3 hash functions
Rate-1/3f1,f2,f3(x1, x2) = y.

2.5.4 Encrypted Davis-Meyer Construction
The Encrypted Davis-Mayer (EDM) construction was introduced in [CS16]
and further analyzed in [DHT17; MN17a]. The construction can be used to
define a secure Message Authentication Code (MAC) or a PRF. Again, the ad-
vantage of constructing a function frompermutations comes frompractical rea-
sons.

The EDM construction is defined as

EDMπ1,π2(x) := π2 (π1(x)⊕ x) , (2.42)

where π1 and π2 are permutations X → X , where X = {0, 1}n. In Figure 2.6
we present a scheme of the construction.

9The birthday-bound is the bound on generic collision-finding algorithms.
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x π1 ⊕ π2 y
x1 y1 x2 y2

Figure 2.6: A scheme of the EDM construction.

In [CS16] the authors prove MAC and PRF security of the construction
based on PRPs. The definition of MAC security can be found in [KL14], it is
not the subject of this thesis, though. In [MN17a] the authors prove indistin-
guishability from a random function of the construction based on random per-
mutations. In Chapter 7 we prove that EDM is classically indifferentiable from
a random oracle when instantiated with random permutations and quantumly
indifferentiable from a random oracle when instantiated with one-way random
permutations (the adversary is given only forward access).

2.5.5 Encrypted Davis-Meyer Dual Construction
A construction very similar to EDM was defined in [MN17a]. The Encrypted
Davis-Mayer Dual (EDMD) construction is also a design of a function using
two permutations. The construction is defined as

EDMDπ1,π2(x) := π2 (π1(x))⊕ π1(x), (2.43)

where π1 and π2 are permutations X → X , where X = {0, 1}n. In Figure 2.7
we present a scheme of the construction.

x π1 ⊕π2 y
x1 y1 x2 y2

Figure 2.7: A scheme of the EDMD construction.

In [MN17a] the authors prove indistinguishability from a random function
of the construction based on random permutations. In [MN17b] the authors
show an interesting instantiation of EDMD. In Chapter 7 we prove that EDMD
is classically indifferentiable from a random oracle when instantiated with ran-
dom permutations and quantumly indifferentiable from a random oracle when
instantiated with one-way random permutations (the adversary is given only
forward access).
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This chapter is dedicated to standard security notions and security proofs
that relate them. We analyze collision resistance and collapsingness of the
sponge construction. The assumptions we make are also limited to collision
resistance, collapsingness, and zero-preimage resistance.

We showwhat these resultsmean for ideal primitives—random functions—
and provide analogous statements that use stronger results, namely quantum
indifferentiability.

We also present two quantum algorithms for collision search. One algo-
rithm finds collisions in random sponges and the other in any functions (but
only given access to an external random oracle).

3.1 Introduction
In the classical setting, we know that the sponge construction is
collision-resistant if the internal function f is modeled as a random function
or a random permutation [Ber+08]. Bertoni et al. [Ber+08] shows that the
sponge construction is indifferentiable from a random oracle in the classical
setting. Together with the fact that the random oracle is collision-resistant,
collision-resistance of the sponge construction follows. However, the proof in
[Ber+08] does not carry over to the post-quantum setting: their proof relies
on the fact that queries performed by the adversary to the internal function
are classical (i.e., not in superposition between different values). As first
argued in [Bon+11], random oracles and related objects should be modeled
as functions that can be queried in superposition of different inputs. Thus,
we do not know whether the sponge construction (and thus hash functions
like SHA-3) is collapsing (or at least collision-resistant in the post-quantum
setting).

In Section 3.2 we prove that if the internal function f is collision-resistant
when restricted to the outer and inner part of its output and it is hard to find a
zero-preimage of f (restricted to the inner part of its output), then the sponge
construction is collision-resistant. This result was first presented in [Cza+18].
In Chapter 7 we state that the sponge construction is indifferentiable from a
random oracle if f is a random function; We give bounds that come from the
fact that quantum collision-resistance is implied by quantum indifferentiability
and compare them to the direct approach.

Then, in Section 3.3, we show a quantum algorithm for finding collisions in
a random sponge. We also state the result of [Cza+18] where we show an al-
gorithm that finds collisions in any function (given access to a random oracle),
in particular in the sponge construction. The number of quantum queries to f
asymptotically matches our bounds for collision resistance.

At the end of the chapter, in Section 3.4, we state results about collapsing-
ness from [Cza+18]. If the internal function f is collapsing when restricted to



48 Chapter 3. Standard Security of Sponges

the outer and inner part of its output, respectively, and if it is hard to find a
zero-preimage of f (restricted to the inner part of its output), then the sponge
construction is collapsing. If the internal function f is a random function, then
the sponge construction is collapsing. We show this result directly and via in-
differentiability.

It should be stressed that we do not show that the sponge construction is
collapsing (or even collision-resistant) if the internal function f is an efficiently
invertible random permutation. In this case, it is trivial to find zero-preimages
by applying the inverse permutation to 0. This means that the presented result
cannot be directly used to show the security of, say, SHA-3, because SHA-3 uses
an efficiently invertible permutation as internal function. Our results apply to
hash functions where the internal function is not (efficiently) invertible, e.g.,
Gluon [Ber+12a]. It seems that this limitation is just a residue of our technique.
We do believe, however, that the results hold for permutations too, note for
example that sponges are indistinguishable from random oracles for functions
and permutations1.

The special role of the 0 ∈ C comes from the fact that if the sponge state is
of the form (a, 0) at some point (except for the initial value), then it is possible
to construct an inner-collision. In turn, an inner-collision can be easily trans-
formed into a full collision in Sponge, which breaks the security of the con-
struction. For the preimage of zero to be useful, though, it has to lie in a sponge
path. Intuitively speaking, the chances of an adversary finding a sponge path
that leads to 0 ∈ C are extremely low. This fact is difficult to formally incorpo-
rate into our proofs without solving a much harder task of proving quantum
indifferentiability of Sponge.

3.2 Collision-resistance of the sponge construction

In this section we state our result concerning collision-resistance of the sponge
construction. We motivate our statement with Lemma 3.2 connecting attacks
on some features of the internal function with collision-resistance of the overall
construction. Those features are collision-resistance of f̂ , collision-resistance of
f̄ , as in Definition 2.7, and zero-preimage-resistance of f̂ , Definition 2.6.

Before we proceed, let us discuss our choice of sponge parameters. We state
our results in terms of the general sets A and C. The group of outer states is a
Cartesian product: A = An0 with action ⊕ : A × A → A defined as a ⊕ b :=
a1⊕0 b1⊕0 · · ·⊕0 an⊕0 bn, where⊕0 is the action in the groupA0. We chose such
parameters tomake our result themost general. An example of parameters that
is widely used is {0, 1}r. When discussing the last f in an evaluation of Spongef

1As proven in [CHS19] and Chapter 4.
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we write:

f̄min := bf̄cmin{`,n} (3.1)

to denote the function outputting the first min{`, n} symbols in the outer part
of the output.

Here we state the reduction between features of f and collision-resistance of
the sponge construction.

Theorem 3.1. Assume a quantum τ -time adversary B with quantum access to f that
finds a collision in Spongef [pad,A, C, `] with probability ε. Then there exist:

• a (τ + 2τpad +O
(
(4Tm + 2d `

n
e)τf

)
-time adversary A1 that finds a collision in f̂

with probability ε̂coll,

• a (τ + 2τpad +O
(
(4Tm + 2d `

n
e)τf

)
-time adversary A2 that finds a pre-image of

0 under f̂ with probability ε̂zero,

• and a (τ + 2τpad +O
(
(4Tm + 2d `

n
e)τf

)
-time adversary A3 that finds a collision

in f̄min with probability ε̄coll,
such that ε ≤ ε̂coll+ ε̂zero+ ε̄coll. Tm denotes an upper bound on the number of blocks in
the padding of the input messages, τf is the time required for a single classical invocation
of f and τpad is the time required for one invocation of pad. The same bounds hold when
measuring the time in number of oracle queries.

Before proving Theorem 3.1 we present the lemma relating the output of a
sponge-collision-finder with collisions and pre-images of f .

Lemma 3.2. Assume that pad is injective. There is a deterministic polynomial-time
oracle algorithm A such that for anym 6= m′ with Spongef (m)
= Spongef (m′), Af (m,m′) outputs one of the following:

• (inner, (s, s′)) where (s, s′) is a collision of f̂ ,

• (zero, s) where s is a zero-preimage of f̂ ,
• or (outer, (s, s′)) where (s, s′) is a collision of f̄min.
The runtime of the algorithm is at most 2τpad+O (Tmτf ), where Tm denotes an upper

bound on the number of blocks in the padded input messages, τf is the time required for
a single classical invocation of f and τpad is the time of computing pad.
Proof. Algorithm A starts by computing the first inner-state of the squeezing
phase on input of the two colliding messages, i.e., it evaluates Absorb ◦ pad,
defined in Algorithm 2.2. We will denote the states traversed during this cal-
culation by si and s′i form andm′, respectively. As our analysis starts with the
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final state of this computation and revisits the intermediate states in backwards
direction, we denote by s0 the final state, whose outer part is output (for ` < n
only the first ` symbols), by s−1 the state just before the last application of f
and so on. Using p := pad(m) and p′ := pad(m′), the intermediate states s−i for
1 ≤ i ≤ |p|n − 1, where |p|n denotes the number of n-symbol blocks in p, are
defined by s−i := f̄(s−i−1) ⊕ p|p|n+1−i‖f̂(s−i−1), s0 := f(s−1) and s−|p|n := p1‖0.
Asm andm′ collide per assumption, we have bs0cmin{`,n} = bs′0cmin{`,n}.

1. Algorithm A first checks if s−1 or s′−1 are a preimage of 0 ∈ C, or form a
collision under f̄min. If the inner part of s0 (or s′0) is 0, s−1 (s′−1) is a pre-
image of 0 under f̂ and A outputs (zero, s−1) ((zero, s′−1), respectively).
If s−1 6= s′−1, A outputs (outer, s−1, s

′
−1). These two states form a colli-

sion under f̄min because they are the inputs to the last f in Sponge and
bs0cmin{`,n} = bs′0cmin{`,n}. Otherwise, s−1 = s′−1 and there are no preim-
ages of zero.

2. If not done yet, s−1 = s′−1 and A checks for a preimage of 0 ∈ C or a
collision in f̂ . If ŝ−1 = 0, A found a preimage of 0. This is true as if
both messages ended here then s−1 = s′−1 would imply that p = p′ (and
so m = m′) which contradicts the assumptions of the lemma. Hence, at
least one message must be longer. Assuming the longer message is m, A
outputs (zero, s−2) (or (zero, s′−2) if it wasm′). Next the algorithm checks
if p−1 = p′−1, where we follow a similar notation for message blocks as
for the states. The last block of the input is denoted by p−1. If p−1 6= p′−1,
A outputs (inner, s−2, s

′
−2). This is a collision of f̂ because p−1 6= p′−1 but

s−1 = s′−1. Thus f(s−2) 6= f(s′−2) which in turn implies s−2 6= s′−2 while
f̂(s−2) = f̂(s′−2). We can be certain that there are at least two applications
of f both in Sponge(m) and Sponge(m′) because the right half of s−1 = ŝ−1
is not 0.

3. If p−1 = p′−1 we end up in the same situation as before but now for
i = 2. Namely we have that s−2 = s′−2 and the algorithm performs
the same checks as before but for a bigger i. Repeat Step 2 for all
2 ≤ i ≤ min{|p|n , |p′|n}.

If the iteration endswithout success, this especiallymeans that no collisionwas
found but at least one message was fully processed. In this case A outputs a
preimage of 0 under f̂ . That is because no collisions means that all compared
message blocks are the same but the twomessages are different per assumption.
Hence, they must have different lengths. With different length messages that
traverse the same state values at the point of i = min{|p|n , |p′|n} the inner part
of both states is 0, so the algorithmwill output (zero, s′−|p|n−1) (assuming |p|n <
|p′|n).
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Proof of Theorem 3.1. We reduce the problem of finding collisions in Sponge to
attacks on the internal function. Adversaries A1, A2, and A3—that have quan-
tum access to f—run B and then classically compute Sponge on the outputs
of the collision finder. If that in fact is a collision they run algorithm A from
Lemma 3.2 and output the last register of its output. Otherwise the algorithms
outputs ⊥. Note that the runtime of the described adversaries agrees with the
claim. That allows us to write

P[m 6= m′ ∧ Sponge(m) = Sponge(m′) : (m,m′)← B] =
P
[(
s 6= s′ ∧ f̂(s) = f̂(s′) : (s, s′)← A1

)
∨
(
s ∈ f̂−1(0) : s← A2

)
∨
(
s 6= s′ ∧ f̄min(s) = f̄min(s′) : (s, s′)← A3

)]
≤ ε̂coll + ε̂zero + ε̄coll, (3.2)

where the inequality comes from the union bound.

Note that the same bounds hold when measuring the time in number of
oracle queries.

It is true that for ` > n our bound seems to be not optimal but our reduc-
tionist approach is not well suited to deal with consecutive applications of f .

3.2.1 Collision Resistance of Random Sponges

Let us now analyze the case of a random sponge. The success probability of
a generic collision-finding algorithm in h : A × C → C is at most π2

3
(q+2)3

|C| , as
proven by Zhandry in Theorem 7 in [Zha15a]. To use Zhandry’s results we
need to make sure the distribution of f̂ is in fact uniform.

Lemma 3.3. If f : A×C → A×C is a random function andA that looks for collisions
in f̂ makes at most q quantum queries to f and has success probability ε̂coll, then ε̂coll ≤
π2

3
(q+2)3

|C| .

Proof. Let h : A × C → C be a uniformly random function. Let A′ perform
the following steps: It picks a uniformly random function g : A × C → A
(we do not care about the runtime of A′, so it is not a problem that picking g
takes exponential time). Then it simulatesAwhere f ′ is the function defined by
f ′(x) := g(x)‖h(x). Note that an oracle query to f ′ can be implemented using a
single oracle query to h. So A′ still performs q oracle queries.

The joint distribution of f ′ and h is the same as that of f and f̂ . Thus the
advantage ofA′ against h is the same as the advantage ε̂coll ofA against f̂ . Thus
we can use results proven in [Zha15a], ε̂coll ≤ π2

3
(q+2)3

|C| .
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Similarly for f̄min and f̄ it holds that the advantage of a q-query collision
finder is ε̄coll ≤ π2

3
(q+2)3

|A0|`
and π2

3
(q+2)3

|A| = π2

3
(q+2)3

|A0|n , respectively.
Zero-pre-image finding in a random function has probability of success at

most ε̂zero ≤ 25(q + 1)2 |C|−1 as shown next.

Lemma 3.4. Let f : A×C → A×C be a random function. Then a q-query adversary
finds a zero-preimage of f̂ with probability ≤ 25(q+1)2

|C| .

Proof. Assume an algorithmAf that finds a zero-preimage of f̂ with some prob-
ability ε̂zero. Let h : A × C → {0, 1} be a random function where each h(z) is
independently chosen, with P[h(z) = 1] = γ := |C|−1. Let Bh be the follow-
ing algorithm: It picks functions f1, f0 : A × C → A × C, where each f0(x) is
independently and uniformly chosen fromA× (C \ {0}) and each f1(x) is inde-
pendently and uniformly chosen from A × {0}. Define f ′(x) := fh(x)(x). Then
Bh runs x ← Af ′ and returns x. A query to f ′ can be implemented using 2
queries to h. Thus Bh performs ≤ 2q queries to h. (We do not care about the
runtime of Bh. Thus the exponential time required for implementing f0, f1 is not
a problem.)

Note that f ′ : A × C → A × C is a uniformly random function (for h dis-
tributed as described above). Thus Af ′ finds a zero-preimage of f̂ with prob-
ability ε̂zero, i.e., an x with f̂(x) = 0. Such an x then satisfies h(x) = 1. Thus
Bh finds a 1-preimage of h with probability ε̂zero. [HRS16, Theorem 1] shows
that a 2q-query adversary can find a 1-preimage in h with probability at most
8γ(2q + 1)2. Thus ε̂zero ≤ 8γ(2q + 1)2 ≤ 25(q + 1)2 |C|−1.

We are now ready to bound the probability to find collisions in a random
Sponge. By coll← Bf wedenotem 6= m′∧Sponge(m) = Sponge(m′) : (m,m′)←
Bf .

Corollary 3.5. For any quantum adversary B finding collisions in
Spongef [pad, C,An0 ] with random f , we have that

P[coll← Bf ] ≤ π2

3 (q + 2)3 max{|C|−1 , |A|−1 , |A0|−`}. (3.3)

The fact that we have a |A|−1 = |A0|−n term in the above bound is a result
of restricting f̄min to f̄ in the case of ` > n.

One possible approach to filling this gap between 1/ |A| and 1/ |A0|` for
` > n is through quantum indifferentiability of the sponge construction. In
Chapter 7 we prove quantum indifferentiability of sponges with uniformly ran-
dom f , the bound that we get is then:
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Theorem 3.6. For any quantum adversary B finding collisions in
Spongef [pad, C,An0 ] with random f is bounded as

P[coll← Bf ] ≤ π2

3
(q + 2)3

|A0|`
+ 56q(q + 1)

|C|
+

√√√√7q(q + 1)2

|C|
. (3.4)

Proof. Given that Spongef is quantumly indifferentiable we can write

P
[
coll← B′[Spongef , f ]

]
≤ εI + P

h←R

[
coll← B′[h, S]

]
(3.5)

≤ εI +π
2

3
(q + 2)3

|A0|`
(3.6)

where B′ simulates B but is given access to Spongef and f . We denote the indif-
ferentiability advantage by εI . From Theorem 7.9 we know that εI = 56 q(q+1)

|C| +√
7 q(q+1)2

|C| . The inequality follows fromusing an indifferentiability distinguisher
that outputs 1 if B′ outputs a collision.

3.3 Quantum Collision-Finding Algorithms
In the following we present two quantum collision-finding algorithms against
the sponge construction. The main contribution of this section is an algorithm
that outputs collisions in random sponges with high probability. We also
present the result from [Cza+18] where the collision can be found in any
function h but with the use of an external random oracle. We focus on the
standard parameters of Sponge: we set A = {0, 1}r and C = {0, 1}c. We also
put requirements on pad so that the padding just adds bits to the end of the
message.

The general working of both attacks is to select a suitable function g, run
a collision-finding algorithm by Ambainis [Amb07] to obtain a collision for g,
and finally turn this collision into a collision for the target sponge. The suitable
function in this context refers to the function giving a result that is optimal
with respect to the number of queries to the internal function. We make a case
distinction whether the length of the required collision ` is smaller or bigger
than the capacity c of the sponge; This distinction in the algorithm that does
not use a random oracle is done against b(c), an almost linear function of c
defined in Equation (3.7). In the case ` < b(c), we simply search for an output
collision in Sponge. In the other case ` ≥ b(c), it is more efficient to search for
an inner-collision, as an inner-collision is a collision in a function with c bits of
output and can be extended to arbitrary-length output collision.

In this section, we assume that the padding function is of the form pad(m) =
m‖p̃ad(|m| − b|m|/rc), where p̃ad denotes the function outputting a bitstring,



54 Chapter 3. Standard Security of Sponges

such that the length of the padded message is a multiple of r. For instance,
the padding used in Keccak is pad(m) = m‖10∗1 which appends to message
m the bitstring 10∗1 with a suitable number of 0’s (possibly none) such that
the padded message is a multiple of r [NIS14]. Note that attaching a binary
encoding of themessage length |m| is not possible according to this assumption.
Say that npad is the minimal number of bits appended by pad (i.e. two in the
example above) and we will assume that 0 < npad < r.

Our attacks make heavy use of the following quantum algorithm by Am-
bainis [Amb07].

Theorem 3.7. ([Amb07] Theorem 3) There exists a constant kcoll and a quantum
algorithm Coll that finds a collision in any g : X → Y that has at least one collision.
Collmakes kcoll · |X |2/3 quantum queries to g and finds a collision with probability at
least 15/16.

Wenote that [Amb07] also gives guarantees on the actual quantum running
time and memory requirements of the quantum collision-finding algorithm.
Concretely, there exist (small) constants k′coll, k′′coll such that the running time
and quantum memory is at most k′coll · |X |

2/3 · logk′′coll(|X | + |Y|). Therefore, all
our results of this section which are stated in terms of query complexity also
yield guarantees on the running time and memory, incurring the same blowup
by a poly-logarithmic factor in the number of queries.

3.3.1 Quantum Collision Finding Without a Random Oracle
In this section we present a collision-finding algorithm for random sponges
that does not use an external independent random oracle. The algorithm has
quantum access to the internal function f . As we already mentioned we make
heavy use of algorithm Coll from Theorem 3.7 for the crucial algorithmic part
of the proof. Our contributions liemostly in designing the appropriate function
g that is queried by Coll and then proving that g has a collision in setM—the
key assumption of Theorem 3.7; We defineM below in Definition 3.9. Note
that in Equation (2.21) we specify what we mean by having a collision in a set.

Generic quantum collision-finding algorithms require some structure in the
function in which we look for collisions. In [BHT98; Amb07; Zha15a] the func-
tion has to be two-to-one or have at least one collision, in [BES18] the distri-
bution of outputs has to be independent (which is not the case for random
sponges). We are not aware of any other generic collision-finding algorithms
so we use the results of [Amb07] and prove that the assumption is indeed ful-
filled by random sponges.

We first state the main theorem of this section. Later we state and prove
two lemmas important for proving the main result. We finish with the proof of
Theorem 3.8.
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Theorem 3.8. Let f be a random internal function (function or permutation). There
exists a quantum algorithm Sponge-Collmaking q quantum queries to f that outputs
a collision of length ` in Spongef [pad, {0, 1}r, {0, 1}c], i.e. two messagesm 6= m′ such
that Spongef (m, `) = Spongef (m′, `), with error independent of the sponge parame-
ters.

The number of queries depends on the sponge parameters, the distinction between
which is done with

b(c) := r − npad

r − npad + 2c− 2 log2

(⌈
c

r

⌉)
− 2(r − npad)− 5. (3.7)

Depending on b(c) we have two regimes of Sponge-Coll:

• If ` < b(c), then the number of queries to f is at most 3kcoll · 3`+2(r−npad)+6
4(r−npad) 2n′/3,

where n′ = r−npad+1
r−npad

`+ 2(r − npad + 1) + 6 r−npad+1
r−npad

.

• If ` ≥ b(c), then the number of queries to f is at most 3kcoll · c+2(r−npad)+6
4(r−npad) 2n′/3,

where n′ = r−npad+1
r−npad

c+ 2(r − npad + 1) + 6 r−npad+1
r−npad

.

Proof idea. We prove our statement by constructing a collision-finding
algorithm Sponge-Coll and proving how many queries it makes. The main
ingredient of Sponge-Coll is Ambainis’ collision-finding algorithm Coll, as
stated in Theorem 3.7. Both query complexity and probability of error of
Sponge-Coll are inherited from this subroutine. The query complexity is
derived from the size of the domain of the function g : X → Y in which we
are looking for collisions.

The two sources of collisions in Spongef are inner-collisions and output-
collisions, we defined them in detail in Section 2.5.2.3. We distinguish two
regimes, divided by b(c). Note that for long outputs, ` ≥ b(c) it is easier to
find an inner-collision and use it to construct an output collision; In the other
case, ` < b(c), it is more reasonable to go directly for an output collision. These
two cases are the two choices of g: the inner part of the absorbing phase and a
regular sponge respectively.

The assumption onemakes in order to use Ambainis’ algorithm is that there
exists at least one collision in g. In case of a random function g′ : X → Y it can
be argued that such a collision exists for |X | = |Y|1/2 [Zha15a]. In our case this
function is a random sponge, i.e. Sponge constructed using a random internal
function.

The main task that needs to be solved to argue that there is a collision in
g, is to construct the domain X of the right size and a structure, which allows
to deal with the padding function in Sponge. Then we define the algorithm
Sponge-Coll, using Ambainis’ algorithm as a black box. In order to show that
there exists at least one collision in sponge with the domain X and codomain
defined by the parameters of Sponge (rate r, capacity c, and output length `),
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we use the fact that the internal function is random, and we calculate the prob-
ability of getting a collision if the whole domain of g was sampled. We assume
that every new input to f yields an independently distributed output (the dis-
tribution depends on whether our internal function is a random function or a
random permutation).

We prove the assumption of g having at least one collision in the two cases
(` ≥ b(c) and ` < b(c)) using Lemma 3.11 and Lemma 3.12. The last ingredient
of the proof is calculating the query complexity—in terms of queries to f—of
algorithm Sponge-Coll.

We follow the plan sketched in the proof idea above. First we define the
domain of g. Remember that in this section, npad denotes the minimal number
of bits appended by pad, and we assumed that 0 < npad < r. Moreover we
require that the padding rule is injective, does not outputmessages endingwith
0, and works by just appending bits to the message.

We construct domain X in such a way that querying its elements to Sponge
in the right ordermakes just a single fresh query to f in the absorbing phase. We
define a set of inputs to Sponge and denote it byM. The intuition is that short
messages inM are prefixes of longer messages inM. We need to be careful
though to include the padding function from Sponge.
Definition 3.9. Let us defineM(1) := ⋃r−npad

i=0 {0, 1}i. For some parameter n′ to be
specified in algorithm Sponge-Coll below and k :=

⌊
n′

2(r−npad+1)

⌋
, we define

M(j) := {pad(m1)‖ · · · ‖pad(mj−1)‖mj : m1, . . . ,mj ∈M(1)} and (3.8)

Mn′ :=
k⋃
j=1
M(j). (3.9)

The domain of g is going to be defined as X = Mn′ for an appropriately
chosen n′. We omit the subscript n′ when it is clear from the context or not
necessary for the argument.

The size of the set defined above can be easily bounded. First of all we have

|Mn′ | =
2r−npad+1 − 1
2(2r−npad − 1)

(
(2r−npad+1 − 1)k − 1

)
, (3.10)

which can be bounded as follows:

|Mn′ | ≤
3
22(r−npad+1)k ≤ 3

22n′/2, (3.11)

|Mn′ | ≥
1
22(r−npad)k ≥ 1

2
1

2k+r−npad
2n′/2. (3.12)

The special feature of the setM is that for every m′ ∈ M : |m′| > r there
exists m ∈ M : |pad(m)| < |m′| such that pad(m) is a prefix of m′. Moreover
we can choose thism so that |pad(m)| = rb |m

′|
r
c, this statement is proven in the

lemma below.
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Lemma 3.10. M is defined as in Definition 3.9, npad < r, then

∀m′ ∈M : |m′| > r ∃m ∈M :
|pad(m)| = r b|m′|/rc ∧ pad(m) is a prefix ofm′. (3.13)

Proof. Note that |m′| > r implies that the number of blocks of m′ is k > 1
and in the definition of M there are at least two subsets M(j) constituting
the set. From the definition of M and the fact that m′ ∈ M we have that
m′ = pad(m1)‖ · · · ‖pad(mn)‖a, where n = b |m

′|
r
c and a ∈ M(1). Note that

pad(m1)‖ · · · ‖pad(mn) = pad(m1)‖ · · · ‖pad(mn−1)‖b‖p̃ad(b) = pad(m′′), where
m′′ = pad(m1)‖ · · · ‖pad(mn−1)‖b and b ∈ M(1). From the assumptions we
know that n ≥ 1, together with |b| < r − npad we have that m′′ ∈ M. Now
we see that |pad(m′′)| = |pad(m1)‖ · · · ‖pad(mn)| = r

⌊
|m′|
r

⌋
and pad(m′′) is a pre-

fix ofm′.

Let us consider the following order relation on the setM: for m,m′ ∈ M
we say that m ≺ m′ if |m| < |m′| or in case that |m| = |m′|, if m is prior to m′
in lexicographical order. Then a corollary of Lemma 3.10 is that if all elements
m1 ≺ m2 ≺ . . . ≺ m|M| ofM are queried in this order then each query to
Absorb ◦ pad makes exactly one fresh query to f .

Let us provide an example ofM for a simple padding that appends a single
1 bit followed by the minimal number of 0’s and another 1 such that the total
length of the message is a multiple of r. In this case npad = 2 andM(1) is the
set of all strings of length up to r − 2 bits. Padding m ∈ M(1) prolongs it to
r-bits, soM(2) is the set of all strings of length at least r and up to 2r − 2 with
the exception of strings starting with the string 0r. The whole domainM is the
set of strings composed of up to k blocks.

Before we proceedwith the proof we state two important lemmas providing
bounds on the probability of collisions of Sponge inM.

Lemma 3.11. We setM := |Mn′| (jmax+1), where jmax = 0 or jmax =
⌊
`
r

⌋
depending

on whether ` ≥ b(c) or ` < b(c) respectively. Below S = {0, 1}r×{0, 1}c and Iper(S)
denotes the set of bijections f : S → S .

The probability that Spongef [pad, {0, 1}r, {0, 1}c, `] with a random internal func-
tion has an inner-collision inMn′ defined in Definition 3.9 is bounded as follows

(i) when instantiated with a random function:

P
f $←SS

[
Spongef has an inner-collision inMn′

]
≤ M(M + 1)

2c+1 , (3.14)

P
f $←SS

[
Spongef has an inner-collision inMn′

]
≥ M(M + 1)

2c+2 , (3.15)
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(ii) when instantiated with a random permutation:
P

f $←Iper(S)

[
Spongef has an inner-collision inMn′

]

≤ 2rM(M + 1)− (M − 1)M
2r+c+1 − 2M , (3.16)

P
f $←Iper(S)

[
Spongef has an inner-collision inMn′

]

≥ M(M + 1)
2c+2 − (M − 1)M

2r+c+2 . (3.17)

Proof. The main part of the proof are algorithms Inner-Coll and Output-Coll
defined in Algorithm 3.1. The two algorithms are just loops over the whole set
M evaluating Spongef on all elements ofM. Set Σ is the set of all traversed
states—that is all states output by f in all evaluations of the internal function.
By Σ̂ we denote the set of inner parts of elements of Σ. Set Ω is the set of all
traversed outputs of length `. Throughout the proof we treatM, r, c, and ` as
global constants. In this proof we only use Inner-Coll, the second algorithm is
used in the proof of Lemma 3.12.

Algorithm 3.1 Inner-Coll , Output-Coll
Output: b ∈ {0, 1}

1: Σ := ∅, Ω := ∅
2: if ` < b(c) then jmax := b `

r
c

3: else jmax := 0
4: for i = 1, . . . , |M| do
5: for j = 0, . . . , jmax do
6: s := f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

j times
◦Absorbf ◦ pad(mi) . m1 ≺ · · · ≺ mi ≺ · · · ≺ m|M|

7: if ŝ ∈ Σ̂ ∪ {0c} then . Inner-collision
8: return b=1 . set random variable Ci

j = 1
9: Append s to Σ
10: z := Spongef (`,mi)
11: if z ∈ Ω then . Output-collision
12: return b=1
13: Append z to Ω
14: return b = 0

With the above algorithm defined we connect its output to the existence of
collisions in Sponge:

P
[
Spongef has an inner-collision inM

]
= P

[
1← Inner-Coll

]
. (3.18)
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The probability on the left- and the right-hand sides are over sampling of a
random f , there is no internal randomness of Inner-Coll, moreover algorithm
Inner-Coll is just a loop over all states traversedwhen evaluating the sponge on
all elements ofM, i.e. Sponge(M); For this reason the events are a differentway
of stating the same fact: when evaluating Sponge(M) at least one inner-state is
0c or some other traversed inner-state. The only difference is the notion of time
introduced by Inner-Coll, it does not change the event but makes our task of
evaluating the probability easier. The two bounds we want to calculate in this
proof are an upper and a lower bound on P

[
1← Inner-Coll

]
. Note however

that P
[
0← Inner-Coll

]
= 1 − P

[
1← Inner-Coll

]
, the two bounds are lower

bounds on P
[
0← Inner-Coll

]
and P

[
1← Inner-Coll

]
.

For now we do not specify the distribution of f and expand the event b ←
Inner-Coll in terms of more concise events. For all 1 ≤ i ≤ |M| and 0 ≤
j ≤ jmax we define a random variable Ci

j ∈ {0, 1}. The variable Ci
j = 1 if in

Algorithm 3.1 for indices i and j condition ŝ ∈ Σ̂ ∪ {0c} is fulfilled. Note that
if 1← Inner-Coll, it must be that some Ci

j = 1 while all previous Ci′
j′ are 0. By

previous events we mean such that (i′, j′) ≺ (i, j), which denotes indices (i′, j′)
that appear prior to (i, j) in Inner-Coll’s loops, that is i′ < i or j′ < j if i′ = i.
Note that the events are disjoint and we have equality in the second equality
below:

P[1← Inner-Coll] = P

 ∨
(i,j)∈[|M|]×{0,...,jmax}

1← Ci
j

∧
(i′,j′)≺(i,j)

0← Ci′

j′


(3.19)

=
∑

(i,j)∈[|M|]×{0,...,jmax}
P

1← Ci
j

∧
(i′,j′)≺(i,j)

0← Ci′

j′

 . (3.20)

Note that we mention explicitly only the events that are no later than (i, j).
Given that 1← Ci

j what happens after that is of no consequence for the proba-
bility of 1← Inner-Coll so we leave it implicit.

For the second probability P
[
0← Inner-Coll

]
we have

P[0← Inner-Coll] = P

 ∧
(i,j)∈[M ]×{0,...,jmax}

0← Ci
j

 . (3.21)

Due to the padding rule (as defined in Section 2.5.2) and the construction of
M, for every pair (i, j) in Line 6 ofAlgorithm 3.1 only one new edge is created in
the sponge graph; All but the last query to f had already been done in previous
steps of Inner-Coll. Note that we can interpret the computation of the j-th
output block of message p = pad(mi) as an evaluation of Absorb on message
p‖0(j−1)r, a message that has not been processed before (note that 0r 6∈ M(1)).
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Next we evaluate the probability of b← Ci
j :

P

b← Ci
j

∧
(i′,j′)≺(i,j)

0← Ci′

j′


= P

b← Ci
j |

∧
(i′,j′)≺(i,j)

0← Ci′

j′

P
 ∧

(i′,j′)≺(i,j)
0← Ci′

j′

 . (3.22)

The correct interpretation of the condition ∧(i′,j′)≺(i,j) 0 ← Ci′
j′ is that all inner

states output by f in the evaluations of Sponge in Inner-Coll up to (i, j) are
distinct and different from 0c. So the condition only puts restrictions on f and
possibly changes the distribution of its outputs.

To calculate the probability that the condition in Equation (3.22) holds we
split it into a product of conditional probabilities:

P

 ∧
(i′,j′)≺(i,j)

0← Ci′

j′

 =
∏

(i′,j′)≺(i,j)
P

0← Ci′

j′ |
∧

(i′′,j′′)≺(i′,j′)
0← Ci′′

j′′

 . (3.23)

Let us give an example of the correct interpretation of the above conditions,
that we already explained above. For jmax = 0 and i = 2 we have:

P
[
0← C2

0 | 0← C1
0

]
P
[
0← C1

0

]
= P

[
f(p2‖0c) = s2 : ŝ2 6∈ {0c, ŝ1} | f(p1‖0c) = s1, ŝ1 6= 0c

]
· P
[
f(p1‖0c) = s1 : ŝ1 6= 0c

]
, (3.24)

where pi := pad(mi). Coming back to how we definedM, with the above con-
ditions for each (i, j) we not only make just one additional query to f but we
make one additional fresh query to f .

Considering the above interpretation, P
[
b← Ci

j |
∧

(i′,j′)≺(i,j) 0← Ci′
j′

]
is just

the probability of an inner-collision, or lack of it, given that all the traversed
inner-states are distinct and not 0c. Note that this is quite a similar situation to
the discussion in Chapter 4, where we analyze sets of queries to Sponge, from
the perspective of states being unique.

Now we introduce the two cases: f $← SS and f $← Iper(S). By Fun= and Per= we
denote the relation (in this case equality) valid when f is a random function
or permutation respectively. We start with bounds on the probability of there
being collisions:

P
[
1← Inner-Coll

]
≤

∑
(i,j)∈[|M|]×{0,...,jmax}

P

1← Ci
j |

∧
(i′,j′)≺(i,j)

0← Ci′

j′

 (3.25)

Fun=
|M|(jmax+1)∑

k=1

k

2c = |M| (jmax + 1)(|M| (jmax + 1) + 1)
2c+1 . (3.26)
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Per=
|M|(jmax+1)∑

k=1

(2r − 1)(k − 1) + 2r
2r+c − (k − 1) ≤

|M|(jmax+1)∑
k=1

2rk − (k − 1)
2r+c − |M| (jmax + 1) (3.27)

≤ |M| (jmax + 1) (2r(|M| (jmax + 1) + 1)− (|M| (jmax + 1)− 1))
2r+c+1 − 2 |M| (jmax + 1) . (3.28)

In the first inequality we bound the probability of the condition by 1. The prob-
ability that a uniformly sampled c-bit string matches one of the k − 1 previous
right states is k

2c in case f is a random function. For permutations we have 2r
states with inner part 0c and 2r − 1 states for every traversed inner-state.

To upper bound the probability of no collisions
P
[
0← Ci′

j′ |
∧

(i′′,j′′)≺(i′,j′) 0← Ci′′
j′′

]
we first calculate the conditional probability

of a single 0← Ci
j for random functions Fun=

(
1− k

2n
)
and random permutations

Per=
(
1− (2r−1)(k−1)+2r

2r+c−(k−1)

)
. The total conditional probability is

P
[
0← Inner-Coll

]
=

∏
(i,j)∈[|M|]×{0,...,jmax}

P

0← Ci
j |

∧
(i′,j′)≺(i,j)

0← Ci′

j′

 (3.29)

Fun=
|M|(jmax+1)∏

k=1

(
1− k

2c

)
. (3.30)

Per=
|M|(jmax+1)∏

k=1

(
1− (2r − 1)(k − 1) + 2r

2r+c − (k − 1)

)
. (3.31)

To calculate a more useful bound we use two important facts:

∀x ∈ R : 1− x ≤ e−x, (3.32)

∀x ∈ [0, 1] : 1− e−x ≥ x

2 . (3.33)

With these we have∏k(1−x(k)) ≤ ∏k exp(−x(k)) = exp(−∑k x(k)). For the fi-
nal boundwe can apply the second inequality from above: 1−exp(−∑k x(k)) ≥
1
2
∑
k x(k).
In the case of a random function we use the above statements to derive that

P[1← Inner-Coll] = 1− P[0← Inner-Coll]
Fun
≥ |M| (jmax + 1)(|M| (jmax + 1) + 1)

2c+2 . (3.34)

In the case of a random permutation we use the same techniques as above to
obtain

P[1← Inner-Coll]
Per
≥ 1

2

|M|(jmax+1)∑
k=1

2rk − (k − 1)
2r+c − (k − 1) ≥

|M|(jmax+1)∑
k=1

2rk − (k − 1)
2r+c+1



62 Chapter 3. Standard Security of Sponges

= |M| (jmax + 1)(|M| (jmax + 1) + 1)
2c+2 − (|M| (jmax + 1)− 1) |M| (jmax + 1)

2r+c+2 .

(3.35)

In both lower bounds we assume that the sum is smaller than 1, as required in
Inequality (3.33).

The second lemma states lower bounds on the probability of
output-collisions.

Lemma 3.12. The probability that Spongef [pad, {0, 1}r, {0, 1}c, `] for a random in-
ternal function has an output-collision inMn′ , with size denoted by M := |Mn′|,
defined in Definition 3.9, is bounded as follows
(i) when instantiated with a random function:

P
f $←SS

[
Spongef has a collision inMn′

]

≥ (M − 1)M
2`+2

(
1− M(jmax + 1)(M(jmax + 1) + 1)

2c+1

)
, (3.36)

(ii) when instantiated with a random permutation:

P
f $←Iper(S)

[
Spongef has a collision inMn′

]

≥ (M − 1)M
2`+2

(
1− 2rM(jmax + 1)(M(jmax + 1) + 1)

2r+c+1 − 2M(jmax + 1)

+ (M(jmax + 1)− 1)M(jmax + 1)
2r+c+1 − 2M(jmax + 1)

)
, (3.37)

where jmax = 0 or jmax = b `
r
c depending on whether ` ≥ b(c) or ` < b(c) respectively.

Above S = {0, 1}r × {0, 1}c, Iper(S) denotes the set of bijections f : S → S .
Proof. The intuition for the proof is as follows: Having traversed only distinct
inner-states at any point of the loop implies that the output of Sponge is
uniformly random (Theorem 1 in [Ber+07]), which allows us to use birthday
bounds. In more detail we have:

P
[
Sponge has a collision inM

]
= P

[
Sponge has a collision inM∧ Sponge has an inner-collision inM

]
+ P

[
Sponge has a collision inM∧ Sponge has no inner-collisions inM

]
≥ P

[
Sponge has a collision inM | Sponge has no inner-collisions inM

]
· P
[
Sponge has no inner-collisions inM

]
(3.38)



3.3. Quantum Collision-Finding Algorithms 63

For bounding P
[
Sponge has no inner-collisions inM

]
we use Lemma 3.11.

Similarly to the previous lemma we have P
[
Sponge has a collision inM

]
=

P
[
1← Output-Coll

]
. Conditioning on “Sponge has no inner-collisions inM”

is also done through the algorithm Inner-Coll and more specifically through
the random variables Ci

j defined in the proof of Lemma 3.11. As we already ex-
plained in Equation (3.24) and in the comments above it, we interpret ∧i,j 0←
Ci
j by the appropriate constraints on f .
Conditioning on “Sponge has no inner-collisions inM” changes the overall

distribution of f . For random functions though, outputs are distributed just
uniformly at random. The bound that we get in the case of random functions
is

P

1← Output-Coll |
∧

(i,j)∈[M ]×{0,...,jmax}
0← Ci

j

 Fun= 1−
|M|∏
i=1

(
1− i− 1

2`
)

(3.39)

≥ (|M| − 1) |M|
2`+2 (3.40)

where we use the same techniques as in the proof of Lemma 3.11. The bound
on inner-collisions comes from Equation (3.26).

For random permutations, outer and inner states are not sampled indepen-
dently. To calculate the probability of output-collisions we need to analyze the
conditional distribution of the outer part of the outputs of f . We can think of
sampling outputs of a randompermutation f : A×C → A×C as a two-step pro-
cess: first sampling the inner part of the output and then the outer part. By D
we denote the set of outputs of previous queries. In the language of the sponge
graph, D is the set of nodes with incoming edges. By D(ŝ) we denote the set
of nodes in the supernode ŝwith an incoming edge. We first sample uniformly
from A × C \ D but then discard the outer state. The value of the inner state
ŝ is then effectively sampled from C with weights |A\D(ŝ)|

|A×C\D| . To sample the outer
state we just sample uniformly from A \ D(ŝ).

Given the above sampling, note that the conditional probability is such that
the inner part of the state of the outcome is distinct from 0c and any other out-
put inner-states. So for the output inner-state ŝ there are no incoming edges in
D(ŝ) and the outer state is sampled uniformly at random. Hence, for random
permutations the probability of output-collisions, given no inner-collisions is

P

1← Output-Coll |
∧

(i,j)∈[M ]×{0,...,jmax}
0← Ci

j

 Per
≥ (|M| − 1) |M|

2`+2 (3.41)

and the bound on inner-collisions comes from Equation (3.28).

With these bounds we can proceed with the proof of the main theorem of
this section.



64 Chapter 3. Standard Security of Sponges

Proof of Theorem 3.8. First we state the quantum collision-finding algorithm:

Algorithm 3.2 Sponge-Coll
Output: m 6= m′ such that Spongef (`,m) = Spongef (`,m′) or “fail”

1: if ` < b(c) then
2: Set n′ := r−npad+1

r−npad
` + 2(r − npad) + 6 r−npad+1

r−npad
, define g : Mn′ → {0, 1}` as

g := Spongef
3: else if ` ≥ b(c) then
4: Set n′ := r−npad+1

r−npad
c + 2(r − npad) + 6 r−npad+1

r−npad
, define g : Mn′ → {0, 1}c as

g := Âbsorb ◦ pad
5: Run algorithm Coll from Theorem 3.7 on g, making kcoll · |Mn′|2/3 queries.
6: if (m,m′)← Coll then
7: if ` < b(c) then
8: return (m,m′)
9: else if ` ≥ b(c) then

10: return an output collision constructed from (m,m′) according to the
proof of Claim 2.27

The probability of success of Algorithm 3.2 comes from the probability of
success of Coll, which in turn is guaranteed to be high if there is a collision
in the domain of g, Theorem 3.7 does not make any assumptions about other
properties of g. If Ambainis’ algorithm succeeds in outputting a collision then
Sponge-Coll outputs a collision:

P
[
collision← sponge-coll

]
≥ P

[
collision← Coll

]
(3.42)

= P
[
collision← Coll ∧ g has a collision

]
+ P

[
collision← Coll ∧ g has no collisions

]
(3.43)

≥ P
[
collision← Coll | g has a collision

]
P
[

g has a collision
]

(3.44)

≥ 15
16 · P

[
g has a collision

]
. (3.45)

The main ingredient of bounding the probability of success of sponge-coll is
bounding the probability that g has collisions.

The two regimes are distinguished by b(c) = r−npad
r−npad+2c − 2 logdc/re − 2(r −

npad) − 5. We choose this value so that in the case of short outputs (` < b(c))
2n′−c is small.

Let us first deal with random functions, we start with the case ` < b(c),
where we look for output-collisions. To find the lower bound on
P
[
Spongef has a collision

]
we focus on Equation (3.36). We use

Equations (3.11) and (3.12) to get a bound on |M| in terms of n′. Given that
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n′ := r−npad+1
r−npad

`+ 2(r− npad + 1) + 6 r−npad+1
r−npad

, we have an expression that crucially
depends on ` and c. Our assumption ` < b(c) guarantees that all terms are
bounded by constants from below.

The same line of reasoning can be applied to the case ` < b(c) with random
permutations. Now instead of Equation (3.36) we focus on Equation (3.37).

In the case of ` ≥ b(c) the crucial bound is a lower bound on
P
[
Spongef has an inner collision

]
. For the bounds we use Equation (3.34) in

the case of functions and (3.35) in the case of permutations. We again appro-
priately bound |M|. There is no need, though, to use ` ≥ b(c), as all the bounds
on inner collisions do not depend on `.

The number of queries made by Sponge-Coll to Sponge is bounded by
3
22n′/3. A single evaluation of Sponge requires at most

k + b`/rc =
⌊

n′

2(r − npad + 1)

⌋
+ b`/rc (3.46)

≤


1

2(r−npad)`+ 1 + 3
r−npad

+ `
r

if ` < b(c)
1

2(r−npad)c+ 1 + 3
r−npad

if ` ≥ b(c)
(3.47)

queries to the internal function f .
By bounding Equation (3.46)we get the following final parameters of the al-

gorithm: In the case ` < b(c) one query to Sponge requires at most 3`+2(r−npad)+6
2(r−npad)

queries to the internal function f . Therefore, a collision in Sponge can be found
with at most 3kcoll · 3`+2(r−npad)+6

4(r−npad) 2n′/3 queries to f , where n′ = r−npad+1
r−npad

` + 2(r −
npad + 1) + 6 r−npad+1

r−npad
.

In the other case ` ≥ b(c), the algorithmmakes atmost 3kcoll· c+2(r−npad)+6
4(r−npad) 2n′/3

queries to f , where n′ = r−npad+1
r−npad

c+ 2(r − npad + 1) + 6 r−npad+1
r−npad

.

3.3.2 Quantum Collision Finding With Random Oracle
In [Cza+18] the task of bounding the probability of collisions—that we solve
in Lemmas 3.11 and 3.12—is solved with a use of an external independent ran-
dom oracle. Instead of just relying on the randomness of Spongef we can feed
first the input to the hash function to a random function and with an algorithm
similar to Algorithm 3.2 find collisions in any h. Note that the algorithm that
uses the random oracle works for any hash function, not only for Spongef . The
drawback is though that it requires a lot of external randomness. One might
consider using Spongef for the external oracle as well, and use indistinguisha-
bility or indifferentiability results for the required randomness. Note however
that for the number of queries made by the collision-finding algorithm the dis-
tinguishing advantage would no longer be negligible. This fact points to the
statement that the algorithm does require an actual random oracle to work or
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a construction with much higher parameters—in case of sponges this crucial
parameter would be the capacity.

We state the general result and point to Theorem 36 in [Cza+18] for the
proof.

Theorem 3.13 (Theorem 36 in [Cza+18]). For finite sets X ,Y with |Y| ≥ 3 and
|X | ≥ 40|Y|, there exists a quantum algorithmwhich requires access to a random oracle
H :M→ X , that outputs a collision in any any function h : X → Y with probability
at least 1/8 after at most kcoll · |Y|1/3 queries to h and at most 2kcoll · |Y|1/3 + 2 queries
to H where kcoll is the constant from Theorem 3.7.

As noted after Theorem 3.7, there exist constants k′coll, k′′coll such that the run-
ning time and quantum memory of the collision-finding algorithm is at most
k′coll · |Y|1/3 · logk′′coll(|Y|).

A corollary of the above theorem is a statement on the number of queries
sufficient to find collisions in Spongef with high probability.

Corollary 3.14 (Theorem 37 in [Cza+18]). There exists a quantum algorithm
coll-ro that finds a collision in Spongef [pad, {0, 1}r, {0, 1}c, `], a sponge
construction, for an arbitrary internal function f . coll-ro makes at most qf quantum
queries to f and qH quantum queries to a independent random oracle H. coll-ro
outputs colliding messages m 6= m′ such that Spongef (m) = Spongef (m′) with
probability at least 1/8, where
qf := 2kcoll · min{ c+6+2r

r
2c/3, 2n+6+3r

r
2n/3}, and qH := 2kcoll · min{2c/3, 2n/3} + 2,

where kcoll is the constant from Theorem 3.7 and pad is any padding function which
appends at most 2r bits.

Typical padding functions do not append more than r + 1 bits to the mes-
sage, and are therefore covered by the theorem. Otherwise, the proof of Corol-
lary 3.14 could be easily modified to take longer paddings into account, result-
ing in increased factors in the expression of qf above.

3.4 Collapsingness of the Sponge Construction
The notion of collapsingness is explained in detail in Section 2.2.3. In [Cza+18]
it is proven that the sponge construction is collapsing if the internal function
is collapsing on the inner and outer part and the inner part is zero-preimage
resistant. Here we state the result and give an idea of the proof, for proofs of
the following statements we refer to [Cza+18]. In the end of this section we
state a theorem connecting indifferentiability with collapsingness. We simplify
the general t-valid adversaries from [Cza+18] and focus on 1-valid adversaries.

The proof of collapsingness of Spongef is done in three stages: first we prove
collapsingness of the absorbing phase (shortened by one application of f), then
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we prove collapsingness of the squeezing phase (modified by applying f be-
fore outputting the first block), and finally we conclude security of the whole
sponge Sponge, consisting of padding, absorbing, and squeezing.

First, we analyze the absorbing phase. For the absorbing phase (without
padding or squeezing) to be collapsing, we will need two properties of f̂ :

• f̂ is collapsing. This is the main property required from the internal func-
tion f . If we restricted the domain of Absorb to fixed length messages,
thenwe could show the collapsing property ofAbsorb based on that prop-
erty alone.

• f̂ is zero-preimage-resistant. To see why we need this property, consider
an internal function f where the adversary can find, e.g., x, y ∈ {0, 1}r
with f(x‖0c) = y‖0c. Then we can see that Absorb(x‖y) = 0c+r, and thus
Absorb(x‖y‖z) = z‖0c = Absorb(z) for any z ∈ {0, 1}r. Thus Absorb
would not be collision-resistant, and in particular not collapsing.

The reduction that proves collapsingness of Absorbf is given below.

Lemma 3.15. Let (A,B) be a τ -time adversary, valid against Sponge on ({0, 1}r)∗,
with collapsing-advantage ε. Assume that A outputs messages of length at most l · r
bits. Then there are:

• a (τ + lτf +O(lc))-time adversaryA′ that finds a zero-preimage2 of f̂ with prob-
ability ε′, and

• a (τ+O(τf ))-time adversary (A′′,B′′), valid against f̂ , with collapsing-advantage
ε′′

such that ε ≤
√
ε′ + (l − 1)ε′′. Here τf is the time required for a single classical

invocation of f . If time is measured in queries to f (instead of computation steps), the
term O(lc) in the runtime of A′ can be omitted.

The proof works by excluding zero-preimages via zero-preimage resistance
and step by step (steps are the evaluations of f) collapsing the states from the
back of the evaluation of Sponge. Zero preimages have such a special role be-
cause they mark the beginning of the message, if one gets a zero inner state
in the middle of an evaluation of Sponge one can get a collision (note that in
Section 3.2 we have a similar situation) and hence win in the collapsingness
game. We believe the necessity to assume zero-preimage resistance is just a
consequence of the step by step nature of the proof. For random internal func-
tions (or permutations) the probability that the inner-state equals to 0 is very
small.

2By zero-preimage we mean any value xwith f̂(x) = 0c.
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Next, we show that the squeezing phase is collapsing. Let f̄min be defined
for ` > 0, as the first min(`, r) bits of the output of f (in particular, f̄min = f̄
for ` ≥ r). Then the collapsing property of the squeezing phase is a relatively
trivial consequence of the fact that f̄min is collapsing.

Lemma 3.16. Let ` > 0 be the output length of Sponge. Let (A,B) be a valid adversary
against the squeezing phase of Spongef with runtime τ and collapsing-advantage ε.
Then there is an adversary (A′,B′) that is valid for f̄min, has runtime τ +O(min(`, r)),
and collapsing-advantage ε. If time is measured in f -queries (instead of computation
steps), the runtime of (A′,B′) is τ .

Connecting the above statements via Lemma 2.11 we get

Theorem 3.17. Let ` > 0 be the output length of Sponge. Assume that pad is injec-
tive. Assume a τ -time adversary (A,B), valid for Sponge, with collapsing-advantage
ε against Sponge. Then there are:

• a (τ + O(τpad) + O(τAbsorb))-time adversary A1 that finds a zero-preimage of f̂
with probability ε1, and

• a (τ +O(τpad) +O(τAbsorb))-time adversary (A2,B2), valid against f̂ , with
collapsing-advantage ε2, and

• a (τ +O(τpad) +O(τAbsorb))-time adversary (A3,B3) that is valid for f̄min, with
collapsing-advantage ε3,

such that ε ≤ √ε1 + (`− 1)ε2 + ε3. Here τpad refers to the maximum runtime of pad.
And τAbsorb refers to the maximum runtime of Absorb (on outputs of pad). If time
is measured in f -queries (instead of computation steps), the runtimes are τ + O(`τf )
where τf is the number of H-queries performed by f , and ` is an upper bound on the
length (in r-bit blocks) of the messagesm that A outputs onMj .

For a random function we have Lemma 2.12 and so for a random internal
function we have:

Lemma 3.18. If f : {0, 1}r+c → {0, 1}r+c is a random function, and (Af ,Bf ) is
valid for f̄min (or for f̂), makes ≤ q queries to f , and has collapsing-advantage ε, then
ε ∈ O(q3/22−min(`,r)/2) (or ε ∈ O(q3/22−c/2)).

Using the above statement we can prove collapsingness of random sponges.

Theorem 3.19. Let f : {0, 1}r+c → {0, 1}r+c be a random function. Let (A,B) be
an adversary that is valid against Sponge with output length n and that makes ≤ q
queries to f . Then (A,B) has collapsing-advantage

O
(
`(q + `)3/22−c/2 + (q + `)3/22−min(n,r)/2

)
. (3.48)
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In the rest of this section we state and prove that any function that is in-
differentiable from a collapsing function is itself collapsing. In the context of
sponges, together with Theorem. 7.11, we reprove the result of [Cza+18] in
a modular way that might become useful when indifferentiability of sponges
with permutations is established.

