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Abstract— Network coordinate systems have recently been
developed as a scalable mechanism to predict latencies among
arbitrary Internet hosts. Our research addresses several design
challenges of a large-scale decentralized network coordinate
system that were not fully addressed in prior work. In partic-
ular, we examine the design issues of a decentralized network
coordinate system operating in a peer-to-peer network withhigh
churn, high fractions of faulty or misbehaving peers, and high
degrees of network path anomalies. This paper presents a fully
decentralized network coordinate system, PCoord, for robust
and fault-tolerant Internet distance prediction. Through extensive
simulations, we examine the convergence behavior and prediction
accuracy of PCoord under a variety of scenarios, and compareits
performance with an existing network coordinate system, Vivaldi.
Our results indicate that PCoord is robust under high churn, and
degrades gracefully even under high fractions of faulty nodes, and
high degrees of triangle inequality violations in the underlying
network distances. Finally, our results indicate that evenunder
an extremely challenging flash-crowd scenario where 1740 hosts
simultaneously join the system, PCoord is able to converge to
12% median relative prediction error within 10 seconds.

I. I NTRODUCTION

Network coordinate systems have recently been developed
as a scalable mechanism to predict latencies among arbitrary
Internet hosts [12], [11], [15], [21], [10], [19], [20], [4],
[2], [8], [9]. The idea of a network coordinate system, first
proposed by the GNP system [12], is for each host to derive
a mapping of itself in some D-dimensional geometric space
using a small set of sampled distances so that the actual
inter-host network latencies can be estimated as a function
of the nodes’ geometric distances. GNP relies on a fixed
set of landmark nodes in the Internet to provide reference
coordinates. Hosts position themselves in the geometric space
using measured distances to these landmark nodes.

More recently, several approaches were proposed to con-
struct network coordinates in a completely decentralized fash-
ion [4], [2], [8], [9]. These decentralized approaches do not
rely on a fixed set of landmark nodes to construct coordinates.
Instead, hosts compute their coordinates based on sampled
distances and reference coordinates gathered from other par-
ticipating peer hosts. Constructing network coordinates in a
fully decentralized manner is a challenging task. It is difficult
because each host is making parallel, independent, local es-
timates of its network coordinates based on a small number
of potentially noisy and faulty samples. The key challenge
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is to ensure that locally derived host coordinates convergeto
a global geometric configuration that accurately captures the
actual network distancesusing as few network measurements
as possible.

This paper presents a fully decentralized network coordinate
system, PCoord, for robust and fault-tolerant Internet distance
prediction. PCoord assigns coordinates to hosts on the Internet
so that the Euclidean distances between hosts’ coordinates
accurately predict their network latencies. In PCoord, each
host updates its coordinates to minimize a loss function that
measures the difference between the actual and the geometric
distances between itself and a small set of other hosts.

Our research addresses several design challenges of a large-
scale decentralized network coordinate system that were not
fully addressed in prior work. In particular, we examine the
convergence behavior and performance characteristics of a
decentralized network coordinate system operating in a peer-
to-peer network with high churn, high fraction of potentially
faulty or misbehaving peers, and high degree of triangle
inequality violations in the underlying network paths.

This paper extends an earlier description of PCoord [9], and
introduces the following stability mechanisms to facilitate fast
convergence to low system prediction errors.

• A weighted loss function to distinguish between nodes
with high and low errors.

• A “resistance” mechanism that helps to stabilize the
convergence and avoid oscillation.

• A “damping” mechanism to avoid instability and oscilla-
tion caused by noisy, mis-behaving or faulty information.

Through extensive simulations using real network measure-
ments, we examine the convergence behavior and prediction
accuracy of PCoord under a variety of instability factors, and
compare its performance with an existing network coordinate
system, Vivaldi. Our findings are highlighted as follow.

• Our results suggest that, in a 1740 nodes peer-to-peer
system, PCoord can converge to a low prediction error
configuration within 10 seconds, where each node per-
forms less than 10 coordinate updates using 10 reference
points per update.

• Under an extremely challenging flash-crowd scenario
where 1740 nodes join simultaneously, PCoord is able
to converge to a 12% system-wide medium relative
prediction error using half as many samples as Vivaldi.

• PCoord is robust under high churn, and degrades grace-
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fully even under high fraction of faulty nodes, and high
degree of triangle inequality violations in the network
distances.

