859 research outputs found

    Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus, and Minor-Free Graphs

    Full text link
    A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing time. There are strong distance-oracle constructions known for planar graphs (Thorup, JACM'04) and, subsequently, minor-excluded graphs (Abraham and Gavoille, PODC'06). However, these require Omega(eps^{-1} n lg n) space for n-node graphs. We argue that a very low space requirement is essential. Since modern computer architectures involve hierarchical memory (caches, primary memory, secondary memory), a high memory requirement in effect may greatly increase the actual running time. Moreover, we would like data structures that can be deployed on small mobile devices, such as handhelds, which have relatively small primary memory. In this paper, for planar graphs, bounded-genus graphs, and minor-excluded graphs we give distance-oracle constructions that require only O(n) space. The big O hides only a fixed constant, independent of \epsilon and independent of genus or size of an excluded minor. The preprocessing times for our distance oracle are also faster than those for the previously known constructions. For planar graphs, the preprocessing time is O(n lg^2 n). However, our constructions have slower query times. For planar graphs, the query time is O(eps^{-2} lg^2 n). For our linear-space results, we can in fact ensure, for any delta > 0, that the space required is only 1 + delta times the space required just to represent the graph itself

    Reconfiguration in bounded bandwidth and treedepth

    Full text link
    We show that several reconfiguration problems known to be PSPACE-complete remain so even when limited to graphs of bounded bandwidth. The essential step is noticing the similarity to very limited string rewriting systems, whose ability to directly simulate Turing Machines is classically known. This resolves a question posed open in [Bonsma P., 2012]. On the other hand, we show that a large class of reconfiguration problems becomes tractable on graphs of bounded treedepth, and that this result is in some sense tight.Comment: 14 page

    On The Existence of Non-Diregular Digraphs of Order Two Less than the Moore Bound

    Get PDF
    A communication network can be modelled as a graph or a directed graph, where each processing element is represented by a vertex and the connection between two processing elements is represented by an edge (or, in case of directed connections, by an arc). When designing a communication network, there are several criteria to be considered. For example, we can require an overall balance of the system. Given that all the processing elements have the same status, the flow of information and exchange of data between processing elements will be on average faster if there is a similar number of interconnections coming in and going out of each processing element, that is, if there is a balance (or regularity) in the network. This means that the in-degree and out-degree of each vertex in a directed graph (digraph) must be regular. In this paper, we present the existence of digraphs which are not diregular (regular out-degree, but not regular in-degree) with the number of vertices two less than the unobtainable upper bound for most values of out-degree and diameter, the so-called Moore bound

    An Optimal Family of Directed, Bounded-Degree Broadcast Networks

    Get PDF
    AbstractIncreasingly, the design of efficient computer networks and multi-processor configurations are considered important applications of computer science. There are some constraints in network design which are usually created by economic and physical limitations. One constraint is the bounded degree, which is the limited number of connections between one node to others. Another possible constraint is a bound on the time that a message can afford to take during a “broadcast”. We present, for the first time, a set of largest-known directed networks satisfied specified bounds on node degree and broadcast time. We also presents a family of optimal (Δ, Δ+1) broadcast digraphs. That is, digraphs with a proven maximum number of nodes, having maximum degree Δ and broadcast time at most Δ+1

    Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs

    Get PDF
    We develop two different methods to achieve subexponential time parameterized algorithms for problems on sparse directed graphs. We exemplify our approaches with two well studied problems. For the first problem, {\sc kk-Leaf Out-Branching}, which is to find an oriented spanning tree with at least kk leaves, we obtain an algorithm solving the problem in time 2O(klogk)n+nO(1)2^{O(\sqrt{k} \log k)} n+ n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed graph HH as a minor. For the special case when the input directed graph is planar, the running time can be improved to 2O(k)n+nO(1)2^{O(\sqrt{k})}n + n^{O(1)}. The second example is a generalization of the {\sc Directed Hamiltonian Path} problem, namely {\sc kk-Internal Out-Branching}, which is to find an oriented spanning tree with at least kk internal vertices. We obtain an algorithm solving the problem in time 2O(klogk)+nO(1)2^{O(\sqrt{k} \log k)} + n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed apex graph HH as a minor. Finally, we observe that for any ϵ>0\epsilon>0, the {\sc kk-Directed Path} problem is solvable in time O((1+ϵ)knf(ϵ))O((1+\epsilon)^k n^{f(\epsilon)}), where ff is some function of \ve. Our methods are based on non-trivial combinations of obstruction theorems for undirected graphs, kernelization, problem specific combinatorial structures and a layering technique similar to the one employed by Baker to obtain PTAS for planar graphs

    A matrix representation of graphs and its spectrum as a graph invariant

    Full text link
    We use the line digraph construction to associate an orthogonal matrix with each graph. From this orthogonal matrix, we derive two further matrices. The spectrum of each of these three matrices is considered as a graph invariant. For the first two cases, we compute the spectrum explicitly and show that it is determined by the spectrum of the adjacency matrix of the original graph. We then show by computation that the isomorphism classes of many known families of strongly regular graphs (up to 64 vertices) are characterized by the spectrum of this matrix. We conjecture that this is always the case for strongly regular graphs and we show that the conjecture is not valid for general graphs. We verify that the smallest regular graphs which are not distinguished with our method are on 14 vertices.Comment: 14 page
    corecore