Theorem 3.20 (Quantum indifferentiability preserves collapsingness). Let C be
a construction based on an internal function f , and let C be (q, εI(q))-indifferentiable
from an ideal function Cideal with simulator S. Assume further that Cideal allows for a
collapsingness advantage at most εcoll(q) for a q-query adversary. Then C is collapsing
with advantage εcoll(qC, qf ) = 2 εI(qC + qf ) + εcoll(qC + αqf ), where qC and qf are the
number of queries to C and f , respectively, and α is the number of queries the simulator
S makes (at most) to Cideal each time it is queried.
Proof. Given a collapsingness distinguisher D̃ against C with advantage ε ≥
εcoll(qC + αqf ) that makes qC queries to C and qf queries to f , we build an indif-
ferentiability distinguisher D as follows. Chose b ∈ {0, 1} at random. Running
D̃, if b = 0 simulate Collapse 1, if b = 1 simulate Collapse 2. Output 1 if D̃
outputs b, and 0 otherwise.

In the real world, we have that

P[1← D : Real] = 1
2

(
P[0← D̃C,f : Collapse 1] + P[1← D̃C,f : Collapse 2]

)
(3.49)

= 1
2 + 1

2

(
P[1← D̃C,f : Collapse 2]− P[1← D̃C,f : Collapse 1]

)
. (3.50)

In the ideal world, the distinguisher together with the simulator S can be seen
as a collapsingness distinguisher for Cideal. Therefore we get

P[1← D : Ideal]

= 1
2 + 1

2

(
P[1← D̃Cideal,S : Collapse 2]− P[1← D̃Cideal,S : Collapse 1]

)
(3.51)

and hence∣∣∣∣P[1← D : Real]− P[1← D : Ideal]
∣∣∣∣

= 1
2

∣∣∣∣P[1← D̃C,f : Collapse 2]− P[1← D̃C,f : Collapse 1] (3.52)

− P[1← D̃Cideal,S : Collapse 2] + P[1← D̃Cideal,S : Collapse 1]
∣∣∣∣ (3.53)

≥ 1
2 (ε− εcoll(qC + αqf )) . (3.54)
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In this chapter we show that the sponge construction can be used to con-
struct quantum-secure pseudorandom functions. The main contribution is a
proof that random sponges are quantum indistinguishable from random func-
tions. Our proofs hold under the assumption that the internal function is a
random function or permutation. We then use this result to obtain a quantum-
security version of a result by Andreeva, Daemen, Mennink, and Van Assche
[And+15] which shows that a sponge that uses a secure PRP or PRF as internal
function is a secure PRF. This result also proves that the recent attacks against
CBC-MAC in the quantum-access model by Kaplan, Leurent, Leverrier, and
Naya-Plasencia [Kap+16] and Santoli and Schaffner [SS17] can be prevented
by introducing a state with a non-trivial inner part.

The proof of our main contribution is derived by analyzing the joint
distribution of any q input-output pairs. Our method analyzes the statistical
behavior of the considered construction in great detail. The used techniques
might prove useful in future analysis of different cryptographic primitives
considering quantum adversaries. Using Zhandry’s PRF/PRP switching
lemma [Zha15a] we then obtain that quantum indistinguishability also holds
if the internal block function is a random permutation.

4.1 Introduction
Originally introduced in the context of cryptographic hash functions,
the sponge construction [Ber+07] became one of the most widely used
constructions in symmetric cryptography. Consequently, sponges get used in
keyed constructions, including message authentication codes (MAC), stream
ciphers, and authenticated encryption (AE), see e.g. [Ber+10; Ber+11a;
Ber+12b; MRV15; RS14; And+15; GPT15]. For all these applications it
is either necessary or at least sufficient for security that a secretly keyed
sponge is indistinguishable from a random function. That this is indeed
the case was already shown in the original security proof for the sponge
construction [Ber+08] where cryptographic sponges were shown to be
indifferentiable from random functions. This result is widely applicable and
consequently was followed up with several improved bounds for specific
applications. Recent works [MRV15; And+15; GPT15] improved the bound
for the setting of indistinguishability of secretly keyed sponges.

While these results show the applicability of the sponge construction in to-
day’s computing environment, they leave open the question of its applicability
in a future post-quantum setting where adversaries have access to quantum
computers. Such an attacker can for example run Shor’s algorithm [Sho94]
to break the security of constructions based on the RSA or discrete-logarithm
problem. While such constructions are hardly ever considered for practical
symmetric cryptography due to their slow operations, the impact of quantum
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adversaries goes beyond Shor’s algorithm. Conventional security proofs, espe-
cially in idealized models, might break down in the light of quantum attackers
who are allowed to ask queries in superposition [Bon+11]. Going even further,
allowing adversaries superposition access to secretly keyed primitives, it was
shown that several well knownMACs and encryption schemes, including CBC-
MAC and the Even-Mansour block cipher become insecure [KM12; Kap+16;
SS17]. While these latter attacks are not applicable in the post-quantum setting,
they are indications that secret-key cryptography does not trivially withstand
quantum adversaries and that it is necessary to study the security of symmetric
cryptography in the post-quantum setting. In this chapter we do exactly this:
We study the security of secretly keyed sponges against quantum adversaries.

In this chapter we are concerned with proving that domain extension us-
ing the sponge construction leads to a somewhat random behaving function if
the internal building block f behaves random in some way. Formally, we prove
indistinguishability of the construction from a random oracle given that the in-
ternal building block f is a random function or permutation. When discussing
the notion of indistinguishability of cryptographic constructions we assume
that the distinguisher has oracle access either to the constructed function—e.g.
Spongef—or a random oracle, but not the internal function f . Not allowing the
distinguisher access to f is especially well justified for a secretly keyed building
block such as a pseudorandom function or permutation.

Against non-quantum attackers, it was proven that Spongef with a random
internal function is indistinguishable from a random function [Ber+07]. The
proof presented by the inventors of the sponge construction relies on the fact
that with polynomially many queries to Spongef , the adversary is likely not to
see collisions in the hidden part of the construction’s state. That argument is
no longer valid in the quantum world. As one can query Spongef on a super-
position of exponentially manymessages there will certainly occur collisions in
different branches of the superposition. It is not at all obvious how to use this
fact to break security but one certainly needs to use a different proof technique
to establish security. Hence the classical argument is not useful if we assume
that the adversary has access to a quantum computer.

Contributions. As the main contribution, we prove that the sponge construc-
tion using a random function or permutation is quantumly indistinguishable
from a random function (see Theorems 4.2 and 4.9). This result can be used to
obtain a quantum version of Theorem 1 from [And+15] (see Theorem 4.5)
which states that the indistinguishability of keyed-internal-function sponges
can be derived from the quantum-PRF-security (or quantum-PRP-security in
case of a block-cipher) of the keyed internal function. Thereby we not only
provide a proof for the security of keyed-internal-function sponges in the
post-quantum setting, but even in the stronger quantum settings where the
adversary gets full quantum-access to the keyed-internal-function sponge, i.e
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we prove that keyed-internal-function sponges are quantum PRFs.
Another implication of our result is that the quantum attacks against CBC-

MAC mentioned above can be prevented using a state with a non-trivial in-
ner part. The authors of the attack already noted1 that their attack does not
work in this case. More specifically, CBC-MAC can be viewed as full-width
sponge (where the state has no inner part, i.e., the capacity is 0). On the other
hand, a CBC-MAC where all message blocks are padded with 0 ∈ C and the
output is truncated to the first character can be viewed as an keyed-internal-
function sponge. Hence, our result applies and shows that the quantum attacks
by Kaplan, Leurent, Leverrier, and Naya-Plasencia [Kap+16] and Santoli and
Schaffner [SS17] using Simon’s algorithm are not applicable any longer. Even
more, our result proves that this little tweak of CBC-MAC indeed results in a
quantum secure MAC.

We also show a direct proof of indistinguishability for f being a random
permutation. In this proof we state and prove a lemma that generalizes the
average case polynomial method to allow for functions that are not necessarily
polynomials but are close to one; this result is not necessary to achieve themain
goal of the chapter but might be useful in other works using similar techniques.

In this chapter, we provide a quantum security guarantee more suitable for
keyed primitives where an attacker does not have access to the internal build-
ing block. On the one hand, we increase the trust that hash functions based
on the sponge construction are quantum safe and on the other hand, we for-
mally prove that it is a quantum secure pseudorandom function when used
with a keyed internal function—like it is used in the hash-based signatures
scheme SPHINCS+ [Tea17] in the instantiation using the Haraka hash func-
tion [Köl+16].
A limitation. The authors of [And+15] use their Theorem 1 to show security of
inner-keyed sponges using the PRP-security of single-key Even-Mansour. Their
result does not carry over to the quantum setting as Even-Mansour is vulner-
able in the quantum setting [KM12]. This does not lead to an actual attack
on inner-keyed sponges in the quantum setting. The attack needs access to
the full input to the Even-Mansour cipher, which is never the case for inner-
keyed sponges as long as a non-trivial inner state is used. However, the attack
on Even-Mansour does render the modular proof strategy not applicable for
inner-keyed sponges. We also need to stress that our result does not cover the
commonly used approaches to secretly key SHA-3 for this very reason.
Our approach. The main technical contribution of this chapter is a proof that
the probability for any given input-output behavior of Spongef is a polynomial
in the capacity of the sponge. This observation allows us then to apply the
average-case polynomial method of [Zha12] (see Theorem 2.21 below).

1See slide 16 (page 26) of their Crypto 2016 presentation available at https://who.rocq.
inria.fr/Gaetan.Leurent/files/Simon_CR16_slides.pdf.

https://who.rocq.inria.fr/Gaetan.Leurent/files/Simon_CR16_slides.pdf
https://who.rocq.inria.fr/Gaetan.Leurent/files/Simon_CR16_slides.pdf
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In more detail, recall that the capacity of a Spongef is the size of the inner
state (there are |C| possible inner states for a sponge as in Figure 2.4). If the
capacity of a sponge increases, it becomes less and less likely that there are
collisions in the inner state. Hence for infinite capacity, the inner states are
unique and so the internal functions are called on unique inputs and therefore,
the sponge behaves like a random function. Our proof formalizes this intuition
by carefully analyzing the probabilities for q given input-output values of the
sponge in terms of the capacity. We show that these probabilities are in fact
polynomials in the inverse of the capacity of degree at most q times the length
of the input-output values. We refer to Lemma 4.3 for the formal statement.

By establishing the capacity as this crucial parameter, we fit directly into the
proof technique from [Zha12] that uses approximating polynomials of low de-
gree to show closeness of distributions and in turn small quantum distinguish-
ing advantage. By the PRF/PRP switching lemma from [Zha15a], quantum
indistinguishability also holds for the case of f being a random permutation.
In the appendix, we provide an alternative proof for this case by generalizing
the proof technique of [Zha12] to the case of permutations.

To sum up, we deal directly with the statistical behavior of the sponge con-
struction. Our proof technique might be generalized to analyze other crypto-
graphic constructions or used for establishing other properties than indistin-
guishability. After all it provides insight into the workings of constructions
based on repeatedly applying a fixed internal function f . From a different per-
spective, our proof is based on the observations that the probability of anymul-
tiple input-output pairs occurring is a polynomial in |C|−1; the existence of such
a parameter is a specific feature of the sponge construction. Hence, ourmethod
does not directly apply to other schemes like theMerkle-Damgård construction.

Let us also highlight the difference in our definition of the sponge construc-
tion compared to the standardized version. Instead of {0, 1}r and {0, 1}c we use
A and C respectively. The fact that C can be any finite set allows us to use the
polynomial method; If we want to use the statement about closeness of poly-
nomials we have to show that p is a polynomial for any inverse integer and not
only for 2−c. Using the more general definition solves the problem of defining
distributions for any integer, not only powers of 2. Note that of course all our
results hold also for the standard definition.

Organization. In Section 4.2 we show that Spongef is indistinguishable from a
random oracle in the conventional-access setting (in contrast to the quantum-
access model). In Section 4.3 we state the main result of this chapter as well as
several derived results. In Section 4.4 we provide an example proof valid for
limited distinguishers but giving sufficient details to understand our approach
and verify correctness without all the particulars of the full proof. Section 4.5
contains the proof of Lemma 4.3, the main technical result of this chapter. The
case of random permutations is covered in Section 4.6.
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4.2 Classical Indistinguishability
of Random Sponges

In the following we state the indistinguishability result in the classical domain.

Theorem 4.1 (Classical indistinguishability of Sponge). If f is a random transfor-
mation or a random permutation then Spongef defined in Algorithm 2.1 is classically
indistinguishable from a random oracle. Namely for all quantum algorithmsAmaking
polynomially many classical queries there is a negligible function ε such that∣∣∣∣∣ P

f $←SS

[
b = 1 : b← ASpongef

]
− P

h←R

[
b = 1 : b← Ah

]∣∣∣∣∣ ≤ ε, (4.1)

where S = A× C, and R is defined according to Definition 2.13.

Proof. The proof follows closely the proof of theorem 2 of [Ber+07]. Even
though we give more power to the adversary by giving her access to a
quantum computer, the queries are considered to be classical. All arguments
in the proof of Bertoni and others depend only on the queries made by the
adversary and not her computing power. For that reason we can use the
discussion around Equation (7) from [MS17], which states that if a classical
result holds for q-query distinguishers with unlimited computational power
then it also holds for quantum distinguishers that make classical queries. The
former class of distinguishers is exactly what we consider, as the classical
result depends only on the number of queries done.

4.3 Quantum Indistinguishability
of Random Sponges

We want to show that the distribution corresponding to random sponges is
quantumly indistinguishable from a random oracle. We can define a family of
distributions indexed by the security parameter that intuitively gets closer to
a random oracle with increasing parameter. For that reason Theorem 2.21 is a
perfect theoretical tool to be used. The relevant tasks that remain are to identify
the family of distributions that correspond to our figure of merit, to show that
in fact the most secure member of the family with t = ∞ is a random oracle,
and to prove that the assumptions of Theorem 2.21 are fulfilled.

The security parameter in Sponge is the capacity; we parametrize the family
of random sponges by the size of the inner state space t = |C|. Intuitively speak-
ing, for c→∞ each evaluation of the internal function is done with a different
inner state. In this case irrespective of the input, the output is a completely ran-
dom string, which is the definition of a random oracle (R). Hence we conclude
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that we identified a family of distributions that is well suited to be used with
Theorem 2.21. If we show that indeed for t = ∞ the member of the family is
the random oracle we have that:

F|C| is quantumly indistinguishable from F∞

⇒ random sponge is quantumly indisitinguishable from R. (4.2)

We are left with the task to prove the left-hand side of the above statement.
The assumption of Theorem 2.21 is that the probability of witnessing any input-
output behavior on q queries is a polynomial in 1/ |C|. Following the statement
og Theorem 2.21 we define p(1/t) = Ph←Ft [∀i ∈ [2q] : h(X i) = Y i]. It remains
to prove that p(|C|−1) is in fact a polynomial in |C|−1, where by |C| we denote
cardinality of the set. With that statement proven we fulfill the assumptions of
Theorem 2.21 and show quantum indistinguishability of Sponge.

Let us now formally state the main claim of this chapter. We are going to fo-
cus on the internal function beingmodeled as a random function, in Section 4.6
though, we are going to cover the case of random permutations.

Theorem 4.2. Spongef [pad,A, C] for random f is quantumly indistinguishable from
a random oracle. More concretely, for all quantum algorithms A making at most q
quantum queries to Spongef , such that the length of the padded input is at mostm and
the output length is at most z symbols of A,∣∣∣∣∣ P

f $←SS

[
b = 1 : b← A|Spongef 〉

]
− P

h←R

[
b = 1 : b← A|h〉

]∣∣∣∣∣ < π2

6 η
3|C|−1, (4.3)

where η := 2q(m+ z − 2) and R is defined according to Definition 2.13. The domain
is defined as S = A × C for a finite A in an Abelian group (A,⊕) and a non-empty
finite set C.

Our result is stated for a general A but one can just consider A = {0, 1}r.
Before we prove the above theorem we state the main technical lemma. In

the lemma we consider a set of messages that are already padded according to
pad and the sponge itself is done without padding. This is done without loss
of generality and simplifies the discussion.

Lemma 4.3. Let us assume the padding function to be the identity, pad = id, and set
M = Mpad, whereMpad is a set of messages padded according to pad. For a fixed q
and for every (M,Z) := ((Mi,Zi))i∈[2q] , where ∀i ∈ [2q] : (Mi,Zi) ∈M×A∗, such
that ∀i ∈ [2q] : |Mi| ≤ m, |Zi| ≤ z, it holds that
(i) the probability function is a polynomial in |C|−1 of degree η

P
[
∀i ∈ [2q] : Spongef (Mi, `i) = Zi

]
=

η∑
j=0

aj|C|−j =: p(|C|−1), (4.4)
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(ii) and the constant term is

a0 =
2q∏
i=1

δ(M,Z, i) |A|−|Z
i| . (4.5)

All coefficients aj are real and independent of |C|−1, the degree of the polynomial equals
η := 2q(m + z − 2). In the equation describing a0 we use δ(M,Z, i) to denote a
Boolean function that is 0 if Mi is input more than once and Zi is inconsistent with
other outputs (inputting the same message for the second time should yield the same
output), the function is 1 otherwise.

The full proof is presented in Section 4.5.

Proof idea. Our goal is to explicitly evaluate P [∀i ∈ [2q] : Spongef (Mi, `i) = Zi].
We base all of our discussion on two facts: Sponge has a structure that we know
and it involves multiple evaluations of the internal function f . f is a random
function with well specified probability of yielding some output on a given
input. The main idea of our approach is to extract terms like P[f(S1) = S2] for
some states S1, S2 from the overall probability expression and evaluate them.

Let us go through a more detailed plan of the proof. Fix (M,Z) and set
`i := |Zi|. In the first step we include all intermediate states in the probabilistic
event (∀i ∈ [2q] : Spongef (Mi, `i) = Zi). We write explicitly all inner states and
outer states not specified by the input-output pairs (M,Z). Next we rewrite
the full probability expression in the form ∑∏P[f(S1) = S2 | . . . ]. The sum
comes from the fact that there are many possible intermediate states that yield
the given input-output behavior. The product is the result of using Bayes’ rule
to isolate a single evaluation of f in the probability. To correctly evaluate the
summands we need to analyze all states in P[f(S1) = S2 | . . . ] from the per-
spective of uniqueness—we say a state is unique if it is input to f just a single
time. Given a specific setup of unique states in all 2q evaluations of Sponge
we can easily evaluate the probabilities, as the only thing we need to know
is that f is random. The final step of the proof is to calculate the number of
states in the sum. We sum over all values of states that fulfill the constraints
of (∀i ∈ [2q] : Spongef (Mi, `i) = Zi) and f being a function. The previous anal-
ysis of uniqueness of states makes it easier to include the latter constraint; non-
unique states have predetermined outputs under f decreasing the number of
possible states. After those steps we end up with an explicit expression for
P [∀i ∈ [2q] : Spongef (Mi, `i) = Zi], which allows us to show that p is a polyno-
mial of the claimed degree and its limit in t → ∞, i.e. the constant term a0 is
the probability of uniformly random outputs.

Proof of Theorem 4.2. Let us define a family Ft indexed by t ∈ N∪ {∞}, t > 0. Ft
is a distribution on functions fromM× N toM, whereM is an arbitrary set.
The family is additionally parametrized by the choice of r ∈ N and a sponge-
compliant padding function pad. We define h← Ft as follows:
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• Choose f uniformly at random from SS , where S := A × C and C is any
finite set of size t > 0.

• Use f , C, the fixed A, and pad to construct Spongef [pad,A, C].

• For each (X, `) ∈M× N set h(X, `) := Spongef [pad,A, C](X, `).

To show that we defined Ft in the right way, let us analyze Equation (4.2)
from the point of view of the newly defined distribution. On the one hand from
our definition it follows that

P
h←Ft

[
b = 1 : b← A|h〉

]
= P

f $←SS

[
b = 1 : b← A|Spongef 〉

]
, (4.6)

where the equality follows from our definition of h. On the other hand if we
take t → ∞, then intuitively the internal function is going to be injective on
its inner part. Namely f̂—the internal function with its output restricted to the
inner part—is injective. That implies a different inner state in every evaluation
of f in Sponge what in turn implies a random and independent outer part in
every step of generating the output, formally

P
h←F∞

[
b = 1 : b← A|h〉

]
= P

h←R

[
b = 1 : b← A|h〉

]
. (4.7)

This intuition is formally captured by statement (ii) of Lemma 4.3, where we
state that in the limit of |C| → ∞ the probability of getting particular outputs
of Sponge is the same as for a random oracle.

From the above discussion we get that∣∣∣∣ P
h←Ft

[
b = 1 : b← A|h〉

]
− P

h←F∞

[
b = 1 : b← A|h〉

]∣∣∣∣ =∣∣∣∣∣ P
f $←SS

[
b = 1 : b← A|Spongef 〉

]
− P

h←R

[
b = 1 : b← A|h〉

]∣∣∣∣∣ , (4.8)

which is the crucial equality for using Theorem2.21 to prove our statement. The
last element of the proof is the assumption about p being a polynomial and that
is exactly the statement of Lemma 4.3. Note that the statement of Theorem 2.21
does not include inputs like `i but is still general enough that it works in our
setting.

Quantum indistinguishability of commonly used sponges with binary state
follows directly from the general result.

Corollary 4.4. If f is a random function or a random permutation, then
Spongef [pad, {0, 1}r, {0, 1}c] is quantumly indistinguishable from a random oracle.
Proof. For a random function we use Theorem 4.2 and for a random permuta-
tion Theorem 4.9 and set C = {0, 1}c.
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4.3.1 Application to keyed-internal-function sponges

We show that Theorem 4.2 implies that keyed-internal-function sponges
are indistinguishable from a random oracle under quantum access if the
used internal function is a quantum-secure PRF (or if the internal function
is a permutation, a quantum-secure PRP). This means that in the case f
is a quantum-secure pseudorandom function or permutation the sponge
construction is a quantum-secure pseudorandom function. For keyed
primitives, indistinguishability from a random oracle/permutation is exactly
what we call pseudorandomness.

Now we state and prove a quantum version of theorem 1 of [And+15]
which formalizes the above statement about quantum security of
keyed-internal-function sponges. Note that we state the theorem for the
general sponge construction but thanks to Corollary 4.4 it holds for the regular
construction as well.

Theorem 4.5. If the internal function f used in Spongef is a quantum-
secure PRF/PRP, Definition 2.5 with advantage εPR, then the resulting
keyed-internal-function sponge is a quantum-secure PRF with advantage

∣∣∣∣∣ P
K

$←K

[
b = 1 : b← A|SpongefK 〉

]
− P

g←R

[
b = 1 : b← A|g〉

]∣∣∣∣∣ ≤ εPR + π2

6 η
3|C|−1,

(4.9)

where η := 2q(m+z−2), q is the number of queriesAmakes to its oracle,m and z are
as defined in the statement of Theorem 4.2, andR is defined according to definition 2.13.

Proof. We give the proof for f being a keyed function. The proof when f is a
keyed permutation is obtained by using Theorem 4.9 in place of Theorem 4.2
and restricting the sets from which g and f are drawn below to permutations.

We show that the advantage of any quantum adversary in distinguishing
the keyed-internal-function sponge from a random oracle is bound by its abil-
ity to distinguish f from a random oracle (permutation, respectively) plus its
ability to distinguish a random sponge from a random oracle. In the following
calculation we use the triangle inequality and the result of Theorem 4.2.

∣∣∣∣∣ P
K

$←K

[
b = 1 : b← A|SpongefK 〉

]
− P

g←R

[
b = 1 : b← A|g〉

]∣∣∣∣∣
=
∣∣∣∣∣ P
K

$←K

[
b = 1 : b← A|SpongefK 〉

]
− P

f $←SS

[
b = 1 : b← A|Spongef 〉

]
+

P
f $←SS

[
b = 1 : b← A|Spongef 〉

]
− P

g←R

[
b = 1 : b← A|g〉

]∣∣∣∣∣ (4.10)
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≤
∣∣∣∣∣ P
K

$←K

[
b = 1 : b← A|SpongefK 〉

]
− P

f $←SS

[
b = 1 : b← A|Spongef 〉

]∣∣∣∣∣︸ ︷︷ ︸
≤

∣∣∣∣∣ P
K

$
←K

[b=1:b←B|fK〉]− P
f

$
←SS

[b=1:b←B|f〉]
∣∣∣∣∣

+

∣∣∣∣∣ P
f $←SS

[
b = 1 : b← A|Spongef 〉

]
− P

g←R

[
b = 1 : b← A|g〉

]∣∣∣∣∣︸ ︷︷ ︸
Quantum Indistinguishability, Theorem 4.2 or 4.9

≤ εPR + π2

3 η
3|C|−1,

(4.11)

where B is an adversary that usesA as a subroutine, simulatingA’s oracle using
its ownoracle and the sponge construction. B outputs the sameoutput asA.

4.4 Example proof of Lemma 4.3
In this section we prove Lemma 4.3 in a setting limited enough that every step
can be done in all details. The main difficulty of our technique is of combi-
natorial nature, namely counting the possible values of intermediate states in
multiple evaluations of Sponge. In the full proof we provide an algorithmic ex-
planation of some steps but here we can execute these algorithms and explicitly
write down their outputs.

We want to show that the probability function describing the input-output
behavior of Sponge is a polynomial of boundeddegree in |C|−1. By thatwemean
that the expression for p(|C|−1) can be written as ∑i ai|C|−i. The proof goes as
follows: Firstly we expand the event that on some inputs Sponge gives some
outputs, this allows us to pinpoint the individual evaluations of f . Secondly
we impose an order on the evaluations of the internal function; which in turn
allows us to exclude state values that would require f to output different values
on the same input, calculate the probability of f having particular input-output
behavior, and divide the set of state values in a way allowing to calculate its
size. Finally we obtain a closed expression for p(|C|−1).

The limitationwemake in the example proof is to consider only single-query
algorithms (q = 1). We also restrict ourselves to a limited Sponge that allows
only 2-symbol inputs and always outputs a single element of A. As q = 1 the
number of input-output pairs we need to consider is 2. The array of inputs and
outputs is (M,Z) = ((M1,Z1), (M2,Z2)) and for i ∈ {1, 2} : Mi = M i

1‖M i
2,

Zi = Zi
1. In the following example f : S → S, where S := A× C.

The probabilistic event we analyze throughout this section is

∀i ∈ [2] : Sponge(Mi) = Zi ⇔ ∀i ∈ [2] : f̄
(
f̄(M i

1, 0)⊕M i
2, f̂(M i

1, 0)
)

= Zi
1,

(4.12)
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where by f̄ : S → A and f̂ : S → C we denote the outer part and the inner part
of the output of f respectively.

In the following paragraph we are going to make explicit all inputs to f .
Particularly in Figure 4.1 we show the two evaluations of Sponge we analyze.
The values of not-boxed-states are fixed by the requirement of inputs being M
and outputs Z. ByM i

j we denote the j-th block of Mi, and similarly by Zi
j the

j-th block of Zi.

0 S̄1
1⊕

0

0S̄2
1⊕
0

S̄1
2 S̄1

2⊕

Ŝ1
2

S̄2
2 S̄2

2⊕

Ŝ2
2

S̄1
3 S̄1

3⊕

Ŝ1
3

S̄2
3 S̄2

3⊕

Ŝ2
3

f f

f f

⊕M1
1

⊕M1
2

⊕M2
1

⊕M2
2

= Z1
1

= Z2
1

Figure 4.1: Table showing the intermediate states of the limited Sponge. Boxed
states are the elements of ∇-c (pronounced as “nabla-c” and defined in Equa-
tion (4.16)) that do not have a fixed value across different ∇-c ∈ ∇-C(M,Z),
the arrows indicate the order in which Flag-Assign assigns flags.

Note that by including intermediate states we can further expand the above
event, Equation (4.12). By intermediate states we mean the value of the state of
Sponge during the calculation of Sponge(M). Namely Ŝi3:

∀i :f̄
(
f̄(M i

1, 0)⊕M i
2, f̂(M i

1, 0)
)

= Zi
1 ⇔

∀i :
∨
Ŝi3∈C

f
(
f̄(M i

1, 0)⊕M i
2, f̂(M i

1, 0)
)

= (Zi
1, Ŝ

i
3). (4.13)

We are using the upper index to count the number of the evaluation of Sponge.
Note that there is one inner state that we have not made explicit, the one being
output by the first f . Following the above reasoning we get

∀i :
∨

Si2∈A×C

∨
Ŝi3∈C

f(M i
1, 0) = Si2 ∧ f(S̄i2 ⊕M i

2, Ŝ
i
2) = (Zi

1, Ŝ
i
3), (4.14)
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where Si2 = (S̄i2, Ŝi2), we denote the above as

∀i :
∨

Si2∈A×C

∨
Ŝi3∈C

f(Si1⊕) = Si2 ∧ f(Si2⊕) = (S̄i3, Ŝi3),

where ∀i : Si1⊕ := (M i
1, 0) ∧ Si2⊕ := (S̄i2 ⊕M i

2, Ŝ
i
2) ∧ S̄i3 := Zi

1. (4.15)

By adding the subscript "⊕" we highlight that the state output by f has been
updated by adding the appropriate block of M. Up to this point we have ex-
panded the initial event from Equation (4.12) to a form with all inputs and
outputs of f being explicit, namely f(S1) = S2. From now on we are going to
denote the set of the states by∇-c (read as “nabla configuration”, where the∇ is
suggested by the three values that can be seen as vertices of a triangle), which
we define as a matrix

∇-c :=


(
S̄1

1 S̄
1
1⊕

Ŝ1
1

) (
S̄1

2 S̄
1
2⊕

Ŝ1
2

) (
S̄1

3 S̄
1
3⊕

Ŝ1
3

)
(
S̄2

1 S̄
2
1⊕

Ŝ2
1

) (
S̄2

2 S̄
2
2⊕

Ŝ2
2

) (
S̄2

3 S̄
2
3⊕

Ŝ2
3

)
 , (4.16)

where ∀i : Si1⊕ = (M i
1, 0) ∧ Si2⊕ = (S̄i2 ⊕ M i

2, Ŝ
i
2) ∧ S̄i3 = Zi

1 = S̄i3⊕; the
constraints we impose fix the input-output behavior of the two evaluations of
Sponge. Nabla-configurations ∇-c are matrices of triples but when we want
to refer to a part of the triple in row i and column j of ∇-c we are going to

write Sij ∈ ∇-c. More formally Sij ∈ ∇-c ⇔ ∇-cij =
(
S̄ S̄⊕

Ŝ

)
∧ Sij = (S̄, Ŝ),

where by ∇-cij we denote the element of ∇-c in row i and column j, similarly
for the second part of the state Sij⊕ = (S̄ij⊕, Ŝij), of the corresponding triple.
We introduce this notation of ∇-c to capture possible values of the states in
Sponge(Mi) that are consistent with (M,Z).

The set of all possible values of states in ∇-c is denoted by ∇-C(M,Z) (the
set of nabla configurations). The size of∇-C(M,Z) is the number of different∇-c
for a particular (M,Z),

| ∇-C(M,Z) | = |A2 × C4| = |A|2 · |C|4. (4.17)

In Figure 4.1, values of not-boxed-states are fixed by the requirement of inputs
being M and outputs Z. In what follows we analyze this set to find out how
many possible values of states correspond to each value of probability of see-
ing (∀i ∈ [2] : Sponge(Mi) = Zi). To better understand our approach we
should clarify the implicit equivalence between ∇-c—so values of the inter-
nal states of Sponge—and f i.e. the function taken at random from SS . Note
that for every f ∈ SS we have at most a single ∇-c, we say at most because
some f are not consistent with the input-output pairs (M,Z). On the other
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hand, for a single ∇-c we have plenty of functions: all those that have input-
output pairs consistent with values of states in ∇-c and any outputs on all in-
puts not present in ∇-c. Also note that there are many ∇-c that will result in
(∀i ∈ [2] : Sponge(Mi) = Zi). What we do is basically counting the number of
functions f that will result in Sponge evaluating to Z on M and dividing it by
the number of all functions. The only difference is thatwe immediately simplify
the result by not counting the functions with behavior outside of our scope—
limited to few (in this section four) evaluations. This simplification is made
easier by focusing on relevant values of inputs and outputs; on a few rows of
the evaluation tables of f .

The events we take the OR of are disjoint, so in terms of probabilities we get

P
f $←SS

[∀i ∈ [2] : Sponge(Mi) = Zi]

=
∑

S1
2 ,S

2
2 ,Ŝ

1
3 ,Ŝ

2
3

P
f $←SS

[∀i ∈ [2] : f(Si1⊕) = Si2 ∧ f(Si2⊕) = (S̄i3, Ŝij)], (4.18)

where the sum is taken over S1
2 , S

2
2 ∈ S and Ŝ1

3 , Ŝ
2
3 ∈ C and S̄i1⊕, S̄

i
2⊕, S̄

i
3⊕ are

constrained by (M,Z). Now that we have exposed the individual evaluations
of f we can use the chain rule to specify the order in which we analyze the
evaluations of the internal function. This order is only a tool for the analysis
of the probability, not the actual time evolution. Note that the probability on
the right hand side of Equation (4.18) is taken over a conjunction of events
depending only on a single evaluation of f . The next step is to extract events
with a single evaluation of f . We can do it simply by using Bayes’ formula and
the chain rule,

P
f $←SS

[Sponge(M) = Z] =
∑

S1
2 ,S

2
2 ,Ŝ

1
3 ,Ŝ

2
3

P[∀i : f(Si1⊕) = Si2 ∧ f(Si2⊕) = (S̄i3, Ŝi3)]

(4.19)
=
∑
∇-c

P[∀i : f(Si1⊕) = Si2 ∧ f(Si2⊕) = Si3; ∀i, j : Sij, Sij⊕ ∈ ∇-c]

=
∑
∇-c

P[f(S1
1⊕) = S1

2 ]

·P[f(S2
1⊕) = S2

2 | f(S1
1⊕) = S1

2 ]
·P[f(S1

2⊕) = S1
3 | f(S2

1⊕) = S2
2 ∧ f(S1

1⊕) = S1
2 ]

·P[f(S2
2⊕) = S2

3 | f(S1
2⊕) = S1

3 ∧ f(S2
1⊕) = S2

2 ∧ f(S1
1⊕) = S1

2 ], (4.20)

where in the last equation we have omitted ∀i, j : Sij, Sij⊕ ∈ ∇-c in each proba-
bility function. We denote the order specified above by "≺".

We still cannot evaluate the above expression because we do not know if f is
queried on a "fresh" input or not. First of all, note that thanks to conditioning on
one event, we can treat (f(S1

1⊕) = S1
2) from the second factor in Equation (4.20)
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as being prior to (f(S1
2⊕) = S1

3). Prior in that case means that f is sampled
on S1

1⊕ before it is sampled on S2
1⊕. That implies, e.g., that if S2

1⊕ = S1
1⊕ then

the outputs have to be the same, otherwise the probability is 0. This is what
we mean when saying that an input is fresh or not. To separate a particular
∇-c with different numbers of fresh states, we perform a procedure on each
∇-c that assigns flags to the states. Flags mark whether the value of the state
was previously input to f or not. By performing this procedure we want to
divide∇-C(M,Z) into subsets with the same probability—i.e. having the same
probability of sampling f that yields a particular input-output behavior. Let us
call this procedure Flag-Assign. Running it also identifies impossible values
of internal states, calculates the probabilities of each transition, and divides
∇-C(M,Z) into sets of cardinalities we can compute.

Algorithm Flag-Assign, see Algorithm 4.2 in the next section, takes as input
∇-c and goes through each state starting from the first column going down,
then down from the top of the second column and so on. The order in which
Flag-Assign operates is depicted by arrows in Figure 4.1. If the value of the
“⊕” part of the state which is input to f appears in∇-c just once, the algorithm
assigns the flag “u” to it, we call such states unique. If the value is not unique, i.e.
it appears in∇-c more than once, the state that is encountered first is assigned
the flag “f” and the rest of the states get the flag “n”. We call states with the
flag “n” non-unique. Flag-Assign also appends to each non-unique “⊕”-state
the output it should yield, i.e. the output of the corresponding “f” state. If the
state in∇-c that follows the considered state is different than the claimedoutput
we discard the whole configuration. We denote the set ∇-C(M,Z) without
states that conflict with f being a proper map by p-∇-CF(M,Z) (set of p-nabla
configurations with flags, p emphasizes the fact that we have restricted f to proper
transformations). By a proper map we mean that it does not output different
states on the same input. Elements of p-∇-CF(M,Z) are denoted by p-∇-cf
(p-nabla configurations).

After running Flag-Assign on every ∇-c ∈ ∇-C(M,Z) and discarding the
configurations with bad output states we still need to add more details to our
picture. The procedure we describe below is depicted in Figure 4.2. Firstly we
discriminate between p-∇-cf with different numbers of unique states. The total
number of flags is 4, the final states are not inputs to f and are not assigned a
flag. We denote the number of unique states by u, the number of states that are
non-unique but appear for the first time is f , and the number of non-unique
states is n. Note that u+ f + n = 4. In general there are 5 possible sets of those
numbers in the case of q = 1 and lengths of the input and output strings we
specified. These are as follows: (u = 4, f = 0), (u = 2, f = 1), (u = 1, f = 1),
(u = 0, f = 2), and (u = 0, f = 1). Secondly we discriminate between differ-
ent placements of flags. For each setup there are several possible placements
of flags. For (u = 4, f = 0) and (u = 0, f = 1), flags can be set in only one
configuration. If we have 2 unique states and the setup is (u = 2, f = 1) then
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there are 6 possible configurations of flags. For (u = 1, f = 1) there are 4 and
for (u = 0, f = 2) only 2. While calculating the number of configurations it is
important to remember that the flag of the first state S1

1⊕ is either u or f . There
are some details of how to find the placements but they are made explicit only
in the full proof of the lemma. All possible placements are depicted in Fig-
ure 4.2. The last step is calculating the number of distinct p-∇-cf . We consider

(u = 4, f = 0)

(u = 2, f = 1)

(u = 1, f = 1)

(u = 0, f = 2)

(u = 0, f = 1)

setups

ū = 4

ū = 3

ū = 2

ū = 1

P1
1 =

{[
u u
u u

]}

P2
1 =

{[
u f
u n

]
,

[
u u
f n

]
,

[
u n
f u

]
,

[
f u
u n

]
,

[
f n
u u

]}

P2
2 =

{[
f u
n u

]}

P3
1 =

{[
u n
f n

]
,

[
f n
u n

]}

P3
2 =

{[
f u
n n

]}

P3
3 =

{[
f n
n u

]}

P4
1 =

{[
f n
f n

]}

P4
2 =

{[
f f
n n

]}

P5
1 =

{[
f n
n n

]}

positions

(|A| · |C| − 2) · (|A| · |C| − 3) · |C| · |C|

(|A| · |C| − 2) · |C|

(|A| · |C| − 1) · |C| · |C|

1

(|A| · |C| − 1) · |C|

|C|

2

(|A| · |C| − 1) · |C|

1

the number of different values

Figure 4.2: Possible placements for the limited Sponge.
[
. .
. .

]
denotes the

flags assigned to the four states. ū denotes the total number of unique states:
ū := u+ f .

the number of outputs of f consistent with the specified placement. In the first
case in Figure 4.2 we have (|A| · |C| − 2)(|A| · |C| − 3) values of states in the
second column in Figure 4.1. This value comes from the fact that the first out-
put is distinct from the two values in the first column and the second output
is also distinct form the first output. The mentioned value is multiplied by |C|2
for the inner parts of the last states in p-∇-cf , this is true with the assumption
that (Z1

1,Z2
1) are distinct from each other and from M. If Z does not fulfill this

assumption the number of possible values is just instead multiplied by |C| − 1.
Whenever a state is not unique, then the number of values that can be output
by f on it is 1. With such reasoningwe calculate all the values in the last column
of Figure 4.2.

In most steps we perform using Flag-Assign, the distinction between u and
f seems unimportant. We will need it to properly identify different placements
of flags in p-∇-CF(M,Z), but indeed in all other tasks one can treat them as a
single "unique" flag.

The next step is calculating the number of values that can be assigned to
states in a given setup and for a given placement of flags. We calculated those
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numbers assuming it is possible to have such placement. This assumption is not
always fulfilled as particular messages and outputs exclude some options. For
example, if bothmessages start with the same symbols then all positions where
the two first states are unique are impossible. ByCalcwe denote the algorithm
calculating the cardinality of subsets of p-∇-CF(M,Z), the details of Calc are
specified below in Algorithm 4.3. It goes through a single placement of flags.
The basic rules of its operation are: for every unique flag that maps to a unique
flag multiply the result by |A| · |C|, for every unique flag that maps to a non-
unique flagmultiply the result by 1, for every non-unique flag that maps to any
state multiply the result by 1, and for every unique flag in the last column of
flagged states multiply the result by |C|. The first two rules are adjusted a bit
to keep track of non-repeating unique states and allow for multiple values of
non-unique states respectively. The last column in Figure 4.2 lists the results
of Calc for placements in the respective rows. If the squeezing phases were
longer we would have to account for the fact that the outer part of the state can
be either unique or not which slightly changes the final outcome.

Now we want to show that the probability function p is a polynomial in
|C|−1. Up to this point we have shown that

∑
∇-c

(2,2)∏
(i,j)=(1,1)

P

f(Sij⊕) = Sij+1 |

∧
(i′,j′)≺(i,j)

f(Si′j′⊕) = Si
′

j′+1;∀i, j, i′, j′ : Sij, Sij⊕ ∈ ∇-c


=
∑

p-∇-cf

(2,2)∏
(i,j)=(1,1)

P

f(Sij⊕) = Sij+1 |

∧
(i′,j′)≺(i,j)

f(Si′j′⊕) = Si
′

j′+1;∀i, j, i′, j′ : Sij, Sij⊕ ∈ p-∇-cf

 , (4.21)

where the order "≺" is the same as in Equation (4.20). In the above equationwe
have discarded those ∇-c that require f to output different states on the same
input, because the probability is then 0. The sum in Equation (4.21) can be
expanded to

∑
p-∇-cf

· · · =
∑
u=4
· · ·+

2∑
u=0

b(4−u)/2c∑
f=1

∑
P∈P(u,f)

∑
p-∇-cf(u,f,P )

· · · , (4.22)

where by p-∇-cf(u, f, P ) we denote the configuration with the number of
unique and non-unique states and placement fixed. P(u, f) is the set of all
placements in which the flags can be arranged given the number of unique
and non-unique states. We omitted the input (M,Z) to P for brevity. Making
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use of information from Figure 4.2 we can now evaluate expression (4.21).
Note that setting u and f to some particular values allows us to evaluate the
probabilities. Denoting the total number of unique states by ūwe get that

(2,2)∏
(i,j)=(1,1)

P

f(Sij⊕) = Sij+1 |
∧

(i′,j′)≺(i,j)
f(Si′j′⊕) = Si

′

j′+1

 = (|A| · |C|)−ū (4.23)

for p-∇-cf with u+ f = ū. Finally we arrive at

p(|C|−1) =
∑
P∈P1

1

(|A| · |C|)−4 · (|A| · |C| − 2)(|A| · |C| − 3)|C|2δ(P )

+
∑
P∈P2

1

(|A| · |C|)−3 · (|A| · |C| − 2)|C|δ(P )

+
∑
P∈P2

2

(|A| · |C|)−3 · (|A| · |C| − 1)|C|2δ(P )

+
∑
P∈P3

1

(|A| · |C|)−2 · δ(P ) +
∑
P∈P3

2

(|A| · |C|)−2 · (|A| · |C| − 1)|C|δ(P )

+
∑
P∈P3

3

(|A| · |C|)−2 · |C|δ(P ) +
∑
P∈P4

1

(|A| · |C|)−2 · 2δ(P )

+
∑
P∈P4

2

(|A| · |C|)−2 · (|A| · |C| − 1)|C|δ(P ) +
∑
P∈P5

1

(|A| · |C|)−1 · δ(P ),

(4.24)

where the sets are denoted as in Figure 4.2. The function appearing in the above
equation is defined as

δ(M,Z, P ) :=

0 if p-∇-CF(M,Z)(u, f, P ) = ∅
1 otherwise

, (4.25)

where in Equation (4.24) we omitted the input of (M,Z) for readability.
The degree of p(|C|−1) is at most 2, as claimed for messages of length 2. The

coefficient for |C|0 is

a0 =
∑
P∈P1

1

|A|−2 δ(P ) +
∑
P∈P2

2

|A|−2 δ(P ) +
∑
P∈P3

2

|A|−1 δ(P ) +
∑
P∈P4

2

|A|−1 δ(P ).

(4.26)
Let us recapitulate the results of this section. First we characterized the pos-

sible internal functions by the outputs of their consecutive evaluations, Equa-
tion (4.19). Secondly we captured the features of the intermediate states that
determine the probability of seeing a particular input-output behavior, Equa-
tion (4.23). Finally we calculated an explicit formula for the probability func-
tion, Equation (4.24), (4.26).
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4.5 Proof of Lemma 4.3
In this section we give the complete proof of Lemma 4.3 for the general case of
q ≥ 1 queries the adversary makes and message lengths bounded by some m,
not fixed to 2 like in the previous section. In subSection 4.5.1 we expand the
probability expression to encompass all intermediate states of
(∀i ∈ [2q] : Spongef (Mi, `i) = Zi) and individual evaluations of f . In subSec-
tion 4.5.2 we introduce the concept of unique states to evaluate the probabilities
of P[f(S1) = S2]. In subSection 4.5.3 we define the algorithm that calculates the
cardinality of the set of intermediate states—and equivalently inner functions—
consistent with given characteristics. In subSection 4.5.4 we conclude the proof
and provide the final expression for the probability of an input-output pair un-
der a random Spongef .

We omit the padding function of the sponge construction. This is donewith-
out loss of generality since we can just say that all the considered messages are
in fact messages after padding andwe do not use any properties of the padding
in the proof. Also we focus on q evaluations of Sponge instead of 2q to improve
readability.

4.5.1 Expansion of the probability function
In this section we expand the probability function to the point that all interme-
diate states are accounted for. We consider the event(

∀i ∈ [q] : Spongef (Mi, `i) = Zi
)

and then include the states that appear between consecutive evaluations of f .
To keep track of the states we introduce the following notation. By the

upper-index we denote the number of evaluations of Sponge, going from 1 to
q. The lower index corresponds to the number of evaluations of f in the i-th
calculation of Sponge. A state occurring during the calculation on Mi that is
the input to the j-th evaluation of f is denoted by Sij⊕. The output of that eval-
uation is Sij+1. States traversed in q evaluations of Sponge can be represented
by an array with q rows with |Mi| + |Zi| columns each. By array we mean a
2-dimensional matrix with unequal length of rows.

We call an array like that with values assigned to every state a nabla config-
uration ∇-c. ∇ symbolizes the triangle shape in which we put states between
evaluations of f , each corner being an outer or inner part of the state. Now
we define ∇-c relative to input-output pairs (M,Z). The size of the array is
determined by the number of blocks in Mi and Zi.

Definition 4.6 (∇-c ). The nabla configuration ∇-c for (M,Z) is an array of triples(
S̄ S̄⊕

Ŝ

)
∈ A2 × C, where C is an arbitrary non-empty finite set. The array ∇-c
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Figure 4.3: Table depicting states traversed in q evaluations of Sponge. Vertical
lines signify evaluations of the internal function.

consists of q rows. For every i, row i has ki columns where ki := |Mi| + |Zi| (|Mi|
denotes the number of symbols in Mi). Formally we have

∇-c :=
 S̄ij S̄ij⊕

Ŝij


i∈[q]

j∈[ki]

. (4.27)

To refer to the element of ∇-c that lies in row i and column j we write ∇-cij . To refer
to parts of the triple that lies in row i and column j we write

Sij = (a, b) ∈ ∇-c⇔ ∇-cij =
(
a S̄⊕
b

)
for some S̄⊕ (4.28)

Sij⊕ = (a, b) ∈ ∇-c⇔ ∇-cij =
(
S̄ a

b

)
for some S̄. (4.29)

Let us define the number of evaluations of f in∇-c for (M,Z) as

κ :=
q∑
i=1

(ki − 1). (4.30)

Wedenote the number of triples in∇-c by | ∇-c |. With coefficient defined above
we have | ∇-c | = κ+ q.
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To make good use of the newly introduced concept of nabla configurations
∇-c we want to restrict the set of arrays we discuss. We want to put constraints
on the set of ∇-c to make explicit the requirement that states correspond to a
correct input-output behavior of Sponge. The set of∇-c for (M,Z) is defined as
follows.

Definition 4.7 (∇-C(M,Z) ). The set of nabla configurations ∇-c for (M,Z) is a
set of arrays of size specified by (M,Z), ∇-C(M,Z) ⊂ (A2 × C)κ+q. We define
∇-C(M,Z) by the following constraints

∀i ∈ [q] : Ŝi1 = 0, (4.31)
∀i ∈ [q] : S̄i1 = 0, (4.32)
∀i ∈ [q], 1 ≤ j ≤ |Mi| : S̄ij⊕ = S̄ij ⊕M i

j , (4.33)
∀i ∈ [q], |Mi| < j ≤ ki : S̄ij⊕ = S̄ij = Zi

j−|Mi|. (4.34)

The formal definition reads
∇-C(M,Z) := {∇-c for (M,Z) : ∇-c fulfills constraints (4.31)} . (4.35)

In the following we assume that rows of all ∇-c ∈ ∇-C(M,Z) are
initially sorted according to the following relation. We arrange (Mi,Zi) in
non-decreasing order in terms of length, so ∀i < j : ki ≤ kj , this also means
that rows of ∇-c are ordered in this way.

The set∇-C(M,Z) can be seen as a collection of arrays (that can be viewed
as sheets with states written down on them) filled with possible values of the
internal states, like the one in Figure 4.4.

Having established the notationwemove on to realizing the goal of this sec-
tion: rewriting the probability function in a suitable way for further analysis. In
the followingwhenwe consider

(
f(Sij⊕) = Sij+1

)
for some∇-c we leave implicit

that Sij⊕, Sij+1 ∈ ∇-c. We have that

∀i ∈ [q] : Sponge(Mi) = Zi

⇔ ∀i ∈ [q] :
∨

∇-c∈∇-C(M,Z)

(
f(Si1⊕) = Si2

)
∧ · · · ∧

(
f(Si(ki−1)⊕) = Siki

)
(4.36)

⇔
∨

∇-c∈∇-C(M,Z)

q∧
i=1

ki−1∧
j=1

(
f(Sij⊕) = Sij+1

)
. (4.37)

In the above equations we first include the intermediate states and then com-
bine all evaluations of f . In the followingwemake use of the fact that the events
we take the disjunction of are independent and the logical disjunction turns into
a sum of the probability.

P
f $←SS

[
∀i ∈ [q] : Sponge(Mi) = Zi

]
= P

∨
∇-c

q∧
i=1

ki−1∧
j=1

(
f(Sij⊕) = Sij+1

)
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Figure 4.4: A pictorial description of the collection of arrays that is
∇-C(M,Z) = {∇-c1,∇-c2, . . . ,∇-cν}.

=
∑

∇-c∈∇-C(M,Z)
P

 q∧
i=1

ki−1∧
j=1

(
f(Sij⊕) = Sij+1

) . (4.38)

To further extract an expression involving the probability of a single(
f(Sij⊕) = Sij+1

)
we use Bayes’ rule. By a chain of conditions we want to arrive

at a function we can evaluate in the end. At this point we want to choose a
particular order of the

(
f(Sij⊕) = Sij+1

)
events. Let us define the order ≺ as

(i, j) ≺ (i′, j′)⇔ (j < j′) ∨ (j = j′ ∧ i < i′) . (4.39)

The above rule imposes an order that begins with the top-left corner of a ∇-c
and proceeds downwards to the end of the column to continue from the second
column from the left etc.

p(|C|−1) =
∑

∇-c∈∇-C(M,Z)
P

 q∧
i=1

ki−1∧
j=1

(
f(Sij⊕) = Sij+1

)
=
∑
∇-c

P

(f(Sq(kq−1)⊕) = Sqkq

)
|

∧
(i,j)≺(q,kq−1)

(
f(Sij⊕) = Sij+1

)
· P

 ∧
(i,j)≺(q,kq−1)

(
f(Sij⊕) = Sij+1

)
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=
∑

∇-c∈∇-C(M,Z)

(q,kq−1)∏
(i,j)=(1,1)

P

(f(Sij⊕) = Sij+1

)
|

∧
(i′,j′)≺(i,j)

(
f(Si′j′⊕) = Si

′

j′+1

) .
(4.40)

In the case that there is no state (q−1, kq−1)we just take the next state preceding
(q, kq − 1) in the order given by Equation (4.39).

Up to this point we have performed some transformations of the event
(∀i ∈ [q] : Spongef (Mi, `i) = Zi), but we did not address the issue of the con-
straints put on elements of ∇-C(M,Z). Is it correct to consider state values
in evaluations of Sponge instead of different f—are we in fact discussing the
probability over the random choice of the internal function? The answer to this
question is “yes”, because of the equivalence of every ∇-c with some set of f .
We can treat the input-output pairs for f assigned in∇-c as values in the func-
tion table of f . By picking a single∇-c we fix at most κ rows of this table. As we
sample f uniformly at randomwe are interested in the fraction of functions that
are consistent with the input-output pairs (M,Z) among all functions. Note
however, that we only care about κ evaluations of f and all the details of those
future evaluations are implicitly simplified in this fraction. This simplification
allows us to focus only on the part of the function table corresponding to the
few evaluations made in q queries and that is exactly ∇-c. The summing over
nabla configurations ∇-c corresponds to different values of the function table
that are still consistent with (M,Z).

The probability P
[(

f(Sij⊕) = Sij+1

)
| ∧(i′,j′)≺(i,j)

(
f(Si′j′⊕) = Si

′
j′+1

)]
equals ei-

ther 1
|A|·|C| or 1 or 0: If the internal function is queried on a “fresh” input, it

outputs any value with uniform probability. If on the other hand it is queried
on the same input for the second time, it outputs the value it has output before
with probability 1. One might think that the proof is finished, p(λ) = ∑

i wi(λ),
where wi are monomials in λ of degree up to κ+ q. There is one problem with
that reasoning, namely that the sum limits depend on the variable λ. Up until
now we have shown that p(λ) = ∑v(1/λ)

i=1 wi(λ), where v is another polynomial.
Even for v = id (the identity function) the degree of p is different from the
maximal degree of wi. This means that we have to analyze the expression de-
rived in Equation (4.40) in more detail. To this end, we add more structure to
∇-C(M,Z) which will make it easier to count the number of values that the
intermediate states can assume, i.e. the number of nabla configurations ∇-c in
∇-C(M,Z).

4.5.2 Unique and non-unique states
The goal of this section is to evaluate
P
[(

f(Sij⊕) = Sij+1

)
| ∧(i′,j′)≺(i,j)

(
f(Si′j′⊕) = Si

′
j′+1

)]
for any ∇-c and any (M,Z).

We approach this problem by recognizing which states in a particular ∇-c are
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fed to f once and which are repeated. We define an algorithm that includes the
information about uniqueness of the intermediate states in ∇-c. The notion of
uniqueness is derived relative to the events we condition on in Equation (4.40),
that is why we took special care of the order in which we use the chain rule.

In this section we introduce two algorithms Prep and Flag-Assign. The for-
mer is an auxiliary algorithm that prepares the array ∇-c for further analysis.
The latter algorithm assigns flags to states in ∇-c. Flags signify if a state ap-
pears once or more in the array. We use an algorithmic definition to explicitly
show every step of the procedure.