• PCoord’s damping and resistance mechanisms reduce the
instability caused by network path anomalies, and thus
enable PCoord to be more robust than Vivaldi under
heavy triangle inequality violations.

• Vivaldi’s performance, both in terms of convergence
speed and prediction accuracy, is more sensitive to the
degree of path anomalies in the underlying network
topologies than PCoord. When the number of triangle
inequality violations doubles in the underlying network
topology, Vivaldi’s performance degradation is 60% more
than that of PCoord’s.

The rest of the paper is organized as follows. Section II
describes the PCoord algorithm. In section III, we present our
simulation results and compare the performance of PCoord
with other existing schemes. In section IV, we describe related
work. Finally, we present our conclusions and ideas for future
work in Section V.

II. T HE ALGORITHM

PCoord is a fully decentralized network coordinate system
with each host updating its coordinate iteratively to refinethe
prediction accuracy of its estimated position. Each host up-
dates its coordinates to minimize a loss function that measures
the difference between the actual and the geometric distances
between itself and a small set of other hosts.

We previously introduced the term PCoord in [9] to refer to
a general set of peer-to-peer based approaches in decentralized
network coordinates construction. Under the PCoord frame-
work in [9], we evaluated several proof-of-concept coordinates
mapping strategies and explored their performance character-
istics under different peer sampling strategies. Our priorwork
in [9] did not provide any mechanisms to stabilize system
convergence, nor did it address issues in dynamic join/leave
and fault-tolerance. In this paper, we present the PCoord
algorithm which introduces the following mechanisms.

• A weighted loss function that allows sampled coordinates
with higher prediction accuracy to have a higher weight
in the loss function.

• A weighted “resistance” factor in the loss function that
helps to stabilize the convergence process.

• A threshold-based mechanism to dampen the amount a
node moves toward new coordinates by a factor that is
inversely proportional to the fit error of the current batch
of sampled peer nodes’ coordinates and distances.

We present the PCoord algorithm in two steps. We first
present a Simple algorithm that provides the basic structure
and steps taken by each PCoord host to perform coordinate
update. Next, we present the actual PCoord algorithm which
introduces several mechanisms to ensure convergence to a
lower prediction error.

A. A Simple Algorithm

In Simple PCoord, each node performs continuous update
on its coordinate. Each of the coordinate update consists of

three phases: (1) the sampling and information exchange phase
in which a node selectsM reference points, gathers distance
measurements and coordinates, and exchanges peer list in-
formation with thoseM reference points, (2) the coordinate
update phase, in which a new coordinate is computed to
minimize a loss function defined in terms of thoseM reference
points, and (3) the near peer probing phase in which each host
refines its search for its nearby peers by probing other hosts
based on their triangulated distances.

In this paper, we focus on phase two only, which is the
coordinate update step. A variation of the Simple algorithm
was previously described in [9], [7], which gave a detailed
description on the peer sampling and probing strategies from
phase one and three above. Next, we summarize the notations
below and then present the algorithm in more details.

M = Number of reference points for each coordinate update
ci = Coordinates of hosti
dij = RTT betweeni andj

corigin = Coordinates at the origin

//i is the node that is running the procedure
SimplePCoord() {

ci = corigin

while (in the system){
Samples = SamplePeers()
cnew
i = MinimizeError(Samples, ci)

ci = cnew
i

ProbeNearNeighbors()
} //end while

}

//Samples consist ofM sampled peer nodes
//cguess is the initial guess for the coordinates
MinimizeError ( Samples, cguess ) {

find cnew
i that minimizesE using

cguess as an initial guess, where
E =

∑
j∈Samples(dij − ‖cnew

i − cj‖)
2

returncnew
i

}

At each update iteration, each hosti measures its round
trip latency to M other peer nodes, and obtains thoseM

nodes’ current coordinates. Hosti then updates its coordinates
to minimize the sum of squared differences between the
measured and computed distances with thoseM peer nodes.
The computation of the coordinates for nodei then involves
finding cnew

i that minimizes the following loss function.

E =

j=M∑

j=1

(dij − ‖cnew
i − cj‖)

2

B. The PCoord Algorithm

There are several potential problems with the above simple
version of the algorithm. One problem is that it does not
distinguish between nodes with coordinates that have different
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prediction accuracy. To avoid reacting too quickly to bad
reference points, we propose a weighted loss function, in
which the loss each reference point contributes is weightedby
the prediction accuracy of each reference point’s coordinates.
The weight is computed based on the relative prediction
accuracy of each reference point so that the nodes with more
accurate coordinates will have more influence on the solution
than the less accurate ones.

