1,397 research outputs found

    Immersed Boundary Smooth Extension: A high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods

    Full text link
    The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet it only achieves first-order spatial accuracy near embedded boundaries. In this paper, we introduce a new high-order numerical method which we call the Immersed Boundary Smooth Extension (IBSE) method. The IBSE method achieves high-order accuracy by smoothly extending the unknown solution of the PDE from a given smooth domain to a larger computational domain, enabling the use of simple Cartesian-grid discretizations (e.g. Fourier spectral methods). The method preserves much of the flexibility and robustness of the original IB method. In particular, it requires minimal geometric information to describe the boundary and relies only on convolution with regularized delta-functions to communicate information between the computational grid and the boundary. We present a fast algorithm for solving elliptic equations, which forms the basis for simple, high-order implicit-time methods for parabolic PDE and implicit-explicit methods for related nonlinear PDE. We apply the IBSE method to solve the Poisson, heat, Burgers', and Fitzhugh-Nagumo equations, and demonstrate fourth-order pointwise convergence for Dirichlet problems and third-order pointwise convergence for Neumann problems

    Fast immersed boundary method based on weighted quadrature

    Full text link
    Combining sum factorization, weighted quadrature, and row-based assembly enables efficient higher-order computations for tensor product splines. We aim to transfer these concepts to immersed boundary methods, which perform simulations on a regular background mesh cut by a boundary representation that defines the domain of interest. Therefore, we present a novel concept to divide the support of cut basis functions to obtain regular parts suited for sum factorization. These regions require special discontinuous weighted quadrature rules, while Gauss-like quadrature rules integrate the remaining support. Two linear elasticity benchmark problems confirm the derived estimate for the computational costs of the different integration routines and their combination. Although the presence of cut elements reduces the speed-up, its contribution to the overall computation time declines with h-refinement

    Very high-order method on immersed curved domains for finite difference schemes with regular Cartesian grids

    Get PDF
    A new very high-order technique for solving conservation laws with curved boundary domains is proposed. A Finite Difference scheme on Cartesian grids is coupled with an original ghost cell method that provide accurate approximations for smooth solutions. The technology is based on a specific least square method with restrictions that enables to handle general Robin conditions. Several examples in two-dimensional geometries are presented for the unsteady Convection–Diffusion equation and the Euler equations. A fifth-order WENO scheme is employed with matching fifth-order reconstruction at the boundaries. Arbitrary high-order reconstruction for smooth flows is achievable independently of the underlying differential equation since the method works as a black-box dedicated to boundary condition treatment.This work has been partially supported by the Ministerio de Economı́a y Competitividad (grant #DPI2015- 68431-R) and #RTI2018-093366-B-I00 of the Ministerio de Ciencia, Innovación y Universidades of the Spanish Government and by the Consellerı́a de Educación e Ordenación Universitaria of the Xunta de Galicia (grants #GRC2014/039 and #ED431C 2018/41), cofinanced with FEDER, Spain funds and the Universidade da Coruña, Spain. J. Fernandez-Fidalgo gratefully acknowledges the contributions of the IACOBUS Program, Spain and the INDITEX-UDC, Spain grant that have partially financed the present work. S. Clain acknowledges the financial support by FEDER – Fundo Europeu de Desenvolvimento Regional, Portugal, through COMPETE 2020 – Programa Operational Fatores de Competitividade, and the National Funds through FCT — Fundação para a Ciência e a Tecnologia, Portugal, project No. UID/FIS/04650/2013 and project No. POCI-01-0145-FEDER-02811

    Computational methods in cardiovascular mechanics

    Full text link
    The introduction of computational models in cardiovascular sciences has been progressively bringing new and unique tools for the investigation of the physiopathology. Together with the dramatic improvement of imaging and measuring devices on one side, and of computational architectures on the other one, mathematical and numerical models have provided a new, clearly noninvasive, approach for understanding not only basic mechanisms but also patient-specific conditions, and for supporting the design and the development of new therapeutic options. The terminology in silico is, nowadays, commonly accepted for indicating this new source of knowledge added to traditional in vitro and in vivo investigations. The advantages of in silico methodologies are basically the low cost in terms of infrastructures and facilities, the reduced invasiveness and, in general, the intrinsic predictive capabilities based on the use of mathematical models. The disadvantages are generally identified in the distance between the real cases and their virtual counterpart required by the conceptual modeling that can be detrimental for the reliability of numerical simulations.Comment: 54 pages, Book Chapte

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems
    corecore