Algorithm 4.1 takes as input an array∇-c and groups its elements according
to the value input to f . An important detail is the sorting rule among states
with the same "⊕"-state value; we use the order defined in Equation (4.39).
The output of Algorithm 4.1 Prep(∇-c) is a vector (1-dimensional matrix), to
access its l-th element we write∇-cl.

Algorithm 4.1 Prep
input: ∇-c for (M,Z)
output: ∇̃-c

1: ∇̃-c := ∇-c, append three work spaces to each element of ∇̃-c
2: for all 1 ≤ i ≤ q, 1 ≤ j ≤ ki − 1 do
3: ∇̃-cij =

(
∇-cij, index,⊕-state, image

)
:=
(
∇-cij, (i, j), Sij⊕, Sij+1

)
4: Sort ∇̃-c primarily according to the third entry and secondarily according

to the second entry (using the order defined in Equation (4.39)).
5: return ∇̃-c

The main contribution of this subsection is Algorithm 4.2 which adds to
each∇-c information about the repetitions of the internal states. Running Prep
groups the state values. The next step is to assign specific flags to states that are
first (according to a specified rule) in each group. To each Sij⊕ we will assign
a flag, u for unique states, n for non-unique states, and f for states that appear
twice or more in total but from our perspective it is their first appearance. The
output of Algorithm 4.2 is Flag-Assign(∇-c) = ∇-cf (“nabla configuration
with flags”) and ∀i, j : ∇-cf ij = (F∇-cij, S), where the first register is the whole
state between evaluations togetherwith the assignedflagF ∈ {u, f ,n} of f andS
is the corresponding image. To refer to the l-th register of∇-cij wewrite∇-cij(l).
Flag f is important when discussing the relative position of unique flags (u or
f) in the array of∇-cf . In the end of this section and in the beginning of the next
section we are not going to need this distinction but it will become important
when analyzing the final probability expression.

Let us define a simple function acting on elements of arrays∇-cf output by
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Algorithm 4.2 Flag-Assign
input: ∇-c for (M,Z)
output: ∇-cf

1: ∇-cf = ∅
2: ∇̃-c := Prep(∇-c)
3: Set counter l := 1
4: while l ≤ |∇̃-c| = κ+ q do
5: Set counter i := 1 . the number of states with the same value
6: while ∇̃-cl+i(3) = ∇̃-cl(3) do
7: i := i+ 1
8: if i = 1 then

9:

(
S̄ S̄⊕

Ŝ

)
:= ∇̃-cl(1), append

((
S̄ uS̄⊕

uŜ

)
, ∇̃-cl(2), ∇̃-cl(4)

)
to∇-cf .

state with the same value and a flag, indices, image
10: (i′, j′) := ∇̃-cl(2)
11: if i > 1 then

12:

(
S̄ S̄⊕

Ŝ

)
:= ∇̃-cl(1), append

((
S̄ f S̄⊕

f Ŝ

)
, ∇̃-cl(2), ∇̃-cl(4)

)
to∇-cf

13: for j = 1, 2, . . . , i− 1 do

14:

(
S̄ S̄⊕

Ŝ

)
:= ∇̃-cl(1), append

((
S̄ nS̄⊕

nŜ

)
, ∇̃-cl(2), ∇̃-cl(4)

)
to

∇-cf
15: l := l + i

16: Make a 2-dimensional array out of ∇-cf according to the second entry in a
standard left-to-right order ((i, j) ≺l-r (i′, j′) ⇔ (i < i′) ∨ (i = i′ ∧ j < j′)),
delete the second entry of ∇-cf . ∇-cf ij =(state with a flag, image)

17: return ∇-cf

Flag-Assign. Flag : {u, f ,n} × (A2 × C)× (A× C)→ {u, f ,n},

Flag(∇-cf ij) = Flag(
 S̄ij FS̄ij⊕

FŜij

 , S) := F . (4.41)

One can think about this function as a projection to the flag assigned to the
triple. The transition probabilities in Equation (4.40) depend on the flags we
assigned to states in∇-c. We have that

Flag(∇-cf ij) ∈ {u, f}

⇒ P

f((u∨ f )Sij⊕) = S |
∧

(i′,j′)≺(i,j)

(
f(Si′j′⊕) = Si

′

j′+1

) = 1
|A| · |C|

, (4.42)

Flag(∇-cf ij) = n
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⇒ P

f(nSij⊕) = S |
∧

(i′,j′)≺(i,j)

(
f(Si′j′⊕) = Si

′

j′+1

) =

1 if S = ∇-cf ij(2)
0 otherwise

.

(4.43)

4.5.3 Cardinality of∇-C(M,Z)
In this section we evaluate the number of intermediate states that give
(∀i ∈ [q] : Spongef (Mi, `i) = Zi). First we impose the constraint of f being
a function. Then we want to calculate the product of probabilities in
Equation (4.40). It depends on the number of unique states in ∇-c so we
divide the set of possible states into subsets with the same number of states
with the flag u or f . The next steps involve further divisions of∇-C(M,Z).

In the process of calculating the conditional probabilities in Equation (4.40)
we included in each state in ∇-c the image it should have under f . The set
∇-C(M,Z) does however contain states that would violate the constraint of f
being a function—i.e. assign two or more distinct outputs to a single input. The
first step to calculate the cardinality of∇-C(M,Z) is to exclude∇-c that do not
fulfill this requirement. The set of states that should be taken into consideration
is defined below, we denote this set by p-∇-CF(M,Z) (p emphasizes the fact
that f is a proper function).
Definition 4.8 (p-∇-CF(M,Z) ). The set of nabla configurations ∇-c for (M,Z)
with flags and a proper function f is a set of arrays of size specified by (M,Z).
p-∇-CF(M,Z) ⊂ (({u, f ,n} × A2 × C)× (A× C))κ+q, the set is defined in two
steps, first we define the set of∇-cf that are output by Flag-Assign,
∇-CF(M,Z) := {∇-cf : ∃∇-c0 ∈ ∇-C(M,Z),∇-cf = Flag-Assign(∇-c0)} .

(4.44)
We define p-∇-CF(M,Z) by the following constraints on∇-CF(M,Z):

∀Sij ∈ ∇-cf ,∀j > 1 : Sij = ∇-cf ij−1(2). (4.45)

The formal definition reads
p-∇-CF(M,Z) := {∇-cf ∈ ∇-CF(M,Z) : ∇-cf fulfills constraints (4.45)} .

(4.46)
One may think about p-∇-CF(M,Z) as follows, first we consider ∇-c: an

array of states. The collection of all those arrays—with the exception of those
that do not fulfill constraints (4.31)—is denoted by∇-C(M,Z). On each∇-c ∈
∇-C(M,Z) we run the algorithm Flag-Assign, getting a collection of ∇-cf—
denoted by∇-CF(M,Z). Now we discard all those∇-cf that do no fulfill con-
straints (4.45). The collectionwe are left with is denoted by p-∇-CF(M,Z). We
have the following relations between sets:

∇-CF(M,Z)(1)
omitting the flags

' ∇-C(M,Z), (4.47)
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p-∇-CF(M,Z) ⊂ ∇-CF(M,Z) . (4.48)

Each p-∇-cf ∈ p-∇-CF(M,Z) has some number of unique states: with
flag u or f . Let us denote this number by ū. Equation (4.42) implies that no
matter inwhat configurations the unique states are, the product of probabilities
in Equation (4.40) is the same. Hence the first division of p-∇-CF(M,Z) is in
terms of the total number of unique states. We denote the state with a fixed
number ū by p-∇-CF(M,Z, ū), we have that

p-∇-CF(M,Z) =
κ⋃
ū=1

p-∇-CF(M,Z, ū). (4.49)

The product in Equation (4.40) for p-∇-cf ∈ p-∇-CF(M,Z, ū) evaluates to

(q,kq−1)∏
(i,j)=(1,1)

P

(f(Sij⊕) = Sij+1

)
|

∧
(i′,j′)≺(i,j)

(
f(Si′j′⊕) = Si

′

j′+1

) =
(

1
|A| · |C|

)ū
,

(4.50)

where all states p-∇-cf are in p-∇-CF(M,Z, ū).
We have to work a bit more to calculate the total number of states. The num-

ber of possibilities in which a single transition event can be realized depends
both on the input and on the output. For that reason we need to specify the
configuration of flags in more detail, not just by the total number of unique
states. Let us denote a transition event from a unique state to a unique state by(
f((u∨ f )S⊕) = (u∨ f )S

)
and similarly for other flags. The flag of the output is de-

fined by the XORed message symbol or the output symbol. Before we go into
details of the analysis of the structure of p-∇-CF(M,Z), we list the intuitive
principles of counting the output states depending on the input and output
states:

(a)
(
f((u∨ f )S⊕) = (u∨ f )S

)
—the only constraint is that the output cannot be

the same as any on the previous unique states, the number of possible
output values is at most |A| · |C| (in the absorbing phase) or |C| (in the
squeezing phase) and can be smaller by at most κ,

(b)
(
f((u∨ f )S⊕) = nS

)
—the output has to be in the set of outputs of states

with the flag f, the number of possible output values is at most κ,

(c)
(
f(nS⊕) = (u∨ f ∨ n)S

)
—the output is defined by the image memorized in

the second entry of the state, the number of possible output values = 1.

The actual numbers in the above guidelines can be calculated precisely but they
depend on the actual case we deal with.
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To properly treat the transition events we need to keep track of not only
the total number of unique states but also the number of truly unique u
states. We denote the latter by u and the set with those numbers fixed by
p-∇-CF(M,Z, ū, u). In the above paragraph we also noticed that we should
include in our considerations the number of unique states in different phases
of Sponge. The number of states with the flag u in the absorbing phase is
denoted by uabs. Note that we are addressing all q absorbing phases so we take
into account flags of all states with indices (i, j) in {(i′, j′)}i′∈{1,...,q},j′∈{1,...,|Mi′ |}.
The number of states with the flag u in the squeezing phase is denoted
by usqu and we take into account states with indices (i, j) in the set
{(i′, j′)}i′∈{1,...,q},j′∈{|Mi′|+1,...,ki′−1}. Similarly the total number of unique states
is denoted by ūabs and ūsqu.

Next we fix particular placements of flags in the arrays
p-∇-cf ∈ p-∇-CF(M,Z, ūabs, uabs, ūsqu, usqu). We no longer need to keep u and
ū explicit as u = uabs + usqu and ū = ūabs + ūsqu. Let us define a placement P
for (M,Z) as an array of flags F ∈ {u, f ,n} with its dimensions determined by
(M,Z) in the same way as for nabla configurations ∇-c. The set of placements
P(M,Z, ūabs, uabs, ūsqu, usqu) is defined as the set of all placements P encoun-
tered in elements of p-∇-CF(M,Z, ūabs, uabs, ūsqu, usqu). We are going to write
Flag(P i

j ) to determine the flag in the position (i, j) in placement P . For each P
we are able to calculate the size of p-∇-CF(M,Z, P ), we no longer add ūabs and
other parameters as they are already included in P . Before we define the al-
gorithm performing this calculation we need to bound the number of different
placements.

Let us assume for a moment that (M,Z) restrains only the size of p-∇-cf
and not the values of the states. If there were no constraints coming from the
workings of Flag-Assign then unique states would be distributed in all combi-
nations of picking ūabs elements among states in absorbing phases. Addition-
ally, we also want to take into account combinations of uabs elements among the
ūabs flags. Let us recapitulate: first we distribute ūabs flags (without specifying
whether they are u or f) and then assign them concrete values (u or f). The to-
tal number of state-triples in the absorbing phases of p-∇-cf is µ := ∑q

i=1 |Mi| .
The number of possibilities for the first step is

(
µ
ūabs

)
and the second step is(

ūabs
uabs

)
. The total number of possibilities of placing the unique flags in absorb-

ing phases is
(

µ
ūabs

)
·
(
ūabs
uabs

)
.

The problemof distributing unique states in squeezing phases is the same as
in absorbing phases. The total number of state-triples with flags in the squeez-
ing phases of p-∇-cf is ζ := ∑q

i=1(|Zi| − 1). The number of placements is
(

ζ
ūsqu

)
.

We also need to multiply this result by the number of placements of states with
flag u among all unique states.

The two calculations above bring us to the conclusion that our analysis is
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sufficiently detailed; we have identified and taken into account all parts of
(∀i ∈ [q] : Spongef (Mi, `i) = Zi) that depend on |C|. In summary we divided
p-∇-CF(M,Z) into a small (relatively to |C|) number of subsets whose size
we can actually calculate. The last result assures that even though we do not
formally describe the structure of the last level of division of p-∇-CF(M,Z),
the number of possibilities of next divisions does not depend on |C|. So we
have that∣∣∣P(M,Z, ūabs, uabs, ūsqu, usqu)

∣∣∣ ≤ ( µ

ūabs

)(
ūabs
uabs

)
·
(

ζ

ūsqu

)(
ūsqu
usqu

)
(4.51)

≤
(
µ

µ/2

)2 (
ζ

ζ/2

)2

≤
(
κ

κ/2

)4

≤ κ4κ. (4.52)

Our assumption is that κ is fixed so the number of placements is independent
of |C|. Note that we can compute

∣∣∣P(M,Z, ūabs, uabs, ūsqu, usqu)
∣∣∣ for fixed param-

eters and the above inequality just shows that irrespective of the exact value of
the calculation the number of placements does not depend on |C| and is rela-
tively small.

Let us define a function that helps us accommodate for the fact that some
subsets of p-∇-CF(M,Z) are empty for some specific (M,Z):

δ(M,Z, P ) :=

1 if p-∇-CF(M,Z, P ) 6= ∅
0 otherwise

. (4.53)

In what follows we leave out the input to δ, as it can be inferred from context.
For example δ evaluates to 0 if the input includes ūabs = µ and the first block of
the input messages is not always different.

The last division we make is done be characterizing uniqueness of outer
and inner parts of states. This step is done to get the precise and correct result,
but the high-level explanation and an approximation of the output of Calc is
already captured by principle (a). We have not captured this situation in detail
in our example proof because it becomes important only if longer outputs are
present. Here we explain the procedure of including the necessary details.

The main detail we add is assigning flags to outer and inner parts of states
individually. We introduce those flags only now to keep the proof as clear as
possible; technically to include the additional flags we modify the algorithm
Flag-Assign in such a way that it runs over a configuration∇-c two additional
times but acting solely on outer states and inner states. Those two additional
runs assign the same flags as the original one but corresponding to just one of
the parts of S⊕ states. The rest of the discussion after applying Flag-Assign is
unchanged and depends only on flags of the full states.

When discussing placements, note that a unique state (u or f) can consist of
a unique outer state and a unique inner state but also of a non-unique outer state
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and a unique inner state or vice versa. After we assign a particular placement
P ∈ P(M,Z, ūabs, uabs, ūsqu, usqu) there are still many possibilities of arranging
outer and inner states flags. There are exactly three possibilities every unique

state can be arranged in:
(
u ∨ f
u ∨ f

)
,
(
u ∨ f
n

)
, and

(
n

u ∨ f

)
, where we sym-

bolize a state S⊕ by a column vector with flags assigned to its outer state in the
first row and inner state in the second row. Hence, for every placement P we
have 3ūabs+ūsqu placements of the outer and inner states flags. We are going to
mark the fact that we have included those additional details into placements
by adding a star to the set of placements P ∈ P∗(M,Z, ūabs, uabs, ūsqu, usqu). We
have that ∣∣∣P∗(M,Z, ūabs, uabs, ūsqu, usqu)

∣∣∣ ≤ κ4κ · 3ūabs+ūsqu . (4.54)

We also write Flag(P̄ i
j ) and Flag(P̂ i

j ) to access the flag of the outer and inner
part of P i

j respectively.
Algorithm 4.3 below shows the algorithm Calc that outputs the number of

differentp-∇-cf ∈ p-∇-CF(M,Z, ūabs, uabs, ūsqu, usqu) for some given placement
P ∈ P∗(M,Z, ūabs, uabs, ūsqu, usqu). To capture the fact that the number of pos-
sible values a unique state can have depends on the number of unique states
with already assigned values we define the following sets. For unique outer
states we have

ūprev(P, i, j) :=
∣∣∣{P i′

j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̄ i′

j′ ) ∈ {u, f}
}∣∣∣ , (4.55)

ū f
prev(P, i, j) :=

∣∣∣{P i′

j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̄ i′

j′ ) = f
}∣∣∣ . (4.56)

For unique inner states we have

ûprev(P, i, j) :=
∣∣∣{P i′

j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̂ i′

j′ ) ∈ {u, f}
}∣∣∣ , (4.57)

û f
prev(P, i, j) :=

∣∣∣{P i′

j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̂ i′

j′ ) = f
}∣∣∣ . (4.58)

Note that all of the above quantities (4.55, 4.56, 4.57, 4.58) are bounded by

1 ≤ ūprev(P, i, j), ûprev(P, i, j), ū f
prev(P, i, j), û f

prev(P, i, j) ≤ ūabs + ūsqu ≤ κ.

(4.59)

In the algorithmwe also useN-Possibilitieswhich is the number of possibilities
in which one can assign values to non-unique states in a nabla configuration.
N-Possibilities is bounded by κκ, in the discussion proceeding Equation (4.64)
we present its detailed derivation:

Let us consider the problem of assigning values to the non-unique states
given some placement P . Let us denote the number of non-unique flags n by n
and the number of "first" non-unique states with flags f by f . We are going to
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Algorithm 4.3 Calc
input: P ∈ P∗(M,Z, ūabs, uabs, ūsqu, usqu)
output: α ∈ N, cardinality of the set p-∇-CF(M,Z, P )

1: α := 1
2: for j = 1, . . . , ki − 2, i = 1, . . . , q do
3: if j < |Mi| and Flag(P i

j ) ∈ {u, f} then . Absorbing phases
4: if Flag(P i

j+1) ∈ {u, f} then
5: if Flag(P̄ i

j+1) ∈ {u, f} and Flag(P̂ i
j+1) ∈ {u, f} then

6: α = α ·
(
|A| − ūprev(P, i, j + 1)

)
·
(
|C| − ûprev(P, i, j + 1)

)
7: if Flag(P̄ i

j+1) ∈ {u, f} and Flag(P̂ i
j+1) = n then

8: α = α ·
(
|A| − ūprev(P, i, j + 1)

)
· û f

prev(P, i, j + 1)
9: if Flag(P̄ i

j+1) = n and Flag(P̂ i
j+1) ∈ {u, f} then

10: α = α · ū f
prev(P, i, j + 1) ·

(
|C| − ûprev(P, i, j + 1)

)
11: if j ≥ |Mi| and Flag(P i

j ) ∈ {u, f} then . Squeezing phases
12: if Flag(P i

j+1) ∈ {u, f} then
13: if Flag(P̂ i

j+1) ∈ {u, f} then
14: α = α ·

(
|C| − ûprev(P, i, j + 1)

)
15: if Flag(P̂ i

j+1) = n then
16: α = α · û f

prev(P, i, j + 1)
17: for i = 1, . . . , q, j = ki − 1 do
18: if Flag(P i

j ) ∈ {u, f} then
19: α = α · |C| · |A||Z

i|

20: α = α ·N-Possibilities(κ− ūabs − ūsqu, ūabs + ūsqu − uabs − usqu, P )
21: return α · δ(M,Z, P )
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analyze the combinatorial problem of assigning n objects to f classes in a way
that each class is assigned at least one object. Objects in a single class are in-
distinguishable but are distinguishable between different classes. For example
three objects that we divide among two classes putting one object in the first
class and two in the second can be assigned in three ways: we put into the first
class the first object or the second object or the third. The objects are indistin-
guishable andwe only count once the situation when the two objects that are in
class two can be in one order or another. The number of permutations in such
a problem in the general case of n objects and f classes is given by

π (n;n1, n2, . . . , nf ) =
(

n!
n1!n2! · · ·nf !

)
. (4.60)

Note that the above formula requires that we specify the occupation of classes.
These occupation numbers are not fixed by the placement P so we also need to
analyze these occupation numbers. The occupations of the classes are defined
by the possible distribution of objects among different classes. Let us define the
set of possible distributions:

D(n, f) :=
{

(n1, n2, . . . , nf ) ∈ Nf : ∀i ∈ [f ], ni ≥ 1, n1 + n2 + · · ·+ nf = n
}
.

(4.61)
There is one more detail we need to add to properly count all possible as-

signments of non-unique states; repeated values of each different f appear in
P only after the initial unique state. Let us denote by Πclass-ind(n;n1, n2, . . . , nf )
the set of permutations with classes of indistinguishable objects, enumerated
by π (n;n1, n2, . . . , nf ). We need to implement the requirement coming from
the nature of working of Flag-Assign. The set of permutations after including
this constraint is

Π (P, n;n1, n2, . . . , nf ) := {π ∈ Πclass-ind(n;n1, n2, . . . , nf ) |
there are no objects in class i prior to the i-th state according to P} . (4.62)

Eventually we count the number of possible assignments of values of non-
unique states:

N-Possibilities(n, f, P ) :=
∑

(n1,n2,...,nf )∈D(n,f)
|Π (P, n;n1, n2, . . . , nf )| . (4.63)

The most crucial observation of this subsection is that the number of possible
assignments does not depend on |C| and

N-Possibilities(n, f, P ) ≤ fn. (4.64)

The above is a trivial bound found by ignoring all structure and only counting
the total number of possibilities to put one of f values in every of the n places.

Thanks to the additional details we get the precise form of the expression p.
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4.5.4 Final expression
In the previous subsections we formalized algorithms that help us analyze the
expression in Equation (4.40). First we introduced Flag-Assign that analyzes
∇-c from the perspective of having the same input to f multiple times. Thenwe
definedCalc that counts the arrays of states that fulfill a given set of constraints,
the number and arrangement of unique states. The final part of the proof of
Lemma 4.3 is to use those algorithms to show that p(|C|−1) is of the claimed
form. We start by formally writing down the expression in terms of divisions
of p-∇-CF(M,Z) we introduced and the outputs of Calc. Next we identify
crucial elements of the sum that lead to the claim of the lemma, showing the
maximal degree of |C|−1 in the expression p(λ).

In the previous sections we showed that

p(|C|−1) =
∑

∇-c∈∇-C(M,Z)

(q,kq−1)∏
(i,j)=(1,1)

P

(f(Sij⊕) = Sij+1

) ∣∣∣∣∣∣
∧

(i′,j′)≺(i,j)

(
f(Si′j′⊕) = Si

′

j′+1

) (4.65)

=
∑

p-∇-cf∈p-∇-CF(M,Z)︸ ︷︷ ︸
Equation (4.67),(4.68)

(q,kq−1)∏
(i,j)=(1,1)

P

(f(Sij⊕) = Sij+1

) ∣∣∣∣∣∣
∧

(i′,j′)≺(i,j)

(
f(Si′j′⊕) = Si

′

j′+1

)
︸ ︷︷ ︸

Equation (4.50)

, (4.66)

where the second equality comes from the fact that constraints (4.45)
exclude those ∇-c that have probability 0. Let us also make the division of
p-∇-CF(M,Z) explicit

p-∇-CF(M,Z) =
µ⋃

ūabs=1

µ⋃
uabs=0

ζ⋃
ūsqu=0

ζ⋃
usqu=0

⋃
P∈P∗(M,Z,ūabs,uabs,ūsqu,usqu)

p-∇-CF(M,Z, P ). (4.67)

Next we use Equation (4.50) and the fact that for
P ∈ P(M,Z, ūabs, uabs, ūsqu, usqu) we have

|p-∇-CF(M,Z, P )| = Calc(P ) (4.68)

to expand p(|C|−1) to

p(|C|−1) =
∑

ūabs,uabs,ūsqu,usqu,P

Calc(P )
(

1
|A| · |C|

)ūabs+ūsqu
. (4.69)
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To calculate a0 and the maximal degree of p let us focus on p(|C|−1) for all
unique (with the flag u in both outer and inner part) sates:

q∏
i=1

|Mi|−1∏
j=1

(|A| − jq − i) (|C| − jq − i)

q∏
i=1

ki−2∏
j=|Mi|

(|C| − jq − i)
q∏
i=1

(
|A||Z

i| |C|
)

(|A| · |C|)−κ . (4.70)

In the above expression if we take all messages of maximal length m and out-
puts of maximal length z we get a polynomial of degree κ− q = q(m + z − 2).
This is necessarily the maximal degree as every evaluation of f increases the
degree by one, except for the last but this cannot be changed, the last column
does not matter at all for the overall probability. Hence the maximal degree of
p is as claimed

η := q(m+ z − 2). (4.71)

In the case all states are unique, i.e. |C| → ∞, p(|C|−1) evaluates to∼ |A|−
∑

i
`i—

wherewe used the fact that |Zi| = `i. This expression corresponds to the output
probability of a random oracle, exactly how expected of a sponge with all dif-
ferent inner states. If we only take the terms |A| · |C| and |C| and the probability
we arrive at |A|−

∑
i
`i . This result is only one of the terms in a0 but note that all

other termswill correspond to different placements andwill include δ(M,Z, P )
with different inputs, being non-zero for different (M,Z). Hence for any given
input-output pairs (M,Z) for |C| → ∞ the probability function approaches the
probability of a random oracle outputting Z on M.

In our proof we have focused on the case of f being a random transforma-
tion. In Section 4.6 we provide the details that should be considered to show
that Theorem 4.2 holds also for random permutations.

4.6 Internal Permutations
In this section we prove the main result for the internal function f being
a random permutation. We use Zhandry’s PRF/PRP switching lemma
from [Zha15a]. In subSection 4.6.1 we also give a direct proof, resulting in a
slightly worse bound.
Theorem 4.9. Spongef [pad,A, C] for a random permutation f is quantumly indistin-
guishable from a random oracle. More concretely, for all quantum algorithmsAmaking
at most q quantum queries to Sponge, such that the padded input length is at most m
and the output length is at most z,∣∣∣∣∣∣ P

f $←Iper(S)

[
b = 1 : b← A|Spongef 〉

]
− P

h←R

[
b = 1 : b← A|h〉

]∣∣∣∣∣∣ < π2

3 η
3|C|−1, (4.72)
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where the set of permutations is denoted by Iper(S) := {f : S → S | f is a bijection}.
The domain is defined as S = A × C for a finite A in an Abelian group (A,⊕) and a
non-empty finite set C.
Proof. It was proven in [Zha15a] that a random permutation can be distin-
guished from a random function with probability at most π2q2/6|C| for any ad-
versarymaking atmost q quantumqueries. We canuse this result in a reduction
from distinguishing Sponge using a random permutation from Sponge using a
random function to distinguishing of a random permutation from a random
function. Using this result together with Theorem 4.2 gives us the resulting
bound as follows∣∣∣∣∣∣ P

f $←Iper(S)

[
b = 1 : b← A|Spongef 〉

]
− P

h←R

[
b = 1 : b← A|h〉

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣ P
f $←Iper(S)

[
b = 1 : b← A|Spongef 〉

]
− P

f $←SS

[
b = 1 : b← A|Spongef 〉

]∣∣∣∣∣∣
+
∣∣∣∣∣ P
f $←SS

[
b = 1 : b← A|Spongef 〉

]
− P

h←R

[
b = 1 : b← A|h〉

]∣∣∣∣∣ (4.73)

≤

∣∣∣∣∣∣ P
f $←Iper(S)

[
b = 1 : b← B|f〉

]
− P

f $←SS

[
b = 1 : b← B|f〉

]∣∣∣∣∣∣+ π2

6 η
3|C|−1 (4.74)

≤ π2

3 η
3|C|−1. (4.75)

4.6.1 Direct proof of indistinguishability with permutations
Here we prove Theorem 4.9 by direct application of Theorem 2.21 instead of
relying on the PRF/PRP switching lemma. For this proof we need to generalize
the average-case polynomial method. We show how to use it if the probability
of a certain input-output behavior is not a polynomial but is close to a poly-
nomial. This small generalization might prove useful in other applications of
the polynomial method. The following is a restatement of Theorem 4.9, with a
slightly worse bound.
Theorem 4.10. Spongef for a random permutation f is quantumly indistinguishable
from a random oracle. More concretely, for all quantum algorithms A making at most
q quantum queries to Sponge, such that the input length is at mostm · r bits long and
the output length is at most z · r bits long,∣∣∣∣∣∣ P

f $←Iper(S)

[
b = 1 : b← A|Spongef 〉

]
− P

h←R

[
b = 1 : b← A|h〉

]∣∣∣∣∣∣ < π2

6 (2η)3(|C| − 1)−1,

(4.76)
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where η := 2q(m + z − 2), R is defined according to Definition 2.13, and the set of
permutations is denoted by Iper(S) := {f : S → S | f is a bijection}. The domain is
defined as S = A×C for a finiteA in an Abelian group (A,⊕) and a non-empty finite
set C.
Proof sketch. The proof follows the same reasoning as the proof of Theorem 4.2
with small differences explained in the following. We define the family of dis-
tributions Ft with random permutations f from Iper(S). When we get to Equa-
tion (4.8) though, we need an argument different from Lemma 4.3 because it
does not hold for permutations in Sponge. We perform the same analysis of the
probability function as in the proof of Lemma 4.3. Only the final argument is
missing as we cannot use Theorem 2.21: P [∀i ∈ [2q] : Spongef (Mi, `i) = Zi] is
not a polynomial in |C|−1 if f is a permutation. Instead we formulate a gen-
eralization of Theorem 2.21 in Lemma 4.12 below that leads to the claimed
bound.

Let us now highlight the differences we encounter when analyzing the case
of permutations when following the reasoning of the proof of Lemma 4.3. The
first and main difference is that the expression for the probability of a single
evaluation of f (equations (4.42)) changes to:

Flag(∇-cf ij) ∈ {u, f}

⇒ P

f((u∨ f )Sij⊕) = S |
∧

(i′,j′)≺(i,j)

(
f(Si′j′⊕) = Si

′

j′+1

) = 1
|A| · |C| − uprev(i, j)

,

(4.77)
Flag(∇-cf ij) = n

⇒ P

f(nSij⊕) = S |
∧

(i′,j′)≺(i,j)

(
f(Si′j′⊕) = Si

′

j′+1

) =

1 if S = ∇-cf ij(2)
0 otherwise

,

(4.78)

where

uprev(i, j) :=
∣∣∣{P i′

j′ : (i′, j′) ≺ (i, j) ∧ Flag(P i′

j′ ) ∈ {u, f}
}∣∣∣ (4.79)

is the number of unique states preceding the position (i, j). Note that we as-
sume we have done all steps leading to Equation (4.42).

The product in Equation (4.40) for p-∇-cf ∈ p-∇-CF(M,Z, ū) and for f
being a random permutation evaluates not to Equation (4.50), but instead to

(q,kq−1)∏
(i,j)=(1,1)

P

(f(Sij⊕) = Sij+1

)
|

∧
(i′,j′)≺(i,j)

(
f(Si′j′⊕) = Si

′

j′+1

) =
ū−1∏
i=0

1
|A| · |C| − i

.

(4.80)
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Algorithm 4.3 also changes when we consider random permutations. We
need to shrink the set of possible states in the last column to

(
|C| − uprev(P, i, ki)

)
(line 19 in Calc) and modify the number of possible assignments of values of
non-unique states (line 20 in Calc). The rest is exactly the same, we will refer
to the modified algorithm as CalcPer.

In the case of permutations we need to add one constraint toN-Possibilities

Πper (P, n;n1, n2, . . . , nf ) := {π ∈ Πclass-ind(n;n1, n2, . . . , nf ) |
there are no objects in class i prior to the i-th state according to P ∧
non-unique n outputs of unique states (u ∨ f) have different values}.

(4.81)

Eventually we count the number of possible assignments of values of non-
unique states:

N-PossibilitiesPer(n, f, P ) :=
∑

(n1,n2,...,nf )∈D(n,f)

∣∣∣Πper (P, n;n1, n2, . . . , nf )
∣∣∣ .
(4.82)

Up to this point we have shown how to deal with combinatorial problems
emerging from changing the internal function to a permutation. The main
problem is different though; for random permutations the expression we de-
rive in the last step of the proof in Section 4.5.4 is not an expression in 1/|C|.
The expression we end up with is similar to Equation (4.69), but the probabil-
ity comes from Equation (4.80):

p(|C|−1) =
∑

ūabs,uabs,ūsqu,usqu,P

CalcPer(P )
ū−1∏
i=0

1
|A| · |C| − i

. (4.83)

Unfortunately the above expression does not fit into the assumptions of The-
orem 4.11 below which is the basis of the polynomial method allowing us to
bound the adversary’s advantage.

Theorem 4.11 (Theorem B.1. in [Zha12] for ∆ = 1). Let p(λ) be a polynomial
in λ of degree d such that 0 ≤ p(0) ≤ 1, and 0 ≤ p(1/t) ≤ 1 for all t ∈ Z+ Then
|p(1/t)− p(0)| < π2d3

6t for all t ∈ Z+.

To deal with this problem we state a lemma relaxing a bit the requirements
of Theorem 2.20.

Lemma 4.12. For every 2q pairs ∀i ∈ [2q] : (X i, Y i) ∈ X × Y we define a function
gj(1/t) := P

h←Ft
[∀i ∈ [2q] : h(X i) = Y i], where j is the index enumerating different

pairs. Assume that there exists a ∈ N and for every j there exist polynomials p′j,p′′j ,
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such that for every j and every t ∈ N with t > a, gj(1/t) is bounded from below and
above by polynomials p′j,p′′j respectively:

p′j
( 1
t− a

)
≤ gj

(1
t

)
≤ p′′j

( 1
t− a

)
, (4.84)

such that p′j(0) = p′′j (0) = gj(0) and the degrees of the polynomials are d′ and d′′
respectively. Moreover 0 ≤ p′j

(
1
t−a

)
and p′′j

(
1
t−a

)
≤ 1 for all t ∈ N with t > a. Then

∣∣∣∣ P
h←Ft

[
b = 1 : b← A|h〉

]
− P

h←F∞

[
b = 1 : b← A|h〉

]∣∣∣∣ < π2(max{d′, d′′})3

6(t− a) . (4.85)

Proof. Here we follow the proof of Theorem 7.3 in [Zha12] to make sure all
assumptions are fulfilled to state that closeness of polynomials implies small
adversarial advantage. Let us say that P

h←Ft

[
A|h〉() = 1

]
− P

h←F∞

[
A|h〉() = 1

]
= ε,

w.l.o.g. we can assume that ε > 0. Also without loss of generality, using the
fact that P

h←Ft

[
A|h〉() = 1

]
is a linear combination of P

h←Ft
[∀i ∈ [2q] : h(X i) =

Y i] = gj(1/t) we can assume that all the coefficients in this combination are
real. Therefore, we have

ε =
∑
j

αj(gj(1/t)− gj(0)) ≤
∑
j

αj(p̃j
( 1
t− a

)
− gj(0)), (4.86)

where p̃j =

p′j if αj < 0
p′′j if αj ≥ 0

. Note that p̃( 1
t−a) := ∑

j αjp̃j
(

1
t−a

)
is a polynomial

of degree at most max{d′, d′′}. If we set t′ := t − a, it is straightforward to
verify that p̃ fulfills the assumptions of Theorem 4.11 above for all t′ ∈ Z+. As
gj,p′j,p′′j , p̃ all take on the same value for t → ∞, we obtain that p̃(0) = gj(0),
and hence the claim follows.

Now we just need to show that P[∀i ∈ [2q] : Spongef (Mi, `i) = Zi] is
bounded by polynomials and find their degree. We are going to show that
there are p′,p′′ (indexed with j in the statement of the lemma) that are
polynomials and that fulfill the assumptions of Lemma 4.12 for a = 1. For
each set of pairs of inputs and outputs we consider g to be a sum like in
Equation (4.83). To do that we need to distinguish between placements P that
involve at least two consecutive unique states and those that do not.

Let us deal with the case of P with at least two consecutive unique states
first. We can bound the probability part of Equation (4.83) as follows:

ū−1∏
i=1

1
|A| · |C| − i

≤
ū−1∏
i=1

1
|A| · |C| − (κ− 1) =

 1
|A|
· 1
|C| − κ−1

|A|

ū−1

(4.87)
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≤ 1
|A|ū−1

(
1

|C| − 1

)ū−1

, (4.88)

ū−1∏
i=1

1
|A| · |C| − i

≥
ū−1∏
i=1

1
|A| · |C|

(4.89)

≥ 1
|A|ū−1

(
1− 1
|C| − 1

)ū−1 ( 1
|C| − 1

)ū−1

. (4.90)

Note that we have skipped the first term in the product that is supposed to
range from 0 to ū− 1. We have done it because in Equation (4.83) the fraction
is multiplied by CalcPer and 1/ |C| simplifies. More concretely, the first term
that is output by CalcPer necessarily involves |C| (not |C| − 1). Thanks to how
we divide the product the final expression is a polynomial in 1

|C|−1 .
In the latter case, no consecutive pairs of unique states, we bound every

element (from i = 0 to ū− 1) of the product like in the above inequalities.
As forCalcPerwe just treat |C|−1 as the newvariable. Note that nowp′j and

p′′j are polynomials in (|C| − 1)−1. Polynomials p′′j are defined as gj (so Equa-
tion (4.83) for a specific input-output pair) with with ∏ū−1

i=1
1

|A|·|C|−i swapped to
1

|A|ū−1

(
1
|C|−1

)ū−1
from Equation (4.88)—with the exception of P with no consec-

utive pairs of unique states. Polynomials p′j are defined similarly to p′′j but with
Equation (4.90) being the exchange for the probability term in Equation (4.83).

Polynomial p′′ has the same degree as the the polynomial corresponding to
g in the proof for functions, i.e. following the derivation of Equation (4.71) it
equals d′′ = η = 2q(m+ z− 2). From the above lower bound in Equation (4.90)
however, we get that d′ = 2d′′.

The last assumption we need to check is for p′,p′′ to be bounded by 0 and
1 for |C| > 1. Note that it is enough to show that p′ ≥ 0 and p′′ ≤ 1. We
already know that p′ and p′′ bound g. For the lower bound p′ ≥ 0 comes
from the fact that all coefficients are positive (they equal CalcPer(P )) and so
is
(
1− 1

|C|−1

)
1
|C|−1 for |C| > 1. For the upper bound of g we need to check that

p′′ ≤ 1. Following the algorithm Algorithm 4.3 we can see that CalcPer(P ) is
bounded by |A|ū−q |C|(|C| − 1)ū−1, so as long as the number of terms in Equa-
tion (4.83) is smaller than |A|q—which is our implicit assumption—then p′′ ≤
1.

The above discussion, together with Lemma 4.12 proves Theorem 4.10.
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In this chapter, we analyze joint probability distributions that come from
outcomes of sequences of quantum measurements performed on sets of quan-
tum states. First, we identify some properties of these distributions that need
to be fulfilled to get a classical behavior. Secondly, we prove that a joint dis-
tribution exists if and only if measurement operators “on-state” permute (per-
mutability is the commutativity of more than two operators). By “on-state” we
mean properties of operators that hold only on a subset of states in the Hilbert
space. Then, we disprove a conjecture proposed by Carstens, Ebrahimi, Tabia,
and Unruh [Car+18], which states that the property of partial on-state permu-
tation implies full on-state permutation. We disprove this conjecture by find-
ing a counterexamplewhere pairwise “on-state” commutativity does not imply
on state permutability, unlike in the case of commutativity for all states in the
Hilbert space.

Finally, we explore the new concept of on-state commutativity by showing
a simple proof that if two projections almost commute on state, then there is
a commuting pair of operators that are (on state) close to the originals. This
result was originally proven by Hastings [Has09] for general operators.

5.1 Introduction
In this chapterwe propose a basic formalism for studying classical distributions
that come from sequences of measurements on quantum states.

Our initial motivation comes from studying a conjecture proposed in a re-
cent paper by Carstens, Ebrahimi, Tabia and Unruh [Car+18]. Their result on
quantum indifferentiability relies on a conjecture proposed by them, which in-
formally states that commutation of projectors with respect to a fixed quantum
state implies a classical joint distribution of theirmeasurement outcomes. More
concretely, they conjecture the following for some t (a parameter of the state-
ment).1

Conjecture 5.1 (Informal). If we have a set of N binary projective measurements
{Pi,1−Pi}i∈{1,...,N} such that for any t of the projectors (or their complements 1−P)
we have Pi1 · · ·Pit |ψ〉 = Pσ(i1) · · ·Pσ(it)|ψ〉 for any permutation σ of the t-element set
then there exist random variables X1, . . . , XN with a joint distribution D such that
∀i1, . . . , it, the marginals of this distribution onXi1 , . . . , Xit correspond to measuring
|ψ〉 with measurements with indexes i1, . . . , it.

Motivated by this conjecture, our goal is to study the behavior ofN random
variablesX1, X2, . . . , XN corresponding to the outcomes of a sequence of quan-
tum measurements that commute (we say “commute” but technically mean

1See Conjecture 5.18 for the formal statement.
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“permute” whenever we talk about more that two operators) on a set of quan-
tum states F ⊆ D(H). Surprisingly, such results have only been studied for
F = D(H), i.e. measurements commuting on all quantum states.

The focal point of this chapter is to study which are the necessary and suf-
ficient properties of the quantum setup, so that such a joint probability distri-
bution is well-defined. With this in hand, we then have two applications. First,
we disprove Conjecture 5.1. Secondly, we show a simpler proof for a variant of
the result by Hastings [Has09] on operators that almost-commute on specific
states.

To be able to explain our contributions inmore details, wewill first startwith
a detour to very basic properties of probability distributions that arise from
classical processes. Then, we discuss how these properties could be defined in
the quantum setting (but, unfortunately, they do not hold for general quantum
setups), and finally we state our results and discuss related works.

5.1.1 Distributions of Classical Experiments
We discuss here properties of probability distributions that may be obvious at
first but are crucial and not trivial in the quantum world.

In the following, we let A,B,C be events that come from a classical experi-
ment2. We denote the event corresponding toA not happening asA, the proba-
bility that A and B both happen as P[A,B], and the probability that A happens
conditioned on the fact that event B happens as P[A|B] = P[A,B]

P[B] (assuming
P[B] 6= 0).

The first property that we want to recall about classical distributions is that
we can compute the marginal distribution when given the joint distribution:
Property 5.2 (Classical Marginals). P[A | C] = P[A,B | C] + P[A,B | C].

A second property that we want to recall is that the probability that A and
A occur is 0, even when considering other events:

Property 5.3 (Classical Disjointness). P[A,B | Ā]P[A] = P[A,B,A] = 0.
Another property that we have classically is reducibility, which says that the

probability of events A and A both happening is the same as the probability of
A.

Property 5.4 (Classical Reducibility). P[A,B | A]P[A] = P[A,B,A] = P[A,B].
Finally, the last property we study is sequential independence of events.

Roughly, this property just says that the probability that event A happens and
that event B happens is the same as the probability that event B happens and
that event A happens. Namely that P[A,B] = P[B,A].

2Formally, a probability space (Ω,P)
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Property 5.5 (Classical Sequential Independence). P[A | B]P[B] = P[A,B] =
P[B | A]P[A].

We stress that these properties hold trivially for all classical distributions
and all events such that P[A] 6= 0, P[A] 6= 0, P[B] 6= 0, and P[C] 6= 0.

5.1.2 Distributions of Quantum Experiments and their Prop-
erties

Our goal is to find necessary conditions for the existence of a classical
description of the experiment where we perform a sequence of N
general measurements, irrespective of the order. At this point we
consider measurements and observables with an arbitrary number of
outcomes. More concretely, we aim to find the properties of measurements
M1, . . . ,MN—defined as Mi = {Exi }x∈Xi for every i ∈ {1, . . . , N}—on
specific subsets of quantum states F so that there exists a joint distribution of
random variables X1, X2, . . . , XN such that all marginals of this distribution
on Xi1 , . . . , Xit correspond to measuring a state |ψ〉 ∈ F with measurements
Ei1 , . . . ,Eit .

The main obstacle in this task is the fact that quantum measurements do
not necessarily commute, unlike in the classical world: the chosen order for
performing the measurements influences the final probability distribution of
the joint measurement outcomes. Because of that, we will consider the quan-
tum analog of Properties 5.2 to 5.5, and study when such properties hold in the
quantum case, and their implication for having such a joint distribution. Our
connections closely follow [ME84], where they show that the existence of a joint
distribution for two arbitrary quantum observables (Hermitian operators) on
every quantum state is equivalent to their commutation. In this chapter, we
show how to extend their analysis in two ways: we are interested in multiple
general measurements3 and we consider specific sets of quantum states. In or-
der to carry out this analysis, we extend the properties described in Section 5.1.1
to quantummeasurements and study their relations to each other. We leave the
formal definitions of the quantum analogs of these classical properties to Sec-
tion 5.2.1.

5.1.3 Our Results
Using the formalism described in the previous section, we prove the following
connections between joint quantum distributions and the measurement opera-
tors.

3Observables can measured with a projective measurement, a subclass of the most general
quantum measurements.
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First, we show that in the on-state case, we have that there is a joint distri-
bution if and only if all operators permute on the state. This result is a gener-
alization of the classic results from [Nel67; Fin73; Fin82; ME84] to the on-state
case.
Result 5.6 (Informal statement of Theorem 5.17). Fix a set of quantum states F .
A set of measurements yield a joint distribution on each state in F if and only if these
operators permute on every state in F .

Then, we show that pairwise on-state commutation does not imply full on-
state permutation, unlike in the case of permutation on all states. This fact—
that we prove via a numerical counterexample—together with Result 5.6 im-
plies that Conjecture 5.1 is false.
Result 5.7 (Informal statement of Theorem 5.19). Conjecture 5.1 is false.

Finally, our last result is a simpler proof for a restricted version of Theorem 1
in [Has09], which states that if two operators A and B almost-commute, we can
find commuting operators4 A′ and B′ that are close to A and B, respectively.
In our case, we consider on-state commutation instead of the regular one, and
unlike in [Has09], our proof works only for projectors.
Result 5.8 (Making almost commuting projectors commute). Given any two pro-
jectors P1 and P2 and a state |ψ〉 we have that if ‖(P1P2 − P2P1)|ψ〉‖ = ε then there is
a projector P′2 that is close to the original projector on the state ‖(P′2 − P2)|ψ〉‖ ≤

√
2ε

and [P1,P′2] = 0.

5.1.4 Related Work
A prominent result in the literature is that a joint distribution for a set of mea-
surements exists if and only if all the operators pairwise commute. Different
versions of this result were previously proven: In [Nel67] the author consid-
ers the case of continuous variables and N observables. A similar result but
without specifying the Hilbert space is achieved with different mathematical
tools in [Fin82]. In the specific case where we have only two observables, we
mention threeworks; In [Fin73] and [ME84] the authors prove the classic prob-
lem in a similar way, but using different mathematical tools. All but the first
work mentioned here focus on the joint distribution as a functional from the
space of states. An approach using ∗-algebras was presented by Hans Maassen
in [Maa06; Maa10].

The authors of [GN02] analyze the case of general measurements but prove
that the measurement operators pairwise commute if and only if the square-
root operators permute (Corollaries 3 and 6 in [GN02]), in the sense of our Def-
inition 5.15 (for all states inH). In general the problem of conditional probabil-
ities in QuantumMechanics was discussed by Cassinelli and Zanghi in [CZ83].

4Operators A and B commute if [A,B] := (AB− BA) = 0.
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The related problems of incompatible device measurement and joint mea-
surability of quantum effects are covered in [HMZ16] and [BN18b] respec-
tively.

In [Lin97; FR96] the authors prove that for any two Hermitian matrices if
their commutator has small norm, then there are operators close to the originals
that fully commute. In [Has09] Hastings proves how close the new operators
are in terms of the norm of the commutator.

Organization
In Section 5.2, we discuss distributions of quantum experiments and their prop-
erties, in Section 5.3, we discuss the almost-commuting case.

5.2 Distributions of Quantum Experiments
In this section, we study the description of the statistics of outcomes derived
from a sequence of measurements. Our approach is to consider the quantum
version of the classical properties described in Section 5.1.1. Since quantum
measurements do not commute in general, these quantum properties do not
always hold. We then study the connection between properties of the mea-
surements and the properties of their outcome distribution.

The structure of our proofs follows [ME84], where they show that for two
Hermitian observables there is a joint distribution for the outcomes of their joint
measurement if and only if they commute. We stress that the result in [ME84]
only works for measurements that commute on every quantum state and our
result extends it to the case of joint distributions defined for a limited set of
states.

In the following, we denote POVM elements with Q and their square-roots
with R. In Section 5.2.1, we define the quantum analogues of the classical prop-
erties of distributions defined in Section 5.1.1. We define a functional W (spec-
ified in the next section) as themain object of our discussion to justify the prop-
erties we impose on joint distributions and highlight our goal to define a clas-
sical distribution. Mathematically, the crucial objects of the next section are
the operators Q. Then, in Section 5.2.2, we state and prove the main result of
this section, where we show a connection between existence of a distribution
and permutability—a generalization of commutativity—of the corresponding
measurement operators.

5.2.1 Properties of Distributions of Quantum Experiments
Let N be a positive integer, let X1, . . . ,XN be arbitrary finite non-empty sets,
and letH be a Hilbert space. ByD�0(H) we denote the set of positive operators
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on H. Then, for every POVM QN on H with POVM elements Q~x
N indexed by

~x ∈ X1×· · ·×XN we associate the functional WQN
N : D�0(H)×(X1×· · ·×XN)→

[0, 1], where we may omit the superscript QN when the POVM is clear from
the context. The subscript N := {1, . . . , N} of W denotes the set of random
variables that we talk about. Moreover, for every i Xi is the set of outcomes of
a random variable Xi. We define this functional5 as

WQN ,ρ
N (~x) := Tr

(
Q~x
Nρ
)
. (5.1)

In the following we omit the superscript QN whenever the particular POVM is
clear from the context. This definition is similar to the one proposed by [ME84].

As we already mentioned, the aim of this section is to define the necessary
properties of WN so that it is a joint distribution for a sequence of N measure-
ments. This means that every random variable Xi, for i ∈ N , corresponds to
a general measurement (i.e. POVM)Mi := {Exi }x∈Xi , where all Exi � 0 and∑
x∈Xi Exi = 1. The positive square-root operators of Exi are Kx

i . So we have to
keep in mind that these operators are fixed throughout this chapter.

A functional WN defined as in Equation (5.1) is one of the three objects
that we use to define a joint distribution describing outcomes ofN general mea-
surements. The other object is a family of POVM elements. For each S ⊆ N
(also for N itself) we let QS := {Q~y

S}~y to be (for now arbitrary) POVMs where
~y ∈ XS(1)× · · · ×XS(|S|). The fact that QS is a POVM implies that for every set S
we have ∀~y ∈ ∏i∈S Xi : Q~y

S � 0 and∑~y Q~y
S = 1.

In the followingwe define properties of the tuple (WN , {QS}S⊆N , {Mi}i∈N )
such that it is a joint distribution (to be defined in Definition 5.14). Note that
in Equation (5.1) the operators from QN are elements of the second part of
the tuple (WN , {QS}S⊆N , {Mi}i∈N ). There are relations on the elements of the
tuple we need to be aware of: Functional WN is defined using operators from
the second element of the tuple, we keep it as a part of the tuple and a central
object of this section to highlight our goal to define a classical joint distribution.
The individual measurements {Mi}i from the third element of the tuple are
fixed as we strive to define a joint distribution for {Mi}i.

The first property is that WN is defined according to the Born rule, i.e. the
rule that the probability of any event corresponds to a measurement operator
and a quantum state. From Equation (5.1) we know that WN fulfills:

• Normalization: for all ρ ∈ D(H), we have that ∑~x Wρ
N (~x) = 1, this is

implied by the fact that∑~x Q~x
N = 1.

• Linearity: for every ~x ∈ X1 × · · · × XN , ρ1, ρ2 ∈ D(H) and λ1, λ2 ∈ [0, 1]
such that λ1 + λ2 = 1, we have that

Wλ1ρ1+λ2ρ2
N (~x) = λ1Wρ1

N (~x) + λ2Wρ2
N (~x).

5Note that the second superscript of WQN ,ρ
N (~x) denotes the first input to the functional, so

we have WQN
N (ρ, ~x).
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• Non-negativity: for every ~x ∈ X1 × · · · × XN and ρ ∈ D(H), we have
Wρ
N (~x) ≥ 0.

Below we describe the quantum analogues of the properties described in
Section 5.1.1. We define a joint distribution through a measurement. By im-
posing properties on the distribution we impose constraints on the distribution
but also on the measurement operators. Whenever possible we treat the func-
tional WN as the central object of our definitions (and not the accompanying
operators); This choice highlights our goal to define a classical description of a
quantum event, hence we focus on the classical functional instead of on quan-
tum operators. Nonetheless, from a mathematical point of view (and via the
Born rule) all the constraints we put on WN are easily translated to constraints
on QN . In the following sections we recast these constraints on the measure-
ment operators as permutability of all the measurements.

Marginals. Given the operators from the second part of the tuple, we define
marginal distributions in a similar way to the definition from Equation(5.1):

∀S ⊆ N Wρ
S(~y) := Tr

(
Q~y
Sρ
)
. (5.2)

Given any Q~y
S and their corresponding positive square-root operators R~yS

and ρ, we have that if Tr
(
Q~y
Sρ
)
6= 0, then we define the conditional distribution

for any sequence ~x as

Wρ
N (~x | ~y) := WR~ySρR~y†S

N (~x)/Wρ
S (~y) . (5.3)

For all the measurements from the second element of
(WN , {QS}S⊆N , {Mi}i∈N ), for a set F ⊆ D(H), and for U ⊆ N , we define
the “orbit” of the post-measurement states. For any T ⊆ U of size t, we
take s ≤ t sets S1, . . . ,Ss that are a partition of T . In details we mean
T ⊆ U , s ≤ |T | , S1, . . . ,Ss ⊆ T ,∀iSi 6= ∅,

⋃s
i=1 Si = T ,∀i 6= j Si ∩ Sj = ∅.

We denote the partition by ⊔si=1 Si = T , where t denotes the disjoint union.
As a shorthand for picking a T ⊆ U and a partition of it, we just write⊔s
i=1 Si ⊆ U . We consider the post-measurement states generated by sequences

of measurements corresponding to Si:

GU(F) :=
{

R~ysSs · · ·R
~y1
S1ψR~y1†

S1 · · ·R
~ys†
Ss :

ψ ∈ F ,
s⊔
i=1
Si ⊆ U , ~yi ∈ XSi(1) × · · · × XSi(|Si|)

}
, (5.4)

where R~yiSi are the positive square-root operators of Q~yi
Si = R~yi†Si R~yiSi . The subscript

of G denotes the set we take the subsets of, usually it is N but later we also
consider N \ S for some S.
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With our quantum marginals property, we require from the joint distribu-
tion that summing over a subset of variables yields a valid marginal distribu-
tion. Importantly, this translates to a constraint on the measurement operators
Q~y
S : a sum of Tr

(
Q~x
Nρ
)
for different values xi and variables i has to equal the

appropriate Tr
(
Q~y
Sρ
)
. We would also like to note that we fixed the individual

operators in the beginning so all the arbitrary measurements Q~y
S have to agree

with Exi .

Property 5.9 (Quantum Marginals). We say that (WN , {QS}S⊆N , {Mi}i∈N ) has
the quantum marginals property on set F if for every S ⊆ N and every value
~x ∈ X1 × X2 × · · · × XN , denoting ~x := (x1, x2, . . . , xN), and for every operator
ρ ∈ GN (F) defined with {QS}S⊆N as in Equation (5.4) we have that

∑
i∈N\S

∑
xi∈Xi

Wρ
N (~x) = Wρ

S(~xS), (5.5)

where Wρ
S(~xS) = Tr

(
Q~xS
S ρ

)
. Moreover for all i ∈ N and all xi ∈ Xi

Wρ
i (xi) = Tr (Exii ρ) . (5.6)

On an intuitive level, Property 5.9 imposes constraints on all the measure-
ment operators Q~y

S . Crucially, for |S| = 1 the constraints involve the sequence
of measurements that we want to ultimately describe. Properties that we in-
troduce in the remainder of this section can also be thought of as constraints
on Q~y

S . Note however that we always constrain only the trace, not the operator
itself.