Another problem is that the algorithm determines the new
coordinate entirely based on measurements from the current
batch of reference points. There is no mechanism for the
coordinates generated using previous samples to cast any vote
on the the position of the new coordinate in the current update.
The simple scheme thus tends to react too quickly based on
the measurements of the current batch of reference points, and
leads to potential oscillation.

In order to reduce oscillation, we introduce an additional
“resistance” factor into the loss function so that a node with
highly accurate coordinates will not overly react to reference
points with less accurate coordinates. When computingcnew

i ,
nodei adds itself as the(M +1)th node in its reference points
set, and thus introducesci into the loss function as a resistance
factor that penalizes movement ofcnew

i to a new location.
This term is weighted by the relative prediction accuracy
(relative to other reference points ofi) of nodei’s coordinates,
so that the more confident a node is about the accuracy of
its own coordinates, the more resistance the term introduces.
For a newly joined node, the weight to this resistance term
is initialized to zero. Each node continuously updates the
confidence index of its own coordinates as a function of the
weighted moving average of its current and past prediction
error.

1) Weighted Error Function with a Resistance Factor:
More precisely, the weighted loss function with the resistance
factor is as follows. Letwi be the weight of nodei. The co-
ordinate update procedure now becomes a problem of finding
cnew
i that minimizes the weighted lossE , whereE is defined

as follows.

E = wi(dii − ‖cnew
i − ci‖)

2 +

j=M∑

j=1

wj(dij − ‖cnew
i − cj‖)

2

where dii = 0 , 0 ≤ wi ≤ 1, 0 ≤ wj ≤ 1, and wi +∑j=M

j=1 wj = 1.
The procedure for maintaining the weighted moving average

of the relative prediction error is invoked at each coordinate
update iteration after the sampling phase.

e
p
i = weighted moving average of relative

prediction error at nodei
e

p
ij = relative prediction error for distance

between nodei andj

α = weight for computing weighted moving
average of prediction error

//i is this node
UpdatePredictionError( Samples) {

for eachj in Samples {

e
p
ij =

|‖ci−cj‖−dij |
dij

w =
(ep

i
)2

(ep

i
)2+(ep

j
)2

e
newp
i = e

p
ij ∗ w + e

p
i ∗ (1 − w)

e
p
i = α ∗ e

p
i + (1 − α) ∗ e

newp
i

e
p
i = MIN(1, e

p
i )

} //end for
}

The following pseudocode fragment describes how the
weight is assigned based on the relative prediction error.τ

is a small constant added to one to definee
p
TOP for weight

computation. Whenτ = 0, nodes with relative prediction error
of one have zero weight in the loss function. Settingτ ≥ 0
allows nodes with relative error of one to have a non-zero
weight. In this study,τ is set to 0.05.

Weight Assignment

τ = a small constant,τ ≥ 0
e

p
TOP = 1 + τ

//assign weight to each sample inSamples, which
//includes the “resistance” term
for each nodej in Samples {

aj = e
p
TOP − e

p
j

wj =
a2

j∑
k∈Samples

a2

k

}

2) Adjusting Amount of Coordinate Updates Based on
Goodness-of-Fit: The weighted loss function described above
helps to reduce the negative effect of reference points with
high prediction error. However, the prediction error does
not necessarily reflect whether a particular pair-wise distance
between nodesi andj serves as a good sample to predict the
position of the two nodes.

In this section, we introduce a mechanism that allows a node
to adjust how much it should move its coordinates in response
to a particular batch of samples based on the goodness-of-
fit index. The goodness-of-fit is a confidence measurement
associated with an entire batch of samples. The idea is that
a batch of samples containing “un-representative” distances
will likely yield higher residual error than good batches of
samples. To avoid reacting to a batch of samples with bad fit,
each PCoord node maintains a weighted moving average of
the fit error over time. A node assigns a weight to each batch
of samples as a function of the ratio between the average and
current fit error, and then decides how much it should react
to the current batch of samples based on the weight. More
precisely, if the fit error of the current batch of samples exceeds
the average fit error, then the node dampens the amount it
moves toward the new coordinate by a factorρ which is the
ratio between the average and current fit error.

