1,278 research outputs found

    Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling

    Full text link
    Integrable couplings are associated with non-semisimple Lie algebras. In this paper, we propose a new method to generate new integrable systems through making perturbation in matrix spectral problems for integrable couplings, which is called the `completion process of integrable couplings'. As an example, the idea of construction is applied to the Ablowitz-Kaup-Newell-Segur integrable coupling. Each equation in the resulting hierarchy has a bi-Hamiltonian structure furnished by the component-trace identity

    Construction and separability of nonlinear soliton integrable couplings

    Full text link
    A very natural construction of integrable extensions of soliton systems is presented. The extension is made on the level of evolution equations by a modification of the algebra of dynamical fields. The paper is motivated by recent works of Wen-Xiu Ma et al. (Comp. Math. Appl. 60 (2010) 2601, Appl. Math. Comp. 217 (2011) 7238), where new class of soliton systems, being nonlinear integrable couplings, was introduced. The general form of solutions of the considered class of coupled systems is described. Moreover, the decoupling procedure is derived, which is also applicable to several other coupling systems from the literature.Comment: letter, 10 page

    Dynamical tunneling in molecules: Quantum routes to energy flow

    Full text link
    Dynamical tunneling, introduced in the molecular context, is more than two decades old and refers to phenomena that are classically forbidden but allowed by quantum mechanics. On the other hand the phenomenon of intramolecular vibrational energy redistribution (IVR) has occupied a central place in the field of chemical physics for a much longer period of time. Although the two phenomena seem to be unrelated several studies indicate that dynamical tunneling, in terms of its mechanism and timescales, can have important implications for IVR. Examples include the observation of local mode doublets, clustering of rotational energy levels, and extremely narrow vibrational features in high resolution molecular spectra. Both the phenomena are strongly influenced by the nature of the underlying classical phase space. This work reviews the current state of understanding of dynamical tunneling from the phase space perspective and the consequences for intramolecular vibrational energy flow in polyatomic molecules.Comment: 37 pages and 23 figures (low resolution); Int. Rev. Phys. Chem. (Review to appear in Oct. 2007

    Bi-Integrable and Tri-Integrable Couplings of a Soliton Hierarchy Associated with S

    Get PDF
    Based on the three-dimensional real special orthogonal Lie algebra SO(3), by zero curvature equation, we present bi-integrable and tri-integrable couplings associated with SO(3) for a hierarchy from the enlarged matrix spectral problems and the enlarged zero curvature equations. Moreover, Hamiltonian structures of the obtained bi-integrable and tri-integrable couplings are constructed by applying the variational identities

    Tachyon Backgrounds in 2D String Theory

    Full text link
    We consider the construction of tachyonic backgrounds in two-dimensional string theory, focusing on the Sine-Liouville background. This can be studied in two different ways, one within the context of collective field theory and the other via the formalism of Toda integrable systems. The two approaches are seemingly different. The latter involves a deformation of the original inverted oscillator potential while the former does not. We perform a comparison by explicitly constructing the Fermi surface in each case, and demonstrate that the two apparently different approaches are in fact equivalent.Comment: 25 pages, no figure

    Yang-Baxter algebra and generation of quantum integrable models

    Full text link
    An operator deformed quantum algebra is discovered exploiting the quantum Yang-Baxter equation with trigonometric R-matrix. This novel Hopf algebra along with its q1q \to 1 limit appear to be the most general Yang-Baxter algebra underlying quantum integrable systems. Three different directions of application of this algebra in integrable systems depending on different sets of values of deforming operators are identified. Fixed values on the whole lattice yield subalgebras linked to standard quantum integrable models, while the associated Lax operators generate and classify them in an unified way. Variable values construct a new series of quantum integrable inhomogeneous models. Fixed but different values at different lattice sites can produce a novel class of integrable hybrid models including integrable matter-radiation models and quantum field models with defects, in particular, a new quantum integrable sine-Gordon model with defect.Comment: 13 pages, revised and bit expanded with additional explanations, accepted for publication in Theor. Math. Phy
    corecore