Disjointness. It follows from the definition of POVMs that the quantummea-
surement operators need not be orthogonal, and this implies that the disjoint-
ness property (Property 5.3) does not hold in generality quantumly.

Disjointness is a property that concerns a post-measurement state of a set S
of variables.

Property 5.10 (Quantum Disjointness). We say that (WN , {QS}S⊆N , {Mi}i∈N )
has the quantumdisjointness property on setF if for every subset S ⊆ N , for every
operator ρ ∈ GN\S(F) (defined with {QS}S⊆N as in Equation (5.4)), and for every
value ~x ∈ X1 ×X2 × · · · × XN and ~y ∈ ∏i∈S Xi, we have that if ~y 6= ~xS , then

Wρ
N (~x | ~y)Wρ

S(~y) = 0, (5.7)

where Wρ
N (~x | ~y)Wρ

S(~y) = WR~ySρR~y†S
N (~x) = Tr

(
Q~x
NR~ySρR

~y†
S

)
.
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Reducibility. Reducibility (Property 5.4) is a similar property to disjointness
but with the key difference that we condition on the same event:

Property 5.11 (Quantum Reducibility). We say that (WN , {QS}S⊆N , {Mi}i∈N )
has the quantum reducibility property on set F if for every subset S ⊂ N , every
operator ρ ∈ GN\S(F) (defined with {QS}S⊆N as in Equation (5.4)), and value ~x ∈
X1 ×X2 × · · · × XN , we have that

Wρ
N (~x | ~xS)Wρ

S(~xS) = Wρ
N (~x), (5.8)

whenever Wρ
S(~xS) > 0. The above is equivalent to WR~ySρR~y†S

N (~x) = Wρ
N (~x) or in other

words Tr
(
Q~x
NR~xSS ρR

~xS†
S

)
= Tr

(
Q~x
Nρ
)
.

Note that the last two properties together allow us to conclude that the op-
erators are (intuitively) on-state projections: Property 5.10 plays the role of dif-
ferent projectors being orthogonal and Property 5.11 that projecting twice to
the same space does not change the resulting state.

Sequential Independence As previously discussed, the notion of time order
in the quantum setting is much more delicate as the probabilistic events no
longer commute. Let us go back to the example of the simple sequence (A,B)
from Section 5.1.1 but now consider A and B as quantum POVM elements mea-
sured on the state ρ. Let us assume for simplicity that A and B are projections.
The probability ofmeasuring awithA is Tr (Aρ) and the state after thismeasure-
ment is ρa := AρA

Tr(Aρ) so the probability of measuring the sequence (a, b) equals

P[b← B(ρa)]P[a← A(ρ)] = Tr
(

B AρA
TrAρ

)
Tr (Aρ) = Tr (ABAρ) . (5.9)

On the other hand the probability of measuring the sequence (b, a) equals
Tr (BABρ) which is in general different6 than Equation (5.9). This simple
example shows that sequential independence from [GN02] is not attained by
all sequences of quantum measurements.

The quantum counterpart of Property 5.5 that we define below is special in
the sense that the constraint we pose is put on the measurement operators. The
reason for that is to clarify presentation. At the end of this paragraph, however,
we prove that the quantum sequential independence property is implied by the
previous more natural Properties 5.9, 5.10, and 5.11.

6An easy example of this fact is when ρ = |0〉〈0|, A = |0〉〈0|, and B = |+〉〈+|, where |+〉 =
1√
2 (|0〉+ |1〉). Then we have Tr (ABAρ) = 1/2 and Tr (BABρ) = 1/4.
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Property 5.12 (Quantum Sequential Independence). We say that
(WN , {QS}S⊆N , {Mi}i∈N ) has the quantum sequential independence property
on set F if for every density operator ψ ∈ F , for all partitions ⊔si=1 Si ⊆ N , for
any permutation σ ∈ Iper({1, . . . , s}), and ~x ∈ X1 × X2 × · · · × XN such that
~x := (x1, x2, . . . , xN) and ~yi :=

(
xSi(1), xSi(2), . . . , xSi(|Si|)

)
, we have that

Tr
(
Q~ys
SsR

~ys−1
Ss−1 · · ·R

~y1
S1ψR~y1†

S1 R~y2†
S2 · · ·R

~ys−1†
Ss−1

)
= Tr

(
Q~yσ(s)
Sσ(s)

R~yσ(s−1)
Sσ(s−1)

· · ·R~yσ(1)
Sσ(1)

ψR~yσ(1)†
Sσ(1)

R~yσ(2)†
Sσ(2)

· · ·R~yσ(s−1)†
Sσ(s−1)

)
. (5.10)

Theorem 5.13 (Marginals imply Sequential Independence). If
(WN , {QS}S⊆N , {Mi}i∈N ) has Properties 5.9, 5.10, and 5.11, then it also has
Property 5.12.
Proof. First note that Properties 5.9, 5.10, and 5.11 directly imply:

Tr
(
R~y†S Q~x

NR~ySρ
)

= δ~xS ,~yTr
(
Q~x
Nρ
)
, (5.11)

where ρ ∈ GN\S(F) and all operators are POVM elements (and their square-
root operators) from the second element of the tuple in question.

With the above identity at hand, we can directly prove the statement. Let
us take any T ⊆ N and its partition into sets S1, . . . ,Ss, like in Property 5.12.
Then by Property 5.9 we have

Tr

Q~ys
SsR

~ys−1
Ss−1 · · ·R

~y1
S1ψR~y1†

S1 · · ·R
~ys−1†
Ss−1︸ ︷︷ ︸

:=ρ

 =
∑
~y′

Tr
(
Q~y′

Nρ
)
, (5.12)

where ~y′ ranges over ∏
i∈N Xi such that ~y′Ss = ~ys. By ~y′Ss we denote

the elements of the vector corresponding to values in ∏
i∈Ss Xi. Let

ρ′ := R~ys−2
Ss−2 · · ·R

~y1
S1ψR~y1†

S1 · · ·R
~ys−2†
Ss−2 , then we can continue Equation (5.12):

∑
~y′

Tr
(
Q~y′

NR~ys−1
Ss−1ρ

′R~ys−1†
Ss−1

)
=
∑
~y′
δ~y′Ss−1

,~ys−1Tr
(
Q~y′

Nρ
′
)

(5.13)

= · · · =
∑
~y′
δ~y′Ss−1

,~ys−1 · · · δ~y′S1
,~y1Tr

(
Q~y′

Nψ
)

= Tr
(
Q~y′′

T ψ
)
, (5.14)

where in the first equality above we use Equation (5.11). In the sequence of
equalities that follow we repeatedly use Equation (5.11) with square-root op-
erators that appear in the definition of ρ′. In the last sum we summed over the
remaining N \ T variables and get the marginal for ~y′′ := ⋃s

i=1 ~yi.
We see that in Equation (5.14) we prove that the left hand side of Equa-

tion (5.12) is the same for any order of measurements. Our derivation does not
depend on the order of the operators, which ends our proof.
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5.2.2 Joint Distributions and Permutability
In this section, we state the definition of a joint distribution that describes a se-
quence of quantum measurements performed on states from a restricted set.
We also define a generalization of commutativity and prove that a joint distri-
bution exists if and only if the measurement operators are permutable.

Definition 5.14 (Joint DistributionOn State). A tuple (WN , {QS}S⊆N , {Mi}i∈N )
of a linear functional defined as in Equation (5.1) (with an element of the family from
the second entry), a family of POVMs, and a set of measurements is a joint distri-
bution ofN random variablesX1, . . . , XN that describe outcomes of general quantum
measurements {Mi}i∈N (from the third element of the tuple) of states ψ ∈ F if
(1) Quantum Marginals on states in F , Property 5.9, holds,
(2) Quantum Disjointness on states in F , Property 5.10, holds,
(3) Quantum Reducibility on states in F , Property 5.11, holds.
Next we show the connection between the existence of joint distributions

and requirements on the measurement operators. But first let us define the
on-state permutability notion.

Definition 5.15 (On-state permutator, (fully) permutable operators). For any s
operators Ri and a permutation of the s-element set σ ∈ Iper({1, . . . , s}) the permuta-
tor on ψ is defined as
[R1,R2, . . . ,Rs]ψ(σ) :=
Tr
(
RsRs−1 · · ·R1ψR†1R†2 · · ·R†s

)
− Tr

(
Rσ(s)Rσ(s−1) · · ·Rσ(1)ψR†σ(1)R

†
σ(2) · · ·R

†
σ(s)

)
.

(5.15)

We say that the operators R1, . . . ,Rs are permutable on ψ if [R1, . . . ,Rs]ψ(σ) = 0 for
all σ ∈ Iper({1, . . . , s}).

Moreover, we call a set of measurements {Mi}i∈N (where for every i ∈ N we have
Mi := {Qxi

i }xi∈Xi) t-permutable on F if the square-root operators Rxii of any t of
these measurements are permutable on ψ ∈ F . If t = N we call the measurements
“fully permutable”.

To (slightly) strengthen our result connecting existence of joint distributions
and permutability we define the notion of on-state projectors relevant for se-
quences of measurements.

Definition 5.16 (On-State Projectors). {Rxii }i∈N ,xi∈Xi is a set of on-state projectors
on ψ ∈ F if for all S ⊆ N , all ~x ∈ X1 × · · · × XN , all ~y ∈

∏
i∈S Xi, and for R~yS :=

Ry1
S(1)R

y2
S(2) · · ·R

y|S|
S(|S|) and Q~y

S := R~y†S R~yS , we have

Tr
(
R~y†S Q~x

NR~ySψ
)

= δ~y,~xSTr
(
Q~x
Nψ

)
. (5.16)
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We would like to note that if operators in {Rxii }i∈N ,xi∈Xi are on-state per-
mutable and are orthogonal projectors, then they are also on-state projectors.

Now we state the theorem connecting existence of joint distributions with
permutability of the measurement operators. This statement extends Theo-
rem 3.2 of [ME84], where they prove that if the joint distribution satisfies the
marginals property (they use the name “nondisturbance”), then the operators
pairwise commute.

Theorem 5.17 (Joint Distribution for Quantum Experiments and
Permutability). There is a quantum joint distribution on states ψ ∈ F for
measurements {Mi}i∈N if and only if all square roots Kx

i of the Exi operators of the
measurementsMi permute on ψ ∈ F and {Kxi

i }i∈S,xi∈Xi is a set of on-state projectors
according to Definition 5.16.

Proof. (⇒) In Theorem 5.13 we have proven that marginals (Property 5.9) to-
gether with disjointness (Property 5.10) and reducibility (Property 5.11) imply
sequential independence (Property 5.12). Permutability follows from Prop-
erty 5.12 for N single-element sets Si = {i}. To show that {Kxi

i }i∈S,xi∈Xi is a
set of on-state projectors we consider any R~yS = Ry1

S(1) · · ·R
y|S|
S(|S|) from the state-

ment of Definition 5.16 and ρ = Ry2
S(2) · · ·R

y|S|
S(|S|)ψRy|S|†S(|S|) · · ·R

y2†
S(2). First note that

ρ ∈ GN\S(1). By applying Properties 5.10 and 5.11 we get

Tr
(
Q~x
NRy1
S(1)ρR

y1†
S(1)

)
= δ~y1,~xS(1)Tr

(
Q~x
Nρ
)
. (5.17)

We can repeat the above reasoning—stripping ρ of RyiS(i) operators one by one—
to show the statement of Definition 5.16.

(⇐) The other direction of the proof follows by setting the measurement
operators to Q~y

S := Kyt†
S(t)K

yt−1†
S(t−1) · · ·K

y1†
S(1)K

y1
S(1)K

y2
S(2) · · ·K

yt
S(t), for every set S ⊆ N

with |S| = t. Similarly we define R~yS := Ky1
S(1)K

y2
S(2) · · ·K

yt
S(t).

The marginals property 5.9 reads as follows: ∑i∈N\S
∑
xi∈Xi Tr

(
Q~x
Nρ
)

=
Tr
(
Q~xS
S ρ

)
. By definition of the square-root operators we have that

Tr
(
Q~x
Nρ
)

= Tr
(
R~xNρR

~x†
N

)
. Thanks to how we defined the POVM elements and

the assumed permutability we know that for any i

Tr
(
R~xNρR

~x†
N

)
= Tr

(
Rxi†i Rxii R~xN\{i}N\{i} ρR

~xN\{i}†
N\{i}

)
, (5.18)

where xi is the i-th element of ~x. From the fact that∑xi∈Xi Exii = 1 and the above
transformation we get

∑
i∈N\S

∑
xi∈Xi

Tr
(
Q~x
Nρ
)

=
∑

i∈N\S

∑
xi∈Xi

Tr
(

Exi1i1 R~xN\{i1}N\{i1} ρR
~xN\{i1}†
N\{i1}

)
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=
∑

i∈N\(S∪{i1})

∑
xi∈Xi

Tr
(

Exi2i2 R~xN\{i1,i2}N\{i1,i2} ρR
~xN\{i1,i2}†
N\{i1,i2}

)
= · · · = Tr

(
Q~xS
S ρ

)
. (5.19)

Where i1, i2, . . . i|N\S| are indices of output sets we sum over, the order is arbi-
trary.

For the joint distribution to exist, Properties 5.10 and 5.11 also need
to be satisfied. First we note that for square-root operators of the form
R~yS = Ky1

S(1) · · ·K
yt
S(t) we can simplify Tr

(
Q~x
NR~ySρR

~y†
S

)
appearing in both

properties as follows: Let us consider any ρ ∈ GN\S(F), then by definition of
set GN\S(F) it equals R~y

′

S′ψR~y
′†
S′ . Additionally considering R~yS and noting our

assumption of permutability we get Tr
(
Q~x
NR~ySρR

~y†
S

)
= Tr

(
Q~x
NR~y∪~y

′

S∪S′ψR~y∪~y
′†

S∪S′
)
.

Similarly we have Tr
(
Q~x
Nρ
)

= Tr
(
Q~x
NR~y

′

S′ψR~y
′†
S′
)
. To prove that Properties 5.10

and 5.11 hold we apply Definition 5.16 to both traces:

Tr
(
Q~x
NR~ySρR

~y†
S

)
= Tr

(
Q~x
NR~y∪~y

′

S∪S′ψR~y∪~y
′†

S∪S′
)

= δ~y∪~y′,~xS∪S′Tr
(
Q~x
Nψ

)
(5.20)

and

Tr
(
Q~x
Nρ
)

= Tr
(
Q~x
NR~y

′

S′ψR~y
′†
S′
)

= δ~y′,~xS′Tr
(
Q~x
Nψ

)
. (5.21)

Putting these observations together: if ~y is different from ~xS , then Equa-
tion (5.20) yields 0 (as required by Property 5.10), else δ~y∪~y′,~xS∪S′ = δ~y′,~xS′ and
Equation (5.20) equals to Equation (5.21) (as required by Property 5.11).

5.2.3 Pairwise On-State Commutation Does Not Imply Full
Commutation

We now investigate whether full permutability is the weakest assumption we
can have for joint distributions to exist.

When we consider this question for the full Hilbert space F = D(H), this
problem has been considered by a number of works in the literature [Nel67;
Fin73; Fin82; ME84] and it is well-known that it suffices for the measurement
operators to pairwise commute, i.e., pairwise commutation on all possible
quantum states implies permutability of the operators.

Our goal in this section is to consider the case where F ( D(H). In par-
ticular, in [Car+18], in order to connect perfect quantum indifferentiability to
classical indifferentiability with stateless simulators, they rely on the following
conjecture. Note that the t in the conjecture is fixed, sowe actually have a family
of conjectures for different t and N .

Conjecture 5.18 (Conjecture 2 from [Car+18], rephrased). Consider N binary
measurements described by projectors P1, . . . ,PN , and a quantum state |Ψ〉.
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Assume that any t out of the N measurements permute on state |Ψ〉. That is, for
any I with |I| = t, if P′1, . . . ,P′t and P′′1, . . . ,P′′t are the projectors {Pi}i∈I (possibly in
different order), then P′t, . . . ,P′1|Ψ〉 = P′′t , . . . ,P′′1|Ψ〉.

Then there exist random variablesX1, . . . , XN with a joint distributionD such that
for any I = {i1, . . . , it} the joint distribution of Xi1 , . . . , Xit is the distribution of the
outcomes when we measure |Ψ〉 with measurements Pi1 , . . . ,Pit .

In the use of Conjecture 5.18 in [Car+18], they implicitly assume that we
can replace Pi by its complement 1− Pi and the permutation still holds.

Conjecture 5.18 states that if any tmeasurement operators permute on state
|Ψ〉 then there is a joint distribution. From Theorem 5.17, we know that if there
is a joint distribution then the operators fully permute. Hence, the key point of
the conjecture is that if any t operators permute on a state, then they fully per-
mute on it. However, we show here that Conjecture 5.18 is not true, in general.

Theorem 5.19. There exists a set of four projectors {P1,P2,P3,P4} and a state |φ〉 ∈
C8 such that the projectors are 2-permutable (they pairwise commute) on state |φ〉 and
they are not 4-permutable on |φ〉.
Proof. To prove the statement we found an example of such operators and a
state numerically by random constrained search. We consider 4 projectors Pi
and a state |φ〉 of dimension 8. The constraints we impose are

∀i, j 6= i [Pi,Pj]|φ〉 = 0, (5.22)

moreover operators Pi are projectors: ∀iP2
i = Pi and |φ〉 is a unit-norm complex

vector.
We look for an example to the statement that 2-permutability (commutativ-

ity) does not imply 4-permutability, so that

(P1P2P3P4 − P3P4P1P2)|φ〉 6= 0. (5.23)

To find such example we used software for symbolic computing to define the
problem and maximize ‖(P1P2P3P4 − P3P4P1P2)|φ〉‖, where we maximize over
operators Pi and the state |φ〉.

The result of our optimization can be found in Section 5.2.4. Note that we
consider vector equalities—instead of just traces like in Theorem 5.17—hence
our example provides a slightly stronger argument for the necessity of full per-
mutability.

One can notice by looking at the optimization problem that it is not a
semidefinite problem, nor are we aware of any other structure that is easy to
exploit. For that reason finding larger instances is probably computationally
very expensive.

We notice that Theorem 5.19 actually disproves a slightly stronger version
of Conjecture 5.18; One that includes the complements of projectors. While
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this modification gives a slightly stronger assumption, our counterexample in
Theorem 5.19 works just as well.

For the joint distribution in Conjecture 5.18 to exist, we know from Theo-
rem 5.17 that all operators must on-state permute. An important observation
is that Conjecture 5.18 considers vector equalities and Theorem 5.17 considers
scalar equalities. The theorem is “easier” than the conjecture and our coun-
terexample works with vector equalities, hence we disprove a stronger state-
ment and indeed Theorem 5.19 disproves Conjecture 5.18.

In [Ebr18] the author uses a different conjecture and different reasoning
to prove the existence of the joint distribution. Our counterexample does not
disprove this other approach and we refer interested readers to [Ebr18].

5.2.4 Numerical values

Below we present the state and the projectors that are claimed in the proof of
Theorem 5.19. The script used to generate these values can be found in [Cza21].
Before we write out the state and the projections that we found, let us state our
violation of the permutator:

‖(P1P2P3P4 − P3P4P1P2)|φ〉‖ = 0.25± 3 · 10−8. (5.24)

All the constraints listed in the proof of Theorem 5.19 are fulfilled up to the
seventh decimal digit of precision, so up to 10−7. Internal computations of the
algorithm are performed with machine precision of 10−15.

The state is

|φ〉 :=



−0.135381− 0.0503468i
0.325588 − 0.222403i
−0.209447− 0.0404665i
−0.418336 + 0.130098i
−0.503693− 0.299414i
0.379842 + 0.205081i
−0.179291− 0.0381456i
0.0840381 − 0.125995i


. (5.25)

We define the projectors by their eigenvectors:

P1 = |π1〉〈π1|, P2 = |π2
1〉〈π2

1|+ |π2
2〉〈π2

2|, (5.26)
P3 = |π3

1〉〈π3
1|+ |π3

2〉〈π3
2|+ |π3

3〉〈π3
3|, P4 = |π4

1〉〈π4
1|+ |π4

2〉〈π4
2|. (5.27)
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The eigenvector of P1 is:

|π1〉 :=



0.440777 + 0.168408i
0.208781 − 0.37351i

0.247514 + 0.0276065i
−0.297971 + 0.0252308i

0.118798 + 0.112225i
−0.293428 + 0.270889i
−0.193073 + 0.218869i

−0.41405


. (5.28)

The eigenvectors of P2 are:

|π2
1〉 :=



−0.497016− 0.094035i
0.417527 − 0.0737062i
−0.000125303 + 0.35123i

0.166569 − 0.187245i
−0.373202 + 0.205633i
0.318452 − 0.251475i
−0.107473− 0.123987i

−0.0711523


, |π2

2〉 :=



0.365906 + 0.0620997i
0.418728 − 0.2059i

0.229457 + 0.0557421i
−0.140393 + 0.0945029i
−0.199205− 0.188139i
0.103617 + 0.279644i
−0.546498 + 0.147197i

0.275295


.

(5.29)

The eigenvectors of P3 are:

|π3
1〉 :=



−0.453059 + 0.181543i
−0.452841 + 0.0154095i
−0.17948− 0.222827i
−0.230355− 0.0526756i
−0.0918752− 0.250754i

0.242416 − 0.126917i
0.300832 − 0.287566i

0.315259


, |π3

2〉 :=



−0.0586669− 0.269559i
−0.280155 + 0.373271i
−0.150758− 0.158539i
0.158793 − 0.0454731i
0.165888 + 0.362832i
−0.110453− 0.310755i
0.353894 − 0.00811586i

−0.487537


,

(5.30)

|π3
3〉 :=



−0.182739− 0.114718i
0.246775 − 0.134678i
−0.513357− 0.193655i
−0.10451 + 0.421294i
0.111183 + 0.122625i
−0.200917− 0.25897i
−0.0290851 + 0.398494i

0.30081


. (5.31)
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The eigenvectors of P4 are:

|π4
1〉 :=



−0.464187 + 0.213035i
−0.364421 + 0.119836i
−0.324984− 0.23097i
−0.256841 + 0.0478513i
−0.0700499− 0.192822i

0.146148 − 0.225755i
0.243944 − 0.284786i

0.331272


, |π4

2〉 :=



0.111757 + 0.151275i
0.236223 − 0.323279i
0.157312 − 0.115385i
−0.30864 + 0.0990552i
−0.260931− 0.236239i

0.240497 + 0.13559i
−0.453404 + 0.12357i

0.490125


.

(5.32)

5.3 Almost On-State Commutation
In the last part of the chapter we discuss almost commutativity in the on-state
case. In particular, we show here that if we have two projectors that almost
commute on a state then we can define a projector that fully commutes with
one of the original operators and is close on state to the second one.

The main tool that we need to prove this result is Jordan’s lemma.

Lemma 5.20 (Jordan’s lemma [Jor75]). Let P1 and P2 be two projectors with rank
ri := rank(Pi) for i ∈ {1, 2}. Then both projectors can be decomposed simultane-
ously in the form Pi = ⊕ri

k=1 Pki , where Pki denote rank-1 projectors acting on one-
or two-dimensional subspaces. We denote the one- and two-dimensional subspaces by
S1, . . . , Sl and subspaces by T1, . . . , Tl′ , respectively. The eigenvectors |vk,1〉 and |vk,2〉
of P k

1 and P k
2 respectively are related by:

|vk,2〉 = cos θk|vk,1〉+ sin θk|v⊥k,1〉, |vk,1〉 = cos θk|vk,2〉 − sin θk|v⊥k,2〉. (5.33)

We can now prove our result.

Theorem 5.21 (Making almost commuting projectors commute). Given any two
projectors P1 and P2 and a state |ψ〉we have that if ‖(P1P2 − P2P1)|ψ〉‖ = ε then there
is a projectorP′2 that is close to the original projector on the state ‖(P′2 − P2)|ψ〉‖ ≤

√
2ε

and [P1,P′2] = 0.
Proof. By Jordan’s lemma (Lemma 5.20), there exist bits λi,1, λi,2 ∈ {0, 1} and
vectors |u1〉, ..., |um〉 and |v1,1〉, |v1,2〉, ..., |v`,1〉, |v`,2〉, such that

1. P1 = ∑
i∈[m] λi,1|ui〉〈ui|+

∑
i∈[`]|vi,1〉〈vi,1|

and P2 = ∑
i∈[m] λi,2|ui〉〈ui|+

∑
i∈[`]|vi,2〉〈vi,2|;

2. 〈ui|uk〉 = 0 and 〈ui|vj,b〉 = 0 for all b, i, j and k 6= i;

3. 〈vj,b′ |vi,b〉 = 0 for i 6= j and any b, b′;
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4. 0 < 〈vi,1|vi,2〉 < 1.

Let θi be the angle between |vi,1〉 and |vi,2〉 (i.e. cos θi = 〈vi,1|vi,2〉), and |v⊥i,1〉 be
the state orthogonal to |vi,1〉 in the subspace spanned by these two vectors. Since
the non-commuting part of P1 and P2 must come from the pairs |vi,1〉, |vi,2〉, we
will define P′2 by removing the non-commuting part of P2, shifting the vector
|vi,2〉, to either |vi,1〉 or |v⊥i,1〉:

P′2 =
∑
i∈[m]

λi,2|ui〉〈ui|+
∑

i∈[`]:θi≤π4

|vi,1〉〈vi,1|+
∑

i∈[`]:θi>π
4

|v⊥i,1〉〈v⊥i,1|. (5.34)

We have clearly that [P1,P′2] = 0 since the two projectors are simultaneously
diagonalizable and we now want to prove that

‖(P′2 − P2)|ψ〉‖ ≤
√

2 ε . (5.35)

Notice that

‖(P′2 − P2)|ψ〉‖2

=

∥∥∥∥∥∥
∑

i∈[l′]:θi≤π4

(|vi,1〉〈vi,1|ψ〉 − |vi,2〉〈vi,2|ψ〉)

+
∑

i∈[l′]:θi>π
4

(
|v⊥i,1〉〈v⊥i,1|ψ〉 − |vi,2〉〈vi,2|ψ〉

) ∥∥∥∥∥∥
2

(5.36)

=
∑

i∈[l′]:θi≤π4

‖|vi,1〉〈vi,1|ψ〉 − |vi,2〉〈vi,2|ψ〉‖2

+
∑

i∈[l′]:θi>π
4

∥∥∥|v⊥i,1〉〈v⊥i,1|ψ〉 − |vi,2〉〈vi,2|ψ〉∥∥∥2
, (5.37)

where in the last step we used that 〈vi,b′ |vj,b〉 = 0 for i 6= j.
Using that |vi,2〉 = cos θi|vi,1〉+ sin θi|v⊥i,1〉, we have that if θi ≤ π

4 , then

‖〈vi,1|ψ〉|vi,1〉 − 〈vi,2|ψ〉|vi,2〉‖2

= sin4 θi|〈vi,1|ψ〉|2 − 2 sin3 θi cos θiRe(〈v⊥i,1|ψ〉〈vi,1|ψ〉) + sin2 θi cos2 θi|〈v⊥i,1|ψ〉|2

+ sin4 θi|〈v⊥i,1|ψ〉|2 + 2 sin3 θi cos θiRe(〈vi,1|ψ〉〈v⊥i,1|ψ〉) + sin2 θi cos2 θi|〈vi,1|ψ〉|2

≤ 2 sin2 θi cos2 θi(|〈v⊥i,1|ψ〉|2 + |〈vi,1|ψ〉|2), (5.38)

where in the inequality we used our assumption that θi ≤ π
4 which implies that

sin θi ≤ cos θi.
Using similar calculations, we have that if θi ≥ π

4∥∥∥〈v⊥i,1|ψ〉|v⊥i,1〉 − 〈vi,2|ψ〉|vi,2〉∥∥∥2
≤ 2 sin2 θi cos2 θi(|〈v⊥i,1|ψ〉|2 + |〈vi,1|ψ〉|2). (5.39)
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We will show now that∑
i

sin2 θi cos2 θi(|〈v⊥i,1|ψ〉|2 + |〈vi,1|ψ〉|2) = ε2,

which finishes the proof:

ε2 = ‖(P2P1 − P1P2)|ψ〉‖2 (5.40)

=

∥∥∥∥∥∥
∑
i∈[l′]
|vi,1〉〈vi,1|vi,2〉〈vi,2|ψ〉 − |vi,2〉〈vi,2|vi,1〉〈vi,1|ψ〉.

∥∥∥∥∥∥
2

(5.41)

=

∥∥∥∥∥∥
∑
i∈[l′]

cos θi
(
cos θi〈vi,1|ψ〉+ sin θi〈v⊥i,1|ψ〉

)
|vi,1〉

−
∑
i∈[l′]

cos θi〈vi,1|ψ〉
(
cos θi|vi,1〉+ sin θi|v⊥i,1〉

) ∥∥∥∥∥∥
2

(5.42)

=

∥∥∥∥∥∥
∑
i∈[l′]

sin θi cos θi
(
〈v⊥i,1|ψ〉|vi,1〉 − 〈vi,1|ψ〉|v⊥i,1〉

)∥∥∥∥∥∥
2

(5.43)

=
∑
i∈[l′]

sin2 θi cos2 θi
(
|〈v⊥i,1|ψ〉|2 + |〈vi,1|ψ〉|2

)
. (5.44)

where in the second equality we again use that |vi,2〉 = cos θi|vi,1〉 + sin θi|v⊥i,1〉
and in the fourth equality we use the fact that 〈vi,b′ |vj,b〉 = 0 for i 6= j.

Our proof relies solely on Jordan’s Lemma. Note that Jordan’s Lemma is
sufficient only if we analyze commutation of projectors. Results that show how
to make any Hermitian matrices commute [FR96; Has09] are much more com-
plicated to prove and it is not clear how to translate them to the “on-state” case.

We stress that our proof onlyworks for two projectors, since Jordan’s lemma
does not generalize for three or more projectors. Therefore, we leave as open
problem (dis)proving a generalized version of Lemma 5.21 formore projectors.

In [Ebr18] the author proves Theorem 5.21 for ε = 0, but with a different
proof. They use Halmo’s two projections theorem instead of Jordan’s lemma.
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Game-playing proofs constitute a powerful framework for non-quantum
cryptographic security arguments, notably applied in the context of indifferen-
tiability. A common ingredient in such proofs is lazy sampling of randomprim-
itives. In [Cza+19] we developed a quantum game-playing proof framework
by generalizing two recent proof techniques: Zhandry’s compressed quantum
oracles [Zha19a], that can be used to quantum lazy-sample a class of non-
uniform function distributions. The second technique is Unruh’s one-way-to-
hiding lemma [Unr14], that can also be applied to compressed oracles, provid-
ing a quantum counterpart to the fundamental lemma of game-playing.

6.1 Introduction
The game-playing framework, described in detail in Section 2.4.2, provides
proofs of security with a clear and easy-to-verify structure. Combined with
the need of including fully quantum adversaries with quantum access to
random oracles into the threat model (see Section 2.1.5), we encounter an
obvious challenge: defining a quantum game-playing framework. In this
chapter, we resolve that challenge, so that in later chapters we can apply
the resulting framework to prove security of a number of cryptographic
constructions. In the following paragraphs we describe our results and the
main proof techniques we used to achieve them.

We devise a quantum game-playing framework for security proofs that in-
volve fully-quantum1 adversaries. Our framework is based on a combination
of two recently developed proof techniques: compressed quantum random or-
acles by Zhandry [Zha19a] and the One-Way to Hiding (O2H) lemma by Un-
ruh [Unr14; AHU19]. The former provides a way to lazy-sample a quantum-
accessible random oracle, and the latter is a quantum counterpart of the Funda-
mental Game-Playing lemma—a key ingredient in the original game-playing
framework. As our first main result we obtain a clean and powerful tool for
proofs in post-quantum cryptography. The main advantage of the framework
is the fact that it allows the translation of certain classical security proofs to
the quantum setting, in a way that is arguably more straight-forward than for
previously available proof techniques.

On the technical side, we begin by re-formalizing Zhandry’s compressed-
oracle technique, which, as a by-product, makes a modest generalization to
some non-uniform distributions of oracles relatively straightforward. In par-
ticular, we generalize the compressed-oracle technique of [Zha19a] to a class
of non-uniform distributions over functions, allowing a more general form of
(quantum) lazy sampling. Our result allows to treat distributions with out-
puts that are independent for distinct inputs. Subsequently, we observe that the

1Meaning adversaries that have access to a quantum computer and make quantum queries
to the primitives.
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techniques of “puncturing oracles” proposed in [AHU19] can also be applied to
compressed oracles, yielding a more general version of the O2H lemma which
forms the quantum counterpart of the fundamental game-playing lemma.

There are already some examples in the literature where generalized
compressed oracle for non-uniform distributions has been used, e.g. [Ala+18]
(superposition oracle without compression that outputs 1 with probability λ,
we define the sampling procedure for such distribution in Section 6.2.2.2) and
[HM20] (a generalization similar to ours but presented after [Cza+19] was
posted online). We believe that the generalized formalism developed here will
continue to be useful.

Punctured oracles are quantum oracles measured after every adversarial
query. An important lemma that we prove is a bound on the probability that
any of these measurements succeeds. Our proof of this bound is general
enough so that it can be applied with little changes to many different
scenarios. The bound on the probability of any of the measurements in a
punctured oracle succeeding, together with the O2H lemma for compressed
oracles provides a bound on the distinguishing advantage between a regular
compressed oracle and a punctured one. In Lemma 9 in [Zha19a], the
indistinguishability of a compressed oracle and a punctured compressed
oracle is also proven. The method, however, is different than ours and less
details are provided. A crucial difference is that there are two technical claims
left implicit. According to [Zha20] there exists a proof that maintains the
claimed bound.

RelatedWork Recent work by Unruh and by Ambainis, Hamburg, and Unruh
[Unr14; AHU19] form the second main ingredient of this result. Their O2H
lemma provides a way to “reprogram” quantum accessible oracles on some set
of inputs, formalized as “punctured” oracles in the latter paper.

In a recent article [Unr19] Unruh developed quantum Relational Hoare
Logic for computer verification of proofs in (post-)quantum cryptography.
There he also uses the approach of game-playing, but in general focuses on
formal definitions of quantum programs and predicates. To investigate the
relation between [Unr19] and this chapter in more detail one would have
to express our results in the language of the new logic. We leave it as an
interesting direction for the future.

The proof techniques of [Zha19a] and [AHU19] have been recently used
to show quantum security of the 4-Round Feistel construction in [HI19] and
of generic key-encapsulation mechanisms in [JZM19] respectively. In [CEV20]
the authors use compressed oracles for randomness in an encryption scheme
using a random tweakable permutation (that is given to the algorithm exter-
nally). In [Chu+20a] the authors prove quantum query complexity results us-
ing the compressed oracles technique and provide a framework that simplifies
such tasks. In [Chu+20b], the authors use the compressed-oracle technique to
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prove tight quantum time-space tradeoffs. In the recent [Ros21] Rosmanis de-
scribes a new approach to the compressed-oracle technique, he also analyzes
the case of random (invertible) permutations, although does not provide a way
to efficiently compress them.

Organization. In Section 6.2 we generalize the compressed-oracle technique of
[Zha19a] to non-uniform distributions over functions. In Section 6.3 we prove
a generalization of the O2H lemma of [Unr14], adapted to the use with com-
pressed oracles for non-uniform distributions. In Section 6.4 we provide a gen-
eral bound on the probability of Find—the quantum counterpart of the Bad
events in the classical game-playing proofs. We end in Section 6.5 with a dis-
cussion of how to use the techniques developed in this chapter to elevate proofs
of classical security to proofs of quantum security, given that the classical proofs
are written in the game-playing framework.

6.2 Quantum-Accessible Oracles

In the Quantum-Random-Oracle Model (QROM) [Bon+11], one assumes that
the random oracle can be accessed in superposition. Quantum-accessible ran-
dom oracles are motivated by the possibility of running an actual instantiation
of the oracle as function on a quantum computer, which would allow for su-
perposition access. In this section, oracles implement a function f : X → Y
distributed according to some probability distribution D on the set F of func-
tions from X to Y . Without loss of generality we set X = ZM and Y = ZN for
some integersM,N > 0.

In this section we give a formal treatment of quantum accessible oracles.
We explain with special care the compressed-oracle technique of Zhandry
[Zha19a]. A quantum oracle can be viewed as a purification (extension to a
higher-dimensional Hilbert space) of the adversary’s quantum state. The
simplest purification extends the state to include a superposition of all full
function tables from the set F . Note that the oracle gives access to a random
function from the set F . The purification we talk about is called the oracle
register. A quantum algorithm could simulate the access to the quantum
oracle by preparing the oracle register and performing the correct update
procedures every time the adversary makes a query. Such a simulator would
not be efficient though, as the oracle register we just defined holds M entries
(so one for each element of the domain [M ]). The brilliant idea of Zhandry
was to propose a procedure to lazy-sample a uniformly random function. By
lazy-sampling we mean here to store just the queries asked by the adversary,
not the whole function table. By doing that we limit the number of entries
held by the simulator to q (the bound on the number of queries performed by
the adversary). Our result in this section is generalizing Zhandry’s technique
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to independent distributions on functions: Such that outputs are distributed
independently for any distinct inputs.

Classically, an oracle for a function f is modeled via a tape with the queried
input x written on it, the tape is then overwritten with f(x). The usual way of
translating this functionality to the quantum circuit model is by introducing a
special gate that implements the unitary Uf |x, y〉 = |x, y+f(x)〉. In the literature
+ is usually the bitwise addition modulo 2, but in general it can be any group
operation. We are going to use addition in ZN .2

In the case where the function f is a random variable, so is the unitary Uf .
Sometimes this is not, however, the best way to think of a quantum random or-
acle, as the randomness of f is accounted for using classical probability theory,
yielding a hybrid description. To capture the adversary’s point of view more
explicitly, it is necessary to switch to the mixed-state formalism. A mixed quan-
tum state, or density matrix, is obtained by considering the projector onto the
one-dimensional subspace spanned by a pure state, and then taking the expec-
tation over any classical randomness. Say that the adversary sends the query
state |Ψ0〉 = ∑

x,y αx,y|x, y〉 to the oracle, the output state is then
∑

f
P[f : f ← D] Uf |Ψ0〉〈Ψ0|U†f ⊗ |f〉〈f |F

=
∑

f
P[f : f ← D]

∑
x,x′,y,y′

αx,yᾱx′,y′|x, y + f(x)〉〈x′, y′ + f(x′)| ⊗ |f〉〈f |F , (6.1)

where by ᾱ we denote the complex conjugate of α and we have recorded the
random function choice in a classical register F holding the full function table
of f .

In quantum information science, a general recipe for simplifying the picture
and to gain additional insight is to purify mixed states, i.e. to consider a pure
quantum state on a system augmented by an additional register E, such that
discarding E recovers the original mixed state. In [Zha19a] Zhandry applies
this recipe to this quantum-random-oracle formalism.

In the resulting representation of a random oracle, the classical register F is
replaced by a quantum register holding a superposition of functions from D.
The joint state before an adversary makes the first query with a state |Ψ0〉XY
is |Ψ0〉XY

∑
f∈F

√
P[f : f ← D] |f〉F . The unitary that corresponds to Uf after pu-

rification will be called the Standard Oracle StO and works by reading the ap-
propriate output of f from F and adding it to the algorithm’s output register,

StO|x, y〉XY |f〉F := |x, y + f(x)〉XY |f〉F . (6.2)
2Note that introducing the formalism using the group ZN for some N ∈ N is quite general

in the following sense: Any finite Abelian groupG is isomorphic to a product of cyclic groups,
and the (quantum) Fourier transform with respect to such a group is the tensor product of the
Fourier transforms on the cyclic groups, given the natural tensor product structure of CG.
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Applied to a superposition of functions as intended, StO will entangle the ad-
versary’s registers XY with the oracle register F .

The main observation of [Zha19a] is that if we change the basis of the initial
state of the oracle register F , the redundancy of this initial state becomes appar-
ent. If we are interested in, e.g., an oracle for a uniformly random function, the
Fourier transform changes the initial oracle state ∑f

1√
|F|
|f〉 to a state holding

only zeros |0M〉, where 0 ∈ Y .
Let us start by presenting the interaction of the adversary viewed in the same

basis, called the Fourier basis. The unitary operation acting in the Fourier basis
is called the Fourier Oracle FO. Another important insight from [Zha19a] is that
the Fourier Oracle, instead of adding the output of the oracle to the adversary’s
output register, does the opposite: It adds the value of the adversary’s output
register to the (Fourier-)transformed truth table

FO|x, η〉XY |φ〉F := |x, η〉XY |φ− χx,η〉F , (6.3)

where φ is the transformed truth table f and χx,η := (0, . . . , 0, η, 0, . . . , 0) is a
transformed truth table equal to 0 in all rows except for row x, where it has the
value η. Note that we subtract χx,η so that the reverse of QFT returns addition
of f(x).

Classically, a (uniformly) random oracle can be “compressed” by
lazy-sampling the responses, i.e. by answering with previous answers if there
are any, and with a fresh random value otherwise. Is lazy-sampling possible
for quantum accessible oracles? Surprisingly, the answer is yes. Thanks to the
groundbreaking ideas presented in [Zha19a] we know that there exists a
representation of a quantum random oracle that is efficiently implementable.

In the remainder of this section we present an efficient representation of
oracles for functions f sampled from product distributions. In the first part
we introduce a general structure of quantum-accessible oracles. In the second
part we generalize the idea of compressed random oracles to deal with non-
uniform distributions of functions. In the appendix of [Cza+19], we provide
additional details on the implementation of the procedures introduced in this
section and step-by-step calculations of important identities and facts concern-
ing compressed oracles. In Section 6.2.2.1 we recall in detail the compressed
oracle introduced in [Zha19a], where the distribution of functions is uniform
and the functions map bitstrings to bitstrings. We show the oracle in different
bases and present calculations that might be useful for developing intuition for
working with the new view on quantum random oracles.

6.2.1 General Structure of the Oracles
In this subsection we describe the general structure of quantum-accessible ora-
cles that will give us a high-level description of all the oracles we define in this
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thesis. A quantum-accessible random oracle consists of

1. Hilbert spaces for the inputHX , outputHY , and state registersHF ,

2. a procedure SampD that, on input a subset of the input space of the func-
tions inD, prepares a superposition of partial functions on that subset of
inputs with weights according to the respective marginal of the distribu-
tion D,

3. an update unitary FOD thatmight depend onD (in the case of compressed
oracles) or not (in the case of full oracles, Equation (6.3)).

First of all, let us note thatwe use the Fourier picture of the oracle as the basis for
our discussion. This picture, even though less intuitive at first sight, is simpler
to handle mathematically. The distribution of the functions we model by the
quantum oracle are implicitly given by the procedure SampD that when acting
on the |0〉 state generates a superposition of values consistent with outputs of
a function f sampled from D.

In the above structure the way we implement the oracle—in a compressed
way, or acting on full function tables—depends on the way we define FOD.

The definition of SampD is such that SampD(X )|0M〉 = ∑
f∈F

√
P[f ← D]|f〉

and is a unitary operator.
Quantum-accessible oracles work as follows. First the oracle state is pre-

pared in an all-zero state. Then at every query by the adversary we run FOD

which updates the state of the database. Further details are provided in the
following sections.

6.2.2 Non-uniform Oracles
One of the main results of this chapter is generalizing the idea of purification
and compression of quantum randomoracles to a class of non-uniform function
distributions. We show that the compressed-oracle technique can be used to
deal with distributions over functions with outputs independent of any prior
interactions. Examples of such functions are random Boolean functions that
output one with a given probability. In Section 6.2.2.1 we provide a number of
examples of the compressed-oracle technique for the uniform distribution.

We want to compress the following oracle

StO|x, y〉XY
∑
f∈F

√
P[f : f ← D] |f〉F

=
∑
f∈F

√
P[f : f ← D] |x, y + f(x) mod N〉XY |f〉F , (6.4)

where D is a distribution on the set of functions F = {f : X → Y}. The first
ingredient we need is an operation that prepares the superposition of function



6.2. Quantum-Accessible Oracles 141

truth tables according to the given distribution. More formally, we know a uni-
tary that for all S ⊆ X

SampD(S)|0|S|〉F (S) =
⊗
x∈S

∑
yx∈Y

√
P
[
yx = f(x) : f ← D

]
|yx〉F (x), (6.5)

where by F (x) we denote the register corresponding to x. In Section 6.2.2.2
we present an example of SampD for a non-uniform D. Applying QFT to the
adversary’s register3 gives us the Phase Oracle PhO that changes the phase of
the state according to the output value f(x). This picture is commonly used
in the context of bitstrings but is not very useful in our context. Additionally
transforming the oracle register brings us to the Fourier Oracle, that we will
focus on. This series of transformations can be depicted as a chain of oracles:

StO QFTYN←−−→ PhO QFTFN←−−→ FO, (6.6)

going “to the right” is done by applying QFTN and “to the left” by applying the
adjoint. Also note that register Y holds a single value in Y and register F holds
values in YM , the transform above is an appropriate tensor product of QFTN .
The non-uniform Fourier Oracle is defined as FO = QFTY F

N ◦ StO ◦ QFT† Y FN , as
a consequence of that definition we have

FO|x, η〉XY
∑
φ

1√
NM

∑
f∈F

√
P[f : f ← D] ωφ·fN |φ〉F (6.7)

= |x, η〉XY
∑
φ

1√
NM

∑
f∈F

√
P[f : f ← D] ωφ·fN |φ− χx,η mod N〉F . (6.8)

The main difference between uniform oracles and non-uniform oracles is that
in the latter, the initial state of the oracle in the Fourier basis is not necessarily an
all-zero state. That is because the unitary SampD—that is used to prepare the
initial state—is not the adjoint of the transformation between oracle pictures,
like it is the case for the uniform distribution.

Before we give all details of SampD let us discuss the two bases: the
Fourier basis and the prepared basis. To deal with the difference between
the initial 0 state and the initial Fourier basis truth tables we use yet
another alphabet and define Д (pronounced as [dε]) which denotes the
unprepared database. We call it like that because the initial state of Д is
the ((⊥, 0), . . . , (⊥, 0)) state. Moreover only by applying QFTD

N ◦ SampDD we
transform it to ∆, i.e the Fourier basis database. As we will see, operations
on Д are more intuitive and easier to define. We denote an unprepared
database by |Д〉D = |x1, и1〉D1|x2, и2〉D2 · · · |xq, иq〉Dq (where the Cyrillic letter
и is pronounced as [i]). By ∆Y (x) we denote the η value corresponding

3We denote this by QFTYN , where Y is the adversary’s output register
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to the pair in ∆ containing x and by ДX we denote the x values in Д. The
intuition behind the preparation procedure is to initialize the truth table of
the correct distribution in the correct basis. This notion is not visible in the
uniform-distribution case, because there the sampling procedure for the
uniform distribution U is the Fourier transform: SampU = QFT†N , and the
database pictures ∆ and Д are equivalent. The following chain of databases
similar to Equation (6.6) represents different pictures, i.e. bases, in which the
compressed database can be viewed

|Д〉 SampD←−−−→ |D〉 QFTD
Y

N←−−−→ |∆〉. (6.9)

Before defining compressed oracles for non-uniform function distributions,
let us take a step back and think about classical lazy sampling for such a dis-
tribution. Let f be a random function from a distribution D. In principle, lazy
sampling is always possible as follows. When the first input x1 is queried, just
sample from the marginal distribution for f(x1). Say the outcome is y1 for the
next query with x2, we sample from the conditional distribution of f(x2) given
that f(x1) = y1, etc.

Whether actual lazy sampling is feasible depends on the complexity of sam-
pling from the conditional distributions of function values given that a polyno-
mial number of other function values are already fixed.

The method for quantum lazy sampling that we generalize in this chapter
is applicable only to a certain class of distributions. The distributions that we
analyze must be independent for every input. By f(S) we denote the part of
the full truth table of f corresponding to inputs from S. Below we provide a
definition of product distributions:

Definition 6.1 (Product distribution). A distribution D on a set of functions F ⊆
{f : X → Y} is called product if for all disjoint S1,S2 ⊆ X , f(S1) and f(S2) are
independently distributed when f ← D.

The situation when constructing compressed superposition oracles for non-
uniformly distributed random functions is very similar. In this casewe need the
operations SampD(S) to be efficiently implementable for the compressed oracle
to be efficient. Here, S ⊆ X . By inputting a set to SampD we mean that the
operation will prepare a superposition of outputs to elements of the set.

Let us now come back to Definition 6.1, we want to translate the constraint
on distributions to constraints on the quantum sampling procedure. The defi-
nition requires that the distribution is independent for any S1 and S2, this leads
to the following requirement on sampling procedures:

∀S1,S2 ⊆ X : SampD(S1 ∪ S2) = SampD(S1) ◦ SampD(S2). (6.10)
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Let us present a detailed definition of sampling procedures for product dis-
tributions4.

Definition 6.2 (Sampling procedure for a product D). A sampling procedure
SampD for a product distributionD (as defined in Definition 6.1) is a family of unitary
operators

{SampD(S1) : S1 ⊆ X} , (6.11)

where each operator fulfills the following conditions:

(i) It is efficiently implementable in the number of inputs |S1|.

(ii) It prepares the appropriate superposition on the zero state:

SampD(S1)|0|S1|〉F1 =
∑

~y1∈Y|S1|

√
P

f←D
[f(S1) = ~y1]|~y1〉F1 . (6.12)

(iii) The operators are independent, so for S1,S2 ⊆ X such that S1∩S2 = ∅ we have:

SampF1F2
D (S1 ∪ S2) = SampF1

D (S1) ◦ SampF2
D (S2) (6.13)

and F1 and F2 are different quantum registers.

Note that for SampD(S) to be efficient, it is not sufficient that the probability
distributions D are classically efficiently samplable. This is because running a
reversible circuit obtained from a classical sampling algorithm on a superpo-
sition of random inputs will, in general, entangle the sample with the garbage
output of the reversible circuit. The problem of efficiently creating a superposi-
tionwith amplitudes

√
p(x) for some probability distributionp has appeared in

other contexts, e.g. in classical-client quantum fully homomorphic encryption
[Mah18].

Before we state the algorithm that realizes the general Compressed Fourier
Oracle CFOD we provide a high-level description of the procedure. The oracle
CFOD is a unitary algorithm that performs quantum lazy sampling, maintain-
ing a compressed database of the adversary’s queries. For the algorithm to be
correct—indistinguishable for all adversaries from the full oracle—it has to re-
spect the following invariants of the database: The full oracle is oblivious to
the order in which a set of inputs is queried. Hence the same property has to
hold for the compressed oracle, i.e. we cannot keep entries (x, η) in the order of
queries. We ensure this property by keeping the database sorted according to x.

4An interesting example of a distribution that is not product but which we can quantumly
lazy-sample is the following: It is uniform for inputs in {0, 1}n \ {x} for any x and is fully
determined on the “last” input: f(x) =

⊕
x′ 6=x f(x′).
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The second issue concerns the danger of storing too much information. If
after the query we save (x, η) in the database but the resulting entry mapped
to (x, 0) in the unprepared basis, i.e. the basis before applying Samp, then the
compressed database would entangle itself with the adversary, unlike in the
case of the full oracle. Hence the database cannot contain 0 in the unprepared
basis.

In the following we sketch the workings of the quantum algorithm CFOD

responsible for updating the oracle register. The set of inputs X is expanded
by the symbol ⊥, denoting an empty entry in the quantum database. If af-
ter q queries the database has a suffix of u pairs of the form (⊥, 0), we say the
database has s = q − u non-padding entries.

CFOD: On input |x, η〉A and holding the database |(x1, и1), . . . , (xs, иs), (⊥
, 0), . . . , (⊥, 0)〉D do the following:

1. Find the index l ∈ [q] of the register holding the first xl from the right that
is xl ≤ x, we should insert (x, η) into this register.

2. If x 6= xl: insert x in a register after the last element of the database and
shift it to position l, moving the intermediate registers backwards.

3. Apply QFTDYl
N ◦ SampDlD (x) to change the basis to the Fourier basis (in

which the adversary’s η is encoded) and update register Dl (i.e. the l’th
register in D) to contain (xl, ηl − η), change the basis back to original by
applying Samp†DlD (x) ◦ QFT†D

Y
l

N .

4. Check if register l contains a pair of the form (xl, 0), if yes subtract x from
the first part to yield (⊥, 0) and shift it back to the end of the database.

5. Uncompute5 l.

Using this notation, Algorithm 6.1 defines the procedure of updates of the
database of the compressed database. We refer to the appendix of [Cza+19]
for the fully detailed description of CFOD.

Below in Algorithm 6.2 we explain how to uncompute l in Line 12 of Algo-
rithm 6.1.

In Algorithm 6.1 we use the fact that SampD is a local sampling procedure,
Definition 6.2; Note that we write SampD(x)

D (x), so the sampling is independent
from all queries that are already in the database.

We would like to stress that to keep the compressed oracle CFOD a unitary
operation we always keep the database of size q. This can be easily changed by

5Uncomputing a function means in the context of quantum computing applying the conju-
gate of the unitary calculating this function.
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Algorithm 6.1 General CFOD

input: Unprepared database and adversary query: |x, η〉XY |Д〉D
output: |x, η〉XY |Д′〉D

1: Count in register S the number of non-padding (ДX 6=⊥) entries s in D
2: if x 6∈ ДX then . add
3: Insert x in ДX in the right place and add 1 to S . keeping ДX sorted
4: Apply QFTDY (x)

N SampD
Y (x)

D (x) . prepare the database: Д(x) 7→ ∆(x)
5: Subtract η from ∆Y (x) . update entry with x
6: Apply Samp†D(x)

D (x)QFT†D
Y (x)

N . unprepare the database: ∆(x) 7→ Д(x)
7: In register L save location l of x in Д
8: if ДY

l = 0 then . remove or do nothing
9: Remove x from DX

l and shift register DX
l to the back . ДX

l 7→⊥
10: if ДX

l 6= x then . xwas removed
11: Shift DY

l to the back and subtract 1 from S

12: Uncompute l from register L . Algorithm 6.2
13: Uncompute s from register S
14: return |x, η〉XY |Д′〉D . Д′ is the modified database

Algorithm 6.2 Uncompute L in Line 12 of Algorithm 6.1
1: Control on registers X and DX

2: for i = 1 . . . , s− 1 do
3: if ДX

i = x then
4: Subtract i from L
5: else if ДX

i < x and x < ДX
i+1 then

6: Subtract i+ 1 from L

always appending an empty register at the beginning of each query of adver-
saryA. The current formulation of CFOD assumes that there is an upper bound
on the number of queries made by the adversary, this is not a fundamental re-
quirement.

The interface corresponding to the compressed Fourier oracle CFOD inter-
prets the adversary’s output register in the Fourier basis. When we want to
change the basis to the standard one, we apply QFTDY

N to the database register
and QFTY

N to the adversary’s output register. These basis changes give rise to
the versions of oracle analogous to the full-oracle case:

CStO QFTYN←−−→ CPhO QFTD
Y

N←−−−→ CFO. (6.14)

The intermediate oracle is the compressed phase oracle.
The decompression procedure for the general Compressed Fourier Oracle

is given by Algorithm 6.3. The output of the decompression procedure φ(Д) is
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Algorithm 6.3 General Decompression Procedure DecD
input: Unprepared database: |Д〉D
output: Prepared, Fourier-basis truth table: |φ(Д)〉

1: Count in register S the number of non-padding (ДX 6=⊥) entries s in D
2: Initialize register F in the state⊗x∈X |0〉
3: for i = 1, 2, . . . , s do . Controlled on S
4: Swap register DY

i with register F (xi)
5: for x ∈ X in descending order do
6: if F (x) holds a value 6= 0 then
7: Subtract x from register DX

s . ДX
s 7→⊥

8: Subtract 1 from register S
9: Discard D and S
10: Apply QFTF

NSampFD(X ) . Prepare the database

the state holding the prepared Fourier-basis truth table of the functions from
D, which by construction is consistent with the adversary’s interactionwith the
compressed oracle.