The following pseudocode presents the above procedure in
two steps: (1) a procedure to update fit error, which is invoked
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at the end of each coordinate update phase, and (2) a code
fragment that computes fraction of coordinate movement.

e
f
i = Weighted average of fit error of nodei

e
newf
i = The fit error of the new batch of data

β = Weight for computing weighted moving average ofe
f
i

ρ = Fraction of movement toward the new coordinates

//i is this node
UpdateFitError( e

newf
i ) {

//update the weighted moving average of fit error
e

f
i = β ∗ e

f
i + (1 − β) ∗ e

newf
i

}

Compute Fraction of Coordinate Movement

//enewf
i is the residual error

e
newf
i =

∑
k∈Samples wk(dik − ‖cnew

i − ck‖)
2

ρ = MIN(
e

f

i

e
newf

i

, 1)

//moveρ fraction of the way toward new solution
cnew
i = ci + (ρ ∗ (cnew

i − ci))

3) Summary: the PCoord Algorithm: In this section, we
pull the above pieces together and summarize the PCoord
pseudocode below.

//i is this node
PCoord() {

ci = corigin

while (in the system){
Samples = SamplePeers()
UpdatePredictionError(Samples)
//add nodei’s own coordinates to the samples
Samples = Samples.add(i)
(cnew

i , e
newf
i ) = MinimizeWeightedError(Samples, ci)

ci = cnew
i

UpdateFitError(enewf
i )

ProbeNearNeighbors()
}

}

MinimizeWeightedError ( Samples, cguess ) {
e

p
TOP = 1 + τ

for each nodek in Samples {
//assign weight to each node inSamples

ak = e
p
TOP − e

p
k

wk =
a2

k∑
j∈Samples

a2

j

} //end for

//now find new coordinate
find cnew

i that minimizes∑
k∈Samples wk(dik − ‖cnew

i − ck‖)
2

//enewf
i is the residual error after minimization

e
newf
i =

∑
k∈Samples wk(dik − ‖cnew

i − ck‖)
2

//move toward new coordinates

ρ = MIN(
e

f

i

e
newf

i

, 1)

//moveρ fraction of the way toward the new solution
cnew
i = ci + (ρ ∗ (cnew

i − ci))

return (cnew
i , e

newf
i )

} //end MinimizeWeightedError

The SamplePeer() and ProbeNearNeighbor() procedures are
described in [9], [7]. In order to compare with Vivaldi, we
have turned off the PCoord probe near peer option. The results
generated in this paper use a random peer sampling strategy.

III. E VALUATION OF PCOORD

A. Evaluation Methodology

We evaluate the PCoord approach extensively through sim-
ulations using both real network measurements and simulated
topologies. We compare the performance of PCoord with
Vivaldi, and the original GNP scheme (referred to as the
FixedLM scheme from now on) in terms of pairwise distance
prediction accuracy.

1) Performance Metrics: We define theprediction error
(PE), or simply error, of a link as the absolute difference
between the predicted RTT and the actual RTT. Following
the conventions in Vivaldi [4], we define the error of a node
as the median of the link errors for links involving that node.
The error of the system is defined as the median of the node
errors for all nodes in the system.

We use the absolute relative error (RE) defined in [12] as our
performance metric when comparing with the GNP scheme.
For each pair of nodes, their absolute relative error is defined
as |‖ci−cj‖−dij|

MIN(dij ,‖ci−cj‖)
.

2) Data Collection: We evaluate our scheme using the
following network measurements.

• The King data set from Vivaldi [4], which involves the
round-trip latency among 1740 Internet DNS servers.

• The PlanetLab [16] all-pairs-ping data set among 127
nodes collected on May 10, 2004.

• The AMP [6] data set January 30, 2003 which measure
the round-trip ping time among 104 nodes.

• The RON2 data set [17], [1], which measures the RTTs
among 15 Internet hosts.

We only present the King results here due to space con-
straints. The results from other data sets are qualitative similar
and can be found in [7].

