17 research outputs found

    Fruit fly optimization algorithm for network-aware web service composition in the cloud

    Get PDF
    Service Oriented Computing (SOC) provides a framework for the realization of loosely coupled service oriented applications. Web services are central to the concept of SOC. Currently, research into how web services can be composed to yield QoS optimal composite service has gathered significant attention. However, the number and spread of web services across the cloud data centers has increased, thereby increasing the impact of the network on composite service performance experienced by the user. Recently, QoS-based web service composition techniques focus on optimizing web service QoS attributes such as cost, response time, execution time, etc. In doing so, existing approaches do not separate QoS of the network from web service QoS during service composition. In this paper, we propose a network-aware service composition approach which separates QoS of the network from QoS of web services in the Cloud. Consequently, our approach searches for composite services that are not only QoS-optimal but also have optimal QoS of the network. Our approach consists of a network model which estimates the QoS of the network in the form of network latency between services on the cloud. It also consists of a service composition technique based on fruit fly optimization algorithm which leverages the network model to search for low latency compositions without compromising service QoS levels. The approach is discussed and the results of evaluation are presented. The results indicate that the proposed approach is competitive in finding QoS optimal and low latency solutions when compared to recent techniques

    PALM: Predicting Internet Network Distances Using Peer-to-Peer Measurements

    Get PDF
    Landmark-based architecture has been commonly adopted in the networking community as a mechanism to measure and characterize a host's location on the Internet. In most existing landmark based approaches, end hosts use the distance measurements to a common, fixed set of landmarks to derive an estimated location on the Internet. This paper investigates whether it is possible for participating peer nodes in an overlay network to collaboratively construct an accurate geometric model of its topology in a completely decentralized peer-to-peer fashion, without using a fixed set of landmarks. We call such a peer-to-peer approach in topology discovery and modeling using landmarks PALM (Peers As LandMarks). We evaluate the performance characteristics of such a decentralized coordinates-based approach under several factors, including dimensionality of the geometric space, peer distance distribution, and the number of peer-to-peer distance measurements used. We evaluate two PALM-based schemes: RAND-PALM and ISLAND. In RAND-PALM, a peer node randomly selects from existing peer nodes as its landmarks. In ISLAND (Intelligent Selection of Landmarks), each peer node selects its landmarks by exploiting the topological information derived based on existing peer nodes' coordinates values.Singapore-MIT Alliance (SMA

    An Overview of Internet Measurements:Fundamentals, Techniques, and Trends

    Full text link
    The Internet presents great challenges to the characterization of its structure and behavior. Different reasons contribute to this situation, including a huge user community, a large range of applications, equipment heterogeneity, distributed administration, vast geographic coverage, and the dynamism that are typical of the current Internet. In order to deal with these challenges, several measurement-based approaches have been recently proposed to estimate and better understand the behavior, dynamics, and properties of the Internet. The set of these measurement-based techniques composes the Internet Measurements area of research. This overview paper covers the Internet Measurements area by presenting measurement-based tools and methods that directly influence other conventional areas, such as network design and planning, traffic engineering, quality of service, and network management

    A decentralized network coordinate system for robust internet distance

    Get PDF
    Abstract-Network coordinate systems have recently been developed as a scalable mechanism to predict latencies among arbitrary Internet hosts. Our research addresses several design challenges of a large-scale decentralized network coordinate system that were not fully addressed in prior work. In particular, we examine the design issues of a decentralized network coordinate system operating in a peer-to-peer network with high churn, high fractions of faulty or misbehaving peers, and high degrees of network path anomalies. This paper presents a fully decentralized network coordinate system, PCoord, for robust and fault-tolerant Internet distance prediction. Through extensive simulations, we examine the convergence behavior and prediction accuracy of PCoord under a variety of scenarios, and compare its performance with an existing network coordinate system, Vivaldi. Our results indicate that PCoord is robust under high churn, and degrades gracefully even under high fractions of faulty nodes, and high degrees of triangle inequality violations in the underlying network distances. Finally, our results indicate that even under an extremely challenging flash-crowd scenario where 1740 hosts simultaneously join the system, PCoord is able to converge to 12% median relative prediction error within 10 seconds

    Localization of nodes in wired and wireless networks

    Get PDF
    This thesis focuses on the implementation of algorithms for localization of nodes in wired and wireless networks. The thesis is organized into two papers. The first paper presents the localization algorithms based on time of arrival (TOA) and time difference of arrival (TDOA) techniques for computer networks such as the Internet by using round-trip-time (RTT) measurements obtained from known positions of the gateway nodes. The RTT values provide an approximate measure of distance between the gateway nodes and an unknown node. The least squares technique is then used to obtain an estimated position of the unknown node. The second paper presents localization of an unknown node during route setup messages in wireless ad hoc and sensor networks using a new routing protocol. A proactive multi-interface multichannel routing (MMCR) protocol, recently developed at Missouri S&T, was implemented on the Missouri S&T motes. This protocol calculates link costs based on a composite metric defined using the available end-to-end delay, energy utilization, and bandwidth, and it chooses the path that minimizes the link cost factor to effectively route the information to the required destination. Experimental results indicate enhanced performance in terms of quality of service, and implementation of this protocol requires no modification to the current IEEE 802.11 MAC protocol. Received signal strength indicator (RSSI) values are recorded from the relay nodes (gateway nodes) to the unknown node during route setup messages. The location of the unknown node is estimated using these values with some a priori profiling and the known positions of the relay nodes as inputs to the least squares technique --Abstract, page iv

    Analysis of beacon triangulation in random graphs

    Get PDF
    Our research focusses on the problem of finding nearby peers in the Internet. We focus on one particular approach, Beacon Triangulation that is widely used to solve the peer-finding problem. Beacon Triangulation is based on relative distances of nodes to some special nodes called beacons. The scheme gives an error when a new node that wishes to join the network has the same relative distance to two or more nodes. One of the reasons for the error is that two or more nodes have the same distance vectors. As a part of our research work, we derive the conditions to ensure the uniqueness of distance vectors in any network given the shortest path distribution of nodes in that network. We verify our analytical results for G(n, p) graphs and the Internet. We also derive other conditions under which the error in the Beacon Triangulation scheme reduces to zero. We compare the Beacon Triangulation scheme to another well-known distance estimation scheme known as Global Network Positioning (GNP)
    corecore