The decompression can be informally described as follows. The first opera-
tion coherently counts the number of ДX 6=⊥ and stores the result in a register
S. Next we prepare a fresh all-zero initial state of a function from X to Y , i.e.
|X | registers of dimension N , all in the zero state. These registers will hold
the final FO superposition oracle state. The next step is swapping each Y -type
register of the CFO-database with the prepared zero state in the FO at the posi-
tion indicated by the corresponding X-type register in the CFO database. This
FOR loop is controlled on register S. Note that after preparing S we do not
modify S anymore in this step. The task left to do is deleting x’s from D. It is
made possible by the fact that the non-padding entries of the CFO database are
nonzero and ordered. That is why we can iterate over the entries of the truth
table F and, conditioned on the entry not being 0, delete the last entry of DX

and reducing S by one to update the number of remaining non-padding entries
in the CFO-database. Here the loop range does not depend on the size of the
database, just the size of the domain. Finally, we switch to the correct basis to
end up with a full oracle of Fourier type, i.e. a FO.
Theorem 6.3 (Correctness of CFOD). Say D is a product distribution
(Definition 6.1) over functions, let CFOD be defined as in Algorithm 6.1 and FO as
in Equation(6.8). Let z be a random arbitrarily distributed string. Then for any
quantum adversary A making q quantum queries we have∣∣∣P [b = 1 : b← AFO(z)

]
− P

[
b = 1 : b← ACFO(z)

]∣∣∣ = 0. (6.15)

Proof. We will show that

|ΨFO〉AF = DecDD |ΨCFO〉AD, (6.16)
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where |ΨFO〉AF is the joint state of the adversary and the oracle resulting from
the interaction ofAwith FO and |ΨCFO〉AD is the state resulting from the interac-
tion ofAwith CFOD. The state |ΨFO〉AF is generated by applying∏q

i=1 Ui ◦FO to
|ψ0〉A|0M〉F , where the |ψ0〉A is the initial state of the adversary. In the case of the
compressed oracle, the state |ΨCFO〉AD is generated by applying ∏q

i=1 Ui ◦ CFO
to |Ψ0〉A|(⊥, 0)q〉D, where (⊥, 0)q denotes q pairs (⊥, 0).

We can focus on the state equality from Equation (6.16) because if they are
indeed equal, then any adversary measurement on |ΨFO〉AF will yield the out-
put b = 1 with the same probability as on DecDD |ΨCFO〉AD.

Let us call a database state

|Д(~x,~и)〉 := |x, η〉XY |x1, и1〉D1 · · · |xs, иs〉Ds · · · |⊥, 0〉Dq , (6.17)

where ~x := (x1, x2, . . . , xs) and ~и := (и1, и2, . . . ,иs) well-formed, if no xi in ~x is
⊥ and no иi in ~и is zero.

To prove Equation (6.16) we show that

FO ◦ DecD|Д(~x,~и)〉 = DecD ◦ CFOD|Д(~x,~и)〉. (6.18)

This is sufficient for the proof of the theorem as |ΨFO〉 is generated by a series
of the adversary’s unitaries intertwined with oracle calls. If we show that FO =
DecD ◦ CFOD ◦ Dec†D, when acting on well-formed databases, then everything
that happens on the oracle’s register side can be compressed. Note that as we
start from the empty oracle state and only apply the oracle to the oracle register,
the database will always be well-formed.

We study the action of DecD on the state in Equation (6.17). To write the
output state we need to name the matrix elements of the sampling unitary:
(SampD(X ))f ~и = af ~и(X ), the column index consists of a vector of size M
with exactly s non-zero entries: ~и = (0, . . . , 0, и1, 0 . . . , 0, и2, 0, . . .). The
decompressed state is

|Υ(~x,~и)〉F := DecD|Д(~x,~и)〉

=
∑
φ∈F

1√
NM

∑
f∈F

ωφ·fN af ~и(X ) |φ0〉F (0) · · · |φM−1〉F (M−1), (6.19)

where φ · f = ∑
x∈X φxf(x) mod N and by f(x) we denote row number x of the

function truth table f .
Using the fact that SampD is defined for a product distribution, as in Defini-

tion 6.2, we have that SampD(X )
= SampD(X \ {x}) ◦ SampD(x) and we can focus our attention on some fixed
x: isolate register F (x) with amplitudes depending only on x. Let us compute
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this state after application of FO, note that FO only subtracts η from F(x):

FO|x, η〉XY |Υ(~x,~и)〉F = |x, η〉XY
∑

φ′,f ′∈F(X\{x})

1√
NM−1

ωφ
′·f ′
N af ′~и′(X \ {x})

· |φ0〉F (0) · · ·

 ∑
ζ,z∈[N ]

1√
N
ωζ·zN azиx(x) |ζ − η〉F (x)

 · · · |φM−1〉F (M−1),

(6.20)

where ~и′ ∈ YM−1 denotes the vector of иi without the row with index x. Note
that иx = 0 if xwas not in ~x before decompression and иx 6= 0 otherwise.

The harder part of the proof is showing that the right hand side of Equa-
tion (6.18) actually equals the left hand side that we just analyzed. Let us in-
spect |Д(~x,~и)〉 after application of the compressed oracle

CFOD|x, η〉XY |Д(~x,~и)〉D = |x, η〉XY

·

 ∑
и̃x 6=0

α(x, η,иx, и̃x) |Д′ADD/UPD〉D + α(x, η,иx, 0) |Д′REM/NOT〉D

 , (6.21)

where и̃x is the new value of ДY (x) and иx is the old content of the database.
By Д′ADD/UPD we denote the database Д(~x,~и) with entry и̃x 6= 0, it corresponds
to x being added or updated. By Д′REM/NOT we denote the database where и̃x =
0, meaning x was removed from Д or nothing happened. The function α(·)
denotes the corresponding amplitudes.

Beforewe proceedwith decompression of the above state let us calculate the
amplitudes α. Again using the definition of SampD we describe the action of the
compressed oracle on a single x step by step. Belowwedenote byRem removing
и = 0 from Д and by Sub subtraction of η from database register DY . We start
with a database containing (x, иx), which we can always assume due to line 3
in Algorithm 6.1. In the case x was not already in Д, then иx = 0, otherwise
it is the value defined in previous queries. The simplification we make is to
describe CFOD acting on a single-entry database. We do not lose generality by
that as the only thing that changes for q larger than one is maintaining proper
sorting and padding, which can be easily done (see appendix of [Cza+19] for
details). The calculation of CFOD on a basis state follows:

|x, η〉XY |x, иx〉D
SampD7→ |x, η〉XY

∑
z∈[N ]

azиx(x) |x, z〉D (6.22)

QFTD
Y

N7→ |x, η〉XY
∑
z∈[N ]

azиx(x)
∑
ζ∈[N ]

1√
N
ωζ·zN |x, ζ〉D (6.23)

Sub7→|x, η〉XY
∑

z,ζ∈[N ]
azиx(x) 1√

N
ωζ·zN |x, ζ − η〉D (6.24)
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QFT†D
Y

N7→ |x, η〉XY
∑

z,ζ∈[N ]
azиx(x) 1√

N
ωζ·zN

∑
z′∈[N ]

1√
N
ω̄
z′·(ζ−η)
N |x, z′〉D (6.25)

=|x, η〉XY
∑
z∈[N ]

azиx(x)
∑

z′,ζ∈[N ]

1
N
ωζ·zN ω̄

z′·(ζ−η)
N︸ ︷︷ ︸

=ω̄−z·ηN δ(z′,z)

|x, z′〉D (6.26)

Samp†D
D

(x)
7→ |x, η〉XY

∑
z∈[N ]

azиx(x) ωz·ηN
∑

и̃x∈[N ]
āzи̃x(x) |x, и̃x〉D (6.27)

=|x, η〉XY
∑

и̃x∈[N ]

∑
z∈[N ]

azиx(x) ωz·ηN āzи̃x(x)
︸ ︷︷ ︸

:=α(x,η,иx,и̃x)

|x, и̃x〉D (6.28)

RemD

7→ |x, η〉XY

 ∑
и∈[N ]\{0}

α(x, η,иx, и̃x) |x, и̃x〉D + α(x, η,иx, 0) |⊥, 0〉D

 .
(6.29)

In the above equations we have defined α as

α(x, η,иx, и̃x) :=
∑
z∈[N ]

azиx(x) āzи̃x(x) ωz·ηN . (6.30)

After decompressing the state from Equation (6.21), the resulting database
state will be∑и̃x 6=0 α(x, η,иx, и̃x) |Υ(Д′ADD/UPD)〉+α(x, η,иx, 0) |Υ(Д′REM/NOT)〉D,
where we overload notation of |Υ(~x,~и)〉 to denote that (~x,~и) consists of values
in the respective databases. We can write down this state in more detail using
Equation (6.20):

DecD ◦ CFOD|x, η〉XY |Д(~x,~и)〉D

=
∑

φ′,f ′∈F(X\{x})

1√
NM−1

ωφ
′·f ′
N af ′~и′(X \ {x}) |φ0〉F (0) · · ·

·

 ∑
и̃x 6=0

α(x, η,иx, и̃x)
∑

ζ,z∈[N ]

1√
N
ωζ·zN azи̃x(x)|ζ〉F (x)

+α(x, η,иx, 0)
∑

ζ,z∈[N ]

1√
N
ωζ·zN az0(x)|ζ〉F (x)

 · · · |φM−1〉F (M−1). (6.31)

In the above equation we notice that

∑
и̃x 6=0

α(x, η,иx, и̃x)
∑

ζ,z∈[N ]

1√
N
ωζ·zN azи̃x(x)|ζ〉F (x)

+ α(x, η,иx, 0)
∑

ζ,z∈[N ]

1√
N
ωζ·zN az0(x)|ζ〉F (x)
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=
∑

ζ,z∈[N ]

1√
N
ωζ·zN

∑
и̃x∈[N ]

α(x, η,иx, и̃x) azи̃x(x) |ζ〉F (x) (6.32)

which comes from the fact that SampD is a unitary and ∑j∈[N ] aij ākj = δik and
therefore we have∑

и̃x∈[N ]
α(x, η,иx, и̃x) azи̃x(x)

=
∑
z′∈[N ]

∑
и̃x∈[N ]

āz′и̃x(x) azи̃x(x)
︸ ︷︷ ︸

=δz′,z

az′иx(x) ωz
′·η
N = azиx(x) ωz·ηN . (6.33)

Together with changing the variable ζ 7→ ζ − η and observing Equation (6.20)
we derive the claimed identity:

DecD ◦ CFOD|x, η〉XY |Д(~x,~и)〉D
= FO |x, η〉XY |Υ(~x,~и)〉 = FO ◦ DecD |x, η〉XY |Д(~x,~и)〉D. (6.34)

6.2.2.1 Uniform Oracles

The uniform distribution is an especially important distribution we can lazy
sample. In this case the unprepared basis simplifies to the Fourier basis. The
sampling procedure SampU equals QFT†N . We denote the compressed oracle for
U over the set X Y by CStOY .

For ease of exposition, and to highlight the connection to the formalism
in [Zha19a], we present a discussion of compressed oracles with
uniform oracles that model functions sampled uniformly at random from
F := {f : {0, 1}m → {0, 1}n} .

We denote the uniform distribution over F by U. The cardinality of the set
of functions is |F| = 2n2m and the truth table of any f ∈ F can be represented
by 2m rows of n bits each. Uniform oracles are the most studied in the random-
oracle model and are also analyzed in [Zha19a].

The transformation we use in the case of uniformly sampled functions is
the Hadamard transform. The unitary operation to change between types of
oracles is defined as

HTn|x〉 := 1√
2n

∑
ξ∈{0,1}n

(−1)ξ·x|ξ〉, (6.35)

where ξ · x is the inner product modulo two between the n-bit strings ξ and x
viewed as vectors. In this section the registers X, Y are vectors in the n-qubit
Hilbert space (C2)⊗n.
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In what follows we first focus on full oracles, i.e. not compressed ones. We
analyze in detail the relations betweendifferent pictures of the oracles: the Stan-
dard Oracle, the Fourier Oracle, and the intermediate Phase Oracle. Next we
provide an explicit algorithmic description of the compressed oracle and dis-
cuss the behavior of the compressed oracle in different pictures.

For the QROM, usually the Standard Oracle is the oracle used. The initial
state of the oracle is the uniform superposition of truth tables f representing
functions f : {0, 1}m → {0, 1}n. The Standard Oracle acts as follows

StOU|x, y〉XY
1√
|F|

∑
f∈F
|f〉F = 1√

|F|

∑
f∈F
|x, y ⊕ f(x)〉XY ⊗ |f〉F , (6.36)

where instead of modular addition we use bitwise XOR denoted by ⊕. Note
that in the above formulation StOU is just a controlled XOR operation from the
x-th row of the truth table to the output register Y . We add the subscript U to
denote that in the case of uniform distribution we also fix the input and output
sets to bit-strings and the operation the oracle performs is not addition modulo
N . The register F contains vectors in (C2)⊗n2m .

The Fourier Oracle that stores the queries of the adversary is defined as

FOU|x, η〉XY |φ〉F := |x, η〉XY |φ⊕ χx,η〉F , (6.37)

where χx,η := (0n, . . . , 0n, η, 0n, . . . , 0n) is a table with 2m rows, among which
only the x-th row equals η and the rest are filled with zeros. Note that initially
the Y register is in the Hadamard basis, for that reason we use Greek letters to
denote its value.

To model the random oracle we initialize the oracle register F in the
Hadamard basis in the all 0 state |φ〉 = |0n2m〉.

If we take the Standard Oracle again and transform the adversary’s Y regis-
ter instead, again using HT, we recover the commonly used Phase Oracle. More
formally, the phase oracle is defined as

PhOU := (1Xm ⊗ HTY
n )⊗ 1

F
n2m ◦ StOU ◦ (1Xm ⊗ HTY

n )⊗ 1
F
n2m , (6.38)

where 1n is the identity operator acting on n qubits.
Applying theHadamard transform also to registerF will give us the Fourier

Oracle

FOU = (1XY )⊗ HTF
n2m ◦ PhOU ◦ (1XY )⊗ HTF

n2m . (6.39)

The above relations show that we have a chain of oracles, similar to Equa-
tion (6.6):

StOU
HTYn←−→ PhOU

HTFn2m←−−−→ FOU. (6.40)

In the following paragraphs we present some calculations explicitly show-
ing how to use the technique and helping understanding why it is correct.
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FullOracles, AdditionalDetails In this sectionwe showdetailed calculations
of identities claimed in Section 6.2.2.1. First we analyze the Phase Oracle, intro-
duced in Equation (6.38). We can check by direct calculation that this yields
the standard Phase Oracle,

PhOU|x, η〉XY |f〉F = (−1)η·f(x)|x, η〉XY |f〉F . (6.41)

Including the full initial state of the oracle register, we calculate

PhOU|x, η〉XY
1√
|F|

∑
f∈F
|f〉F

= (1Xm ⊗ HTY
n )⊗ 1

F
n2mStOU|x〉X

1√
2n
∑
y

(−1)η·y|y〉Y
1√
|F|

∑
f∈F
|f〉F (6.42)

= (1Xm ⊗ HTY
n )⊗ 1

F
n2m|x〉X

1√
2n
∑
y

∑
f∈F

(−1)η·y|y ⊕ f(x)〉Y
1√
|F|
|f〉F (6.43)

= 1√
|F|

∑
f∈F
|x〉X

∑
ζ

1
2n
∑
y

(−1)η·y(−1)(y⊕f(x))·ζ

︸ ︷︷ ︸
=δ(η,ζ)(−1)ζ·f(x)

|ζ〉Y |f〉F (6.44)

= 1√
|F|

∑
f∈F

(−1)η·f(x)|x〉X |η〉Y |f〉F . (6.45)

Applying theHadamard transform also to registerF will give us the Fourier
Oracle. In the following calculation we denote acting on register F with HT⊗2m

n2m

by HTF
n2m .

HTF
n2m ◦ PhOU ◦ HTF

n2m |x, η〉XY |02mn〉F = HTF
n2m

1√
|F|

∑
f∈F

(−1)η·f(x)|x, η〉|f〉F

= 1
|F|

∑
φ,f

(−1)φ·f (−1)η·f(x)|x, η〉|φ〉F

=
∑
φ

1
2n(2m−1)

∑
f(x′ 6=x)

(−1)φx′ ·f(x′)

︸ ︷︷ ︸
=δ(φx′ ,0n)

1
2n
∑
f(x)

(−1)φx·f(x)(−1)η·f(x)

︸ ︷︷ ︸
=δ(φx,η)

|x, η〉|φ〉F

= |x, η〉|02mn ⊕ χx,η〉 (6.46)

where we write f(x) and φx to denote the x-th row of the truth table f and φ
respectively.

Compressed Oracles, Additional Details Let us state the input-output be-
havior of the compressed oracle CFOU for uniform distributions. The input-
output behavior of CFOU on basis states is given by the following equation, xr is
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the smallest xi ∈ DX such that xr ≥ x and |ψr−1〉 := |x1, η1〉D1 · · · |xr−1, ηr−1〉Dr−1 :

CFOU|x, η〉XY |x1, η1〉D1 · · · |xq−1, ηq−1〉Dq−1|⊥, 0n〉Dq = |x, η〉XY |ψr−1〉

⊗



|xr, ηr〉Dr · · · |xq−1, ηq−1〉Dq−1 |⊥, 0n〉Dq if η = 0n,
|x, η〉Dr |xr, ηr〉Dr+1 · · · |xq−1, ηq−1〉Dq if η 6= 0n, x 6= xr,

|xr, ηr ⊕ η〉Dr · · · |xq−1, ηq−1〉Dq−1|⊥, 0n〉Dq if η 6= 0n, x = xr,

η 6= ηr,

|xr+1, ηr+1〉Dr · · · |xq−1, ηq−1〉Dq−2|⊥, 0n〉Dq−1|⊥, 0n〉Dq if η 6= 0n, x = xr,

η = ηr.

(6.47)
In the following let us change the picture of the compressed oracle to see

how the Compressed Standard Oracle and Compressed Phase Oracle act on
basis states. Let us begin with the Phase Oracle, given by the Hadamard trans-
form of the oracle database

CPhOU :=
(
1n+m ⊗ HTDY

n

)
◦ CFOU ◦

(
1n+m ⊗ HTDY

n

)
, (6.48)

where by HTDY

n we denote transforming just the Y registers of the database:
HTDY

n := (1m ⊗ HTn)⊗q. Let us calculate the outcome of applying CPhO to a
state for the first time, for simplicity we omit all but the first register of D

CPhOU|x, η〉XY
1√
2n

∑
z∈{0,1}n

|⊥, z〉D =
(
1n+m ⊗ HTDY

n

)
◦ CFOU|x, η〉XY |⊥, 0n〉D

(6.49)
=
(
1n+m ⊗ HTDY

n

)
((1− δ(η, 0n))|x, η〉XY |x, η〉D + δ(η, 0n)|x, η〉XY |⊥, 0n〉D)

(6.50)

= 1√
2n

∑
z∈{0,1}n

((1− δ(η, 0n))(−1)η·z|x, η〉XY |x, z〉D + δ(η, 0n)|x, 0n〉XY |⊥, z〉D) .

(6.51)
If we defined the Compressed Phase Oracle from scratch we might be tempted
to omit the coherent deletion of η = 0n. The following attack shows that this
would brake the correctness of the compressed oracles: The adversary inputs
the equal superposition in theX register 1√

2m
∑
x|x, 0n〉XY , after interactingwith

the regular CPhOU the state after a single query is
1√
2m

∑
x

|x, 0n〉XY
CPhOU7→ 1√

2m
∑
x

|x, 0n〉XY
1√
2n
∑
z

|⊥, z〉D, (6.52)

but with a modified oracle that does not take care of this deleting, simply omits
the term with δ(η, 0n), let us call it CPhO′U, the resulting state is

1√
2m

∑
x

|x, 0n〉XY
CPhO′U7→ 1√

2m
∑
x

|x, 0n〉XY
1√
2n
∑
z

|x, z〉D. (6.53)
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Performing a measurement of the X register in the Hadamard basis distin-
guishes the two states with probability 1− 1

2m .
Let us inspect the state after making two queries to the Compressed Phase

Oracle

CPhOU|x2, η2〉X2Y2CPhOU|x1, η1〉X1Y1

1
2n

∑
z1,z2∈{0,1}n

|⊥, z1〉D1|⊥, z2〉D2

= |x2, η2〉|x1, η1〉
1
2n

∑
z1,z2

(−1)η1·z1δ(η2, 0n)(1− δ(η1, 0n))|x1, z1〉F1|⊥, z2〉F2︸ ︷︷ ︸
=|ψNOT)

+ δ(η2, 0n)δ(η1, 0n)|⊥, z1〉F1|⊥, z2〉F2︸ ︷︷ ︸
=|ψNOT)

+ (−1)η2·z1(1− δ(η2, 0n))δ(η1, 0n)|x2, z1〉F1|⊥, z2〉F2︸ ︷︷ ︸
=|ψADD)

+(−1)η1·z1(−1)η2·z2(1− δ(η2, 0n))(1− δ(x1, x2))(1− δ(η1, 0n))|x1, z1〉F1|x2, z2〉F2︸ ︷︷ ︸
=|ψADD)

+(1− δ(η2, 0n))δ(x1, x2)δ(η1, η2)(1− δ(η1, 0n))|⊥, z1〉F1|⊥, z2〉F2︸ ︷︷ ︸
=|ψREM)

+ (1− δ(η2, 0n))δ(x1, x2)(1− δ(η1, η2))(1− δ(η1, 0n))

·(−1)(η1⊕η2)·z1|x1, z1〉F1|⊥, z2〉F2︸ ︷︷ ︸
=|ψUPD)

 , (6.54)

where by the superscripts we denote the operation performed by CPhOU on the
compressed database. By ADD we denote adding a new pair (x, η), by UPD
changing the Y register of an already stored database entry, REM signifies re-
moval of a database entry, and NOT stands for doing nothing, that happens if
the queried η = 0n.

Let us discuss the Compressed Standard Oracle. We know that it is the
Hadamard transform of the adversary’s register followed by CPhOU

CStOU = 1m ⊗ HTY
n ◦ CPhOU ◦ 1m ⊗ HTY

n . (6.55)

Let us present the action of CStO in the first query of the adversary

CStOU|x, y〉XY
1√
2n

∑
z∈{0,1}n

|⊥, z〉D

= 1m ⊗ HTY
n ◦ CPhOU

1√
2n

∑
η∈{0,1}n

(−1)η·y|x, η〉XY
1√
2n

∑
z∈{0,1}n

|⊥, z〉D (6.56)

= 1m ⊗ HTY
n

1√
2n

∑
η∈{0,1}n

1√
2n

∑
z∈{0,1}n

(−1)η·y



6.2. Quantum-Accessible Oracles 155

(1− δ(η, 0n))(−1)η·z|x, η〉XY |x, z〉D + δ(η, 0n)|x, 0n〉XY |⊥, z〉D

 (6.57)

= 1
2n
∑
y′,η

1√
2n
∑
z

(−1)η·y(−1)y′·η
(1− δ(η, 0n))(−1)η·z|x, y′〉XY |x, z〉D

+ δ(η, 0n)|x, y′〉XY |⊥, z〉D

 (6.58)

=
∑
y′

1√
2n
∑
z

1
2n
∑
η 6=0

(−1)η·y(−1)y′·η(−1)η·z

︸ ︷︷ ︸
=δ(y′,y⊕z)− 1

2n

|x, y′〉XY |x, z〉D

+
∑
y′

1√
2n
∑
z

1
2n |x, y

′〉XY |⊥, z〉D (6.59)

= 1√
2n
∑
z

(|x, y ⊕ z〉XY |x, z〉D

− 1
2n
∑
y′
|x, y′〉XY |x, z〉D + 1

2n
∑
y′
|x, y′〉XY |⊥, z〉D

 . (6.60)

We would like to note that a similar calculation and resulting state is presented
in [HI19].

6.2.2.2 Example Non-Uniform Distributions

Let us say we want to efficiently simulate a quantum oracle for a random func-
tion h : {0, 1}m → {0, 1}, such that h(x) = 1 with probability λ. Then the
adding function of the corresponding compressed oracle is ∀x ∈ {0, 1}m:

Sampλ(x) :=
( √

1− λ
√
λ√

λ −
√

1− λ

)
, (6.61)

independent from any previous queries. This observation comes in useful in
tasks like search in a sparse database.

6.2.2.3 Multiple Quantum Interfaces

We model access to multiple quantum oracles at once by specifying a special
quantum register I . This register holds information about the particular inter-
face that is queried. Note that this setup allows the adversary to make a super-
position of queries to different oracles. If however one would want to make the
interface register classical, we can just perform a standard basis measurement
of I .

In the context of compressed oracles the multiple interfaces hold different
databases. Of course if oracles are somehow related then so are the databases.
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6.3 One-way to Hiding Lemma for Compressed Or-
acles

The fundamental game-playing lemma, Lemma 2.22, is a very powerful tool
in proofs that include a random oracle. A common use of the framework is to
reprogram the randomoracle in a useful way. The fundamental lemma gives us
a simple way of calculating howmuch the reprogramming costs in terms of the
adversary’s advantage—the difference between probabilities of A outputting
1 when interacting with one game or the other. The lemma that provides a
counterpart to Lemma 2.22 in this context valid for quantum accessible oracles
is the One-Way to Hiding (O2H) Lemma first introduced by Unruh in [Unr14].

In this section we generalize the O2H lemma to work with the
compressed-oracle technique. The oracle register in this technique is a
superposition over databases of input-output pairs. A relation on a database
is a specific set of databases that fulfill some requirement, e.g., contains
a collision (two entries with distinct inputs and the same output). The
O2H lemma, as stated in [AHU19], works with punctured oracles, these
are quantum oracles that include a binary measurement after every query.
After introducing the notion of relations on databases we bring the concept
of punctured oracles to the compressed-oracles technique. Punctured
compressed oracles involve measurements on superpositions of databases.
These measurements allow to analyze adversaries that had access to oracles
that e.g. never output colliding outputs. This is a very useful situation,
considering how often we lazy-sample functions in cryptographic proofs and
then want to focus on some transcripts of input-output pairs. Our version of
the O2H lemma provides a bound on the distinguishing advantage between
an oracle that is not punctured and an oracle that is. The bound in the O2H
lemma is stated in terms of the probability of any measurement in the
punctured oracle succeeding, i.e., finding a database in the oracle register that
fulfills the relation we discuss. The strength of our result lies in how versatile
the new O2H lemma is, moreover the proof of the lemma is almost the same
as the one in [AHU19].

In the original statement of the O2H lemma, the main idea is that there is
a marked subset of inputs to the random oracle H, and an adversary tries to
distinguish the situation in which she interacts with the normal oracle from an
interaction with an oracle G that differs only on this set. The lemma states a
bound for the distinguishing advantage which depends on the probability of
an external algorithmmeasuring the input register of the adversary and seeing
an element of the marked set. This probability is usually small, for random
marked sets.

Recently this technique was generalized by Ambainis, Hamburg, and Un-
ruh in [AHU19]. The main technical idea introduced by the generalized O2H
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lemma is to exchange the oracle G with a so-called punctured oracle that mea-
sures the input of the adversary after every query. The bound on the adver-
sary’s advantage is given by the probability of this measurement succeeding.
This technique forms the link with the classical identical-until-bad games: we
perform a binary measurement on the “bad” event and bound the advantage
by the probability of observing this bad event.

In this chapter we present a generalization of this lemma that involves the
use of compressed oracles. Our idea is to measure the database of the com-
pressed oracle, which makes the lemma more versatile and easier to use for
more general quantum oracles.

Below we state our generalized O2H lemmas. Most proofs of [AHU19] ap-
ply almostword byword sowe just describe the differences and refer the reader
to the original work.

6.3.1 Relations on Databases
The key concept we use are relations on the database of the compressed oracle.

Definition 6.4 (RelationR onD). LetD be a database of size at most q pairs (x, y) ∈
X × Y . We call a subset6 R ⊆ X × ⋃t∈[q+1] (X × Y)t a relation R on D.

The set X that precedes the set of databases of different sizes corresponds
to the adversary’s input register. Including this set in Definition 6.4 allow us
to consider relations being subsets of inputs, that is how we recover punctured
oracles from [AHU19]. Usually though, we focus on relations limited to the ac-
tual database stored in the oracle registers. Weprovide two important examples
for relations, the zero-preimage and the collision relation. We only consider
preimages of zero so we call the former relation just the preimage relation. It is
satisfied when the output of the oracle is 0:

Rpreim := {((x1, y1), · · · , (xs, ys)) ∈
⋃

t∈[q+1]
(X × Y)t : ∃i : yi = 0}. (6.62)

Note that we omit the set of adversary’s inputs X , technically the definition
should be X × Rpreim, we leave out X , though, for the sake of notation. The
collision relation is satisfied when there are two outputs inD that are the same:

Rcoll :=

((x1, y1), . . . , (xs, ys)) ∈
⋃

t∈[q+1]
(X × Y)t :

∃i,j i 6= j, xi 6= xj, yi = yj

. (6.63)

6Note that [q + 1] := {0, 1, . . . , q}
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Note however, that it is only reasonable to check if the non-padding entries
are in R, omitting the (⊥, 0) pairs at the end of D. If D is held in a quan-
tum register, the relation R has a corresponding projective measurement JR
such that ‖JR|(x1, y1), · · · , (xq, yq)〉D‖ = 1 if and only if for some s it holds that(
(x1, y1), · · · , (xs, ys)

)
∈ R and for the remaining i > s, the (xi, yi) are padding

entries.
We also state an explicit algorithm to implement the measurement of a re-

lation R, given that membership in R is efficiently decidable. To denote the
single-bit membership decision by (D ∈ R), the bit is 1 if and only if database
D is in R. For the sake of notation we include the adversary’s input in D, this
is for when the relation depends on register X . To measure the relation we
define a unitary VXDSJ

R that XORs a bit (D ∈ R) to register J ; This unitary is
controlled on registers S and D, the former holds the information about the
size of the database and the latter the database itself. Algorithm 6.4 defines the
measurement procedure ofmeasuringR on quantumdatabases in the standard
basis.

Algorithm 6.4Measurement of a relation R
input: Adversary’s input and a database in the standard basis |x〉X |D〉D
output: Outcome j and post-measurement state |D′〉D

1: Count in register S the number of non-padding (DX 6=⊥) entries s in D
2: Initialize a new qubit register |0〉J
3: Apply VXDSJ

R that XORs a bit j := (D ∈ R) to register J
4: Uncompute register S, measure register J , output the outcome j

An important issue concerning measuring relations is the basis in which we
store the quantum database. For themeasurement to bemeaningful it has to be
done in the standard basis, so it is easiest to analyze CStOD or CPhOD, defined
by Equation (6.14).

While not directly relevant to our applications, we keep the generality of
[AHU19] by introducing the notion of query depth as the number of sets of
parallel queries an algorithm makes. We usually assume quantum algorithms
make q quantum queries in total and d (as in “query depth”) sequentially, but
those queries in sequence may involve a number of parallel queries. A parallel
query of width p to an oracle H involves p applications of H to p query registers.
Note that if H is considered to be a compressed oracle, p-parallel queries are
processed by sequentially applying the compressed oracle unitary p times.

First we define a compressed oracle H punctured on relation R, denoted by
H \R.

Definition 6.5 (Punctured compressed oracle H\R). Let H be a compressed oracle
and R a relation on its database. The punctured compressed oracle H \R is equal to H,
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except that R is measured after every query as described in Algorithm 6.4. By Find we
denote the event that R outputs 1 at least once among all queries.

Full oracles can be punctured as well, the relation is then checked only on
the queried entries of the function table—those queried entries need to be iden-
tified (like in DecD from Algorithm 6.3) prior to the measurement of R.

Inmany applications of punctured oracleswemightwant to applyH\R only
if some condition is fulfilled. Moreover, this condition might be quantum—in
other words we control H \R on some quantum register. To avoid the situation
of a measurement being performed or not depending on a state of a quantum
register—which is not permitted by quantum mechanics—we propose the fol-
lowing solution: We postpone the measurement to the end of the quantum
query. Namely, we omit the measurement of register J in Algorithm 6.4 and
perform it at the end of the compressed-oracle algorithm. After the measure-
ment we can uncompute the outcome register J . We are not changing notation
and implicitly assume the postponement of puncturing.

Similarly we define the above notions for a pair of databases.

Definition 6.6 (Relation R on (D1, D2)). Let (D1, D2) be two databases each of size
at most q: Database D1 of pairs (x, y) ∈ X1 × Y1 and database D2 of pairs (x, y) ∈
X2 × Y2. A relation R on (D1, D2) is a subset

R ⊆ (X1 ×X2)×
⋃

t1∈[q+1]
(X1 × Y1)t1 ×

⋃
t2∈[q+1]

(X2 × Y2)t2 . (6.64)

The measurement of relations defined on pairs of databases is done in the
same way as in Algorithm 6.4 with the difference that registers D and S con-
sist of two registers: D1 and D2 and S1 and S2 respectively. The result of the
measurement is still a single bit stating whether (D1, D2) ∈ R.

The above discussion about relations defined on pairs of databases can be
easily extended to multiple databases.

6.3.2 One-way-to-Hiding Lemma
Using the definitions from the previous sections we can prove a generalization
of Theorem 1 from [AHU19].

Let us also comment on the differences of the O2H lemma in [AHU19] and
in this thesis. The main difference is that in our generalization we no longer fo-
cus solely (we can recover the original O2H lemma though) on the adversary’s
inputs but also treat the outputs of the oracle. Function outputs are also impor-
tant in [AHU19], but the oracle is not lazy sampled, there they pick a subset
of the domain such that e.g. the output is 0 and then puncture on inputs in
this random set. We use lazy sampled functions and puncture on databases, so
functions defined only on the queried inputs. In addition, defining the punc-
turing operation on the compressed oracle-database is more expressive, as it
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allows puncturing conditions depending on more than one input-output pair,
hence allowing us to treat a larger class of relations.

Theorem 6.7 (Compressed oracle O2H). LetR1 andR2 be relations on the database
(or multiple databases) of a quantum oracle H (possibly combining multiple inter-
faces). Let z be a random string. R1, R2, and z may have arbitrary joint distribution.
Let A be an oracle algorithm of query depth d, then∣∣∣P [b = 1 : b← AH\R1(z)

]
− P

[
b = 1 : b← AH\R1∪R2(z)

]∣∣∣
≤
√

(d+ 1)P[Find : AH\R1∪R2(z)], and (6.65)∣∣∣∣√P[b = 1 : b← AH\R1(z)]−
√
P[b = 1 : b← AH\R1∪R2(z)

∣∣∣∣
≤
√

(d+ 1)P[Find : AH\R1∪R2(z)], (6.66)

where Find is the event that measuring R1 ∪R2 succeeds.
Proof. The proof works almost the same as the proof of Theorem 1 of [AHU19].
Let us state the analog of Lemma 5 from [AHU19]. In the following we write
R := R1 ∪R2.

For the following lemma let us first define two algorithms. Let AH(z) be a
unitary quantum algorithm with oracle access to H with query depth d. Let Q
denote the quantum register ofA andD the database of the compressed oracle
H. We also need a “query log” register L consisting of d qubits.

Let BH,R(z) be a unitary quantum algorithm acting on registersQ and L and
having oracle access to H. First we define the following unitary

VR,i|D〉D|l1, l2, . . . , ld〉L :=

|D〉D|l1, l2, . . . , ld〉L if D 6∈ R
|D〉D|l1, . . . , li ⊕ 1, . . . , ld〉L if D ∈ R

, (6.67)

where R(|D〉D) denotes the outcome of the projective binary measurement on
D. The unitary exists for all relations. One can just coherently compute R(D)
into an auxiliary register, apply CNOT from that register to Li and then uncom-
pute R(D). If the relation is efficiently computable, then so is the unitary. We
define BH,R(z) as:

• Initialize the register Lwith |0d〉.

• Perform all operations that AH(z) does.

• For all i, after the i-th query of A apply the unitary VR,i to registers D,L.

Let |ΨA〉 denote the final state of AH(z), and |ΨB〉 the final state of BH,R(z).
Let P̃find be the probability that a measurement of L in the computational basis
in the state |ΨB〉 returns l 6= 0d, i.e. P̃find :=

∥∥∥1Q,D ⊗ (1L − |0d〉L〈0d|)|ΨB〉
∥∥∥2
.
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To deal with relation R1 we consider algorithms with all measurements
postponed to the end of their operation; Instead of performing the actual mea-
surement we save the outcome into a fresh quantum register—with VR as in
Algorithm 6.4, note that prior to the measurement this fresh register can hold a
superposition. Moreover we postpone the measurement of the auxiliary regis-
ter until the very end of the run of the quantum algorithm. The coherent eval-
uation of R1 happens in both algorithms. In addition, the proof below does
not make use of the particular form of the unitaries that are applied between
the measurements of R2, so the evaluation of R1 can be absorbed into the com-
pressed oracle unitary.
Lemma 6.8 (Compressed-oracle O2H for pure states). Fix a joint distribution for
R1, R2, z. Consider the definitions of algorithms A and B and their quantum states,
then ∥∥∥|ΨA〉 ⊗ |0d〉L − |ΨB〉

∥∥∥2
≤ (d+ 1)P̃find. (6.68)

Proof. This lemma can be proved in the same way as Lemma 5 of [AHU19].
Here we omit some details and highlight the most important observation of
the proof.

First define Bcount that works in the same way as B but instead of storing L,
the log of querieswithD in relation, it keeps count—in registerC—ofhowmany
times a query resulted inR(|D〉D) = 1. The state that results from runningBcount
is |ΨBcount〉 = ∑d

i=0|Ψi
Bcount)|i〉C and similarly |ΨB〉 = ∑

l∈{0,1}d|Ψl
B)|l〉L, where |Ψ)

denotes a sub-normalized state. We can observe that |ΨA〉 = ∑d
i=0|Ψi

Bcount). As
P̃find is the probability of measuring at least one bit in the register L of B, or
counting at least one fulfilling of R in C, we have that |Ψ0d

B ) = |Ψ0
Bcount). From

the definition we also have P̃find = 1 −
∥∥∥|Ψ0

Bcount)
∥∥∥2
. Using the above identities

we can calculate the bound∥∥∥|ΨB〉 − |ΨA〉 ⊗ |0d〉L
∥∥∥2

=
∥∥∥∥∥
d∑
i=1
|Ψi

Bcount)
∥∥∥∥∥

2

+ P̃find
4
≤
(

d∑
i=1

∥∥∥|Ψi
Bcount)

∥∥∥)2

+ P̃find

J-I
≤ d

d∑
i=1

∥∥∥|Ψi
Bcount)

∥∥∥2

︸ ︷︷ ︸
=P̃find

+ P̃find = (d+ 1)P̃find, (6.69)

where4 denotes the triangle inequality and J-I denotes the Jensen’s inequality.
It is apparent that introducing Bcount gave us a more coarse-grained look at the
initial algorithm B, resulting in a tighter bound.

The rest of the proof of Theorem 6.7 follows the same reasoning as the proof
of Lemma 6 in [AHU19]with themodifications shown in the above lemma. Us-
ing bounds on fidelity (Lemma 3 and Lemma 4 of [AHU19]) andmonotonicity
and joint concavity of fidelity (from Theorem 9.6 and Equation 9.95 of [NC10])
one can generalize the results to the case of arbitrary mixed states.
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The original Theorem 1 from [AHU19] can be recovered from Theorem 6.7
when we puncture on relations defined solely on X corresponding to the ad-
versary’s AX register.

We continue by deriving an explicit formula for P[Find]. Let A be a quan-
tum algorithmwith oracle access to H, making at most q quantum queries with
depth d. Let R be a relation on the database of H and z an input to A. R and
z can have any joint distribution. JR is the projector from the measurement
of R on D, UH

i is the i-th unitary performed by AH\R together with a—possibly
parallel—query toH, and |Ψ0〉 is the initial state ofA. Thenwe have the formula

P[Find : AH\R(z)] = 1−
∥∥∥∥∥
(

d∏
i=1

(1− JR)UH
i

)
|Ψ0〉

∥∥∥∥∥
2

. (6.70)

Let us now discuss the notion of “identical-until-bad” games in the case
of compressed oracles. For random oracles, the notion was introduced in
[AHU19]. The definition is rather straightforward as H and G are considered
identical until bad if they had the same outputs except for some marked
set. When using compressed oracles, the outputs of H and G are quantum
lazy-sampled, making the definition of what it means for two oracles to be
identical until bad require more care. Here we state a definition that captures
useful notions of identical-until-bad punctured oracles.

Definition 6.9 (Almost identical oracles). Let H and G be compressed oracles and
Ri, i = 1, 2 relations on their databases. We call the oracles H \R1 and G \R2 almost
identical if they are equal conditioned on the events ¬Find1 and ¬Find2 respectively,
i.e. for any string z and any quantum algorithm A

P[b = 1 : b← AH\R1(z) | ¬Find1] = P[b = 1 : b← AG\R2(z) | ¬Find2]. (6.71)

Note that not punctured compressed oracles are a special case of punctured
ones (for R1 = ∅ or R2 = ∅), so the above definition can be applied to a pair
of oracles where one is punctured and one is not. We can prove the following
bound on the adversary’s advantage in distinguishing almost identical punc-
tured oracles.

Lemma 6.10 (Distinguishing almost identical punctured oracles). If H \R1 and
G \R2 are almost identical according to Def.6.9 then for any b ∈ {0, 1}∣∣∣P[b = 1 : b← AH\R1(z)]− P[b = 1 : b← AG\R2(z)]

∣∣∣
≤ 2P[Find1 : AH\R1(z)] + 2P[Find2 : AG\R2(z)]. (6.72)

Proof. For the sake fo readability, in the following we omit the “b = 1 :” in the
events we analyze the probability of. We bound∣∣∣P[b← AH\R1(z)]− P[b← AG\R2(z)]

∣∣∣
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Def. 6.9=
∣∣∣P[b← AH\R1(z) | ¬Find1]

(
P[¬Find1 : AH\R1(z)]− P[¬Find2 : AG\R2(z)]

)
+ P[b← AH\R1(z) | Find1]P[Find1 : AH\R1(z)]
−P[b← AG\R2(z) | Find2]P[Find2 : AG\R2(z)]

∣∣∣ (6.73)

4
≤

∣∣∣∣∣∣∣∣∣P[b← AH\R1(z) | ¬Find1]︸ ︷︷ ︸
≤1

(
P[¬Find1 : AH\R1(z)]− P[¬Find2 : AG\R2(z)]

)
︸ ︷︷ ︸

=P[Find2:AG\R2 (z)]−P[Find1:AH\R1 (z)]

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣P[b← AH\R1(z) | Find1]︸ ︷︷ ︸
≤1

P[Find1 : AH\R1(z)]

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣P[b← AG\R2(z) | Find2]︸ ︷︷ ︸
≤1

P[Find2 : AG\R2(z)]

∣∣∣∣∣∣∣ (6.74)

4
≤ 2P[Find1 : AH\R1(z)] + 2P[Find2 : AG\R2(z)], (6.75)

where by4we denote the triangle inequality.

Note that for R2 = ∅, the above lemma is essentially a special case of the
well known Gentle-Measurement Lemma of [Win99].

It is a fact of quantummechanics that measurements disturb the state. Con-
sidering that, one might be curious if measuring the database does not disturb
it too much. As an example, note that after a measurement of the collision re-
lation, Equation (6.63), the database does not necessarily consist of only non-
Fourier-0 entries. Even though this is true, if the disturbance of the oracle is
low enough, then the adversary will not notice it. This is exactly the case of the
O2H lemma, the disturbance is low enough so the adversary does not notice
any difference in the content of the oracle’s output.

6.4 Bound on P[Find]
We state a lemma giving a bound on the probability of Find for the uniform
distribution over the sets {f1 : X1 → Y1} and {f2 : X2 → Y2} and for a general
relation, possibly defined onmultiple databases. We also allow forR to depend
on an external random oracle R. In this proof we explicitly analyze adversaries
with two interfaces H1 and H2 (for a discussion of multiple interfaces we refer
to Section 6.2.2.3). We allow them to make queries to different interfaces in
superposition. The register encoding the interface is I and holds a ∈ {1, 2}. In
what follows we assume Y1 = [N1] and Y2 = [N2]. By ā we denote the index
other that a, namely ā = 3 − a. Whenever we refer to a we mean by it the
interface that is queried.
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For a ∈ {1, 2} we write ~xa ∈ (Xa × {1, 2})q to denote all the previous inputs
asked by the adversary to Ha, we always consider queries x to be pairs of the
query value and the interface. We mostly leave the interface part implicit. A
vector with a fixed a has a fixed interface a in all tuples. (x, η, a) is the last query.
Whenever ~x denotes queries, the vector is sorted in a rising fashion. We denote
the outputs given to A by ~ya := (ya1 , . . . , yasa), where yai ∈ Ya×{1, 2} are pairs of
values with interface, similarly to inputs. Vector of outputs is sorted according
to the corresponding inputs. The set of all queries is ~x = ~x1 ∪ ~x2, similarly
for ~y. Databases are denoted asDa =

(
(xa1, ya1), . . . , (xasa , yasa)

)
. When we use set

operations7 on vectors wemean a set consisting of entries of ~x, note that if there
are no repetitions in ~x, then there is no ambiguity.

In this section our primary subject are databases and their membership in
the relation. To this end we define sets of good and bad outputs. For a rela-
tion R, the database D = (D1, D2) that contains ~x1 and ~x2 of sizes s1 and s2
respectively, and x 6∈ DX

a we have

GR(~x1, ~x2) :=
{

(DY
1 (~x1), DY

2 (~x2)) ∈ Ys11 × Ys22 : (D1, D2) 6∈ R
}
, (6.76)

GRā (~x1, ~x2 | Da) :=
{
DY
ā (~xā) ∈ Ysāā : (D1, D2) 6∈ R

}
, (6.77)

BRa (x | D) := {y ∈ Ya : (Da ∪ {(x, y)}, Dā) ∈ R} . (6.78)

The bad set defined above is the subset of the codomain of the sampled function
corresponding to the new value bringingD to be inR. By GRa (~x1, ~x2) we denote
the part of GR(~x1, ~x2) corresponding to DY

a (~xa).
Our assumptions on R are the following: The relation does not depend on

the adversary’s input. The size of GR(~x1, ~x2) depends only on s1 and s2. When
addressing the size of G we often write

∣∣∣GR(s1, s2)
∣∣∣. Moreover

∣∣∣BRa (x | D)
∣∣∣ is the

same for all x 6∈ DX
a .

We also define a coefficient that gives the number of outputs that bring the
database to R, defined as:

bRa (s1, s2) :=
∣∣∣BRa (x | D)

∣∣∣ , where x 6∈ D,D 6∈ R, and |Da| = sa − 1, |Dā| = sā,

(6.79)

as one can see from the definition (the argument of bRa does not include partic-
ular values in ~x1 and ~x2) above we use the assumption that

∣∣∣BRa (x | D)
∣∣∣ is the

same for all x 6∈ DX
a . When making a query to database a we use the notation∣∣∣GR(sa − 1, sā)

∣∣∣ for ∣∣∣GR(s1 − 1, s2)
∣∣∣ if a = 1 and

∣∣∣GR(s1, s2 − 1)
∣∣∣ if a = 2. Similarly

we use bRa (sa+1, sā). An important identity that we will use later in this section
is: ∣∣∣GR(s1, s2)

∣∣∣ =
∣∣∣GR(sa − 1, sā)

∣∣∣ (|Ya| − bRa (s1, s2)). (6.80)
7Like the union ∪, intersection ∩, or subtraction \.
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To get some intuition for the above equality, let us consider a databaseD of size
sa − 1 + sā that is not in R. According to the definition from Equation (6.78),
there are bRa (s1, s2) outputs y ∈ Ya, such that D ∪ {(x, y)} for any x ∈ Xa that is
not in DX , is in R. As this holds for any value x, for every good database we
have |Ya| − bRa (s1, s2) good database with a single query added to Da.

In general as in the good and bad sets, aswell as the coefficient b, we omit the
superscript R whenever the relation is clear from the context. As examples of
b, consider relations on a single database, if the relation is Rpreim, then b(s) = 1,
there is just one value y = 0 that causes a fresh query to be in relation; For Rcoll
we have b(s) = s− 1, the new y can be any of the previously queried values to
make D fulfill the relation.

Two sets important in our treatment of multiple databases are
HADD
a (~x1, ~x2, ~ya) and HREM

a (~x1, ~x2, ~ya). To properly define them we generalize
the definition of the good set conditioned on a database:

Gā(~xa, ~xā | ~ya)
:=
{
DY
ā (~xā) ∈ Ysāā : ∃~y∗a ∈ Ysa−|~ya|a , DY

a (~xa) := ~ya ∪ ~y∗a, (D1, D2) 6∈ R
}
. (6.81)

Intuitively speaking the above set is the set Gā(~xa, ~xā | Da) defined in Equa-
tion (6.77) with the difference that we do not specify all values in DY

a . More-
over the more entries are in ~xa the more “restrictions” are on goodDā, meaning
the size of the good in principle gets smaller with ~xa getting bigger. Then the
two sets are defined as

HADD
a (~x1, ~x2, ~ya) := Gā(~x1, ~x2 | ~ya) \ Gā(~xa ∪ {x}, ~xā | ~ya), (6.82)∣∣∣HADD
a (s1, s2)

∣∣∣ :=
∣∣∣HADD

a (~x1, ~x2, ~ya)
∣∣∣ , (6.83)

and

HREM
a (~x1, ~x2, ~ya) := Gā(~xa \ {x}, ~xā | ~ya) \ Gā(~x1, ~x2 | ~ya),∣∣∣HREM
a (s1, s2)

∣∣∣ :=
∣∣∣HREM

a (~x1, ~x2, ~ya)
∣∣∣ . (6.84)

The intuition one should have for HADD
a (~x1, ~x2, ~ya) and HREM

a (~x1, ~x2, ~ya) is that
for the relations we discuss in this thesis, they are very small sets.

The assumption that is important for whenR is defined on two databases is
that if good outputs of H1 depend on inputs to H2, we never make a query to H2
that automatically brings D to be in R. An example of such relation is y1 = x2
(outputs of H1 equal to any input to H2). For these relations it is trivial to fulfill
them—by just querying one of the outputs ofH1 toH2—so the oracles have to be
constructed in a way that avoids this attack. By constructing wemean adding a
quantum algorithm managing queries to different interfaces. We say that such
trivial attacks are of concern when DX

a interacts with DY
ā .
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Belowwe state a lemma bounding the probability of Find, which gives great
utility to the quantum game-playing framework. The result depends only on
measurements performed on the database. The basis of the database matters,
as we define the relation in a particular (standard) basis. Hence, this result
works exactly the same for CStO.

Lemma 6.11. LetA be a quantum adversary interacting with a compressed punctured
oracle H \R, with H = S(H1,H2), where S is any quantum algorithm that ensures that
the trivial attacks (important whenDX

a interacts withDY
ā ) are avoided, H1 = CPhOY1

and H2 = CPhOY2 . Moreover R is a relation following Definition 6.6, such that

1.
∣∣∣GR(~x1, ~x2)

∣∣∣ from Equation (6.94) depends only on s1 and s2,

2.
∣∣∣BRa (x | D)

∣∣∣ from Equation (6.78) is the same for all x 6∈ DX
a .

Then the probability of Find is bounded by:

P
[
Find : A[H \R]

]
≤

q∑
i=1

 i−1∑
j=1

max
a∈{1,2},s1,s2≤j−1

(
2ba(s1, s2)

Na

+ ba(s1, s2)√
Na(Na − ba(s1, s2))

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)|

+ ba(s1, s2)
Na

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)| −


√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)| − 1


+ ba(sa + 1, sā)

Na

√√√√ |Gā(sa + 1, sā)|
|Gā(s1, s2)| −


√√√√ |Gā(sa + 1, sā)|
|Gā(s1, s2)| − 1


+ max

a∈{1,2},s1,s2≤i−1

√Na − ba(sa + 1, sā)
Na

√√√√ |HADD
a (s1, s2)|
|Gā(s1, s2)|

+
√
ba(sa + 1, sā)

Na

+ ba(s1, s2)3/2

Na

√
Na − ba(s1, s2)

+ ba(s1, s2)√
Na(Na − ba(s1, s2))

sgn
(∣∣∣HREM

a (s1, s2)
∣∣∣)
√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)|

+
√
Na − ba(s1, s2)

Na

√√√√ |HREM
a (s1, s2)|
|Gā(s1, s2)| +

√
ba(s1, s2)(Na − ba(s1, s2))

Na

2

, (6.85)

where a ∈ {1, 2}, q is the maximal number of queries made by A, and sgn is the sign
function equal 0 whenever the argument is 0.
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6.4.1 Proof of Lemma 6.11
Proof.

6.4.1.1 Overview

We first provide a high level overview of the proof.
In Equation (6.92) we divide the probability of Find into a sum of proba-

bilities of q sub-events. Each sub-event is Find after i queries conditioned on
¬Find. The next task is to find a bound for the probability of every sub-event.

To achieve this goal we define the good state |ΨGood
i 〉. This is an auxiliary

state of the adversary and the oracle register that is easier to handle from the
true state |Φi〉 resulting from the interaction ofAwith the punctured H \R. We
use this state by swapping the real state with it in the i-th step we introduced
in the previous point. This swapping is presented in Equation (6.99).

As we see from Equation (6.100), to evaluate the error introduced by swap-
ping the original state with the good state we need to inspect the good state
after a single query. Calculating H \ R|ΨGood

i 〉 and comparing it to |ΨGood
i+1 〉 is a

rather complicated task that involves taking care of many details. We dedicate
Section 6.4.1.5 to defining H \R|ΨGood

i 〉 and identifying the parts of the queried
state that differ from |ΨGood

i+1 〉.
The final step of the proof consists of plugging in bounds on∥∥∥|ΨGood
i+1 〉 − H \R|ΨGood

i 〉
∥∥∥ and on the probability that Find happens when the

joint state is |ΨGood
i 〉. These bounds are calculated in sections 6.4.1.6 and 6.4.1.7

and stated in Lemmas 6.12 and 6.14. On a technical level we bound the norms
of the parts of the state H \R|ΨGood

i 〉 that do not appear in |ΨGood
i+1 〉, we call these

parts errors. The proof of Lemma 6.12 consists of two main parts, as the bound
is a sum of two types of errors.

6.4.1.2 Introduction

We start the proof with a few definitions concerning compressed oracles. Some
notions from Section 6.2 require to be stated a bit more concretely for our proof.
The measurement that we apply after CPhOY , in line 4 of Algorithm 6.4 is

JR := 1⊗ |1〉J〈1| and (6.86)
JR := 1⊗ |0〉J〈0| (6.87)

is the projection to D being not in relation.
In the followingwe focus on the punctured oracle just prior tomeasurement

JR. A unitary that omits the last step of Algorithm 6.4 in H \R acts on registers
ADJ , we define it as

H \ VR := Queries† ◦ VR ◦ Queries ◦ H, (6.88)
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where the unitary Queries counts the number of x 6=⊥ in D (line 1 and 4 in
Algorithm 6.4) and VR checks whether the queried values in registers D fulfill
the relation R and saves the single bit answer to register J .