3) Simulation Setup: We have simulated the execution
of PCoord using p2psim [13], an event-driven, packet-level
network simulator. We use the Simplex Downhill algorithm
to minimize the loss function at each coordinate update. We
measure the processing cost of the Simplex Downhill operation
on a Sun UltraSparc (with 150 MHz CPU and 4096 Megabytes
of memory), and use the measured median processing time in
our PCoord simulation. The median processing time is 10 ms
per coordinate update when 10 reference points are used. Our
results are consistent with the measured Simplex algorithm
processing time in GNP [12].
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Each node proceeds in its coordinate update independent of
other nodes’ update progress. Asynchronous communication
is used when gathering samples fromM peer nodes in each
coordinate update step.

4) PCoord Parameter Setting: We ran the PCoord simula-
tions with various sample batch sizeM to explore its effect on
convergence and prediction accuracy. Our results suggest that
using 10 reference points at each update step (M = 10) yields
quick convergence to low error and achieves good tradeoff
between communication and computation overhead. The rest
of the parameters are set as follow.α = 0.95, τ = 0.05, and
β = 0.6.

Simplex Downhill Settings: In order to obtain high quality
solutions, the Simplex algorithm usually restarts the minimiza-
tion routine after it claims to have found a solution. Within
each restart, the terminating criteria are usually specified by
some tolerance and some thresholdNMAX , which denotes
the maximum allowed function evaluations.

In PCoord, the Simplex algorithm is run in a “light-weight”
mode. More specifically, within each coordinate update step, at
most 1000 evaluations of the objective function are performed,
and we do not restart the minimization procedure within each
coordinate update step. Our results indicate that the light-
weight setting performs as well as a more computationally
expensive setting, such as 500,000 objective function evalu-
ations with 3 restarts. We believe PCoord is able to perform
well using the light-weight Simplex procedure because PCoord
itself maps the coordinates iteratively; at each coordinate
update, PCoord uses the “optimal” solution found in the
previous iteration as its initial guess for the minimization
procedure in the next iteration.

5) Vivaldi Parameter Setting: All Vivaldi simulations pre-
sented in this work use the adaptive time step mechanism
described in [4] and implemented in the p2psim [13]. In
Vivaldi, a constantCc (0 ≤ Cc ≤ 1) is used to control how
much a node reacts to each new sample. We setCc to 0.25,
which is reported to yield the best overall convergence to low
prediction error [4].

B. Convergence Behavior of PCoord and Vivaldi

In this section, we compare PCoord and Vivaldi in terms
of number of samples required for convergence. We compare
PCoord and Vivaldi using random sampling strategy, in which
each peer randomly samples other peers drawn from the global
population of the system.

Figure 1 plots the median, 95th and 5th percentile error
of PCoord and Vivaldi using the King data set. Our results
indicate that PCoord is able to converge faster than Vivald:it
takes PCoord approximately 170 samples to converge to the
12 ms error range, and Vivaldi requires approximately 350
samples to reach the same error range.

C. Comparison of PCoord, Vivaldi and FixedLM

Figure 2 shows the cumulative distribution of relative error
of PCoord, Vivaldi, and the FixedLM scheme after PCoord and
Vivaldi hosts have updated their coordinates using an average
of 100, 150, and 300 samples. With the FixedLM scheme,
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Fig. 1. Convergence of PCoord (10 reference points) and Vivaldi (Cc=0.25)
using random peer sampling. King data.
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each host uses 30 fixed landmarks; the results shown have the
lowest median error of all 20 different randomly-generated
landmark configurations.

We note that PCoord’s prediction accuracy is comparable
to that of the FixedLM scheme after 100 samples. After 100
samples, PCoord’s median relative error is approximately 12%
which is only 2% more than that of the FixedLM scheme.
Vivaldi (Cc = 0.25) takes about 300 samples to achieve 12%
median relative error. After 100 samples, Vivaldi’s median
relative error is 21%, which is about twice as much as that of
PCoord’s using the same number of samples.

D. PCoord Performance under Incremental Join

We have also simulated PCoord in an incremental join
scenario, where a node joins one at a time after the rest of
the system has converged. On average, the median prediction
error of a newly joined node can decrease to the 12 ms range
within two coordinate updates using 10 reference points per
update (i.e., within 20 samples).

E. PCoord Performance under High Churn

In this section, we examine PCoord’s performance under
churn, i.e., when the system experiences continuous member-
ship changes as a result of nodes joining and leaving. We
examine the following questions. How robust is PCoord under
high churn? At what point do we begin to observe significant
performance degradation as the join/leave rate increases?

Under the dynamic join and leave mode, each node alter-
nately leaves and re-joins the system. The time interval a node
stays in and out of the system is exponentially distributed
with a meant. Recent studies suggest that the median session
duration of hosts in peer-to-peer systems is approximately
one hour [18]. We have chosen to use shorter time intervals,
and thus higher churn rates, in our simulations in order to
examine PCoord’s performance under extreme conditions. We
have experimented witht equal to 2, 5, 10, 20, 30 and 40
seconds, with a total simulated time of 300 seconds. When a
node re-joins the system, its coordinates are re-initialized to
the origin.

Figure 3 plots the median prediction accuracy of PCoord
as a function of time whent is 2, 5 and 20 seconds. As a
comparison, we also plot prediction accuracy of PCoord when
there is no churn, i.e., when all nodes join simultaneously
in the beginning and none subsequently leave. Figure 4 plots
the average median prediction accuracy (averaged over time)
as a function of the mean host session life time,t. The
average median prediction accuracy represents the steady-
state prediction error of the system averaged over time using
statistics gathered after 60 seconds of simulated time.

Figure 4 shows that when join/leave intervalt is 10 seconds
or greater, the median prediction error stays in the range of
12 ms, indicating that the churn has very little effect on the
prediction accuracy of PCoord.

F. Effects of Different PCoord Mechanisms

In this section, we examine the effects of different PCoord
mechanisms under churn. In particular, we would like to
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Fig. 2. Comparing PCoord, Vivaldi and FixedLM in terms of relative error
using King data set. We show results of PCoord and Vivaldi after using
approximately 100, 150, and 300 samples per host on average,and compare
with the FixedLM results where each host uses 30 fixed landmark nodes.
King, N = 1740,D = 5, M = 10, Cc = 0.25.
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Fig. 4. PCoord prediction accuracy as a function of mean join/leave intervals.
King, N = 1740,M = 10, andD = 5.

answer the following questions. How much better is PCoord
in comparison to the Simple algorithm? How much added
benefit does damping provide? Is the damping mechanism
alone sufficient to yield good prediction accuracy? Under what
scenario is each PCoord mechanism useful?

To answer the above questions, we have simulated PCoord’s
performance with different combinations of the mechanisms:

• Simple: this is the Simple algorithm without weighted
loss, resistance, or damping.

• WLoss + Resistance: this is a version of PCoord that
implements weighted loss function and the resistance
mechanism. Damping is turned off in this version.

• Damp: this version only implements the damping mech-
anism without the weighted loss and resistance mecha-
nisms.

• PCoord (WLoss + Resistance + Damp): this is the default
PCoord algorithm with all three mechanisms turned on.

We examine performance of the above PCoord options
using the King data set with a dynamic join/leave interval
of 20 seconds. Each node uses random peer sampling with a
default sample batch size of ten samples per coordinate update.
The results are presented in Figure 5. We observe that the
default PCoord mechanism has the best prediction accuracy,
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Fig. 5. PCoord performance under dynamic join and leave. Join/Leave mean
interval is 20 seconds. King data set.N = 1740,M = 10, D = 5.

with median system prediction error in the 12 ms range. The
prediction error of the Simple algorithm is approximately 60%
higher than that of PCoord.

Damping alone decreases the prediction error the Simple
algorithm by about 10 to 15%. A combination of weighted loss
and resistance out-performs the Simple algorithm by almost
30%. Adding damping further decreases the prediction error
by 20%.

Our results from the RON2 data set suggest that different
PCoord mechanisms tend to be useful under different scenar-
ios. For example, nodes with paths that heavily violate the
triangle inequality property tend to oscillate in the geometric
space; for these nodes, the damping mechanism is able to
significantly reduce the amount of oscillation of those nodes’
coordinates, whereas the resistance mechanism provides little
help. This is due to the fact that nodes with paths that have
high degree of triangle inequality violations tend to have low
confidence on its own coordinates; as a result, the resistance
factor has a minimal effect on stabilizing the coordinates.
On the other hand, for nodes that have mostly well-behaved
latencies to other nodes, the friction mechanism provides
substantial benefits in improving the accuracy of the node’s
coordinate mapping, whereas damping provides little added
benefit.

G. Robustness of PCoord against Faulty Information

In this section, we examine PCoord’s robustness against
faulty information. We are interested in understanding how
PCoord behaves under increasing amount of faulty or cor-
rupted information.