We proceed by rephrasing the definition of P[Find : A[H \R]], after that we
treat the part specific to our relation. We follow Equation (6.70) to analyze the
probability of Find:

P[Find : A[H \Rpreim ∪Rcoll]] = 1−

∥∥∥∥∥∥
 1∏
i=q

JRUiH \ VR

 |Ψ0〉|0〉J

∥∥∥∥∥∥
2

(6.89)

= 1−

∥∥∥∥∥∥
 1∏
i=q−1

JRUiH \ VR

 |Ψ0〉|0〉J

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥JRUqH \ VR

 1∏
i=q−1

JRUiH \ VR

 |Ψ0〉|0〉J

∥∥∥∥∥∥
2

= · · · = (6.90)

=
q∑
i=1

∥∥∥∥∥∥∥∥∥∥∥∥
JRUiH \ VR

 1∏
j=i−1

JRUjH \ VR

 |Ψ0〉|0〉J︸ ︷︷ ︸
:=Ui−1|Φi−1〉

∥∥∥∥∥∥∥∥∥∥∥∥

2

(6.91)

=
q∑
i=1
‖JRUiH \ VRUi−1|Φi−1〉‖2 , (6.92)

where |Ψ0〉 is the initial state of the adversary. Note that in the definition

|Φi−1〉 := U†i−1

 1∏
j=i−1

JRUjCPhOY \ VR

 |Ψ0〉|0〉J (6.93)

we use8 [Ui−1, JR] = 0. Here, the second and third equations follow from the
fact that ‖|v〉‖2 = ‖P|v〉‖2 + ‖(1− P)|v〉‖2 for all |v〉 and projectors P.

In what follows we analyze ‖JRUiH \ VRUi−1|Φi−1〉‖2. Our approach is to
propose a state |ΨGood

i−1,R〉|0〉J , close to the original |Φi−1〉, for which bounding∥∥∥JRUiH \ VRUi−1|ΨGood
i−1,R〉|0〉J

∥∥∥2
is easy. The intuition behind |ΨGood

i−1,R〉 is to have a
superposition over databases that are not in relation.

6.4.1.3 The good state

The state |ΨGood
i,R 〉AD corresponds to the adversary’s state just after the i-th query

andbefore the application ofUi. The size of the database sa depends onwhether
the new query x was added to, updated, or removed from the database, it

8The commutator of two operators (matrices) is defined as [A,B] := AB− BA.
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equals |~xa ∪ {x}|, |~xa|, or |~xa \ {x}| respectively. After i queries sa can range
from 0 to i and the joint state of A and the oracle can be a superposition over
different database sizes. ByD(⊥) we denote the part of the database containing
empty entries. The adversary’s work register is denoted byAW and its contents
by ψ(x, η, ~x, ~η, w), where w can be any value of finite size. We define the good
state as:

|ΨGood
i,R 〉AD :=

∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~y∈GR(~x1,~x2)

1√
|GR(s1, s2)|

ω~η1·~y1
N |(x1

1, y
1
1), . . . , (x1

s1 , y
1
s1)〉D1(~x1)

∑
ys1+1,...,yq∈[N ]

1√
N q−s1

|(⊥, ys1+1), . . . , (⊥, yq)〉D1(⊥)

ω~η2·~y2
N |(x2

1, y
2
1), . . . , (x2

s2 , y
2
s2)〉D2(~x2)∑

ys2+1,...,yq∈[N ]

1√
N q−s2

|(⊥, ys2+1), . . . , (⊥, yq)〉D2(⊥). (6.94)

In case we have added x to Da, the full database D above contains (x, yaj ). In
the rest of the proof we omit the subscript R, however note that |ΨGood

i 〉 does
indeed depend on R.

Another way to define the good state is to consider the joint state of the
adversary and the non-punctured oracle H just after the i-th query. The good
state is then this state after a projection of register D with JR. Normalization
of the projected state comes from multiplying each branch corresponding to a

given size of the database by an appropriate
√

N
s1
1 N

s2
2

|GR(s1,s2)| factor. The reason why
the good state is normalized is that for a fixed set of queries we can think of
definining it as A interacting with the normalized database register using PhO
instead of CPhO. This intuition works for every branch of the superposition
separately. Now combining all branches together also gives a normalized state,
because they origin from a valid interaction of a unitary adversary with CPhO
(as mentioned in the beginning of this section).

6.4.1.4 Final Bound

To calculate the probability of measuring R, Equation (6.92) implies

P[Find] ≤
q∑
i=1
‖JRUiH \ VRUi−1|Φi−1〉‖2 . (6.95)

We use the good state to bound the elements of the sum in the following way:

‖JRUiH \ VRUi−1|Φi−1〉‖ ≤
∥∥∥|Φi−1〉 − |ΨGood

i−1 〉
∥∥∥+

∥∥∥JRUiH \ VRUi−1|ΨGood
i−1 〉

∥∥∥ .
(6.96)
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Next we bound the two norms in Equation (6.96). First we bound the dis-
tance of the good state from the state resulting from the interaction with the
non-punctured oracle |Φi〉ADJ . We simplify this task with the following deriva-
tion: ∥∥∥|ΨGood

i 〉AD|0〉J − |Φi〉ADJ
∥∥∥

=
∥∥∥|ΨGood

i 〉AD|0〉J − JRH \ VRUi−1|Φi−1〉ADJ
∥∥∥ (6.97)

≤
∥∥∥|ΨGood

i 〉AD|0〉J − JRH \ VRUi−1|ΨGood
i−1 〉AD|0〉J

∥∥∥
+
∥∥∥JRH \ VRUi−1|ΨGood

i−1 〉AD|0〉J − JRH \ VRUi−1|Φi−1〉ADJ
∥∥∥ (6.98)

≤ εstep(i) +
∥∥∥|ΨGood

i−1 〉AD|0〉J − |Φi−1〉ADJ
∥∥∥ ≤ i∑

j=1
εstep(j), (6.99)

where we use the triangle inequality and recursively get rid of all queries made
by A. The definition of a single step is

εstep(j) :=
∥∥∥|ΨGood

j 〉AD|0〉J − JRH \ VRUj−1|ΨGood
j−1 〉AD|0〉J

∥∥∥
2
. (6.100)

To calculate the bound on εstep(j) we first calculate how a query affects the
good state. The full calculations are presented in Section 6.4.1.5. Using these
findingswe prove Lemma 6.12 that states a bound on the norm of the difference
of the good and original states.

We define the second part in Equation (6.96) as

εFind(i) :=
∥∥∥JRUiH \ VRUi−1|ΨGood

i−1 〉
∥∥∥ . (6.101)

Using the techniques developed to bound εstep(j), we bound εFind(i) in Sec-
tion 6.4.1.7 and state the bounds in Lemma 6.14.

The final bound is

P
[
Find : A[H \R]

]
≤

q∑
i=1

i−1∑
j=1

εstep(j) + εFind(i)
2

, (6.102)

with Lemma 6.12 and Lemma 6.14 we get the final bound.

6.4.1.5 |ΨGood
i−1 〉 after a query

To prove the main technical lemmas of this section we need to analyze how a
single query to the oracle affects the good state.

To prove Lemma 6.12 we analyze how far apart the state |ΨGood
i−1 〉 is after

a query from |ΨGood
i 〉. To achieve this goal we inspect in detail the state H \

VRUi−1|ΨGood
i−1 〉AD|0〉J . We distinguish different modes of operation: ADDwhen

the queried x is added toD, UPD when xwas already inD and is not removed
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from the database, REM when we remove x from D, and NOT where register
AY is in state |0〉. These modes correspond to different branches of superposi-
tion in H \ VRUi−1|ΨGood

i−1 〉AD|0〉J . We write

Ui−1|ΨGood
i−1 〉AD = |ξi−1(ADD)〉+ |ξi−1(UPD)〉+ |ξi−1(REM)〉+ |ξi−1(NOT)〉

(6.103)

and analyze the action of H \ VR on the above states separately.
For |ξi−1(NOT)〉 there is no change to the state. For |ξi−1(UPD)〉 and

|ξi−1(REM)〉, we treat the updated x as the last one in Da, this does not have
to be true but it simplifies notation. Note that we want the corresponding
ysa to depend on previous queries to Ha. This assumption is without loss of
generality as there is no fixed order for ∑~ya in Equation (6.94). The empty
register is moved to the back ofD, we do not write it out for simplicity but still
consider it done.

After querying |ΨGood
i−1 〉|0〉J we encounter states multiplied by |0〉J that do

not appear in the definition of the good state and those multiplied by |1〉J . We
call these vectors errors. We mark the former errors by a superscript Bad and
the latter with Find, note that indeed all branches of superposition that have
|1〉J increase P

[
Find

]
.

In general, a query to Ha can cause errors in Da and Dā. The former results
from, e.g., adding a new entry to Da; We sample a uniform entry and some
values bring Da to be in relation. The latter errors occur when the set of good
outputs inDā changes after we, e.g., add a new entry toDa. The rule we follow
is that yasa is the last value sampled. The second rule is that all values can be
sampled one by one, query by query. These rules imply that we can sample
~ya first, then ~yā, then yasa . This reasoning, however does not apply to relations
that depend on inputs, so whenever contents of DX (a or ā) changes we need
to make up for it by changing the set we sample ~yā from.

Adding a new entry to a database results in setting the register correspond-
ing to (x, a) to∑yasa+1∈[Na]

1√
Na
ω
ηyasa+1
Na |x, yasa+1〉, just as expected from a phase ora-

cle for the uniformdistribution. Aswementioned earlier, there are errors in two
databases,Da andDā. Firstwe go over the errors inDa and leaveDā unchanged.
In the equality that follows we single out all the branches of superposition that
are not parts of |ξi(ADD)〉:

H|ξi−1(ADD)〉 =
∑

x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~x1,~x2)

1√
|Ga(s1, s2)|

ω~ηa·~yaNa |(x
a
1, y

a
1), . . . , (xasa , y

a
sa)〉Da(~xa)

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|

 1√
Na

∑
yasa+1 6∈Ba(x|D(~x))

ω
ηyasa+1
Na |x, yasa+1〉Da(x)
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+ 1√
Na

∑
yasa+1∈Ba(x|D(~x))

ω
ηyasa+1
Na |x, yasa+1〉Da(x)


ω~ηā·~yāNā |(x

ā
1, y

ā
1), . . . , (xāsā , y

ā
sā)〉Dā(~xā)∑

yasa+2,...,y
a
q∈[Na]

1√
N q−sa−1
a

|(⊥, yasa+2), . . . , (⊥, yaq )〉Da(⊥)

∑
yāsā+1,...,y

ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq )〉Dā(⊥). (6.104)

Errors that are left to be analyzed come from Dā, let us present the split in the
sum over ~ya that we will use in the ADD case:∑
~ya∈Ga(~x1,~x2)

∑
~yā∈Gā(~x1,~x2|~ya)

∑
yasa+1 6∈Ba(x|D(~x))

=
∑

~ya∈Ga(~x1,~x2)

∑
~yā∈Gā(~xa∪{x},~xā|~ya)

∑
yasa+1 6∈Ba(x|D(~x))

+
∑

~ya∈Ga(~x1,~x2)

∑
~yā∈Gā(~x1,~x2|~ya)\Gā(~xa∪{x},~xā|~ya)

∑
yasa+1 6∈Ba(x|D(~x))

. (6.105)

Next we include the full impact of VR. Two things happen in the expression
below. First we split the sum over ~yā in the first element in the parentheses,
secondly we rewrite the normalization factors to simplify the analysis later on.
We underline parts of the state that are important later on. With red color we
denote the errors. After applying Queries† ◦ VR ◦ Queries the state is:

ADD : H \ VR|ξi−1(ADD)〉|0〉J
=

∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~x1,~x2)

1√
|Ga(s1, s2)|

ω~ηa·~yaNa |(x
a
1, y

a
1), . . . , (xasa , y

a
sa)〉Da(~xa)

√Na − ba(sa + 1, sā)
Na

√√√√ |Gā(sa + 1, sā)|
|Gā(s1, s2)|∑

~yā∈Gā(~xa∪{x},~xā|~ya)

1√
|Gā(sa + 1, sā)|︸ ︷︷ ︸

(i) |ΨGood
i (ADD,a,s1,s2)〉∑

yasa+1 6∈Ba(x|D(~x))

1√
Na − ba(sa + 1, sā)

ω
ηyasa+1
Na |x, yasa+1〉Da(x)

︸ ︷︷ ︸
(ii) |ΨGood

i (ADD,a,s1,s2)〉

|0〉J

+
√
Na − ba(sa + 1, sā)

Na

√√√√ |HADD
a (s1, s2)|
|Gā(s1, s2)|

∑
~yā∈HADD

a (~x1,~x2,~ya)

1√
|HADD

a (a, s1, s2)|︸ ︷︷ ︸
(i) |ΨFind

i,1 (ADD,a,s1,s2)〉
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∑
yasa+1 6∈Ba(x|D(~x))

1√
Na − ba(sa + 1, sā)

ω
ηyasa+1
Na |x, yasa+1〉Da(x)

︸ ︷︷ ︸
(ii) |ΨFind

i,1 (ADD,a,s1,s2)〉

|1〉J

+
√
ba(sa + 1, sā)

Na

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|︸ ︷︷ ︸

(i) |ΨFind
i,2 (ADD,a,s1,s2)〉

∑
yasa+1∈Ba(x|D(~x))

1√
ba(sa + 1, sā)

ω
ηyasa+1
Na |x, yasa+1〉Da(x)

︸ ︷︷ ︸
(ii) |ΨFind

i,2 (ADD,a,s1,s2)〉

|1〉J


ω~ηā·~yāNā |(x

ā
1, y

ā
1), . . . , (xāsā , y

ā
sā)〉Dā(~xā)∑

yasa+2,...,y
a
q∈[Na]

1√
N q−sa−1
a

|(⊥, yasa+2), . . . , (⊥, yaq )〉Da(⊥)

∑
yāsā+1,...,y

ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq )〉Dā(⊥), (6.106)

where the appropriate position of register J is after D. The size of the domain
of ~yā is denoted by

|Gā(sa + 1, sā)| := |Gā(~xa ∪ {x}, ~xā | ~ya)| , (6.107)
which uses our assumption that the size of the good set does not depend on the
actual values stored inD. By |ΨGood

i (ADD; a, s1, s2)〉, |ΨFind
i,1 (ADD; a, s1, s2)〉, and

|ΨFind
i,2 (ADD; a, s1, s2)〉we mean states equal to the above state but with just the

underlined part in the parentheses. We used color in Equation (6.106) to indi-
cate the parts that we consider errors. By adding arguments to states we mean
that these values are fixed. We add a as the argument to specify the queried in-
terface and s1 and s2 to specify the sizes of the databases. The formal definition
of states with a, s1, or s2 specified is the underlined branch of the superposi-
tion projected to register AI containing a and databases with s1 and s2 inputs
not equal ⊥. Above we use

∣∣∣HADD
a (s1, s2)

∣∣∣ defined in Equation (6.82). In Equa-
tion (6.82) we use the fact that the cardinality of G depends only on s1 and s2,
conditioning on ~ya does not influence the cardinality either, so we omit it in the
arguments of

∣∣∣HADD
a (s1, s2)

∣∣∣.
For the state |ΨFind

i,2 (ADD; a, s1, s2)〉we omit entirely the analysis of the other
database. That is because the register D(x) is the one responsible for D being
in relation and there is no need to analyze Dā.

When we update or remove from the database we start by presenting the
non-punctured oracle to make clear the source of errors when discussing the
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punctured oracle. The counting procedure Queries acts by just analyzing DX .
The only point where we operate in the Fourier basis is when in Algorithm 6.1
we update the count in line 8. Belowwe are a bit sloppy with notation of ~η, and
~ηa does not contain ηasa :

H (|ξi−1(UPD)〉+ |ξi−1(REM)〉)
=

∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~xa\{x},~xā)

1√
|Ga(sa − 1, sā)|

ω~ηa·~yaNa |(x
a
1, y

a
1), . . . , (xasa−1, y

a
sa−1)〉Da(~xa\{x})

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)| ∑

yasa 6∈Ba(x|D(~x\{x}))

1√
Na − ba(s1, s2)

ω
(ηasa+η)yasa
Na |x, yasa〉Da(x)

− 1√
Na(Na − ba(s1, s2))

∑
yasa 6∈Ba(x|D(~x\{x}))

ω
(ηasa+η)yasa
Na

∑
ya′sa∈[Na]

1√
Na

|x, ya′sa〉D(x)

+ 1√
Na(Na − ba(s1, s2))

∑
yasa 6∈Ba(x|D(~x\{x}))

ω
(ηasa+η)yasa
Na

∑
ya′sa∈[Na]

1√
Na

|⊥, ya′sa〉D(x)


ω~ηā·~yāNā |(x

ā
1, y

ā
1), . . . , (xāsā , y

ā
sā)〉Dā(~xā)∑

yasa+1,...,y
a
q∈[Na]

1√
N q−sa
a

|(⊥, yasa+1), . . . , (⊥, yaq )〉Da(⊥)

∑
yāsā+1,...,y

ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq )〉Dā(⊥), (6.108)

The states that we add to the first element in the parentheses come from per-
forming the Fourier transform on a state that is not of the form QFTNa|η〉. Note
that this discrepancy is the result of considering the good state. Whether we
are in the branch UPD or REM depends on whether η = −ηs or not.

Similarly to the case of ADD, we first present the state with the error parts
of Da exposed.

H|ξi−1(UPD)〉 =
∑

x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~xa\{x},~xā)

1√
|Ga(sa − 1, sā)|

ω~ηa·~yaNa |(x
a
1, y

a
1), . . . , (xasa−1, y

a
sa−1)〉Da(~xa\{x})

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|
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 ∑
yasa 6∈Ba(x|D(~x\{x}))

1√
Na − ba(s1, s2)

ω
(ηasa+η)yasa
N |x, yasa〉Da(x)

+ 1
Na

√
Na − ba(s1, s2)

∑
yasa∈Ba(x|D(~x\{x}))

ω
(ηasa+η)yasa
Na

∑
ya′sa 6∈Ba(x|D(~x\{x}))

|x, ya′s 〉D(x)

+ 1
Na

√
Na − ba(s1, s2)

∑
yasa∈Ba(x|D(~x\{x}))

ω
(ηasa+η)yasa
Na

∑
ya′sa∈Ba(x|D(~x\{x}))

|x, ya′sa〉D(x)

− 1
Na

√
Na − ba(s1, s2)

∑
yasa∈Ba(x|D(~x\{x}))

ω
(ηasa+η)yasa
Na

∑
ya′sa∈[Na]

|⊥, ya′sa〉Da(x)


ω~ηā·~yāNā |(x

ā
1, y

ā
1), . . . , (xāsā , y

ā
sā)〉Dā(~xā)∑

yasa+1,...,y
a
q∈[Na]

1√
N q−sa
a

|(⊥, yasa+1), . . . , (⊥, yaq )〉Da(⊥)

∑
yāsā+1,...,y

ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq )〉Dā(⊥), (6.109)

where we have used the fact that ηasa + η 6= 0 which implies∑yasa 6∈Ba(x|D(~x\{x}))

ω
(ηasa+η)yasa
Na = −∑yasa∈Ba(x|D(~x\{x})) ω

(ηasa+η)yasa
Na .

Splitting the sums in the case of removing an entry works as follows:∑
~ya∈Ga(~x\{x})

∑
~yā∈Gā(~x|~ya)

=
∑

~ya∈Ga(~x\{x})

∑
~yā∈Gā(~x\{x}|~ya)

−
∑

~ya∈Ga(~x\{x})

∑
~yā∈Gā(~x\{x}|~ya)\Gā(~x|~ya)

. (6.110)

Let us present in detail the effect of Queries† ◦ VR ◦ Queries on the branch of
updated databases:

UPD : H \ VR|ξi−1(UPD)〉|0〉J
=

∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~xa\{x},~xā)

1√
|Ga(sa − 1, sā)|

ω~ηa·~yaNa |(x
a
1, y

a
1), . . . , (xasa−1, y

a
sa−1)〉Da(~xa\{x})(

|ΨGood
i (UPD; a, s1, s2)〉|0〉J

+ |ΨBad
i,1 (UPD; a, s1, s2)〉|0〉J

+ |ΨFind
i,1 (UPD; a, s1, s2)〉|1〉J

− |ΨBad
i,2 (UPD; a, s1, s2)〉|0〉J + |ΨFind

i,2 (UPD; a, s1, s2)〉|1〉J
)

ω~ηā·~yāNā |(x
ā
1, y

ā
1), . . . , (xāsā , y

ā
sā)〉Dā(~xā)∑

yasa+1,...,y
a
q∈[Na]

1√
N q−sa
a

|(⊥, yasa+1), . . . , (⊥, yaq )〉Da(⊥)



176 Chapter 6. Quantum Game-Playing Framework

∑
yāsā+1,...,y

ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq )〉Dā(⊥), (6.111)

where the states with superscripts Good, Bad, and Find denote the states that
are defined as the state from Equation (6.111) with expressions from Equa-
tions (6.112), (6.113), (6.114), (6.115), or (6.116) below put in the correct spot,
without any other element from the parentheses. Note that the states in the
equation above come from splitting the sum over ~yā into the parts of Equa-
tion (6.109) from the corresponding lines. Below we define in detail all the
states from Equation (6.111).

The good state gives the following expression in the parentheses in Equa-
tion (6.111):

|ΨGood
i (UPD; a, s1, s2)〉 :

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|∑

yasa 6∈Ba(x|D(~x\{x}))

1√
Na − ba(s1, s2)

ω
(ηasa+η)yasa
N |x, yasa〉Da(x). (6.112)

Bad states are those with |0〉J that are not good:

|ΨBad
i,1 (UPD; a, s1, s2)〉 : 1

Na

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|

∑
yasa∈Ba(x|D(~x\{x}))

ω
(ηasa+η)yasa
Na

∑
ya′sa 6∈Ba(x|D(~x\{x}))

1√
Na − ba(s1, s2)

|x, ya′sa〉D(x), (6.113)

|ΨBad
i,2 (UPD; a, s1, s2)〉 : 1√

Na(Na − ba(s1, s2))

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)|∑

~yā∈Gā(~xa\{x},~xā|~ya)

1√
|Gā(sa − 1, sā)|∑

yasa∈Ba(x|D(~x\{x}))
ω

(ηasa+η)yasa
Na

∑
ya′sa∈[Na]

1√
Na

|⊥, ya′sa〉Da(x). (6.114)

The states with the superscript Find are states for which D ∈ R:

|ΨFind
i,1 (UPD; a, s1, s2)〉 :

√√√√ ba(s1, s2)
N2
a (Na − ba(s1, s2))

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|∑

yasa∈Ba(x|D(~x\{x}))
ω

(ηasa+η)yasa
Na

∑
ya′sa∈Ba(x|D(~x\{x}))

1√
ba(s1, s2)

|x, ya′sa〉D(x), (6.115)

|ΨFind
i,2 (UPD; a, s1, s2)〉 : 1√

Na(Na − ba(s1, s2))

√√√√ |HREM
a (s1, s2)|
|Gā(s1, s2)|

∑
~yā∈HREM

1 (~x1,~x2,~ya)
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1√
|HREM

a (s1, s2)|

∑
yasa∈Ba(x|D(~x\{x}))

ω
(ηasa+η)yasa
Na

∑
ya′sa∈[Na]

1√
Na

|⊥, ya′sa〉Da(x), (6.116)

where
∣∣∣HREM

a (s1, s2)
∣∣∣ is defined in Equation (6.84).

The branch of superposition corresponding to removing x fromD with just
the errors in Da exposed is

REM : H|ξi−1(REM)〉
=

∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~xa\{x},~xā)

1√
|Ga(sa − 1, sā)|

ω~ηa·~yaNa |(x
a
1, y

a
1), . . . , (xasa−1, y

a
sa−1)〉Da(~xa\{x})

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|

√Na − ba(s1, s2)
Na

∑
yasa∈[Na]

1√
Na

|⊥, yasa〉D(x)

+ ba(s1, s2)
Na

∑
yasa 6∈Ba(x|D(~x\{x}))

1√
Na − ba(s1, s2)

|x, yasa〉Da(x)

+

√
ba(s1, s2)(Na − ba(s1, s2))

Na

∑
yasa∈Ba(x|D(~x\{x}))

1√
ba(s1, s2)

|x, yasa〉Da(x)


ω~ηā·~yāNā |(x

ā
1, y

ā
1), . . . , (xāsā , y

ā
sā)〉Dā(~xā)∑

yasa+1,...,y
a
q∈[Na]

1√
N q−sa
a

|(⊥, yasa+1), . . . , (⊥, yaq )〉Da(⊥)

∑
yāsā+1,...,y

ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq )〉Dā(⊥), (6.117)

wherewe simplified the formula fromEquation (6.108) using the fact η = −ηasa .
Splitting the sums in the case of removing an entry works as shown in Equa-
tion (6.110).

Now we present the full state, after checking for D ∈ R:

REM : H \ VR|ξi−1(REM)〉|0〉J
=

∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~xa\{x},~xā)

1√
|Ga(sa − 1, sā)|

ω~ηa·~yaNa |(x
a
1, y

a
1), . . . , (xasa−1, y

a
sa−1)〉Da(~xa\{x})

√Na − ba(s1, s2)
Na

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)|
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∑
~yā∈Gā(~xa\{x},~xā|~ya)

1√
|Gā(sa − 1, sā)|

∑
yasa∈[Na]

1√
Na

|⊥, yasa〉D(x)

︸ ︷︷ ︸
|ΨGood
i (REM,a,s1,s2)〉

|0〉J

−
√
Na − ba(s1, s2)

Na

√√√√ |HREM
a (s1, s2)|
|Gā(s1, s2)|

∑
~yā∈HREM

a (~x1,~x2,~ya)

1√
|HREM

a (s1, s2)|︸ ︷︷ ︸
(i) |ΨFind

i,1 (REM,a,s1,s2)〉∑
yasa∈[Na]

1√
Na

|⊥, yasa〉D(x)

︸ ︷︷ ︸
(ii) |ΨFind

i,1 (REM,a,s1,s2)〉

|1〉J

+ ba(s1, s2)
Na

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|︸ ︷︷ ︸

(i) |ΨBad
i (REM;a,s1,s2)〉∑

yasa 6∈Ba(x|D(~x\{x}))

1√
Na − ba(s1, s2)

|x, yasa〉Da(x)

︸ ︷︷ ︸
(ii) |ΨBad

i (REM;a,s1,s2)〉

|0〉J

+

√
ba(s1, s2)(Na − ba(s1, s2))

Na

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|︸ ︷︷ ︸

(i) |ΨFind
i,2 (REM,a,s1,s2)〉

∑
yasa∈Ba(x|D(~x\{x}))

1√
ba(s1, s2)

|x, yasa〉Da(x)

︸ ︷︷ ︸
(ii) |ΨFind

i,2 (REM,a,s1,s2)〉

|1〉J


ω~ηā·~yāNā |(x

ā
1, y

ā
1), . . . , (xāsā , y

ā
sā)〉Dā(~xā)∑

yasa+1,...,y
a
q∈[Na]

1√
N q−sa
a

|(⊥, yasa+1), . . . , (⊥, yaq )〉Da(⊥)

∑
yāsā+1,...,y

ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq )〉Dā(⊥), (6.118)

whereHREM
a (~x1, ~x2, ~ya) = Gā(~xa \ {x}, ~xā | ~ya) \ Gā(~x1, ~x2 | ~ya).

6.4.1.6 Bound on εstep(j)

We want to show that after any query, |Φi〉ADJ is close to |ΨGood
i 〉AD|0〉J . One

way of looking at the lemma below is from the perspective of an adversary
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searching for inputs that provide outputs of a random function that are in R.
Normally this task does not involve a punctured oracle but a regular one. We
show here the error introduced by puncturing the oracle; The two states that
we consider come from projecting with JR either the state after interacting with
a non-punctured oracle or the state after interacting with a punctured oracle
(given ¬Find). This intuition, however, is not crucial for our proof, as we focus
solely on punctured oracles.

Lemma 6.12. For states defined in the preceding sections we have
∥∥∥|ΨGood

i 〉AD|0〉J − |Φi〉ADJ
∥∥∥ ≤ i∑

j=1
εstep(j)

≤
i∑

j=1
max

a∈{1,2},s1,s2≤j−1

2ba(s1, s2)
Na

+ ba(s1, s2)√
Na(Na − ba(s1, s2))

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)|

+ ba(s1, s2)
Na

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)| −


√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)| − 1


+ ba(sa + 1, sā)

Na

√√√√ |Gā(sa + 1, sā)|
|Gā(s1, s2)| −


√√√√ |Gā(sa + 1, sā)|
|Gā(s1, s2)| − 1

 . (6.119)

Proof. We are going to prove the statement by recursion over the number
of queries made by the adversary. The exact derivation is shown in
Equation (6.99).

In the following we calculate εstep(j) defined in Equation (6.100). For i = 0
the statement is true, as |ΨGood

0 〉|0〉J = |Φ0〉 = |Ψ0〉|0〉J .
From Equations (6.106), (6.111), and (6.118) we know how queryingworks

for |ΨGood
j−1 〉, nowwe distinguish two types of errors compared to |ΨGood

j 〉|0〉J : an
additive error of adding a small-weight state to the original one and a multi-
plicative error where one branch of the superposition is multiplied by some
factor.

The additive error includes all states of small-weight states multiplied by
|0〉J with the superscript Bad. In the branches of the superposition where we
add or remove an entry from the database we see that we recover |ΨGood

j 〉|0〉J
after multiplying a branch of H \ VRUj−1|ΨGood

j−1 〉|0〉J by some factor.
Our approach to the rest of the proof consists of first dealing with the ad-

ditive and later with the multiplicative error. To this end let us define |ψ×j 〉ADJ
as the state JRH \ VRUj−1|ΨGood

j−1 〉|0〉J with all branches classified as the additive
error excluded. By “classified as the additive error” wemean states with super-
script Bad and highlighted in red in Equations (6.106, 6.111, 6.118). The new
state is defined as

|ψ×j 〉ADJ :=
( ∑
a,s1,s2

|ΨGood
j (NOT; a, s1, s2)〉
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+
√
Na − ba(sa + 1, sā)

Na

√√√√ |Gā(sa + 1, sā)|
|Gā(s1, s2)| |Ψ

Good
j (ADD; a, s1, s2)〉

+ |ΨGood
j (UPD; a, s1, s2)〉

+
√
Na − ba(s1, s2)

Na

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)| |Ψ

Good
j (REM; a, s1, s2)〉

 |0〉J , (6.120)

where the states above correspond to branches of superposition where we do
nothing (NOT, for η = 0), add an entry, update the database, and remove an
entry from D. Bounding the difference of the states is done as follows∥∥∥|ΨGood

j 〉|0〉J − JRH \ VRUj−1|ΨGood
j−1 〉|0〉J

∥∥∥
≤
∥∥∥|ΨGood

j 〉|0〉J − |ψ×j 〉ADJ
∥∥∥+

∥∥∥|ψ×j 〉ADJ − JRH \ VRUj−1|ΨGood
j−1 〉|0〉J

∥∥∥ . (6.121)

The second term above is just the norm of all states amplifying the additive
error—we call them the bad states.

We bound the additive error ‖|ψ×j 〉ADJ − JRH \ VRUj−1|ΨGood
j−1 〉|0〉J‖ by first

splitting the three cases underlined above:∥∥∥|ΨBad
j 〉

∥∥∥ ≤ ∥∥∥|ΨBad
j,1 (UPD)〉

∥∥∥+
∥∥∥|ΨBad

j,2 (UPD)〉
∥∥∥+

∥∥∥|ΨBad
j (REM)〉

∥∥∥ , (6.122)

where |ΨBad
j 〉 is the sum of all three bad states, the bound follows from the tri-

angle inequality.
Calculating all of the three norms above is done by first focusing on a partic-

ular interface that is queried and by focusing on particular sizes of databases:

∥∥∥|ΨBad
j 〉

∥∥∥ =

√√√√√∑
a

j∑
s1,s2=0

|β(a, s1, s2)|2
∥∥∥|ΨBad

j (a, s1, s2)〉
∥∥∥2
, (6.123)

where β(a, s1, s2) is the amplitude of the good state projected to states with the
specified parameters: For a projector Pa,s1,s2 to adversaries that query interface
a and databases of sizes s1 and s2 we have β(a, s1, s2) := Pa,s1,s2|ΨGood

j 〉 and
|ΨBad

j (a, s1, s2)〉 := Pa,s1,s2|ΨBad
j 〉.

Additive errors Dealing with additive errors, we begin with the UPD branch.
In the bad states in the UPD case, Equation (6.111), we need to take special care
of∑yasa∈B(x|D(~x\{x})) ω

(ηasa+η)yasa
N ; This is a a complex number that depends on ηasa ,

so it enters the norm in a non-trivial way. The first step is a change of variables:
Instead of summing over elements of the bad state we sum over yasa ∈ [ba(s1, s2)]
and change yasa in the expression to Ba(x | D(~x\{x}))(yasa), by which we denote
the yasa-th element of Ba(x | D(~x\{x})). Note that there is a natural order in the
bad set, as Ya = [Na].
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Given the change of variables we can use the triangle inequality to focus on
the norm of a state with a single phase factor ω(ηasa+η)Ba(x|D(~x\{x}))(yasa )

N , instead of
the whole sum:∥∥∥|ΨBad

j (UPD; a, s1, s2)〉
∥∥∥

≤
∑

yasa∈[ba(s1,s2)]

∥∥∥|ΨBad
j (UPD; a, s1, s2,Ba(x | D(~x \ {x}))(yasa))〉

∥∥∥ , (6.124)

where we omit the index of the UPD errors because the techniques here work
in almost the same way for both states. The input D(~x \ {x}) should not be
treated as an actual argument of the state, we still consider the superposition
over different inputs, we just mean that in the state |ΨBad

j (UPD; a, s1, s2)〉 we
change the variable yasa . In what follows we denote the state on the right hand
side of the above equation by |ΨBad

j (UPD; a, s1, s2,B′(yasa))〉.
Now we focus on the state with a fixed B′(yasa), we bound the norm of this

state.
Claim 6.13. For all yasa ∈ [ba(s1, s2)]∥∥∥|ΨBad

j,1 (UPD; a, s1, s2,Ba(x | D(~x \ {x}))(yasa))〉
∥∥∥ ≤ 1

Na

and (6.125)∥∥∥|ΨBad
j,2 (UPD; a, s1, s2,Ba(x | D(~x \ {x}))(yasa))〉

∥∥∥
≤
√

1
Na(Na − ba(s1, s2))

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)| . (6.126)

Proof. Our idea for the proof is to first show that the norm of a good state in
the UPD branch with a modified sum over yasa is not greater than 1. Then to
prove that the norm of |ΨBad

j (UPD; a, s1, s2,Ba(x | D(~x \ {x}))(yasa))〉multiplied
by the corresponding right hand side of Equation (6.125) and (6.126) equals
the norm of the good state we mentioned earlier.

We start by defining two states:∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~xa\{x},~xā)

1√
|Ga(sa − 1, sā)|

ω~ηa·~yaNa |(x
a
1, y

a
1), . . . , (xasa−1, y

a
sa−1)〉Da(~xa\{x})

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|

ω~ηā·~yāNā |(x
ā
1, y

ā
1), . . . , (xāsā , y

ā
sā)〉Dā(~xā)

∑
yasa+1,...,y

a
q∈[Na]

1√
N q−sa
a

|(⊥, yasa+1), . . . , (⊥, yaq )〉Da(⊥)

∑
yāsā+1,...,y

ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq )〉Dā(⊥)
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⊗


∑
yasa∈Ba(x|D(~x\{x}))

1√
ba(s1,s2)

ω
(ηasa+η)yasa
N |x, yasa〉Da(x) =: |ΨGood

j (UPD; a, s1, s2)〉,∑
yasa∈[Na]

1√
Na
ω

(ηasa+η)yasa
Na |x, yasa〉Da(x) =: |Ψ̃Good

j (UPD; a, s1, s2)〉.
(6.127)

The first one, |ΨGood
j (UPD; a, s1, s2)〉 is the one that we use in the last step of the

proof, as described in the previous paragraph. The second one will be used to
show that the norm of |ΨGood

j (UPD; a, s1, s2)〉 is bounded by 1.
One more statement that we need to prove is that∥∥∥|Ψ̃Good
j (UPD; a, s1, s2)〉

∥∥∥ =
∥∥∥|ΨGood

j (UPD; a, s1, s2)〉
∥∥∥. To prove our statement

we need to note two things. First being that the projection is done on a single
branch of superposition, so itsweight remains the same for all states considered
in this paragraph. The second being that the database register is normalized,
by that we mean that just dividing by the square-root of the number of distinct
databases yields a normalized database register. The first fact is obvious when
noting that to define the two good states we can first take the corresponding
(UPD; a, s1, s2) branch of the non-punctured state and then project to databases
that are not in R. By the up-punctured state we mean the state generated by
the same adversary interacting with the un-punctured oracle. The second ob-
servation comes from the fact that the good state is normalized. Hence, just
taking care of proper weighting of the database entries (normalization factors
for every yai ) ensures the database register is normalized.

The fact that the state with∑yasa∈[Na] is sub-normalized is important because
now we can bound the norm of |ΨGood

j (UPD; a, s1, s2)〉. Having in mind that∑
yasa∈Ba(x|D(~x\{x})) = ∑

yasa∈[Na]−
∑
yasa 6∈Ba(x|D(~x\{x})) we see that

ba(s1, s2)
∥∥∥|ΨGood

j (UPD; a, s1, s2)〉
∥∥∥2

= Na

∥∥∥|Ψ̃Good
j (UPD; a, s1, s2)〉

∥∥∥2

− (Na − ba(s1, s2))
∥∥∥|ΨGood

j (UPD; a, s1, s2)〉
∥∥∥2
≤ ba(s1, s2), (6.128)

hence
∥∥∥|ΨGood

j (UPD; a, s1, s2)〉
∥∥∥2
≤ 1.

Now that we know that |ΨGood
j (UPD; a, s1, s2)〉 is sub-normalized we show

that ∥∥∥|ΨGood
j (UPD; a, s1, s2,B′(yasa))〉

∥∥∥ ≤ 1√
ba(s1, s2)

. (6.129)

To prove this bound, consider measuring register Da(x) of
|ΨGood

j (UPD; a, s1, s2)〉 in the computational basis. The probability of getting
any outcome yasa is necessarily

1
ba(s1,s2) , as the outputs of the oracle are uniformly
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random. The post-measurement state, for an outcome yasa , is
√
ba(s1, s2)·

|ΨGood
j (UPD; a, s1, s2,B′(yasa))〉. Naturally, norm of this post-measurement state

is at most 1.
Nowwe can use the state |ΨGood

j (UPD; a, s1, s2,B′(yasa))〉 to analyze the norm
of |ΨBad

j (UPD; a, s1, s2,B′(yasa))〉. First let us inspect the norm squared of the bad
state:∥∥∥|ΨBad

j (UPD; a, s1, s2,B′(yasa))〉
∥∥∥2

=
∑

x,η,a,~x,~η′,~η,w′,w

∑
ηa′sa ,η

a
sa

ᾱ′x,η,a,~x,~η′,ηa′sa ,w′α
′
x,η,a,~x,~η,ηasa ,w

〈ψ(x, η, a, ~x, ~η′, ηa′sa , w
′)|ψ(x, η, a, ~x, ~η, ηasa , w)〉∑

~ya∈Ga(~xa\{x},~xā)

1
|Ga(sa − 1, sā)|

ω~ηa·~yaNa

∑
~yā∈Gā(~x1,~x2|~ya)

1
|Gā(s1, s2)|ω

~ηā·~yā
Nā

1
N2
a (Na − ba(s1, s2)) ω̄

(ηa′sa+η)B′(yasa )
Na ω

(ηasa+η)B′(yasa )
Na γ2 ∑

ya′sa∈[ν]︸ ︷︷ ︸
=ν

, (6.130)

where ν = Na−ba(s1, s2) and γ = 1 for |ΨBad
j,1 (UPD; a, s1, s2,B′(yasa))〉 and ν = Na

and γ =
√
|Gā(sa−1,sā)|
|Gā(s1,s2)| for |ΨBad

j,2 (UPD; a, s1, s2,B′(yasa))〉 (in the second case the
sum goes over ya′sa 6∈ Ba(x | D(~x \ {x})) instead of ya′sa ∈ [ν]). It is easy to
notice, that the only difference between Equation (6.130) and norm squared of
|ΨGood

j (UPD; a, s1, s2,B′(yasa))〉 lies in the factor νγ2

N2
a(Na−ba(s1,s2)) . This factor in the

modified good state equals 1
ba(s1,s2) . This observation implies that∥∥∥|ΨBad

j (UPD; a, s1, s2,B′(yasa))〉
∥∥∥

=

√√√√ b(s) · νγ2

N2
a (Na − ba(s1, s2))

∥∥∥|ΨGood
j (UPD; s,B′(yasa))〉

∥∥∥ . (6.131)

Together with the bound on the norm in the left hand side this proves the
claimed bounds.

Claim 6.13, together with the bound from Equation (6.124) gives us:

∥∥∥|ΨBad
j,1 (UPD; a, s1, s2)〉

∥∥∥ ≤ ba(s1, s2)
Na

, (6.132)

∥∥∥|ΨBad
j,2 (UPD; a, s1, s2)〉

∥∥∥ ≤ ba(s1, s2)√
Na(Na − ba(s1, s2))

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)| . (6.133)

The bounds from Equation (6.132) in Equation (6.123) give us the bound
on the additive error in the UPD branch. The additive error for the REM branch
(|ΨBad

j (REM)〉 in Equation (6.118)) is much easier to calculate: As registerD(x)
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is normalized and all the rest of the state is the same as |ΨGood
j (REM)〉, the only

error comes from the factor ba(s1,s2)
Na

. To calculate the norm of the state we can
follow the analysis of Equation (6.130). Finally we get:

∥∥∥|ΨBad
j,1 (UPD)〉

∥∥∥ ≤ max
a,s1,s2

(
ba(s1, s2)

Na

)
, (6.134)

∥∥∥|ΨBad
j,2 (UPD)〉

∥∥∥ ≤ max
a,s1,s2

 ba(s1, s2)√
Na(Na − ba(s1, s2))

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)|

 , (6.135)

∥∥∥|ΨBad
j (REM)〉

∥∥∥ ≤ max
a,s1,s2

(
ba(s1, s2)

Na

)
, (6.136)

where a ∈ {1, 2} and s1, s2 ≤ j − 1.

Multiplicative errors Themultiplicative error is a factor thatmultiplies a part
of the state |ψ×j 〉ADJ . Similarly as before we need to take care of the fact that the
joint state of the adversary and the oracle is a sum over databases of different
sizes and queries to different interfaces:

|ψ×j 〉 =
∑
a,s1,s2

|ψ×j (a, s1, s2)〉, (6.137)

where the states |ψ×j (a, s1, s2)〉 are orthogonal. The terms are also orthogonal
in |ΨGood

j 〉 = ∑
a,s1,s2|ΨGood

j (a, s1, s2)〉.
There are two sources of multiplicative errors, ADD from Equation (6.106)

and REM from Equation (6.118), we split the two sources with the triangle
inequality. We deal with both in the same way, just the final bound is different.

Let us write down the two parts, one affected by the error and the second
not:

|ΨGood
j 〉AD|0〉J =

∑
a,s1,s2

α(a, s1, s2)|ϕ1(a, s1, s2)〉+ β(a, s1, s2)|ϕ2(a, s1, s2)〉,

(6.138)
|ψ×j 〉ADJ =

∑
a,s1,s2

α(a, s1, s2)|ϕ1(a, s1, s2)〉

+ (1 + g)
√

1− eβ(a, s1, s2)|ϕ2(a, s1, s2)〉, (6.139)

where (1 + g)
√

1− e is the multiplicative error, in the case ADD the error is
g =

√
|Gā(sa+1,sā)|
|Gā(s1,s2)| − 1 and e = ba(sa+1,sā)

Na
. In the case REM the error is g =√

|Gā(sa−1,sā)|
|Gā(s1,s2)| − 1 and e = ba(s1,s2)

Na
. We know that∑

a,s1,s2 |α(a, s1, s2)|2 + |β(a, s1, s2)|2 ≤ 1, because we excluded a single branch
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of the superposition, for ADD and REM. This inequality implies∑
a,s1,s2 |β(a, s1, s2)|2 ≤ 1. We continue with the bound∥∥∥|ψ×j 〉ADJ − |ΨGood

j 〉AD|0〉J
∥∥∥

=
∥∥∥∥∥ ∑
a,s1,s2

(
1− (1 + g)

√
1− e

)
β(a, s1, s2)|ϕ2(a, s1, s2)〉

∥∥∥∥∥ (6.140)

=
√ ∑
a,s1,s2

(
1− (1 + g)

√
1− e

)2
|β(a, s1, s2)|2 ≤ max

a,s1,s2

(
1− (1 + g)

√
1− e

)
≤ max

a,s1,s2
((1 + g)e− g) . (6.141)

Maximization is done over a ∈ {1, 2} and s1, s2 ≤ j − 1.
Bound on one step From Equations (6.121), (6.134), and (6.141) (for the two
sources of error) the bound on the single step is

εstep(j) ≤ max
a∈{1,2},s1,s2≤j−1

2ba(s1, s2)
Na

+ ba(s1, s2)√
Na(Na − ba(s1, s2))

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)|

+ ba(s1, s2)
Na

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)| −


√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)| − 1


+ ba(sa + 1, sā)

Na

√√√√ |Gā(sa + 1, sā)|
|Gā(s1, s2)| −


√√√√ |Gā(sa + 1, sā)|
|Gā(s1, s2)| − 1

 (6.142)

and the final bound is∥∥∥|ΨGood
i 〉AD|0〉J − |Φi〉ADJ

∥∥∥
≤

i∑
j=1

max
a∈{1,2},s1,s2≤j−1

2ba(s1, s2)
Na

+ ba(s1, s2)√
Na(Na − ba(s1, s2))

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)|

+ ba(s1, s2)
Na

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)| −


√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)| − 1


+ ba(sa + 1, sā)

Na

√√√√ |Gā(sa + 1, sā)|
|Gā(s1, s2)| −


√√√√ |Gā(sa + 1, sā)|
|Gā(s1, s2)| − 1

 . (6.143)

6.4.1.7 Bound on εFind(i)

Our task here is bounding the norm of
∥∥∥JRUiH \ VRUi−1|ΨGood

i−1 〉
∥∥∥. All states

(among the states defined in Section 6.4.1.5) that give non-zero contributions
to this norm are the ones that we give the superscript Find, they contain |1〉J .
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Lemma 6.14. For states defined in preceding sections we have∥∥∥JRUiH \ VRUi−1|ΨGood
i−1 〉

∥∥∥ = εFind(i)

≤ max
a∈{1,2},s1,s2≤i−1

√Na − ba(sa + 1, sā)
Na

√√√√ |HADD
a (s1, s2)|
|Gā(s1, s2)|

+
√
ba(sa + 1, sā)

Na

+ ba(s1, s2)3/2

Na

√
Na − ba(s1, s2)

+ ba(s1, s2)√
Na(Na − ba(s1, s2))

sgn
(∣∣∣HREM

a (s1, s2)
∣∣∣)
√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)|

+
√
Na − ba(s1, s2)

Na

√√√√ |HREM
a (s1, s2)|
|Gā(s1, s2)| +

√
ba(s1, s2)(Na − ba(s1, s2))

Na

 . (6.144)

Proof. For all Find states we start bounding the norm by splitting the norm by a
and sizes of the databases, like in Equation (6.123). Let us now go through the
three important modes of operation, i.e. adding, updating, or removing from
the database.
The ADD case For the state |ΨFind

j,1 (ADD)〉 we first analyze its norm squared;
Forgetting for now the factors multiplying the whole state, the situation is sim-
ilar to Equation (6.128) but instead of focusing on the sum over yasa+1 we show
that the norm squared of |ΨFind

j,1 (ADD)〉 is a sum of norms of states that differ
in the sum over ~yā. The states on the right hand side have the sum over ~yā split
according to ∑

~yā∈Gā(~x1,~x2|~ya)\Gā(~xa∪{x},~xā|~ya)
=

∑
~yā∈Gā(~x1,~x2|~ya)

−
∑

~yā∈Gā(~xa∪{x},~xā|~ya)
. (6.145)

Note that both states constructed with sums over sets Gā(~x1, ~x2 | ~ya) and
Gā(~xa ∪ {x}, ~xā | ~ya) have unit norm. The former state has norm equal
to |ΨGood

j−1 (ADD)〉, the norm of this state does not change when replacing
register D(x) with an empty entry of the database. The latter state is
just the good state before the application of the adversary’s unitary:
U†j|ΨGood

j (ADD)〉. This analysis follows the same reasoning as presented in the
proof of Claim 6.13. Given that |ΨFind

j,1 (ADD)〉 without the additional factor√
Na−ba(sa+1,sā)

Na

√
|HADD
a (s1,s2)|
|Gā(s1,s2)| has bounded norm we have the following bound:

∥∥∥|ΨFind
j,1 (ADD)〉

∥∥∥ ≤ max
a,s1,s2

√
Na − ba(sa + 1, sā)

Na

√√√√ |HADD
a (s1, s2)|
|Gā(s1, s2)| . (6.146)

The second state has norm bounded in the following way:∥∥∥|ΨFind
j,2 (ADD)〉

∥∥∥ ≤ max
a,s1,s2

√
ba(sa + 1, sā)

Na

. (6.147)
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This bound holds , because except for the factor in front of the state and register
Da(x) the state is just a good state (one from just before the query we analyze
in Equation (6.106)). Moreover registerD(x) is normalized (given the fact that
η is explicit in the adversary’s register).
The UPD case In this case we have∥∥∥|ΨFind

j,1 (UPD)〉
∥∥∥ ≤ max

a,s1,s2

ba(s1, s2)3/2

Na

√
Na − ba(s1, s2)

, (6.148)

where we follow the same reasoning as in the proof of Lemma 6.12 and
Claim 6.13. For |ΨFind

j,2 (UPD)〉 we consider the norm square and see that we
deal with a difference of two norms with different sets for ~yā, similarly to
|ΨFind

j,1 (ADD)〉, but the split is done as follows:∑
~yā∈Gā(~xa\{x},~xā|~ya)\Gā(~x1,~x2|~ya)

=
∑

~yā∈Gā(~xa\{x},~xā|~ya)
−

∑
~yā∈Gā(~x1,~x2|~ya)

. (6.149)

The first state is just |ΨBad
j,2 (UPD)〉. The second state is more problematic to

deal with , so we just lower bound its norm by 0. We know the bound on
|ΨBad

j,2 (UPD)〉 so by just taking care of the additional factors we get the bound:∥∥∥|ΨFind
j,2 (UPD)〉

∥∥∥
≤ max

a,s1,s2

ba(s1, s2)√
Na(Na − ba(s1, s2))

sgn
(∣∣∣HREM

a (s1, s2)
∣∣∣)
√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)| , (6.150)

where the sign function ensures that if there is no error in Dā the norm of the
state is 0.
The REM case Finally we have

∥∥∥|ΨFind
j,1 (REM)〉

∥∥∥ ≤ max
a,s1,s2

√
Na − ba(s1, s2)

Na

√√√√ |HREM
a (s1, s2)|
|Gā(s1, s2)| , (6.151)

that can be derived in the same way as the bound on norm of |ΨFind
j,1 (ADD)〉.

For the second state we have

∥∥∥|ΨFind
j,2 (REM)〉

∥∥∥ ≤ max
a,s1,s2

√
ba(s1, s2)(Na − ba(s1, s2))

Na

(6.152)

and to get it we follow the same reasoning as for |ΨFind
j,2 (ADD)〉.

We use these bounds and the triangle inequality to bound the second term
in Equation (6.96):∥∥∥JRUiH \ VRUi−1|ΨGood

i−1 〉
∥∥∥
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≤ max
a∈{1,2},s1,s2≤i−1

√Na − ba(sa + 1, sā)
Na

√√√√ |HADD
a (s1, s2)|
|Gā(s1, s2)|

+
√
ba(sa + 1, sā)

Na

+ ba(s1, s2)3/2

Na

√
Na − ba(s1, s2)

+ ba(s1, s2)√
Na(Na − ba(s1, s2))

sgn
(∣∣∣HREM

a (s1, s2)
∣∣∣)
√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)|

+
√
Na − ba(s1, s2)

Na

√√√√ |HREM
a (s1, s2)|
|Gā(s1, s2)| +

√
ba(s1, s2)(Na − ba(s1, s2))

Na

 . (6.153)

6.4.2 Concrete Relations
In this sectionwe list corollaries important for results that we state in this thesis.

For relations that are defined on a single database (in this thesis we consider
preim and coll defined in sections 6.4.2.2 and 6.4.2.1)we can simplify the bound
from Lemma 6.11. We omit the differences in Gā sets and simplify the terms:

preim, coll : P
[
Find : A[H \R]

]
≤

q∑
i=1

 i−1∑
j=1

max
s≤j−1

3b(s)
N

+ b(s)√
N(N − b(s))

+ b(s+ 1)
N


+ max

s≤i−1

√b(s+ 1)
N

+ b(s)3/2

N
√
N − b(s)

+

√
b(s)(N − b(s))

N

2

(6.154)

≤
q∑
i=1

 i−1∑
j=1

max
s≤j−1

5 b(s+ 1)√
N(N − b(q))

+ max
s≤i−1

2
√
b(s+ 1)
N

+ b(s)3/2

N
√
N − b(q)

2

(6.155)

≤
q∑
i=1

 i−1∑
j=1

5 b(j)√
N(N − b(q))

+ 2
√
b(i)
N

+ b(i)3/2

N
√
N − b(q)

2

(6.156)

In the above bound we use the facts that b(s) is a monotonously growing func-
tion of s, this is true for all relations we use in this thesis. For the relations that
we provide concrete bounds for, the factor b(s) is a linear function of s. To cal-
culate the bounds, we use the following reasoning, properly tailored to each
concrete relation:

i∑
j=1

j3/2 ≤
∫ i

1
dj j3/2 ≤

∫ i

0
dj j3/2 = 2

5i
5/2. (6.157)
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Moreover b(s) ≤ b(q), which we use in the denominator.
In the case that R depends on two databases we need to use the full bound

fromLemma 6.11. Whenever the outputs of two databases relate to one another
the new entry in the good set is sampled in a way thatD is not in R. If outputs
of one oracle depend on the inputs of the other, adding a new entry gives a
trivial attack, thatwe exclude. The only scenario that adding a new entry causes
errors in the other database is when the other outputs depend on some random
function of the new input (that is not accessible for the adversary). This is not
the case for the relations that we discuss here, hence we can omit all errors to
the other database in the ADD case.

We simplify the additive terms
√
|Gā(sa−1,sā)|
|Gā(s1,s2)| , knowing that this factor is

larger than 1, the fewer the restrictions from Da the more good yā there are.
Moreover sgn

(∣∣∣HREM
a (s1, s2)

∣∣∣) = 1.

An important term that we need to bound is
√
|Gā(sa−1,sā)|
|Gā(s1,s2)| . To achieve a con-

stant bound we proceed as follows:

|Gā(sa − 1, sā)|
|Gā(s1, s2)| =

sā∏
k=1

(
Nā − bā(sa − 1, k)
Nā − bā(sa, k)

)
=

sā∏
k=1

(
1 + bā(sa, k)− bā(sa − 1, k)

Nā − bā(sa, k)

)

(6.158)

= exp
(

sā∑
k=1

log
(

1 + bā(sa, k)− bā(sa − 1, k)
Nā − bā(sa, k)

))
(6.159)

≤ exp


sā∑
k=1

bā(sa, k)− bā(sa − 1, k)
Nā − bā(sa, k)︸ ︷︷ ︸

≤ q2
Nā−q2

 ≤ exp
(

q3

Nā − q2

)
≤ exp(2) ≤ 32,

(6.160)

where we use the bound log(1 +x) ≤ x and the fact that for any of the relations
we analyze ∀i, j ≤ q : bā(i, j) ≤ q2.