We study the effects of faults by randomly selecting some
fraction of nodes as “faulty” nodes that provide incorrect
information to the other nodes. We then measure the predic-
tion accuracy among non-faulty nodes as a function of the
fraction of faulty nodes in the system. We model two types of
faulty information: (1) corrupted coordinates and (2) corrupted
coordinates with a falsely high confidence index.

• Corrupted coordinates. Nodes with corrupted coordinates
will generally report low confidence on their coordinates.
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Fig. 6. Compare different PCoord’s mechanisms under various fractions of
buggy nodes. King data set.N = 1740,M = 10, D = 5.
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Fig. 7. Compare different PCoord’s mechanisms under various fractions of
malicious nodes. King data set.N = 1740,M = 10, D = 5.

We call nodes that generates corrupted coordinates the
“buggy” nodes.

• Corrupted coordinates with a falsely high confidence
index. For this category of faults, we model a rather
naive form of “malicious” attack, in which case a node
reports a randomly generated coordinates and claims
that the coordinates have low prediction error (i.e., high
confidence index). This will cause the other nodes to put
high weights on the faulty coordinates.

We vary the fraction of faulty nodes in the system from
0 up to 80%. Figures 6 and 7 present PCoord’s prediction
accuracy as a function of the fraction of buggy and malicious
nodes respectively. The average median prediction accuracy
represents the steady-state prediction error of the system.

In order to understand how different PCoord mechanisms
are affected by faulty information, we present PCoord’s per-
formance with different combinations of the mechanisms:

• Simple: this is the Simple algorithm without weighted
loss, resistance, or damping.

• Resistance + Damp: this is a version of PCoord that
implements the resistance and damping mechanisms.

• PCoord (WLoss + Resistance + Damp): this is the default
PCoord algorithm with all three mechanisms turned on.

Since the Simple algorithm does not associate weights with
samples, Simple’s performance is the same under buggy and
malicious modes. The same is true for PCoord when the
weighted loss function is turned off.

We observe that the Simple algorithm’s prediction error rises
rapidly as the percentage of faulty nodes increases. Both ver-
sions of PCoord (with or without the weighted loss function)
are significantly more robust than the Simple algorithm in the
face of high percentage of buggy nodes.

Under the malicious model, the prediction accuracy of PCo-
ord with the weighted loss can degrade quickly under heavy
malicious attacks. In general, the combination of damping and
resistance provides a fairly robust mechanism in coping with
both buggy and malicious nodes. This suggests that, in a real-
world deployment, a good engineering choice may be to turn
off the weighted loss function if a large number of malicious
nodes is expected.

H. Effects of Triangle Inequality Violations

In this section, we examine the effects of triangle inequality
violations of the measured end-to-end paths on PCoord and
Vivaldi. In particular, we would like to know the performance
characteristics of PCoord and Vivaldi when increasing num-
bers of the measured paths violate the triangle inequality.In
order to examine the effects of increasing path anomalies, we
randomly perturb 2% - 10% of the total links in the King
data set by some arbitrary amount, thereby generating network
latencies with varying degrees of triangle inequality violations.

Figure 8 plots the median, 95th and 5th percentile error of
PCoord and Vivaldi when 5% of the RTTs in the King data set
are perturbed, which causes the number of triples that violate
triangle inequality to double in comparison to the originalKing
data set. In comparing Figure 1 and Figure 8, we observe that
the performance gap between PCoord and Vivaldi has widened
under heavier triangle inequality violations. This suggests that
Vivaldi is more sensitive to the increase in path anomalies.
While PCoord’s medium prediction error worsens by 10 ms
when 5% of the paths are perturbed, Vivaldi’s performance
degradation under the same scenario is approximately 60%
higher than that of PCoord’s.

Comparing the prediction accuracies of the two schemes
when 150 samples are used, Vivaldi’s median prediction error
is 6 ms higher than that of PCoord’s under the original
King data set. Under the perturbed data set, Vivaldi’s median
prediction error is 12 ms higher than that of PCoord’s – i.e.,
the performance gap between the two schemes doubles when
the number of triangle inequality violations doubles.