For bounding the part with
∣∣∣HREM

a (s1, s2)
∣∣∣we use the following derivation:√

Na − ba(s1, s2)
Na

√√√√ |HREM
a (s1, s2)|
|Gā(s1, s2)|

=
√
Na − ba(s1, s2)

Na

√√√√ sā∏
k=1

(
Nā − bā(sa − 1, k)
Nā − bā(sa, k)

)
− 1 (6.161)

=
√
Na − ba(s1, s2)

Na

√√√√ sā∏
k=1

(
1 + bā(sa, k)− bā(sa − 1, k)

Nā − bā(sa, k)

)
− 1 (6.162)
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≤
√
Na − ba(s1, s2)

Na

√√√√√√√√√√√√√
sā∏
k=1


1 + maxk≤sā{bā(sa, k)− bā(sa − 1, k)}

Nā − bā(sa, sā)︸ ︷︷ ︸
≤exp

(
maxk≤sā{bā(sa,k)−bā(sa−1,k)}

Nā−bā(sa,sā)

)


− 1

(6.163)

≤
√

22qmaxk≤sā (bā(sa, k)− bā(sa − 1, k))
Na

, (6.164)

where the last inequality comes from bounding ex − 1 ≤ 2x (valid for 0 ≤ x ≤
1) and assuming that Na−ba(s1,s2)

Nā−bā(s1,s2) ≤ 2, which is true for the parameters in the
problems we analyze.

Finally the bound valid for relations Comp, Rate-1/3, EDM, and EDMD, de-
fined in sections 6.4.2.4, 6.4.2.5, 6.4.2.6, and 6.4.2.7 respectively, is

Comp,Rate-1/3,EDM,EDMD : P
[
Find : A[H \R]

]
≤

q∑
i=1

 i−1∑
j=1

max
a∈{1,2},s1,s2≤j−1

(
2ba(s1, s2)

Na

+ ba(sa + 1, sā)
Na

+ ba(s1, s2)√
Na(Na − ba(s1, s2))

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)| + ba(s1, s2)

Na

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)|


+ max

a∈{1,2},s1,s2≤i−1

√ba(sa + 1, sā)
Na

+ ba(s1, s2)3/2

Na

√
Na − ba(s1, s2)

+ ba(s1, s2)√
Na(Na − ba(s1, s2))

√√√√ |Gā(sa − 1, sā)|
|Gā(s1, s2)|

+
√
Na − ba(s1, s2)

Na

√√√√ |HREM
a (s1, s2)|
|Gā(s1, s2)| +

√
ba(s1, s2)(Na − ba(s1, s2))

Na

2

(6.165)

≤
q∑
i=1

 i−1∑
j=1

max
a∈{1,2},s1,s2≤j−1

(
ba(s1, s2)

Na

+ ba(sa + 1, sā)
Na

+3 ba(s1, s2)√
Na(Na − ba(s1, s2))

+ ba(s1, s2)
Na

+ 3ba(s1, s2)
Na


+ max

a∈{1,2},s1,s2≤i−1

√ba(sa + 1, sā)
Na

+ ba(s1, s2)3/2

Na

√
Na − ba(s1, s2)

+ 3 ba(s1, s2)√
Na(Na − ba(s1, s2))
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+
√

22qmaxk≤sā (bā(sa, k)− bā(sa − 1, k))
Na

+

√
ba(s1, s2)(Na − ba(s1, s2))

Na

2

(6.166)

≤
q∑
i=1

 i−1∑
j=1

max
a∈{1,2},s1,s2≤j−1

9 ba(sa + 1, sā)√
Na(Na − ba(q, q))


+ max

a∈{1,2},s1,s2≤i−1

2
√
ba(sa + 1, sā)

Na

+ 3 ba(s1, s2)√
Na(Na − ba(s1, s2))

+ ba(s1, s2)3/2

Na

√
Na − ba(s1, s2)

+
√

22qmaxk≤sā (bā(sa, k)− bā(sa − 1, k))
Na

2

, (6.167)

wherewe use the fact that ba is amonotonously increasing function: ba(s1, s2) ≤
ba(sa + 1, sā) and ba(s1, s2) ≤ ba(q, q).

For many of the relations presented below, we do not know quantum algo-
rithms that find a database that is in relation. However, our intuition is that all
the distinguishability bounds coming from the application of the O2H lemma
(Theorem 6.7) and bounding the probability of Find with our bounds proven
in Lemma 6.11 are tight.

In all corollaries stated in the rest of this chapter, to prove them we use the
bound from Lemma 6.11 with function b defined before the statement of the
corollary. For Corollaries 6.15, 6.16, and 6.17 we take the bound simplified as
in Equation (6.156). For Corollaries 6.18, 6.19, 6.20, and 6.21 we take the bound
simplified as in Equation (6.167).

6.4.2.1 The Collision Relation

For collisions we consider a single database. The coefficient is then b(s) = s−1,
a collision might occur with any of the previously output values.

Corollary 6.15. For any quantum adversary A interacting with a punctured oracle
CStOY \ Rcoll—where Rcoll is defined in Equation (6.63)—the probability of Find is
bounded by:

P
[
Find : A[CStOY \Rcoll]

]
≤ 2q2

|Y|
+ 4q7/2

|Y|
√
|Y| − q

+ 5q5

|Y| (|Y| − q) , (6.168)

where q is the maximal number of queries made by A.

The above bound for q ∈ O
(

3
√
|Y|
)
can be bounded by to 11q2

|Y| , so just the
classical collision-finding bound. Intuitively, this result is justified by the fact
that the coherence needed by the optimal quantum search algorithms (e.g.
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the Grover algorithm [Gro96]) is broken by the repeated measurements in the
punctured oracle.

The bound proven in Corollary 6.15 is tight. The complexity of a generic
collision-finding algorithm is O

(
|Y|1/3

)
[Zha15a]. Our bound on distinguish-

ing random functions from random injective functions (calculated via the O2H
lemma, Theorem 6.7) is a constant close to 1 for the matching q ∈ Ω

(
|Y|1/3

)
.

Note that the bound from Corollary 6.15 on itself does not tell us much about
quantum collision finding. Only with the O2H lemma (that multiplies the
bound on Find by q) is makes sense to compare our bounds with known re-
sults. It is also important to note that our bound is almost the same as the bound
proven in Lemma 9 of [Zha19a]). We do not use Zhandry’s result, because we
could not verify some steps of the proof.

6.4.2.2 The Preimage Relation

For the preimage relation b(s) = 1, because there is just one output y = 0 that
brings the database to be in R.

Corollary 6.16. For any quantum adversary A interacting with a punctured oracle
CStOY \Rpreim—where Rpreim is defined in Equation (6.62)—the probability of Find
is bounded by:

P
[
Find : A[CStOY \Rpreim]

]
≤ 9q
|Y|

+ 30q2

|Y|
√
|Y| − 1

+ 25q3

|Y| (|Y| − 1) , (6.169)

where q is the maximal number of queries made by A.
The above bound for q ∈ O

(
2
√
|Y|
)
simplifies to 64q

|Y| , so the classical
preimage-finding bound.

6.4.2.3 The Collision and Preimage Relations

We also provide a bound for the combined relations Rcoll and Rpreim, in this
case b(s) = s. The function b is such because in addition to previous outputs,
the new value can also be 0 to bring D to R.

Corollary 6.17. For any quantum adversary A interacting with a punctured oracle
CStOY \ (Rpreim ∪ Rcoll)—where Rcoll is defined in Equation (6.63) and Rpreim in
Equation (6.62)—the probability of Find is bounded by:

P
[
Find : A[CStOY \ (Rpreim ∪Rcoll)]

]
≤ 2q2

|Y|
+ 4q7/2

|Y|
√
|Y| − q

+ 5q5

|Y| (|Y| − q) , (6.170)

where q is the maximal number of queries made by A.
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The bound is the same as in the case of Corollary 6.15, this is because of the
simplifications made to find a concise bound, also note how similar b is in both
cases.

6.4.2.4 Composition of Compression Functions

The Comp construction is defined in Section 2.5.1. We use the relation

RComp := {(D1, D2) ∈ D : ∃y1 ∈ DY
1 , x2 ∈ DX

2 , (y1, x2) ∈ DX
2 } (6.171)

where D := ⋃
s∈[q+1] (X1 × Y1)s × ⋃s∈[q+1] (X2 × Y2)s and X2 := X1 × Y1. The

relation captures databases with an output in D1 that is part of an input in D2.
The full relation we analyze is the union of the above and the collision relation.
Both RComp and Rcoll are defined on the outputs of H1. In the following, for
i ∈ {1, 2}, we define Ui to be the uniform distribution over the set of functions
from the set {hi : Xi → Yi}. The coefficients are defined as b1(s1, s2) = s1−1+s2
and b2(s1, s2) = 0, the only source of bad outputs are collisions of outputs of
h1 with other outputs of h1 and parts of inputs to h2. With these values we
make the following statement, the concrete bound is a result of straightforward
simplifications of the bound coming from Equation (6.167).

Corollary 6.18. For any quantum adversary A interacting with a punctured oracle
(CStOU1 ,CStOU2) \ (Rcoll ∪ RComp)—where Rcoll is defined in Equation (6.63) and
RComp in Equation (6.171)—the probability of Find is bounded by:

P[Find : A[(CStOU1 ,CStOU2) \ (Rcoll ∪RComp)]]

≤ 36q2

|Y1|
+ 194q7/2

|Y1|
√
|Y1| − 2q

+ 297q5

|Y1| (|Y1| − 2q) , (6.172)

where q is the maximal number of queries made by A.

For q ∈ O
(

3
√
|Y1|

)
the bound above is just O (q2/ |Y1|).

6.4.2.5 Rate-1/3 Hash Function Relation

In the indifferentiability proof of the Rate-1/3 construction defined
in Section 2.5.3 we lazy sample three functions. The generalization of
Lemma 6.11 to H = (H1,H2,H3) can be done in a straight forward way, note
that we do not make use of the fact that a ∈ {1, 2} in any place of the proof.
We define the relation

RRate-1/3 := {(D1, D2, D3) ∈ D : ∃y1 ∈ DY
1 , y2 ∈ DY

2 , x3 ∈ DX
3 , y1 = y2 ⊕ x3},

(6.173)
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where D := ⋃
s∈[q+1] (X1 × Y)s × ⋃

s∈[q+1] (X2 × Y)s × ⋃
s∈[q+1] (Y × Y)s. In the

following, for i ∈ {1, 2.3}, we define Ui to be the uniform distribution over the
set of functions from the set {fi : Xi → Yi}. Note however that all of the output
sets are the same and we denote them by Y . Moreover Y = {0, 1}n. We state a
lemma giving a bound on the probability of Find for the triple of compressed
oracles (CStOU1 ,CStOU2 ,CStOU3). The coefficients are b1(s1, s2, s3) ≤ s2 · s3,
b2(s1, s2, s3) ≤ s1 · s3, and b3(s1, s2, s3) = 0. The b1 function is such, because
for each output of f1, there are at most s2 · s3 sums y2 ⊕ x3 of outputs of f2 and
inputs of f3 that can bring D to be in R. Similarly for b2. Outputs of f3 do not
cause D to be in relation.

Corollary 6.19. For any quantum adversary A interacting with a punctured oracle
(CStOU1 ,CStOU2 ,CStOU3) \ RRate-1/3, where RRate-1/3 is defined in Equation (6.173),
the probability of Find is bounded by:

P
[
Find : A[(CStOU1 ,CStOU2 ,CStOU3) \RRate-1/3]

]
≤ 36 q

3

|Y|
+ 84 q5

|Y|
√
|Y| − q2

+ 70 q7

|Y| (|Y| − q2) , (6.174)

where q is the maximal number of queries made by A.
For q ∈ O

(
4
√
|Y|
)
the bound above is just O (q3/ |Y|).

6.4.2.6 EDM Relation

The EDM construction is defined in Section 2.5.4. We use the relation

REDM := {(D1, D2) ∈ D : ∃(x1, y1) ∈ D1, x2 ∈ DX
2 , y1 = x1 ⊕ x2}, (6.175)

where D := ⋃
s∈[q+1] (X × Y)s × ⋃s∈[q+1] (X × Y)s and X = {0, 1}n. We state a

corollary giving a bound on the probability of Find for the pair of compressed
oracles [H1,H2]. For a relation REDM, the coefficients are b1(s1, s2) = s2 and
b2(s1, s2) = 0. The coefficient b1 is such because for an output of π1, every input
to π2 gives rise to a possible collision.

Corollary 6.20. For any quantum adversary A interacting with a punctured oracle
(CStOY ,CStOY)\REDM—whereREDM is defined in Equation (6.175)—the probability
of Find is bounded by:

P[Find : A[(CStOY ,CStOY) \REDM]] ≤ 16q2

|Y|
+ 72q7/2

|Y|
√
|Y| − q

+ 98q5

|Y| (|Y| − q) ,

(6.176)

where q is the maximal number of queries made by A.
For q ∈ O

(
3
√
|Y|
)
the bound above is just O (q2/ |Y|).
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6.4.2.7 EDMD Relation

The EDMD construction is defined in Section 2.5.5. We use the relation

REDMD := {(D1, D2) ∈ D : ∃(x1, y1) ∈ D1, x2 ∈ DX
2 , y1 = x2}, (6.177)

where D := ⋃
s∈[q+1] (X × Y)s × ⋃s∈[q+1] (X × Y)s and X = {0, 1}n. We state a

corollary giving a bound on the probability of Find for the pair of compressed
oracles [H1,H2]. The coefficients are b1(s1, s2) = s2 and b2(s1, s2) = 0.

Corollary 6.21. For any quantum adversary A interacting with a punctured oracle
(CStOY ,CStOY) \REDMD—where REDMD is defined in Equation (6.177)—the proba-
bility of Find is bounded by:

P[Find : A[(CStOY ,CStOY) \REDMD]] ≤ 16q2

|Y|
+ 72q7/2

|Y|
√
|Y| − q

+ 98q5

|Y| (|Y| − q) ,

(6.178)

where q is the maximal number of queries made by A.

For q ∈ O
(

3
√
|Y|
)
the bound above is just O (q2/ |Y|).

6.5 The Framework
Let us first sum up our approach to the general task of bounding the distin-
guishability advantage between two games. We focus on games that use punc-
tured oracles (Definition 6.5) and for those use the O2H lemma (Theorem 6.7).
The crucial point in the O2H lemma is finding a bound on P

[
Find

]
. Our solu-

tion to this problem is presented in Lemma 6.11.
The role of the fundamental game-playing lemma, Lemma 2.22, takes the

One-Way to Hiding lemma, Theorem 6.7. In both classical and quantum proofs
the most challenging part is bounding the probability of events Bad or Find
happening.

We think that this approach is especially useful, when considering lifting
the security guarantees from the classical case to the quantum one. That is
because a classical proof can be rather easily translated to the quantum world.

The crucial part of games are the bad events, that are the key events that dis-
tinguish two games. The role of bad events in quantum proofs take the punc-
tured oracles. The relation we puncture on is the—possibly rephrased—bad
event from the classical proof. To correctly translate bad events to relations we
identify the set of databases that cause the bad event. Whenwe have the correct
relation at hand, the punctured oracle, given ¬Find, holds a superposition of
databases distributed in exactly the same way as in the classical game. Hence,
the classical reasoning can be often reused.
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There are of course some operations and lines of reasoning that cannot be
repeated in a proof of quantum security. This is an aspect that has to be ana-
lyzed in a case-by-case fashion.
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In this chapter we prove quantum indifferentiability of multiple construc-
tions. We show how the quantum game-playing framework from Chapter 6
can be applied to constructions defined in Section 2.5. Namely, we first present
a classical proof and then a quantum one that follows the same structure but
employs the techniques of Chapter 6 to derive the final result.

7.1 Introduction
The quantum security of domain-extension schemes has been the topic of sev-
eral recent works. In [SY17; CHS19] the authors study domain extension for
message authentication codes and pseudorandom functions. For random in-
ner function, [Zha19a] has proven indifferentiability of the Merkle-Damgård
construction which hence has strong security in the QROM. For hash functions
in the standard model, quantum generalizations of collision resistance were
defined in [Unr16b; Ala+18]. For one of them, collapsingness, some domain-
extension schemes including the Merkle-Damgård and sponge constructions,
have been shown secure [Cza+18; Feh18; Unr16a].

In this chapter we prove a number of indifferentiability results. This strong
notion is introduced in Section 2.3.3. We covermultiple cryptographic construc-
tions, described in detail in Section 2.5. The general structure of this chapter is
that for every constructionwe present two proofs of indifferentiability, one clas-
sical and one quantum. We always present two proofs to simplify reading the
second proof, it follows the same reasoning as the former one. We also want
to highlight how similar these proofs are, this similarity is what we consider to
be one of the main advantages of our quantum game-playing framework intro-
duced in Chapter 6. In our framework all proofs of quantum indifferentiability
can follow the same reasoning and very similar steps as the classical version.

Before we proceed let us remind the reader of the main concepts that are
necessary to follow the proof of quantum indifferentiability. The central ob-
ject of the proof are punctured oracles, defined in Definition. 6.5. They play
the role of subroutines that lazy-sample functions and output “True” when a
bad event occurs. Readers familiar with the original game-playing framework
[BR06] will recognize the crucial subroutines of the classical games. Addition-
ally, punctured oracles are objects that allow to condition probabilistic events
on some aspects of quantum queries done by the adversary. This useful feature
allows us to sometimes use arguments from the classical proof in the quantum
one.

A punctured oracle is built using the compressed-oracle framework and for-
mally includes a quantumdatabase register, as described in detail in Section 6.2.
Nonetheless these details are not necessary to follow the contents of this chap-
ter. The only two things to keep in mind are that in general the adversary can
make quantum queries to the primitives and that the responses of queries are
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saved in the adversary’s quantum register |s, v〉, where s is the query and v is
any value in the codomain of the queried function.

The reason we use punctured oracles is that they allow to use the One-way
To Hiding (O2H) lemma. Which is an extremely useful tool for bounding the
distinguishability advantage of two quantum games. We cover this lemma in
details in Section 6.3. Technically the most demanding part of using the O2H
lemma is bounding the probability of any puncturing measurement succeed-
ing (we call this event Find). We compute a bound on P

[
Find

]
useful in the

quantum indifferentiability proofs in Section 6.4.2.
The second distinguishability bound that we use is shown in Lemma 6.10.

This is a relatively simple statement, that is true for games that are almost iden-
tical (Definition 6.9).

We start the chapter with an indifferentiability proof of Comp, a simple
construction that was mentioned in [Cor+05], where the authors claim its
(classical) indifferentiability. Quantum indifferentiability of Comp is proven in
[Zha19a], we comment on this result in the next section. This result is also
significant for the discussion in Chapter 8.

In Section 7.3 we focus on Rate-1/3, an interesting construction that
uses three non-compressing functions to build a compression function. The
construction Rate-1/3 was introduced and proven to be collision-resistant in
[SS08].

In sections 7.4 and 7.5 we prove classical and quantum indifferentiability
of the EDM and EDMD constructions. These constructions are introduced in
[CS16; MN17a] and proven indistinguishable from a random function (given
that the internal permutations are random). Our quantum results for the last
two constructions are limited to one-way permutations. The reason for that is
our inability to quantumly lazy-sample two-way permutations.

In the last section of this chapter we prove quantum indifferentiability of the
sponge construction, maintaining the general structure of the classical proof
from [Ber+08]. We show quantum security of sponges with random functions
as the internal function. We first presented this result in [Cza+19].

We note that when discussing more than two oracles that are punctured
with relations that depend on all of them, we use the punctured oracle notation
only on those that are directly influenced by the puncturing. The distinguisha-
bility bound can be only calculated by considering all of the oracles.

To save space we present multiple algorithms in one. To do that we follow
a convention where only the boxed algorithms perform the boxed operations.
In case there are actually more than two algorithms, the color of the box also
matters. If a line is not surrounded by a box, then all algorithms perform the
command. We number the simulators with the number of the game it is first
used in.
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7.2 Composed Functions
The composition construction is defined as Comph1,h2(x1, x2) = h2(h1(x1), x2),
where hi : Xi → Yi and Yi := [Ni] for i ∈ {1, 2}. The full definition and
additional details are presented in Section 2.5.1.

7.2.1 Classical Indifferentiability
We start with classical indifferentiability, already mentioned in [Cor+05].

Theorem 7.1. The compression function Comph1,h2 for uniformly random h1 and h2

is (q, ε)-classically indifferentiable for ε = 5
(

(q−1)q
2N1

+ q2

N1

)
.

Proof. We carry out the proof by starting with the real world and gradually
changing the adversary’s interface to the idealworld. Wedefine two simulators,
the initial S2 that just lazy samples the compression functions and S3 that is the
actual simulator. InAlgorithm7.1 only the boxed algorithmsperform the boxed
commands.

Algorithm 7.1 Classical simulators S2 , S3 for Comph1,h2

procedure h1(x1)
if x1 ∈ DX

1 return the corresponding y1

y1
$← Y1

if y1 ∈ DY
1 then . Collision of h1

Set Bad1 = 1
if ∃x2 : (y1, x2) ∈ DX

2 then . Preimage of h2

Set Bad2 = 1
Add (x1, y1) to D1 and return y1

procedure h2(y1, x2)
if (y1, x2) ∈ DX

2 return the corresponding y2
if ∃(x1, y1) ∈ D1 then

y2
$← Y2, add ((y1, x2), y2) to D2

return y2

return R(x1, x2) . R: random oracle
else

y2
$← Y2, add ((y1, x2), y2) to D2

return y2

Game 1 The interface in the first game is (Comp, (h1,h2)), where the public
interface consists of two uniformly random functions h1 and h2. The definition
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of the game is

Game 1 := (b = 1 : b← A[Comp, (h1,h2)]) . (7.1)

Game 2 In the second game we lazy sample the compression functions, the
interface is (Comp, S2) and the game is defined as

Game 2 := (b = 1 : b← A[Comp, S2]) . (7.2)

This change of the interface is indistinguishable for A:∣∣∣P [Game 2
]
− P

[
Game 1

]∣∣∣ = 0. (7.3)

Game 3 The interface in the third game is (Comp, S3), where we introduce the
bad events and the random oracle R, note that h2 is distributed uniformly at
random, so addingRdoes not change the distribution ofh2 at all. The definition
of the game is

Game 3 := (b = 1 : b← A[Comp, S3]) . (7.4)

The bad events we introduce are Bad1 that is 1 when there occurs a collision of
h1 and Bad2 that happens when h1 outputs a part of a past query to h2. The
former is important because a collision in h1 leads to the same output of Comp
but—most probably—not in R. The latter event assigns an input to Comp to an
already given output. This event is bad because outputs of Comp are supposed
to be exchanged to R and if S3 commits to a uniformly random output it will
most probably be different from the output of R. In this case the adversary
could easily distinguish the two worlds. Given no bad events we exclude all
possibly inconsistent outputs of h2. The only noticeable change for the adver-
sary are the bad events. To calculate distinguishability we use Lemma 2.22:

∣∣∣P [Game 3
]
− P

[
Game 2

]∣∣∣ ≤ P
[
Bad

]
≤ (q − 1)q

2N1
+ q2

N1
, (7.5)

where Bad = Bad1 ∨ Bad2. The first term corresponds to collisions in h1 and
the second to y1 hitting an input of h2.

In the following we denote the size of D2 after i queries by s2(i). The latter
bound above is achieved as follows:

P
[
Bad2

]
≤

q∑
i=1

s2(i)
N1
≤

q∑
i=1

q

N1
= q2

N1
, (7.6)

where in the first inequality we assume that every query is made to h1 and use
the union bound. The second inequality follows from a bound on the size of
D2, after the i-th query s2(i) ≤ q.
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Game 4 In the last game the interface is (R, S3), we change the private interface,
i.e. the interface giving access to the construction or the random oracle. The
definition of the game is

Game 4 := (b = 1 : b← A[R, S3]) . (7.7)

The only source of distinguishing advantage for A are the possible bad events
in queries to the private interface. We know, however, that if there are no bad
events then Game 3 and Game 4 are distributed in the same way:∣∣∣P [Game 4 | ¬Bad

]
− P

[
Game 3 | ¬Bad

]∣∣∣ = 0. (7.8)

Using the above identity we derive the final distinguishing advantage:∣∣∣P [Game 4
]
− P

[
Game 3

]∣∣∣ ≤ 4P
[
Bad

]
≤ 4

(
(q − 1)q

2N1
+ q2

N1

)
, (7.9)

where we use the derivation of Lemma 6.10. To get the first inequality above
we consider classical algorithms in place of the quantum ones in Lemma 6.10
and Bad events instead of Find. The event Bad in Equation (7.9) corresponds
to Bad in Game 3, we bound the bound from the lemma by the bigger of the
two probabilities. Probability of Bad in Game 3 is greater because there are in
principle more calls to S3—the private interface also calls the simulator.

With the last gamewe have shown that there is a simulator that answers the
queries to the public interface such that the adversary has negligible advantage
in distinguishing the private interface Comp from a random oracle.

7.2.2 Quantum Indifferentiability
Now we go to quantum indifferentiability. The theorem has been already
proven in [Zha19a]. Zhandry’s proof however uses a different approach
to bounding P

[
Find

]
than we, he just uses the collision finding bound.

This approach is somewhat unclear so we use the framework developed in
Chapter 6. In Zhandry’s original paper, indifferentiability is also proven using
oracles that are measured after every query (we call them punctured oracles).
There, the distinguishing advantage is derived using techniques that are
very similar to finding bounds on quantum query complexity (Lemma 9 in
[Zha19a]). Such bounds, however, do not assume measurements performed
after every query. In principle this might be a source of an error (possibly
coming from using wrong assumptions). Through private communication
with Zhandry [Zha20] we learned that it is easy to fill in all the necessary
details to make the proof work.
Theorem 7.2. The compression function Comph1,h2 for uniformly random h1 and h2

is (q, ε)-quantumly indifferentiable for any q ∈ O
(

3
√
N1
)
and ε =

√
527(q + 1) q2

N1
+

2108 q2

N1
.
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Proof. We carry out the proof by starting with the real world and gradually
changing the adversary’s interface to the ideal world. We define two simula-
tors, the initial S2 that just lazy samples the compression functions and S3 that
is the actual simulator. In Algorithm 7.2 only the boxed algorithm performs the
boxed commands. In the following we define Ui to be the uniform distribution
over functions in {Xi → Yi}. Even though the relation is defined on both com-

Algorithm 7.2 Quantum simulators S2 , S3 for Comph1,h2

procedure h1(x1)
Apply CStOU1 , CStOU1 \Rcoll ∪RComp

procedure h2(y1, x2)
if ∃(x1, y1) ∈ D1 then

Apply CStOU2

return R(x1, x2)
else

Apply CStOU2

pressed functions, in Algorithm 7.2 we write it only in the compressed oracles
that are directly influenced by the puncturing.

Game 1 The interface in the first game is (Comp, (h1,h2)), where h1 and h2 are
just uniformly random functions. The definition of the game is

Game 1 := (b = 1 : b← A[Comp, (h1,h2)]) . (7.10)

Game 2 In the second step we lazy sample the compression functions, the in-
terface is (Comp, S2). The game is defined as

Game 2 := (b = 1 : b← A[Comp, S2]) . (7.11)

Following Theorem 6.3, this change of the interface is indistinguishable for A:∣∣∣P [Game 2
]
− P

[
Game 1

]∣∣∣ = 0. (7.12)

Game 3 The interface in the third game is (Comp, S3), where we introduce the
punctured oracle and R, introducing the random oracle does not change the
distribution of the outputs ofh2 so this change does not add to the distinguisha-
bility advantage. The new game is

Game 3 := (b = 1 : b← A[Comp, S3]) . (7.13)
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We puncture on the same events as in the classical proof. The only noticeable
change for the adversary is the punctured oracle. The distinguishing advantage
can be bounded by the O2H lemma, Theorem 6.7:

∣∣∣P [Game 3
]
− P

[
Game 2

]∣∣∣ ≤ √(q + 1)P
[
Find

]
≤
√

(q + 1)527q2

N1
, (7.14)

where the bound on P
[
Find

]
comes from Corollary 6.18.

Game 4 In the last step of this proof the interface is (R, S3), we change the
private interface, the definition of the game is

Game 3 := (b = 1 : b← A[R, S3]) . (7.15)

Similar to the classical case we have:∣∣∣P [Game 4 | ¬Find
]
− P

[
Game 3 | ¬Find

]∣∣∣ = 0. (7.16)

Using the above identity we derive the final distinguishing advantage:
∣∣∣P [Game 4

]
− P

[
Game 3

]∣∣∣ ≤ 4P
[
Find

]
≤ 2108 q

2

N1
, (7.17)

where we use Lemma 6.10, Find is the event of finding the relation in Game 3,
we bound the bound from the lemma by the bigger of the two probabilities.

The last game includes the random oracle in the private interface, which
concludes the proof.

7.3 Rate-1/3 Compression Function
The rate-1/3 construction is defined as Rate-1/3f1,f2,f3(x1, x2) =
f3 (f1(x1)⊕ f2(x2))⊕ f1(x1), where f1 : X1 → Y1, f2 : X2 → Y2, and f3 : X3 → Y3,
moreover X3 = {0, 1}n and Yi = {0, 1}n for all i ∈ {1, 2, 3}, N = 2n. The full
definition of the construction is presented in Section 2.5.3.

7.3.1 Classical Indifferentiability
Theorem 7.3. The compression function Rate-1/3f1,f2,f3 for uniformly random f1, f2,
and f3 is (q, ε)-classically indifferentiable for ε = 10 q3

N
.

Proof. We carry out the proof by starting with the real world and gradually
changing the adversary’s interface to the idealworld. Wedefine two simulators,
the initial S2 that just lazy samples the compression functions and S3 that is the
actual simulator. InAlgorithm7.3 only the boxed algorithmperforms the boxed
commands.
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Algorithm 7.3 Classical simulators S2 , S3 for Rate-1/3f1,f2,f3

procedure f1(x1)
if x1 ∈ DX

1 return the corresponding y1

y1
$← Y

if ∃y2 ∈ DY
2 , x3 ∈ DX

3 : y1 = y2 ⊕ x3 then . Preimage of f3

Set Bad1 = 1
Add (x1, y1) to D1 and return y1

procedure f2(x2)
if x2 ∈ DX

2 return the corresponding y2

y2
$← Y

if ∃y1 ∈ DY
1 , x3 ∈ DX

3 : y2 = y1 ⊕ x3 then . Preimage of f3

Set Bad2 = 1
Add (x2, y2) to D2 and return y2

procedure f3(x3)
if x3 ∈ DX

3 return the corresponding y3
if ∃y1 ∈ DY

1 , y2 ∈ DY
2 : x3 = y1 ⊕ y2 then

y3
$← Y , add (x3, y3) to D3

return y3

return R(x1, x2)⊕ y1

else
y3

$← Y , add (x3, y3) to D3
return y3
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Game 1 The interface in the first game is (Rate-1/3, (f1, f2, f3)), where the public
interface holds uniformly random f1, f2, and f3. The definition of the game is

Game 1 := (b = 1 : b← A[Rate-1/3, (f1, f2, f3)]) . (7.18)

Game 2 In the second game we lazy sample the compression functions, the
interface is (Rate-1/3, S2), the game is defined as

Game 2 := (b = 1 : b← A[Rate-1/3, S2]) . (7.19)

This change of the interface is indistinguishable for A:∣∣∣P [Game 2
]
− P

[
Game 1

]∣∣∣ = 0. (7.20)

Game 3 The interface in the third game is (Rate-1/3, S3), where we introduce
the bad events and R, note that f3 is distributed uniformly at random, so adding
R does not change the distribution of f3 at all. The new game is

Game 3 := (b = 1 : b← A[Rate-1/3, S3]) . (7.21)

The bad events we introduce happen when either f1 or f2 outputs a value that
forms a preimage of f3. The reason why these events are significant is because
if we commit to an output of f3 and after that a query to f1 or f2 finishes the
chain of values in the construction, then we introduce a discrepancy between
the construction and the random oracle. The only noticeable change for the
adversary are the bad event. To calculate distinguishability we use the funda-
mental game-playing lemma, Lemma 2.22:

∣∣∣P [Game 3
]
− P

[
Game 2

]∣∣∣ ≤ P
[
Bad1 ∨ Bad2

]
≤ 2q

3

N
, (7.22)

where the right hand side follows from the fact that there are at most s2(i) ·s3(i)
pairs (y2, x3) that y1 can collide with:

P
[
Bad1

]
≤

q∑
i=1

s2(i) · s3(i)
N

≤
q∑
i=1

q2

N
= q3

N
, (7.23)

where in the first inequalitywe use the union bound. The second inequality fol-
lows from a bound on the size ofD2 andD3, after the i-th query s2(i), s3(i) ≤ q.
The final bound on P

[
Bad1 ∨ Bad2

]
comes from the union bound and applying

Equation (7.23) to Bad1 and Bad2.
Game 4 In the last step of the proof the interface is (R, S3), we change the private
interface and the game is

Game 4 := (b = 1 : b← A[R, S3]) . (7.24)
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Similar to the proof of Comp we have:∣∣∣P [Game 4 | ¬Bad
]
− P

[
Game 3 | ¬Bad

]∣∣∣ = 0. (7.25)

Using the above identity we derive the final distinguishing advantage:
∣∣∣P [Game 4

]
− P

[
Game 3

]∣∣∣ ≤ 4P
[
Bad

]
≤ 8q

3

N
, (7.26)

where we use the derivation of Lemma 6.10.

7.3.2 Quantum Indifferentiability
Quantum indifferentiability can proved in a very similarmanner to the classical
case.

Theorem 7.4. The compression function Rate-1/3f1,f2,f3 for uniformly random f1, f2,
and f3 is (q, ε)-quantumly indifferentiable for q ∈ O

(
4
√
|Y|
)
and ε =

√
190(q + 1) q3

N
+

760 q3

N
.

Proof. The proof of quantum indifferentiability mirrors the classical proof.
Again we define two simulators, the initial S2 that just lazy samples the
compression functions and S3 that is the actual simulator. In the following we
define Ui to be the uniform distribution over functions in {Xi → Yi}.

Algorithm 7.4 Quantum simulators S2 , S3 for Rate-1/3f1,f2,f3

procedure f1(x1)
Apply CStOU1 , CStOU1 \RRate-1/3 . RRate-1/3 defined in (6.173)

procedure f2(x2)
Apply CStOU2 , CStOU2 \RRate-1/3

procedure f3(x3)
if ∃y1 ∈ DY

1 , y2 ∈ DY
2 : x3 = y1 ⊕ y2 then

Apply CStOU3

return R(x1, x2)⊕ y1

else
Apply CStOU3

Game 1 The interface in the first game is (Rate-1/3, (f1, f2, f3)), where f1, f2, and
f3 are uniformly random functions. The definition of the game is

Game 1 := (b = 1 : b← A[Rate-1/3, (f1, f2, f3)]) . (7.27)
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Game 2 In the second step we lazy sample the compression functions, the in-
terface is (Rate-1/3, S2). The new game is

Game 2 := (b = 1 : b← A[Rate-1/3, S2]) . (7.28)

Following Theorem 6.3, this change of the interface is indistinguishable for A:∣∣∣P [Game 2
]
− P

[
Game 1

]∣∣∣ = 0. (7.29)

Game 3 The interface in the third game is (Rate-1/3, S3), where we introduce
the punctured oracle and R, introducing the random oracle does not change the
distribution of the outputs of f3 so this change does not add to the distinguisha-
bility advantage. The new game is defined as

Game 3 := (b = 1 : b← A[Rate-1/3, S3]) . (7.30)

We puncture on the same events as in the classical proof, relation RRate-1/3is
defined in Equation (6.173). The only noticeable change for the adversary is
the punctured oracle. The distinguishing advantage can be bounded by the
O2H lemma, Theorem 6.7:

∣∣∣P [Game 3
]
− P

[
Game 2

]∣∣∣ ≤ √(q + 1)P
[
Find

]
≤
√

190(q + 1)q
3

N
, (7.31)

where the bound on P
[
Find

]
comes from Corollary 6.19.

Game 4 In the last step of the proof, the interface is (R, S3), we change the
private interface. The last game is defined asGame 4 := (b = 1 : b← A[R, S3]) .
Similar to the proof of Comp we have:∣∣∣P [Game 4 | ¬Find

]
− P

[
Game 3 | ¬Find

]∣∣∣ = 0. (7.32)

Using the above identity we derive the final distinguishing advantage:

∣∣∣P [Game 4
]
− P

[
Game 3

]∣∣∣ ≤ 4P
[
Find

]
≤ 760q

3

N
, (7.33)

where we use Lemma 6.10.

7.4 Encrypted Davis-Mayer, one-way permutations
We present a proof of quantum indifferentiability of the Encrypted
Davis-Mayer construction EDMπ1,π2(x) := π2 (π1(x)⊕ x), where π1 and π2
are functions X → X and X = {0, 1}n. Moreover N = 2n. Further details on
the construction can be found in Section 2.5.4.
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7.4.1 Classical Indifferentiability

First we prove classical indifferentiability and then follow with the proof of
quantum indifferentiability. There is however a limitation to our quantum re-
sult. Due to our inability of lazy sampling randompermutations, we restrict our
result to one-way permutations; The adversary has access to the internal per-
mutations only in the forward direction. Classical indifferentiability is proven
for regular permutations and the simulator is constructed in the standard way,
that will allow us to translate the full result wheneverwe learn how to quantum
lazy sample random permutations.

Theorem 7.5. The compression function EDMπ1,π2 for uniformly random permuta-
tions π1 and π2 is (q, ε)-classically indifferentiable for ε = 30 q2

N
.

Proof. We carry out the proof by starting with the real world and gradually
changing the adversary’s interface to the idealworld. Wedefine two simulators,
the initial S2 that just lazy samples the compression functions and S3 that is the
actual simulator.

Algorithm 7.5 Classical simulators S2 and S3 for EDMπ1,π2 , Part I.
procedure π1(x1)

if ∃y1 : (x1, y1) ∈ D1 return y1

y1
$← X \DY

1
if ∃(x2, y2) ∈ D2 : y1 = x2 ⊕ x1 then . Preimage of π2

Set Bad+
1 = 1

Add (x1, y1) to D1 and return y1

procedure π−1
1 (y1)

if ∃x1 : (x1, y1) ∈ D1 return x1

x1
$← X \DX

1
if ∃(x2, y2) ∈ D2 : x1 = x2 ⊕ y1 then . Preimage of π2

Set Bad−1 = 1
Add (x1, y1) to D1 and return x1

Game 1 The interface in the first game is (EDM, (π1,π2)). Note that the second
interface is in fact four interfaces, the adversary has access to the forward and
backward directions of the random permutations π1 and π2. The definition of
the game is

Game 1 := (b = 1 : b← A[EDM, (π1,π2)]) . (7.34)
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Algorithm 7.6 Classical simulators S2 and S3 for EDMπ1,π2 , Part II.
procedure π2(x2)

if ∃y2 : (x2, y2) ∈ D2 return y2
if ∃(x1, y1) ∈ D1 : x2 = x1 ⊕ y1 then

y2
$← X \DY

2 , add (x2, y2) to D2

return y2

if ∃y2 ∈ DY
2 : R(x1) = y2 then . Collision

Set Bad+
2,1 = 1

return R(x1)
else

y2
$← X \DY

2
if ∃(x1, y1) ∈ D1 : y2 = R(x1) then . Collision

Set Bad+
2,2 = 1

Add (x2, y2) to D2 and return y2

procedure π−1
2 (y2)

if ∃x2 : (x2, y2) ∈ D2 return x2
if ∃(x1, y1) ∈ D1 : R(x1) = y2 then

x2
$← X \DX

2 , add (x2, y2) to D2

return x2

if ∃x2 ∈ DX
2 : x1 ⊕ y1 = x2 then . Not a function

Set Bad−2,1 = 1

return x1 ⊕ y1
else

x2
$← X \DX

2
if ∃(x1, y1) ∈ D1 : x2 = x1 ⊕ y1 then . Image of π1

Set Bad−2,2 = 1

Add (x2, y2) to D2 and return x2
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Game 2 In the second step we lazy sample the permutations, the interface is
(EDM, S2). The new game is defined as

Game 2 := (b = 1 : b← A[EDM, S2]) . (7.35)

This change of the interface is indistinguishable for A:∣∣∣P [Game 2
]
− P

[
Game 1

]∣∣∣ = 0. (7.36)

Game 3 The interface in the third game is (EDM, S3), where we introduce the
bad events and R. Conditioned on ¬Bad the games are identically distributed,
introducing the random oracle does not change the distribution of the outputs
so this change does not add to the distinguishability advantage. The new game
is

Game 3 := (b = 1 : b← A[EDM, S3]) . (7.37)

There are two main sources of bad events: First being when a link between
π1 and π2 is created; By this we mean that S3 had already committed to the
input output pair of π1 or π2 and the output of the queried function fits the
construction and can be treated as part fo the input (or output) to the second
function. The second source of errors are collisions of y2 with R(x1) or x2 with
x1 ⊕ y1. The only noticeable change for the adversary are the bad event. To
calculate distinguishability we use Lemma 2.22:

∣∣∣P [Game 3
]
− P

[
Game 2

]∣∣∣ ≤ P
[
Bad

]
≤ 6q

2

N
, (7.38)

where Bad = Bad+
1 ∨Bad

−
1 ∨Bad

+
2,1∨Bad

+
2,2∨Bad

−
2,1∨Bad

−
2,2. Bound on P

[
Bad

]
is

derived similarly to Equation (7.6). By the union boundwe split the events and
bound every term by the greatest probability of a bad event (corresponding to
the collision events).

Game 4 In the last game of the proof the interface is (R, S3), we change the
private interface. Similar to the proof of Compwe have∣∣∣P [Game 4 | ¬Bad

]
− P

[
Game 3 | ¬Bad

]∣∣∣ = 0. (7.39)

Using the above identity we derive the final distinguishing advantage:

∣∣∣P [Game 4
]
− P

[
Game 3

]∣∣∣ ≤ 4P
[
Bad

]
≤ 24q

2

N
, (7.40)

where we use the derivation of Lemma 6.10. This ends the proof of indifferen-
tiability of the EDM construction.
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7.4.2 Quantum Indifferentiability
Quantum indifferentiability is proved in a very similar manner to the classical
one. An important difference from the classical result is that we consider only
one-way permutations. That means the adversary gets only forward access to
the permutations. The source of this limitation is our inability to quantumly
lazy-sample a random permutation.

Theorem 7.6. The compression function EDMπ1,π2 for uniformly random one-way
permutations π1 and π2 is (q, ε)-quantumly indifferentiable for q ∈ O

(
3
√
|Y|
)
and

ε = π2

3
(q+2)3

N
+ 744 q2

N
+
√

186(q + 1) q2

N
.

Proof. The proof of quantum indifferentiability mirrors the classical proof.
Again we define two simulators, the initial S2 that just lazy samples the
compression functions and S3 that is the actual simulator.

Algorithm 7.7 Quantum simulators S2 , S3 for EDMπ1,π2 .
1: procedure π1(x1)
2: Apply CStOY , CStOY \REDM . Preimage of π2

3: procedure π2(x2)
4: if ∃(x1, y1) ∈ D1 : x2 = x1 ⊕ y1 then
5: Apply CStOY , return R(x1)
6: else
7: Apply CStOY

Game 1 The interface in the first game is (EDM, (π1,π2)), where π1 and π2 are
uniformly random permutations. The adversary has access only to the forward
direction of the permutations. The definition of the game is

Game 1 := (b = 1 : b← A[EDM, (π1,π2)]) . (7.41)

Game 2 In the second game we lazy sample the compression functions, the
interface is (EDM, S2). The new game is defined as

Game 2 := (b = 1 : b← A[EDM, S2]) . (7.42)

To swap the internal functions from random permutations to compressed or-
acles we first swap the permutations to random functions, then lazy sample
the random functions. The first step can be bounded by using Theorem 7 in
[Zha15a]; The bound is π2

3
(q+2)3

N
. Compressing a random function is donewith-

out error, as proven in Theorem 6.3:∣∣∣P [Game 2
]
− P

[
Game 1

]∣∣∣ ≤ π2

3
(q + 2)3

N
. (7.43)
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Game 3 The interface in the third game is (EDM, S3), where we introduce the
punctured oracle and R, introducing the random oracle does not change the
distribution of the outputs. The new game is

Game 3 := (b = 1 : b← A[EDM, S3]) . (7.44)

We puncture on the same events as in the classical proof, the relation REDM is
defined in Equation (6.175). The only noticeable change for the adversary is the
punctured oracle. The distinguishing advantage can be bounded by the O2H
lemma, Theorem 6.7:

∣∣∣P [Game 3
]
− P

[
Game 2

]∣∣∣ ≤ √(q + 1)P
[
Find

]
≤
√

186(q + 1)q
2

N
, (7.45)

where the bound on P
[
Find

]
comes from Corollary 6.20.

Game 4 In the last game the interface is (R, S3), we change the private interface.
The last game is defined as

Game 4 := (b = 1 : b← A[R, S3]) . (7.46)

Similar to the proof of Comp we have:∣∣∣P [Game 4 | ¬Bad
]
− P

[
Game 3 | ¬Bad

]∣∣∣ = 0. (7.47)

Using the above identity we derive the final distinguishing advantage:
∣∣∣P [Game 4

]
− P

[
Game 3

]∣∣∣ ≤ 4P
[
Find

]
≤ 4 · 186q

2

N
, (7.48)

where we use Lemma 6.10.

7.5 Encrypted Davis-Mayer Dual, one-way permu-
tations

We present a proof of quantum indifferentiability of the Encrypted
Davis-Mayer Dual construction. Details on the construction can be found
in Section 2.5.5. The setting is the same as in the previous section. We just
present the simulators, because all the rest follows exactly the proofs from
Section 7.4.

7.5.1 Classical Indifferentiability
Theorem 7.7. The compression function EDMDπ1,π2 for uniformly random permu-
tations π1 and π2 is (q, ε)-classically indifferentiable for ε = 15 q2

N
.
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Algorithm 7.8 Classical simulators S2 and S3 for EDMDπ1,π2 .
1: procedure π1(x1)
2: if ∃y1 : (x1, y1) ∈ D1 return y1

3: y1
$← X \DY

1
4: if ∃(x2, y2) ∈ D2 : y1 = x2 then . Preimage of π2

5: Set Bad+
1 = 1

6: Add (x1, y1) to D1 and return y1

7: procedure π−1
1 (y1)

8: if ∃x1 : (x1, y1) ∈ D1 return x1

9: x1
$← X \DX

1 , add (x1, y1) to D1
10: return x1

11: procedure π2(x2)
12: if ∃y2 : (x2, y2) ∈ D2 return y2

13: y2
$← X \DY

2 , add (x2, y2) to D2

14: return y2

15: x1 ← π−1
1 (x2)

16: if R(x1)⊕ x2 ∈ DY
2 then . Collision

17: Set Bad+
2 = 1

18: Add (x2,R(x1)⊕ x2) to D2 and return R(x1)⊕ x2

19: procedure π−1
2 (y2)

20: if ∃x2 : (x2, y2) ∈ D2 return x2

21: x2
$← X \DX

2 , add (x2, y2) to D2

22: return y2

23: x1
$← X \DX

1 , y1 := R(x1)⊕ y2, x2 := R(x1)⊕ y2

24: if y1 ∈ DY
1 or x2 ∈ DX

2 then . Collision
25: Set Bad−2 = 1
26: Add (x2, y2) to D2 and (x1, y1) to D1

27: return x2
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Proof. The simulators are presented in Algorithm 7.8
Game 1 The interface in the first game is (EDMD, (π1,π2)). Note that the sec-
ond interface is in fact four interfaces, the adversary has access to the forward
and backward directions of the uniformly random permutations π1 and π2.
The definition of the game is

Game 1 := (b = 1 : b← A[EDMD, (π1,π2)]) . (7.49)

Game 2 In the second game we lazy sample the permutations, the interface is
(EDMD, S2). The definition of the new game is

Game 2 := (b = 1 : b← A[EDMD, S2]) . (7.50)

This change of the interface is indistinguishable for A:∣∣∣P [Game 2
]
− P

[
Game 1

]∣∣∣ = 0. (7.51)

Game 3 The interface in the third game is (EDMD, S3). We change the source
of randomness but as R is uniformly random, the conditional distributions are
the same. The new game is

Game 3 := (b = 1 : b← A[EDMD, S3]) . (7.52)

Hence the only source of distinguishing advantage are the bad events. Bad
events occur whenever a new output collides with the previous ones. To calcu-
late distinguishability we use Lemma 2.22:∣∣∣P [Game 3

]
− P

[
Game 2

]∣∣∣ ≤ P
[
Bad

]
≤ 3q

2

N
, (7.53)

where Bad = Bad+
1 ∨Bad

+
2 ∨Bad

−
2 . A bound on P

[
Bad

]
is derived by using the

union bound, note that when querying π−1
2 a collision might occur in D1 and

D2.
Game 4 In the last game, defined as

Game 4 := (b = 1 : b← A[R, S3]) , (7.54)

the interface is (R, S3), we change the private interface. Similar to the proof of
Compwe have ∣∣∣P [Game 4 | ¬Bad

]
− P

[
Game 3 | ¬Bad

]∣∣∣ = 0. (7.55)

Using the above identity we derive the final distinguishing advantage:∣∣∣P [Game 4
]
− P

[
Game 3

]∣∣∣ ≤ 4P
[
Bad

]
≤ 12q

2

N
, (7.56)

where we use the derivation of Lemma 6.10.
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7.5.2 Quantum Indifferentiability

Quantum indifferentiability is proved in a very similar manner to the classical
one. An important difference from the classical result is that we consider only
one-way permutations. That means the adversary gets only forward access to
the permutations. The source of this limitation is our inability to quantumly
lazy-sample a random permutation.

Theorem 7.8. The compression function EDMDπ1,π2 for uniformly random one-way
permutations π1 and π2 is (ε, q)-quantumly indifferentiable for q ∈ O

(
3
√
|Y|
)
and

ε = π2

3
(q+2)3

N
+ 744 q2

N
+
√

186(q + 1) q2

N
.

Proof. The proof of quantum indifferentiability mirrors the classical proof.
Again we define two simulators, the initial S2 that just lazy samples the
compression functions and S3 that is the actual simulator.

Algorithm 7.9 Quantum simulators S2 , S3 for EDMDπ1,π2 .
1: procedure π1(x1)
2: Apply CStOY , CStOY \REDMD . Preimage of π2

3: procedure π2(x2)
4: if ∃(x1, y1) ∈ D1 : x2 = x1 ⊕ y1 then
5: Apply CStOY , return R(x1)
6: else
7: Apply CStOY

Rest of the proof is exactly the same as the proof of Theorem 7.6.

7.6 Sponges with Random Functions
In the game-playing proofs and Algorithms 7.10 and 7.11 described in this
chapter we use the following convention: every version of the algorithm ex-
ecutes the part of the code that is not boxed and among the boxed statements
only the part that is inside the box in the color corresponding to the color of the
name in the definition.

In the case of an adversary querying a random function f we are going
to treat the sponge graph as being created one edge per query. The graph G
then symbolizes the current state of knowledge of the adversary of the internal
function. Note that this dynamical graph can be created efficiently by focusing
solely on nodes that appear in the queried edges.
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The simulators defined in the proofs in this section are implicitly stateful.
They maintain a classical or quantum state containing a database of the adver-
sary’s queries and the simulator’s outputs. Using that database the simulator
can always construct a sponge graph containing all the current knowledge of f .

7.6.1 Classical Indifferentiability
For the proof of indifferentiability we also need an upper bound on the proba-
bility of finding a collision in the inner part of outputs of a uniformly random
function f : A × C → A × C. Considering how Sponge is defined we want
a bound on finding collisions and zero-preimages. We define the bound as a
function of the number of queries q to f :

fcoll(q) := q(q + 1)
2 |C| , (7.57)

the bound can be derived in the standardway. The probability that any classical
algorithm finds a collision or a preimage of zero in [N ] after q queries is:

P
[
coll ∪ preim← A

]
≤

q∑
i=1

i

N
= q(q + 1)

2N , (7.58)

where we use the union bound and note that after i queries the adversary can
either find the preimeage of zero or hit any of the previous outputs, producing
a collision. For a more detailed derivation we refer to Appendix A.4 in [KL14].

First we present a slightly modified proof of indifferentiability from
[Ber+08]. In a recent paper [Alm+19] the proof of indifferentiability of Sponge
was formally verified using the EasyCrypt proof assistant. Wemodify the origi-
nal proof to better fit the framework of game-playing proofs. It is not our goal to
obtain the tightest bounds nor the simplest (classical) proof. Instead, our clas-
sical game-playing proof paves the way to the quantum security proof which
is presented in the next section.

Theorem 7.9 (Classical indifferentiability of Sponge). Sponge
Spongef [pad,A, C] calling a random function f is (q, ε)-indifferentiable from a random
oracle, for classical adversaries for any q < |C| and ε = 8 q(q+1)

2|C| .

Proof. The proof proceeds in six games that we show to be indistinguishable.
We start with the real world: the public interface corresponding to the inter-
nal function f is a random transformation and the private interface is Spongef .
Then in a series of games we gradually change the environment of the adver-
sary to finally reach the ideal world, where the public interface is simulated by
the simulator and the private interface is a random oracle R. The simulators
used in different games of the proof are defined in Algorithm 7.10, the index of



7.6. Sponges with Random Functions 219

Algorithm 7.10 Classical S2, S3 , S4 , I6 , functions
State: current sponge graph G
input: s ∈ A× C
output: f(s)

1: if s has no outgoing edge then . Fresh query
2: if ŝ ∈ R ∧R ∪ U 6= C then . ŝ-rooted, no saturation
3: t̂

$← C, if t̂ ∈ R ∪ U , set Bad = 1 , t̂ $← C \ (R∪ U)
4: Construct a path to s: p := SpPath(s,G)
5: if ∃x : p = pad(x) then
6: t̄

$← A
7: t̄ := R(x)
8: else
9: t̄

$← A
10: t := (t̄, t̂)
11: else
12: t

$← A× C
13: Add an edge (s, t) to E .
14: Set t to the vertex at the end of the edge starting at s
15: return t

the simulator corresponds to the game in which the simulator is used. Expla-
nations of the simulators follow.
Game 1 We start with the real world where the distinguisher A has access to a
random function f : A × C → A × C and Spongef using this random function.
The formal definition of the first game is the event

Game 1 := (b = 1 : b← A[Spongef , f ]) . (7.59)

Game 2 In the second game we introduce the simulator S2—defined in Algo-
rithm 7.10—that lazy-samples the random function f . In Algorithm 7.10 we
define all simulators of this proof at once, but note that the behavior of S2 is
not influenced by any of the conditional “if” statements (in lines 1, 2, and 5),
because in the end, the output state t is picked uniformly from A× C anyway.
The definition of the second game is

Game 2 := (b = 1 : b← A[SpongeS2 , S2]) . (7.60)

Because the simulator S2 perfectly models a random function and we use the
same function for the private interface we have

|P[Game 2]− P[Game 1]| = 0. (7.61)
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Game 3 In the next step we modify S2 to S3. The game is then

Game 3 := (b = 1 : b← A[SpongeS3 , S3]) . (7.62)

We made a single change in S3 compared to S2, we introduce the “bad” event
Bad that marks the difference between algorithms. The intuition behind the
event Bad is that if the new query ends up inRwe found an inner collision or a
preimage of zero. This is because all supernodes inR are the output of a query
or are just 0. If on the other hand t̂ ∈ U , the simulator might be caught on an
inconsistency. If a node has an outgoing edge and is not in R, then the outer
part of the output is a uniformly random value, not an output of H as will be
desired in the next game. We use this event as the bad event in Lemma 2.22.
With such a change of the simulators we can use Lemma 2.22 to bound the
difference of probabilities:

|P[Game 3]− P[Game 2]| ≤ P[Bad]. (7.63)

We can use the bound because in the worse case (i.e., all previous queries being
in R ∪ U) the bad event is equivalent to finding inner-collisions or preimages
of zero.

It is quite easy to bound P[Bad = 1] as it is the probability of finding a
collision or preimage of the root in the set C having made q random samples.
Therefore we have that

P[Bad = 1] ≤ fcoll(q), (7.64)

where fcoll is defined in Equation (7.57). The bound is not necessarily tight as
not all queries are made to rooted nodes.
Game 4 In this step we introduce the random oracle R but only to generate the
outer part of the output of f . The game is defined as

Game 4 :=
(
b = 1 : b← A[SpongeS4 , SR

4 ]
)
. (7.65)

We observe that if Bad = 0 the outputs are identically distributed.
Claim 7.10. Given that Bad = 0 the mentioned games are the same:

|P[Game 4 | ¬Bad]− P[Game 3 | ¬Bad]| = 0. (7.66)

Proof. Note that the inner part is distributed in the same way in both games if
¬Bad, so we only need to take care of the outer part of the output. The problem
might lie in the outer part, as we modify the output from a random sample to
R(x). If Bad = 0 then t̂ is not rooted and has no outgoing edge. Given that Bad
was never set to 1, the whole graph G does not contain two paths leading to
the same supernode (Lemma 1 in [Ber+08]). Hence, xwas not queried before
and is uniformly random. This reasoning is mademore formal in Lemma 1 and
Lemma 2 of [Ber+08].
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The two games are identical-until-bad, this implies that the probability of
setting Bad to one in both games is the same P[Bad = 1 : Game 3] = P[Bad =
1 : Game 4]. Together with the above claim we can derive the advantage:

|P[Game 4]− P[Game 3]| Claim 7.10=

∣∣∣∣∣∣P[Game 4 | ¬Bad]

· (P[¬Bad : Game 4]− P[¬Bad : Game 3]])︸ ︷︷ ︸
=0

+ P[Game 4 | Bad]︸ ︷︷ ︸
≤1

P[Bad]− P[Game 3 | Bad]︸ ︷︷ ︸
≤1

P[Bad]

∣∣∣∣∣∣ (7.67)

4-inEquation
≤ 2P[Bad]. (7.68)

Note that the above derivation follows the proof of Lemma 6.10, with H \ R1
replaced by Game 4, G \ R2 replaced by Game 3, and event Find replaced by
Bad.
Game 5 In this stage of the proof we change the private interface to contain the
actual random oracle. The simulator is the same as before and the game is

Game 5 :=
(
b = 1 : b← A[R, SR

4 ]
)
. (7.69)

Conditioned on Bad = 0, the outputs of the simulator in Game 4 and Game 5
are consistent with R. Moreover conditioned on Bad = 0 the probabilities of
A outputting 1 are the same. Note that the inner states are generated by the
same pseudocode and the outer states are distributed in the same way. To cal-
culate the adversary’s advantage in distinguishing between the two games we
can follow the proof of Lemma 6.10 and Equation (7.68). As the derivation
of Lemma 6.10 uses no quantum mechanical arguments and the assumption
holds—the games are identical conditioned on Bad = 0—the bound holds:

|P[Game 5]− P[Game 4]| ≤ 4P[Bad] ≤ 4fcoll(q). (7.70)

Game 6 In the last game we use I6 (we call it I for ideal, that is the world we
arrive in the last step of the proof), a simulator that does not check for bad
events and samples from the “good” subset of C. The game is

Game 6 :=
(
b = 1 : b← A[R, IR6 ]

)
(7.71)

and the advantage is

|P[Game 6]− P[Game 5]| ≤ P[Bad] ≤ fcoll(q). (7.72)

following Lemma 2.22. as the only difference is in code but not outputs. We
included this last game in the proof because I6 is clearly a simulator that might
fail only if G is saturated but this does not happen if q < |C|. Collecting and
adding all the differences yields the claimed ε = 8fcoll(q).
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7.6.2 Quantum Indifferentiability
In this subsection we prove quantum indifferentiability of the sponge construc-
tion with a uniformly random internal function. Without loss of generality we
assume C = [|C|] and perform modular addition on the whole state in A× C.

In the quantum indifferentiability simulator we want to sample the outer
part of outputs of f and the inner part separately, similarly to the classical
one. To do that correctly in the quantum case though we need to maintain
two databases: one responsible for the outer part and the other for the inner
part. We denote them by D and D̂ respectively.

At line 7 of the classical simulator we replace the lazy sampled outer state
by the output of the random oracle. In the quantum case we want to do the
same. Unlike in the classical case we cannot, however, save the input-output
pairs of the random oracle R that were sampled to generate the sponge graph,
as they contain information about the adversary’s query input. An attempt to
store this data would effectively measure the adversary’s state and render our
simulation distinguishable from the real world. To get around this issue we
reprepare the sponge graph at the beginning of each run of the simulator. To
prepare the sponge graph we query R on all necessary inputs to f̂ , i.e. on the
inputs that are consistent with a path from the root to a rooted node. This is
done gradually by iterating over the length of the paths. We begin with the
length-0 paths, i.e. with all inputs in the database D̂ where the inner part is
the all zero string. If the outer part of such an input is equal to a padding of
an input, that input is queried to determine the outer part of the output of f ,
creating an edge in the sponge graph. We can continue with length-1 paths.
For each entry of the database D̂, check whether the input register is equal to
a node in the current partial sponge graph. If so, the entry corresponds to a
rooted node. Using the entry and the edge connecting its input to the root, a
possible padded input to Sponge is created using SpPath. If it is a valid padding,
R is queried to determine the outer part of the output of f , etc.

In the proof we will make heavy use of the result of Corollary 6.17. Let us
denote the bound on inner collisions by

fQcoll(q) := 11 q
2

|C|
. (7.73)

Theorem 7.11 (Quantum indifferentiability of Sponge). Sponge
Spongef [pad,A, C] calling a random function f is (q, ε)-indifferentiable from a random
oracle, for quantum adversaries for q ∈ O

(
3
√
|C|
)
and

ε = 88 q
2

|C|
+

√√√√11(q + 1) q
2

|C|
. (7.74)
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Proof. Even though we allow for quantum accessible oracles, the proof we
present is very similar to the classical case. The proof follows the same
structure, the biggest difference is in the simulators that use the compressed
oracle to lazy-sample appropriate answers.

We denote by UG the unitary that acting on |0〉 constructsG including edges
consistent with queries held by the quantum compressed database from regis-
terD. Similarly we define UR∪U to temporarily create a description of the set of
supernodes that are rooted or have an outgoing edge.

In Algorithm 7.11 we describe the simulators we use in this proof. In the
quantum simulators we also make use of the graph representation of sponges.
Note however that in a single query we only care about the graph before the
query. Due to that fact we can apply the compressed oracle defined in Algo-
rithm 6.1 and additionally analyzed in Lemma 6.11. Corollary 6.17 provides a
bound of the probability of Find in the case of compressed oracles and relations
relevant for the sponge construction.

It is important to note that the “IF” statements are in fact quantumcontrolled
operations. In line 5 we apply a punctured compressed oracle controlled on the
input and the database; To correctly perform this operation we postpone the
measurement to after uncomputing of G and R ∪ U in line 15. This procedure
is also discussed at the end of Section 6.3.

An illustration of the simulators in the quantum case is depicted in Fig-
ure 7.1.

f̂ :

f̄ :

CStO
XŶ D̂(s)
C

CStO
XY D(s)
A

(CStOC \ (R∪ U))XŶ D̂(s)

HXXHY D(s)

S2

S3

S4

Game 3

Game 4

Figure 7.1: Schematics of the simulators defined in Algorithm 7.11, horizontal
arrows signify the change introduced in the labeled game.

Game 1 We start with the real world where the distinguisher A has quantum
access to a random function f : A × C → A × C and the Spongef construction
using this random function. The definition of the first game is

Game 1 := (b = 1 : b← A[Spongef , f ]) . (7.75)
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Algorithm 7.11 Quantum S2 , S3 , S4 , functions
1: State: Quantum compressed database register D

input: |s, v〉 ∈ H⊗2
A×C

output: |s, v + f(s)〉
2: Locate input s in D and D̂
3: Apply UR∪U ◦ UG to register D̂ and two fresh registers
4: if ŝ ∈ R ∧ R ∪ U 6= C then . ŝ-rooted, no saturation

5: Apply CStOXŶ D̂(s)
C , (CStOC \ (R∪ U))XŶ D̂(s) , result: t̂

6: Construct a path to s: p := SpPath(s,G)
7: if ∃x : p = pad(x) then

8: Apply CStOXY D(s)
A , result: t̄

9: Write x in a fresh registerXR, apply RXXRY D(s) , uncompute x from
XR, result: t̄

10: else
11: Apply CStOXY D(s)

A , result: t̄
12: t := (t̄, t̂), the value of registers (DY (s), D̂Y (s))
13: else
14: Apply CStOXYD(s)D̂(s)

A×C , result: t
15: Uncompute G andR∪ U
16: return |s, v + t〉

Game 2 In the second game we introduce the simulator S2, defined in Algo-
rithm 7.11. This algorithm is essentially a compressed random oracle, the only
difference are the if statements, note that the behavior of S2 is not influenced
by any of the conditional “if” statements (in lines 4, and 7), because in the end,
the output state t is picked uniformly fromA×C anyway. The game is defined
as:

Game 2 := (b = 1 : b← A[SpongeS2 , S2]) . (7.76)
Because the simulator S2 perfectly models a quantum random function and we
use the same function for the private interface we have

|P[Game 2]− P[Game 1]| = 0. (7.77)

Game 3 In the next step we modify S2 to S3. The game is then

Game 3 := (b = 1 : b← A[SpongeS3 , S3]) . (7.78)

With such a change of the simulators we can use Theorem 6.7 to bound the
difference of probabilities. S3 measures the relation of being an element ofR∪
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U . This relation is equivalent to Rpreim ∪Rcoll:

|P[Game 3]− P[Game 2]| ≤
√

(q + 1)P[Find : A[SpongeS3 , S3]], (7.79)

Using Corollary 6.17 we have that

P[Find : A[SpongeS3 , S3]] ≤ fQcoll(q). (7.80)

Game 4 In this step we introduce the random oracle R but only to generate the
outer part of the output of f . The game is defined as

Game 4 :=
(
b = 1 : b← A[SpongeS4 , SR

4 ]
)
. (7.81)

Thanks to the classical argument we have that S4 and S3 are identical until bad,
as in Definition 6.9. Then we can use Lemma 6.10 to bound the advantage of
the adversary

|P[Game 4]− P[Game 3]| ≤ 4P[Find : A[SpongeS3 , S3]] ≤ 4fQcoll(q). (7.82)

Game 5 In this stage of the proof we change the private interface to contain the
actual random oracle. In this game the simulator is still S4, the definition is as
follows:

Game 5 :=
(
b = 1 : b← A[R, SR

4 ]
)

(7.83)

and the advantage is

|P[Game 5]− P[Game 4]| ≤ 4P[Find : A[SpongeS4 , SR
4 ]] ≤ 4fQcoll(q). (7.84)

Conditioned on ¬Find, the outputs of the private interface are the same, then
the games are identical-until-bad and we can use Lemma 6.10 to bound the
advantage of the adversary.

As long as Find does not occur and the graph is not saturated the adversary
cannot distinguish the simulator from a random function except for the distin-
guishing advantage that we calculated. Saturation certainly does not occur for
q ∈ O

(
4
√
|C|
)
as the database in every branch of the superposition increases by

at most one in every query. Collecting the differences between games yields
ε = 8fQcoll(q) +

√
(q + 1)fQcoll(q).
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In this chapterwe present a result related to the notion of quantum resource-
restricted indifferentiability. We introduce this notion and present a formal def-
inition in Section 2.3.3.2.

The result we discuss is a quantum version of the challenge-response prop-
erty of hash functions. This property is defined with a two-stage game and has
been used in [RSS11] as an example for why regular indifferentiability is not
always applicable tomulti-stage games. Weprove the same statement as the au-
thors of [RSS11] but giving the adversary access to limited quantum memory.
Taking into account the influence of quantum memory is the main challenge
of analyzing the quantum version of the game. With this example we bring
the discussion about the problem of regular indifferentiability with multi-stage
games to the quantum world.

8.1 External Storage Game
The crucial observation made by Ristenpart, Shacham, and Shrimpton in
[RSS11] is that in multi-stage games the only way for the indifferentiability
simulator to succeed is to maintain state across adversaries in multiple stages.
Simulators, however, are defined in a different way: They are algorithms that
can “fool” a single adversary. If we talk about multiple adversaries, each
interacts with a separate instance of the simulator. The indifferentiability
simulators are not “aware” of those multiple instances.

A good example of this situation is presented in this section. We copy the
example from [RSS11] but generalize it to the case of quantum adversaries. The
example we analyze here shows that there is a multi-stage game that cannot be
won by adversaries interactingwith a random oracle but is trivial when they in-
teract with the Comp compression function defined in Section 2.5.1. This shows
that the composition theorem (Theorem 2.18) does not apply to multi-stage
games in general.

Before we go any further, we introduce the hon (honest) and adv (adver-
sarial) interfaces. In games that include adversarial procedures, the interface
adv specifies the functionality the adversaries have access to. The game itself
has access to the interface hon. A more detailed discussion of these interfaces
is presented in [RSS11].

Note that the hon and adv interfaces do not always correspond to the private
and public interfaces from the definition of indifferentiability (Definition 2.16).
In the indifferentiability game the private interface corresponds to the interface
hon. The public interface, however, is the adv interface only in the real world;
In the ideal world it is the simulator who provides the public interface and she
in turn has access to the adversarial interface of the ideal functionality.

Now we can present a quantum version of the challenge-response (CRP)
hash-function property, the classical game can be found in Figure 3 in [RSS11].
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In Algorithm 8.1 we consider a quantum adversary (A1,A2) that does not share
(between the stages) any state, except for the explicitly mentioned |st〉. The
difference between the quantum and classical games is that in the latter the
state is a classical string of at most n bits and the adversaries make classical
queries to their oracles. In Algorithm 8.1 both the adversary and the game have
quantum access to an external oracle H = (Hadv,Hhon), where the two elements
of the tuple signify the two interfaces of the oracle.

Algorithm 8.1 Game for CRP[H, (A1,A2)]

1: M $← {0, 1}p
2: |st〉 ← AHadv

1 (M) such that |st〉 ∈ (C2)⊗n

3: C $← {0, 1}s
4: Z ← AHadv

2 (|st〉, C)
5: return Z = Hhon(M‖C)

8.1.1 The CRP Game with a Random Oracle
We want to prove that for a random oracle and quantum adversaries A1 and
A2 the CRP game defined in Algorithm 8.1 cannot be won. The proof follows
the same path as the proof of Theorem 4.1 in [RSS11]. However, we need a
quantum counterpart of a lemma used in the classical proof. In Section 2.1.6
we present a discussion about quantum entropy and prove Lemma 2.4, which
plays an important role in the proof here. Let us go over the setting one more
time. The two adversaries have quantum access to the adversarial interface of
H. If the hash function is a random oracle, i.e. H = R, the adversarial and honest
interfaces are the same and are just R.

Theorem 8.1. Let (A1,A2) be quantum algorithms making at most q quantum queries
to a random oracle R : {0, 1}∗ → {0, 1}r, then

P
[
1← CRP[R, (A1,A2)]

]
≤
√

4q(q + 1)
( 1

2s + 1
2p−n

)
+ 4q

( 1
2s + 1

2p−n
)

+ 1
2r .

(8.1)

Proof. Using the semi-classical O2H lemma, Theorem 2.23, we punctureA1 and
A2 on the relation of querying (M‖C), we denote this relation by Rquery:

P
[
1← CRP[R, (A1,A2)]

]
≤
√

(q + 1)P
[
Find

]
+ P

[
1← CRP[R, (A1 \Rquery,A2 \Rquery)]

]
(8.2)

≤
√

(q + 1)P
[
Find

]
+ P

[
Find

]
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+ P
[
1← CRP[R, (A1 \Rquery,A2 \Rquery)] | ¬Find

]
. (8.3)

In the first inequality above we introduce the punctured oracle and bound the
distinguishing advantage using Theorem 2.23. The second inequality follows
from writing a sum of conditional probabilities where we condition on Find
and ¬Find and bounding

P
[
¬Find

]
≤ 1 and (8.4)

P
[
1← CRP[R, (A1 \Rquery,A2 \Rquery)] | Find

]
≤ 1. (8.5)

Let us first bound the last element in the above inequality. Conditioned on
¬Find the adversary A2 has never queried (M‖C) to the oracle, hence she has
to guess the output of R, therefore the bound on the probability of CRP is 1/2r.

Now to bound the probability of Findwe use the union bound to distinguish
between Find happening inA1 and inA2. In the former case we use Corollary 1
from [AHU19] (Lemma 2.24):

P
[
Find

]
≤ 4q · Pmax, (8.6)

where Pmax := maxx P
[
x ∈ Rquery

]
. The probability Pmax for A1 is 2−s: this is

the probability with which C is sampled.
To bound the probability that A2 queries M‖C on input C and with the

quantum state passed from A1 we make use of Lemma 2.25. Following the in-
terpretation of min-entropy from [KRS09] we see that 2−Hmin(M |S)—whereM is
the random variable corresponding to the stringM and S is the quantum regis-
ter holding |st〉—on the c-q state constructed from |st〉 is the guessing probabil-
ity ofM . This is the guessing probability that enters the bound in Lemma 2.25.
To bound the entropy of the random variableM given |st〉, we use Lemma 2.4.
The bound on the entropy is Hmin(M | S) ≥ p−n. Finally the bound on Find is

P
[
Find

]
≤ 4q

( 1
2s + 1

2p−n
)
. (8.7)

Taking all of the above into account we get the claimed bound.

8.1.2 The CRP Game with the Comp Construction
Let us now analyze the CRP game where H is instantiated with Comp with the
following parameters: the first function is h1 : {0, 1}p → {0, 1}n and the second
is h2 : {0, 1}n+s → {0, 1}r. The CRP game can be won by (A1,A2) that queries
M to h1(M) = st and sends the output toA2. The second adversary easily com-
putes Z = h2(st, C). The probability of winning the game for such adversaries
is 1. The crucial point in our discussion is that the composition construction
is quantumly indifferentiable from a random oracle, as proven in Theorem 7.2.
This fact validates the counterexample from [RSS11] in the quantum world.
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8.1.3 Conclusions
As hinted in [RSS11], constructions that follow Definition 2.19 of resource-
restricted indifferentiability might compose in multi-stage games. The reason
for that is that in a multi-stage indifferentiability security game (that remains
to be formally defined), if different instantiations of the simulator could share a
state of limited size (similarly to the adversaries in the CRP game) it would be
enough for them to provide consistent answers to the adversaries. If there is a
construction that is “multi-stage indifferentiable” from a random oracle, then it
would also behave as a random oracle in the CRP game. This discussion is just
speculations for now, but it will hopefully generate problems for future work.
It also remains to be seen if there are constructions that are resource-restricted
indifferentiable from a random oracle.
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In this last chapter we present two questions. These are problems that seem
to be extremely important in the line of research presented in this thesis. They
also seem very difficult and the first problem we discuss lacks an answer.

The first problem that we present is: “Is there a general relation between the
statistical distance and the distinguishing advantage of a q-(quantum)-query
algorithmA?”. This question ismotivated by the classical proof techniques that
give a positive (and constructive) answer. In the quantum world it is much
harder to answer this questions but if we found an answer, we could solve a
number of problems in post-quantum security.

The second problem we discuss is quantum lazy-sampling of random
permutations. This problem is less general, as it is directly related to the
compressed-oracle technique. Nonetheless, seeing how powerful this
technique is, lazy-sampling random permutations would open the doors to
achieving many important results. To mention one, the SHA3 hash function is
defined with public invertible permutations, so a quantum indifferentiability
proof (at least one using the quantum game-playing framework) would
require lazy-sampling a random invertible permutation. In Section 9.2.2.1 we
provide some ideas for a compressed permutation oracle with errors. In the
last section of this chapter we analyze the possibility of an error-less way of
quantum lazy-sampling random permutations.

9.1 Quantum Indistinguishability of Distributions
over Functions

Let us consider two distributions D1 and D2 over the set of functions F :=
{f : X → Y}. We discuss algorithmsAwith oracle access to a function sampled
fromF according toD1 orD2. More concretelywe are interested in the problem
of A distinguishing between D1 and D2. The resources the algorithm (also
called the adversary or the distinguisher) is given is unlimited computational
power and access to q queries to f .

First we describe the setting without specifying the nature (classical
or quantum) of the adversary. We define the distinguishing advantage for
adversaries in a class A by:

AdvAq (D1,D2) := sup
A∈A

∣∣∣∣ P
f←D1

[
1← Af

]
− P

f←D2

[
1← Af

]∣∣∣∣ . (9.1)

In general bounding the distinguishing advantage is a hard task. There are two
important approaches to proving indistinguishability. One is based on stating
that the adversary behaves identically in the two worlds (interacting with D1
or D2) as long as a certain condition is fulfilled. Another finds a connection to
the statistical distance between the two distributions and bounds the distance,
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abstracting from the algorithmic part of distinguishability. Classical examples
of the former approaches are Maurer’s random systems [Mau02] and Bellare
and Rogaway’s game-playing framework [BR06]. In the quantum case we have
the quantum game-playing framework [AHU19; Zha19a; Cza+19]. The latter
approaches are the ones we want to discuss here in more detail.

Before we cover the classical and quantum techniques related to the statisti-
cal distance between distributions we define this distance. The assumption on
the adversaries that we made is that Amakes q (quantum or classical) queries
to f distributed according to D1 or D2. This implies that she has access to tran-
scripts of input-output pairs, where the inputs are the queries made by A and
outputs are generated by f . The first parameter of these transcripts that de-
pends on the nature of the queries made by A is their size. In the classical case
it is certainly q, but in the quantum case it is less obvious1. For that reason let us
say that A has access to Q-sized transcripts. As we do not know a priori what
queries A makes, let us for now consider the queries ~x := (x1, x2, . . . , xQ). For
these queries a transcript is an array ((x1, f(x1)), (x2, f(x2)), . . . , (xQ, f(xQ))). We
denote the distribution of such transcripts by D(~x), where D is D1 or D2. The
definition of statistical distance between distributions over transcripts is

d(D1(~x),D2(~x)) := 1
2
∑
~y∈YQ

∣∣∣∣ P
f←D1

[
f(~x) = ~y

]
− P

f←D2

[
f(~x) = ~y

]∣∣∣∣ . (9.2)

Now what we look for is a relation between Equation (9.1) and
Equation (9.2). Let us first go over the classical case. First of all A makes q
classical queries and the transcripts are of size q. For such adversaries the
relation that we have is a straight forward inequality:

Advclass
q (D1,D2) ≤ max

~x
d(D1(~x),D2(~x)). (9.3)

This inequality is analyzed in detail for example in [Nan06]. Equation (9.3)
can be proven using Lemma 4 in [Nan06], which states that for a fixed A the
distinguishing advantage is upper bounded by the statistical distance of tran-
scripts. Maximizing over A gives the above inequality. Interestingly the in-
equality in Equation (9.3) is tight. Equality can be achieved by picking an ad-
versary that deterministically chooses the queries (and internal randomness)
to maximize her advantage. Moreover A outputs 1 if for the outputs ~y that she
gets P

f←D1

[
f(~x) = ~y

]
> P

f←D2

[
f(~x) = ~y

]
. This adversary has the distinguishing

advantage equal to d(D1(~x),D2(~x)), which follows from an equivalent defini-
tion of statistical distance d(D1(~x),D2(~x)) = P

f←D1

[
f(~x) ∈ T0

]
− P

f←D2

[
f(~x) ∈ T0

]
,

where T0 :=
{
~y ∈ Yq : P

f←D1

[
f(~x) = ~y

]
> P

f←D2

[
f(~x) = ~y

]}
. More details on this

fact can be found in [Nan06].
1Note that, as discussed in Section 2.4.1, the quantum state of the adversary can depend on

up to 2q input-output pairs.
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Among the most important proof techniques that make use of
Equation (9.3) are the H-coefficient technique [Pat08; JN18] and the
chi-squared method [DHT17; BN18a]. These techniques are used to
bound the statistical distance between transcripts holding the history of the
adversary’s queries.

Unfortunately most of the classical discussion cannot be repeated in the
quantumworld. For example, the queries made by quantum adversaries result
in a quantum state that can hold a superposition over all possible transcripts.
Although A cannot effectively use all of them, it is unclear what relation con-
nects the distinguishing advantage and the statistical distance.

An example of a proof technique useful in the quantum world is
Theorem 1.1 from Zhandry’s [Zha12]. There he proves that for functions
f ← DX (meaning every input from X is mapped to a y distributed
independently on Y according to D), we can bound the distinguishing
advantage by O

(√
q3d(D1,D2)

)
. Zhandry’s technique does not work for

general distributions over functions though.
To sum up, the important observation that we want to state is that by Equa-

tion (9.3)wemove fromdistinguishing distributions on the distinguishers’ out-
puts to distinguishing random variables of samples of distributions. Distin-
guishing random variables and distributions is a more fundamental problem,
which often can be solved in more ways. Let us denote the class of quantum
adversaries making q quantum queries by quant. Finally, the question that we
pose is:

Is there a version of Equation (9.3) that applies to Advquant
q (D1,D2)?

9.2 Quantum Lazy Sampling Random Permuta-
tions

The problem we describe here is quantum lazy-sampling of random permuta-
tions and providing superposition access to both directions of the function. In
this sectionwedescribe the approach introducing additional errors in short and
discuss another approach. The second way of defining compressed random
permutations does not introduce errors but we have only preliminary results
on how to actually implement it.

9.2.1 Sampling Procedure for Random Permutations

Let us first cover the sampling procedure for random permutations. The uni-
form distribution over permutations is denoted byP (read as just “P”). A sam-
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pling procedure prepares a state in the appropriate superposition:

SampP(S)|0|S|〉 =
∑

~y: no collisions

1√
N(N − 1) · · · (N − |S|+ 1)

|~y〉, (9.4)

where by “no collisions” we mean that the outputs do not collide. In this para-
graph we provide a definition of an efficient sampling procedure for random
permutations.

To accommodate for random permutations in the compressed-oracle ap-
proach we need a quantum operation that prepares an equal superposition
over a given set Y \ S. The set S is stored in a quantum register. Say that
the codomain of f is Y = [N ] and the set of outputs with probability zero of ap-
pearing is S. We propose that sampling is done first by applying the Quantum
Fourier Transform over the set [L] to the state |0〉, where L = |Y \ S|. After that
we spread the values in [L] in a way that values from S no longer appear in the
set. The last operation may be realized by repeating the following unitary

VAB|a〉A|b〉B =

|a〉A|b〉B if a > b

|a〉A|b+ 1 mod N〉B if a ≤ b
, (9.5)

where by VAB we denote applying V to registersA,B. The operation V as stated
above is defined only on a ∈ [N ] and b ∈ [N−1] (counted from 0), to extend it to
the full domain we need to add that V|a〉A|N − 1〉B := |a〉A|N − 1〉B. The action
of V is shifting the states in register B in a way that possible states skip a. Let
us show that V is in fact a unitary that is easy to construct. For the construction
we need three unitary sub-routines,

V≤|a〉A|b〉B =

|a〉A|b〉B|0〉C if a > b

|a〉A|b〉B|1〉C if a ≤ b
, (9.6)

V+|a〉A|b〉B|c〉C = |a〉A|b+ c mod N〉B|c〉C , (9.7)

V−≤|a〉A|b〉B|c〉C =

|a〉A|b〉B|c⊕ 0〉C if a > b− 1 mod N

|a〉A|b〉B|c⊕ 1〉C if a ≤ b− 1 mod N
, (9.8)

where we additionally need to specify that V−≤|a〉A|0〉B|c〉 = |a〉A|0〉B|c〉 for
a > 0. Now we define V = V−≤V+V≤, we also discard register C after the three
operations. In this approach we need a register holding a description of the set
S but as long as we do, applying V to all registers describing S will give us the
expected result.

We use the unitary V to show how the initial state preparation looks like for
a random permutation. For V to be used correctly it needs to be conditioned on
a sorted set of values. The full “spreading” unitary is defined as:

SpreadAB := 〈0|A||TUAT †
sort

|T |∏
i=1

VTiBUAT
sort|0|A|〉T , (9.9)
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where UAT
sort writes in register T lexicographically sorted contents of register A.

The definitions of the sampling operation for a uniformdistribution onY\S ,
for any S ⊆ X , is given by:

SampY\S(x) := SpreadSDY (x)QFTDY (x)†
L , (9.10)

where S is the quantum register holding elements of S. Note that we ap-
ply QFT†L to a register of dimension N , we overload the notation but mean
QFT†L

⊕
1N−L. The sampling procedure from Equation (9.10) is used to im-

plement CStOY\S .
The uniform distribution over the set of permutations is denoted byP. The

sampling function is defined using Equation (9.10) with S defined as previous
outputs, held in registers DY

i . The definition reads as follows:

SampP(S) :=
|S|∏
i=1

SampY\DY ({x1,··· ,xi}) =
|S|∏
i=1

SpreadDY<iDYi QFTDYi †
N−(i−1), (9.11)

whereDY ({x1, · · · , xi}) denotes the set of outputs y in entries ofD correspond-
ing to listed x and DY

<i is the register consisting of DY
j for 1 ≤ j < i.

9.2.1.1 Random Permutations in Sponges

In the context of indifferentiability of the sponge construction, we want to lazy
sample permutations f : A×C → A×C in two stages. First sampling the inner
part of the output and then the outer part.

By D we denote the set of outputs of previous queries. In the language of
the sponge graph D−1 is the set of nodes with outgoing edges and D is the set
of nodes with incoming edges. By D̂ we denote the set of supernodes with
all nodes having an incoming edge. By D(t̂) we denote the set of nodes in the
supernode t̂with an incoming edge.

We need to define a procedure to lazy-sample outputs of a random permu-
tation. The obvious solution of sampling uniformly fromA×C \D is not good
enough as wewant to sample the inner part before the outer part and retain the
step-by-step structure of our proof, similarly to the proof of Theorem 7.9.

Classically we are going to first sample uniformly from A× C \ D but then
discard the outer state. The value of the inner state t̂ is then effectively sampled
from C with weights |A\D(t̂)|

|A×C\D| . We call this distribution C. At this point we will
be introducing bad events concerning the inner part of the sampled state. To
sample the outer state we just sample uniformly fromA\D(t̂). We denote this
distribution by A(t̂).

Quantumly the situation is a bit more involved, so we are going to present
the sampling procedure in more detail. First we sample pairs from A × C \ D
using SampA×C\D, defined similarly to the procedure in Equation (9.10). Then
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weun-sample the outer part, by applying theHermitian conjugate of SampA\D(t̂)
to the resulting state. Note that we control the un-sample operation on the
inner-part of the initial sample. We start from the following state

SampA×C\D|0〉 =
∑

t∈A×C\D

1√
|A × C \ D|

|t〉

=
∑
t̂

√√√√ ∣∣∣A \ D(t̂)
∣∣∣

|A × C \ D|
∑

t̄∈A\D(t̂)

1√∣∣∣A \ D(t̂)
∣∣∣ |t̄, t̂〉, (9.12)

where the right hand side of the equation follows by just rearranging the sums
and noticing that given some t̂ ∈ C we have t̄ ∈ A that have no incoming edges
in the supernode t̂. Now the definition of the second sampling procedure reads

SampA\D(t̂)|0, t̂〉 =
∑

t̄∈A\D(t̂)

1√∣∣∣A \ D(t̂)
∣∣∣ |t̄, t̂〉 (9.13)

and is completed to a unitary acting on every other s̄ ∈ A under the constraints
of Definition 6.2. Note that we use the second register to control the unitary
(by providing the set D(t̂) we exclude from A). By applying Samp†A\D̄(t̂) to
both sides of Equation (9.13) we see that we can un-compute the outer part
t̄ from the initial superposition from Equation (9.12) and sample t̂with proba-
bility |A\D(t̂)|

|A×C\D| . The sampling procedure Samp†A\D(t̂)◦SampA×C\D is used to define
CStOC. The outer part is then sampled using SampA\D(t̂), with which we define
CStOA(t̂).

In the case of the inverse of the random permutation we can use a similar
distribution but in the above definitions we takeD−1—i.e. the set of nodes with
outgoing edges—in both C and A.

9.2.2 The Compressed Update Procedure
The sampling procedure is not enough to quantumly lazy sample a function.
The main problem is that Algorithm 6.1 does not apply here, note that the dis-
tribution P is not independent. In the following sections we present two ap-
proaches to defining the compressed permutation oracle. One that introduces
additional errors and one that is a unitary implementation.

9.2.2.1 Compressed Permutation Oracle with Errors

Our idea for the compressed oracle for permutations with errors is to use a
compressed oracle for uniformly random functions punctured on collisions.
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For queries to the backward direction we invert the database (possible because
there are no collisions) and apply the regular update procedure CStOU.

In more detail, we provide access to the inverse of the permutation by flip-
ping the database: treat the content of DY as inputs and DX as outputs and
sort byDY , we call the appropriate unitary Flip. Note that FlipD works as antic-
ipated only if both in DY and DX there are no collisions; The definition of Flip
can be easily extended to a full unitary by, e.g., keeping the order unchanged in
a tuple with colliding outputs. We thereby obtain a (superposition) database
where the strings yi‖xi are lexicographically ordered. Amore formal definition
of the compressed permutation oracle CPerOX is:

CPerOX := CPhOX \Rcoll, (9.14)
CPerO−1

X := FlipD ◦ (CPhOX \Rcoll) ◦ FlipD. (9.15)

A more detailed description of Flip:
1. Controlled on DY copy DX to D′Y and arrange in lexicographically in-

creasing order according to values of yi in DY .

2. Controlled on DX and D′Y copy DY to D′X in the new order.

3. Controlled onD′ erase the oldD: Take the smallest xi inD′Y and subtract
it from the first register of DX , also subtract the corresponding yi, and so
on.

Now the statement without which the above definition is useless is “The
full (two-way) permutation oracle is indistinguishable from the compressed
permutation oracle”.

9.2.2.2 A Unitary Compressed Permutation Oracle

A unitary compressed oracle for random permutations is an approach requir-
ing defining a new version of Algorithm 6.1 suitable to handle sampling pro-
cedures that are not independent. Our approach to finding such an algorithm
is basically performing an educated guess of the right unitary. The greatest
weakness of this approach is of course the hardness of just guessing the solu-
tion. Nonetheless we have some preliminary results that might prove useful
when combined with other approaches.

One crucial observation concerning a unitary compressed oracle is that a
single query conveys a different amount of information depending on the num-
ber of previous queries. Note that the first query not only informs us that
f(x) = y but also that the output on all other x′ 6= x in not y. The more queries
we make, the more “negative” information we have.

The importance of the above observation is confirmed with the indistin-
guishability bound for a single-query distinguisher. The set of functions we
sample from is {f : [N ]→ [N ]}.
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Theorem 9.1. Given quantum access to a function sampled either according to the
uniform distribution over functions U or the uniform distribution over permutations
P, we have that for all quantum distinguishers making a single quantum query to the
oracle, the distinguishability advantage is at most 1

N−1 :∣∣∣∣ Pf←U

[
1← A|f〉

]
− P

f←P

[
1← A|f〉

]∣∣∣∣ ≤ 1
N − 1 . (9.16)

Moreover there is a distinguisher B that has advantage 1
2(N−1) .

Proof. Let us inspect the indistinguishability bound for the uniformdistribution
over functions U and the uniform distribution over permutations P:∣∣∣∣ Pf←U

[
1← A|f〉

]
− P

f←P

[
1← A|f〉

]∣∣∣∣ =
∣∣∣Tr (Q1ρ

A
U

)
− Tr

(
Q1ρ

A
P

)∣∣∣ (9.17)

≤ 1
2
∥∥∥ρAU − ρAP∥∥∥1

(9.18)

where Q1 is the measurement corresponding toA outputting 1. The inequality
above comes from the fact that trace distance gives the optimal measurement
for distinguishing two states [NC10]. We also want to stress that register A
holds all of the adversary’s state, this includes her work register, query register,
and any other auxiliary registers she decides to use.

Wemodel the oracle accesswith the full phase oracle. The adversary’s initial
state is:

|ψ0〉A :=
∑
x

∑
ηx,w

αx,ηx,w|x, ηx, w〉AXYW , (9.19)

the states ρU and ρP are defined as the partial trace of |ψ0〉〈ψ0| after a single
query to PhOU or PhOP, respectively. The full definitions of the reduced states
are:

ρU =
∑
x,x′

∑
ηx,η′x′ ,w,w

′

αᾱ′
∑
y,yx′

1
N2ω

ηxyx
N ω̄

η′
x′yx′

N |x, ηx, w〉〈x′, η′x′ , w′| (9.20)

ρP =
∑
x,x′

∑
ηx,η′x′ ,w,w

′

αᾱ′
∑

y,yx′ 6=yx

1
N(N − 1)ω

ηxyx
N ω̄

η′
x′yx′

N |x, ηx, w〉〈x′, η′x′ , w′|, (9.21)

where α and ᾱ′ denote αx,ηx,w and ᾱx′,η′
x′ ,w

′ respectively.
First of all we see that terms with x′ = x are equal, in this case in both states

the sum over yx and yx′ simplify to just a single sum over yx ∈ [N ]. The off-
diagonal (so for x′ 6= x) terms are a bit more complicated to calculate. Let us
notice that ∑y,yx′ 6=yx = ∑

y,yx′
−∑y,yx′=yx , this splits the difference ρU − ρP into

two parts:

ρU − ρP =
(

1
N2 −

1
N(N − 1)

)
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∑
x,x′

∑
ηx,η′x′ ,w,w

′

αx,ηx,wᾱx′,η′
x′ ,w

′
∑
y,yx′

ωηxyxN ω̄
η′
x′yx′

N |x, ηx, w〉〈x′, η′x′ , w′|

+
∑
x,x′

∑
ηx,η′x′ ,w,w

′

αx,ηx,wᾱx′,η′
x′ ,w

′
∑

y,yx′=yx

1
N(N − 1)ω

ηxyx
N ω̄

η′
x′yx′

N︸ ︷︷ ︸
= 1
N−1 δηx,η′

x′

|x, ηx, w〉〈x′, η′x′ , w′|

(9.22)

= − 1
N − 1ρU + 1

N − 1DAY (|ψ0〉〈ψ0|), (9.23)

where DA(ρ) := ∑
a|a〉A〈a|ρ|a〉A〈a| denotes the map that outputs the diagonal

entries in register A.
Finally we have∣∣∣∣ Pf←U

[
1← A|f〉

]
− P

f←P

[
1← A|f〉

]∣∣∣∣ ≤ 1
2
∥∥∥ρAU − ρAP∥∥∥1

(9.24)

= 1
2

∥∥∥∥− 1
N − 1ρU + 1

N − 1DAY (|ψ0〉〈ψ0|)
∥∥∥∥

1
(9.25)

≤ 1
2

1
N − 1 ‖ρU‖1 + 1

2
1

N − 1 ‖|ψ0〉〈ψ0|‖1 = 1
N − 1 , (9.26)

where we use the triangle inequality and the fact that any CPTP (Completely
Positive Trace-Preserving) map, like D, can only decrease the norm of a state.

A distinguisher that performs the optimal measurement has advantage
‖ρU − ρP‖, as stated in Equation (9.18). Now let us consider a simple algorithm
B that does not have a work register and prepares the following state:

|ψB
0 〉A :=

∑
x∈{x1,x2}

1√
2
|x, η〉AXY , (9.27)

where η 6= 0 and x1 and x2 are any distinct inputs. We know that in the state
after interaction with a random function we have two cases: in the branch of
superposition where x = x′ the sum∑

y,yx′
1
N2ω

ηxyx
N ω̄

η′
x′yx′

N = δηx,η′x′ , in the branch

of superposition where x 6= x′ the sum ∑
y,yx′

1
N2ω

ηxyx
N ω̄

η′
x′yx′

N = δηx,0δη′
x′ ,0

. We
can observe that the former case equals DAX (|ψ0〉〈ψ0|) (so the initial state with
x = x′). As we have set η 6= 0, the off-diagonal part of ρU (so the case with
x 6= x′) is 0.

The above discussion leads to the following equality:∣∣∣∣ Pf←U

[
1← B|f〉

]
− P

f←P

[
1← B|f〉

]∣∣∣∣ = 1
2
∥∥∥ρAU − ρAP∥∥∥1

(9.28)

= 1
2

1
N − 1

∥∥∥∥∥∥
∑

x∈{x1,x2}

∑
x′∈{x1,x2},x′ 6=x

1
2 |x, η〉〈x

′, η|

∥∥∥∥∥∥
1

= 1
2(N − 1) , (9.29)
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where the last equality comes from the definition of the trace norm: ‖A‖1 =∑
λ |λ|, where λ are the eigenvalues of the matrix A.

Our general approach to finding the unitary compressed oracle is to cal-
culate the inner product of the full oracle state for different queries and find
a compressed state that recovers this behavior. First of all we assume the ex-
istence of Dec—a decompression procedure that works perfectly for random
permutations. The adversary’s state is assumed to be a basis state; To compare
two different queries we use U~x,~η|0〉A = |~x, ~η〉. Finally the goal is to guess Dec
out of

AF 〈0,Ψ0|U†~x′,~η′PhOs†U~x′,~η′U†~x,~ηPhOsU~x,~η|0,Ψ0〉AF =

AD〈0, 02q|U†~x′,~η′CPhOs†U~x′,~η′Dec†DecU†~x,~ηCPhOsU~x,~η|0, 02q〉AD, (9.30)

where

|Ψ0〉F :=
∑

f∈Iper([N ])

1√
N !
|f〉F . (9.31)

In the following we denote the joint state of A and the oracle when interacting
with the full oracle by |Ψ〉. When dealing with the compressed oracle we write
|ϕ〉.

The First Query First let us analyze the inner product after at most a single
query (x, η):

∑
f∈Iper([N ])

1√
N !
ω̄
η·f(x)
N 〈f |F

∑
f ′∈Iper([N ])

1√
N !
ω
η′·f ′(x′)
N |f ′〉F

= δx,x′
1
N

∑
y1∈[N ]

ω
(η′−η)·y1
N + (1− δx,x′)

1
N(N − 1)

∑
y1∈[N ]

∑
y2∈[N ]\{y1}

ω̄η·y1
N ωη

′·y2
N

(9.32)

= δx,x′δη,η′ + (1− δx,x′)
1

N − 1 (Nδη,0δη′,0 − δη,η′) . (9.33)

Now the question is how to model the above inner product with a compressed
state. We can see that η and η′ have to be equal for the inner product to be
non-zero. That points towards saving η in the database as a basis state. This
however means that we should save the information about all other behavior
of 〈Ψx,η|Ψx′,η′〉 in the X-type register of the database. Our proposition for that
is:

CFOP|x, η〉A|0, 0〉D = |x, η〉A

√N − 1
N
|x, η〉D −

1√
N(N − 1)

∑
x̃ 6=x
|x̃, η〉D


(9.34)
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= |x, η〉AQFTX†
N

1√
N − 1

∑
ξ 6=0

ωx·ξN |ξ, η〉 (9.35)

As we see, even after a single query the quantum database of a random
permutation is different from one for a uniformly random function. As already
shown in Theorem 9.1.

After two queries As we include more queries it becomes more complicated
to figure out the form of the compressed state. Now we want to analyze
〈Ψ~x′,~η′|Ψ~x,~η〉 with a different number of distinct queries s := |{x′1, x′2, x1, x2}|.
Different s correspond to different cross terms in the overall inner product.
General observations that we made when researching this subject are:

1. DX holds the sum in 〈Ψ~x′,~η′|Ψ~x,~η〉 reduced to the number of queries done,
e.g. if q = 2 and s = 3 we perform the sum over y3 and the rest of the
formula is in DX .

2. DY holds “half” of the result of the product after reducing to the sum of
size q.

By the first point we mean that register DX needs to take care of the terms
in 〈Ψ~x′,~η′ |Ψ~x,~η〉 that result from distinct inputs giving a non-zero inner product
(unlike in the case of the uniform distribution). In the second point we require
that the result of the sum (depending on the queries) is encoded in registerDY .

For compressed oracles after two queries we anticipate the following state
will be important in the final result:

|Υ0
test(η1, η2)〉 :=

√
N

N − 1 |η1, η2〉 −
1√

N(N − 1)

∑
η̃

|η̃, η1 + η2 − η̃〉. (9.36)

Additional observations about |Υ0
test(η1, η2)〉: It is just the Fourier transform of

a partial function state of random permutations:

QFTD1D2
N

∑
z1,z2 6=z1

1√
N(N − 1)

ωη1·z1
N ωη2·z2

N |z1, z2〉D1D2 =

QFTD1D2
N

 ∑
z1,z2

1√
N(N − 1)

ωη1·z1
N ωη2·z2

N |z1, z2〉

−
∑
z1

1√
N(N − 1)

ω
(η1+η2)·z1
N |z1, z1〉

 = (9.37)

√
N

N − 1 |η1, η2〉 −
1√

N(N − 1)

∑
η̃

|η̃, η1 + η2 − η̃〉 (9.38)
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We also know how to prepare the above state:

|η2〉A|η1〉D1|0〉D2

SampD1D2
P7−→

|η2〉A
1√
N

∑
y1∈[N ]

ωη1·y1
N |y1〉D1

∑
y2∈[N ]\{y1}

1√
N − 1

|y2〉D2
PhO7→ (9.39)

|η2〉A
1√
N

∑
y1∈[N ]

ωη1·y1
N |y1〉D1

∑
y2∈[N ]\{y1}

1√
N − 1

ωη2·y2
N |y2〉D2

QFTD1D2†
N7→ (9.40)

√
N

N − 1 |η1, η2〉 −
1√

N(N − 1)

∑
η̃

|η̃, η1 + η2 − η̃〉 (9.41)

The point of the state |Υ0(η1, η2)〉 is that:

〈Υ0
test(η′1, η′2)|Υ0

test(η1, η2)〉 = 1
N − 1

(
Nδη′1,η1δη′2,η2 − δη′1+η′2,η1+η2

)
, (9.42)

which is the inner product when s = 2:

〈Ψ~x′,~η′ |Ψ~x,~η〉 = 1
N(N − 1)

∑
y1,y2 6=y1

ω̄
η′1·y1
N ω̄

η′2·y2
N ωη1·y1

N ωη2·y2
N =

1
N − 1

(
Nδη′1,η1δη′2,η2 − δη′1+η′2,η1+η2

)
(9.43)

Changing the inputs that are equal permutes (η′1, η′2, η1, η2).
Register DX might hold some of the following states:

|Ξ0(x1, x2)〉 := |x1, x2〉, (9.44)

|Ξ1
1(x1, x2)〉 := 1√

N − 2
∑

x̃2 6∈{x1,x2}
|x1, x̃2〉, (9.45)

|Ξ1
2(x1, x2)〉 := 1√

N − 2
∑

x̃1 6∈{x1,x2}
|x̃1, x2〉, (9.46)

|Ξ2(x1, x2)〉 := 1√
(N − 2)(N − 3)

∑
x̃1 6∈{x1,x2}

∑
x̃2 6∈{x1,x2,x̃1}

|x̃1, x̃2〉. (9.47)

Let us close this chapter by listing the last two inner products important to
the case of q = 2. For s = 3 and x′1 = x1 we have:

〈Ψ~x′,~η′ |Ψ~x,~η〉

= 1
N(N − 1)(N − 2)

∑
y1

∑
y2 6=y1

∑
y3∈[N ]\{y1,y2}

ω̄
η′1·y1
N ω̄

η′2·y2
N ωη1·y1

N ωη2·y3
N = (9.48)

1
(N − 1)(N − 2)

(
−Nδη′1,η1δη′2,η2 + 2δη′1+η′2,η1+η2

)
. (9.49)
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Again, different relations of ~x to ~x′ give different permutations of the delta func-
tion in the above inner product.

For s = 4, so all queries being distinct, we have

〈Ψ~x′,~η′ |Ψ~x,~η〉 = 1
N(N − 1)(N − 2)(N − 3)∑

y1

∑
y2 6=y1

∑
y3∈[N ]\{y1,y2}

∑
y4∈[N ]\{y1,y2,y3}

ω̄
η′1·y1
N ω̄

η′2·y2
N ωη1·y3

N ωη2·y4
N (9.50)

= 1
(N − 1)(N − 2)(N − 3)(

Nδη′1,η1δη′2,η2 +Nδη′1,η2δη′2,η1 − 6δη′1+η′2,η1+η2 +Nδη′1+η′2,0δη1+η2,0
)
. (9.51)
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250 Chapter 10. Conclusions

This thesis is a significant step in the line of research leading to establishing
security guarantees for the sponge construction in the post-quantumworld that
match the guarantees achievable in the classical world. Proving quantum indif-
ferentiability of the sponge construction was essentially the goal of the author’s
PhD from when he started it almost four and a half years ago.

More broadly, the security results that we achieve are: proving quantum
collision-resistance and designing two matching attacks, proving collapsing-
ness, proving quantum indistinguishability from a random oracle, and prov-
ing quantum indifferentiability from a random oracle. On the one hand these
results are the most important aspects of this thesis, they improve the security
guarantees that we can claim about the cryptographic constructions we use in
multiple applications. On the other hand, though, themost important outcome
are the methods used to achieve the results, as they propel scientific research
forward.

On the way of achieving these results we used, repurposed, and developed
a number of techniques. Among these techniques are quantum reductions, the
quantumpolynomialmethod, and the quantumgame-playing framework. The
last proof technique that we mention can be considered the single most impor-
tant result of this thesis. As illustrated by Chapter 7 it has already proven to be
a versatile tool. Even though it heavily builds upon work of others, the frame-
work is much easier to use than the parts that constitute it. Arguably, it can
also serve as an important starting point for understanding the general relation
between post-quantum and classical security.

A PhD thesismarks the end of an intensive period of research on a particular
topic, while at the same time, it forms the stepping stone for more scientific
inquiries by the author and others.
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B(1 | D) The bad set of for relation R 164
Calc The algorithm that outputs the

cardinality of p-∇-CF(M,Z, P ).
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C Distribution of inner part of out-
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CFOD Compressed Fourier Oracle for
distribution D
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A× C denoted by ŝ
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Coll A quantum algorithm finding col-
lisions in g having at least one col-
lision.
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Collapse 1 Collapsing game 24
Comp The composition construction 37
X‖Y Concatenation of stringsX and Y . 14
CPerO Compressed Permutation Oracle 241
CPhOU Compressed Phase Oracle 153
CRP The challenge-response property
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230
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ally uniformdistribution overY\S
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prepared database in the Fourier
basis, and the unprepared databse
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d The statistical distance 236
DecD Decompression procedure 146
D The distinguisher 30
D A distribution. 140
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E The set of edges of a sponge graph 41
EDM The Encrypted Davis-Meyer con-
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with its output limited to the setA
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f The internal function of Sponge 38
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QFT†Y FN
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F The set of functions {f : X → Y} 137
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|ΨGood
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{1, 2, . . . , N}
13

O (n) Complexity class "big O"
(outer, s, s′) Output of the collision finding re-

duction: outer collision
49

Output-Coll Algorithm for deciding whether
there is an output collision in
Spongef .

58

pad Padding function 39
P Array of padded messages 40
SpPath(s,G) Function constructing an input to

Sponge leading to a given node
41

P Uniform distribution over the set
of permutations

239

PhO Phase Oracle, QFTY
N ◦ StO ◦QFT†YN 152

π A permutation π : X → X .
p-∇-cf A particular assignment of states

in Sponge evaluations of (M,Z)
with additional constraints for f
being a valid function.

98

p-∇-CF(M,Z) The set of all p-∇-cf constrained
by (M,Z) and f .

97

p-∇-CF(M,Z, ∗) p-∇-CF(M,Z) with specified pa-
rameters ∗.

99
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QFTN The Quantum Fourier Transform 17
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R Distribution over RandomOracles 27
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R The set of rooted supernodes 41
SampD(S) Algorithm preparing a superposi-

tion of samples of outputs of f ←
D on inputs from S.

141

https://en.wikipedia.org/wiki/Big_O_notation


275

X
$← X X chosen uniformly from set X 15

σ A permutation. 113
S Classical and quantum simulators. 219, 224
Spongef [pad,A, C] Sponge construction with the in-

ternal function f , capacity set C,
and alphabet A
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Sponge-Coll A quantum algorithm
finding collisions in
Spongef [pad, {0, 1}r, {0, 1}c](`, .)
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Spread The full set "spreading" operation. 238
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StO Standard Oracle 138
uabs, usqu The number of "u" states in the

absorbing phases and squeezing
phases respectively
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ūabs, ūsqu The number of "u" and "f" states in
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ABSTRACT

The research covered in this thesis is dedicated to provable post-quantum se-
curity of hash functions. Post-quantum security provides security guarantees
against quantum attackers. We focus on analyzing the sponge construction, a
cryptographic construction used in the standardized hash function SHA3.

Our main results are proving a number of quantum security state-
ments. These include standard-model security: collision-resistance and
collapsingness, and more idealized notions such as indistinguishability and
indifferentiability from a random oracle. All these results concern quantum
security of the classical cryptosystems.

From a more high-level perspective we find new applications and general-
ize several important proof techniques in post-quantum cryptography. We use
the polynomial method to prove quantum indistinguishability of the sponge
construction. We also develop a framework for quantum game-playing proofs,
using the recently introduced techniques of compressed random oracles and
the One-way-To-Hiding lemma.

To establish the usefulness of the new frameworkwe also prove a number of
quantum indifferentiability results for other cryptographic constructions. On
theway to these results, though, we address an open problem concerning quan-
tum indifferentiability. Namely, we disprove a conjecture that forms the basis
of a no-go theorem for a version of quantum indifferentiability.
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SAMENVATTING

Post-Quantumveiligheid van Hashfuncties
Het onderzoek in deze dissertatie gaat over bewijsbare post-quantum

veiligheid van hashfuncties. Post-quantum veiligheid geeft veiligheids-
garanties tegen quantumaanvallers. We focussen op het analyseren van de
sponsconstructie, een cryptografische constructie die wordt gebruikt in de
gestandaardiseerde hashfunctie SHA3.

Onze belangrijkste resultaten bestaan uit het bewijzen van een aan-
tal stellingen over quantum veiligheid. Deze omvatten veiligheid in het
standaardmodel: botsingbestendigheid en zogeheten collapsingness, maar
ook geïdealiseerdere concepten zoals ononderscheidbaarheid en ondiffer-
entieerbaarheid van een random orakel. Al deze resultaten gaan over de
quantumveiligheid van klassieke cryptografische systemen.

Breder gezien vinden we nieuwe toepassingen en generaliseren we
verscheidene belangrijke bewijstechnieken in post-quantumcryptografie.
We gebruiken de polynomiaalmethode om quantumononderscheidbaarheid
van de sponsconstructie te bewijzen. Ook ontwikkelen we een framework
voor bewijzen op basis van quantumspellen, waarbij we gebruik maken
van recent geïntroduceerde technieken zoals gecomprimeerde orakels en de
One-way-To-Hidingstelling.

Om het nut van dit nieuwe framework te bevestigen, bewijzen we ook een
aantal resultaten op het gebied van ondifferentieerbaarheid voor andere cryp-
tografische constructies. Tegelijkertijd met het bereiken van deze resultaten
lossen we een open probleem op over quantumondifferentieerbaarheid. We
ontkrachten namelijk een bestaand vermoeden dat de basis vormt voor een on-
mogelijkheidsbewijs voor een versie van quantumondifferentieerbaarheid.
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