Figure 9 further shows that the performance gap between
PCoord and Vivaldi increases as the percentage of perturbed
links increases. The plot essentially shows how much worse
Vivaldi performs relative to PCoord as the percentage of
perturbed links increases. More specifically, the Y-axis shows
the amount by which Vivaldi’s 95th, 50th, 5th percentile
prediction errors are higher than those of PCoord’s under the
same topology. For both schemes, the error statistics shown
is taken after on average 300 samples per host. The plot
shows that under the original King data set, Vivaldi’s median
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Fig. 8. Convergence of PCoord and Vivaldi when randomly selected 5% of
the King paths are perturbed. King,N = 1740,M = 10, Cc = 0.25, andD
= 5.

 0

 5

 10

 15

 20

 0  2  4  6  8  10

D
iff

er
en

ce
 in

 P
re

di
ct

io
n 

E
rr

or
 (

m
s)

Percentage of Randomly Perturbed Paths

Difference in Median Prediction Error

Fig. 9. Difference between Vivaldi and PCoord prediction error under
increasing fraction of randomly perturbed links. The Y-axis shows the amount
by which Vivaldi’s 95th, 50th, 5th percentile prediction errors are higher than
those of PCoord’s under the same topology. For both schemes,the error
statistics shown is taken after on average 300 samples per host. King, N

= 1740,M = 10, Cc = 0.25, andD = 5.

prediction error is very close to that of PCoord’s (when both
schemes use 300 samples per host on average); however, when
10% of the links are randomly perturbed, Vivaldi’s median
prediction error is close to 9 ms worse than that of PCoord’s.

In summary, Vivaldi’s performance, both in terms of con-
vergence speed and prediction accuracy, is sensitive to the
amount of path anomalies in the underlying network topolo-
gies. PCoord’s damping and resistance mechanisms reduce the
instability caused by path anomalies, and thus are more robust
under heavy triangle inequality violations.

IV. RELATED WORK

The IDMaps [5], GNP [12], NPS [11], and King [14] are
all architectures for a global distance estimation service. In
contrast, PCoord’s goal is for peer nodes in an overlay network
to estimate their locations relative to other nodes in the same
overlay using purely peer-to-peer measurements.

To avoid the fixed landmark problem in GNP, several
schemes [15], [21], [10] have been proposed that allow
hosts to use different subsets of landmarks to construct a
local coordinate system, which are then transformed to a
global coordinate system. These schemes, however, are not
fully decentralized. Several other works focus on the geo-
metric models and coordinates computation that yield low
embedding error assuming global distance measurements are
available [19], [20]. Their work did not address issues in
decentralized coordinates constructions.

In [22], an approach that buildsnetwork distance maps
based on hierarchical clustering is proposed. The Mithos [23]
system embeds the network into a multi-dimensional space.
The focus of their work is more on overlay construction
and efficient lookup forwarding and less on network distance
prediction.

Similar to our work, Vivaldi [3], [4] is a fully decentralized
coordinate system. One major difference between PCoord and
Vivaldi is that in PCoord a node computes its coordinate by
optimizing a loss function over abatch of samples, whereas in
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Vivaldi a node adjusts its position to minimize the error one
sample at a time.

One of the main differences between PIC [2] and PCoord
is that the former uses a set of peer nodes to compute the
bootstrap coordinates. In contrast, the PCoord algorithm does
not require a set of peer nodes to carry out the bootstrap
process. Additionally, in PIC, coordinates update at a nodeis
completely determined by current batch of sampled distances;
it does not provide mechanism to retain information learned
from previous iterations. This could result in a system that
reacts too quickly to current measurements.

V. CONCLUSIONS

In this paper, we have designed and evaluated a fully-
decentralized coordinate system called PCoord. Our simulation
results suggest that, in a 1740 nodes peer-to-peer system,
PCoord can converge to a low prediction error configuration
within 10 seconds, where each node performs less than ten
coordinates updates using 10 reference points per update.
Under a simultaneous join scenario, PCoord can converge to a
low medium prediction error using half the number of samples
required by Vivaldi. Additionally, we have demonstrated the
following performance advantages of PCoord.

• PCoord is resilient to high fractions of corrupted samples.
Our results suggest that even when 30% of the node pop-
ulation maliciously lie about their coordinates, PCoord is
able to maintain a median system prediction error below
20 ms, which is half the prediction error of the Simple
algorithm under the same fraction of malicious nodes. In
general, PCoord performs close to 100% better than the
Simple algorithm when the fraction of malicious nodes
is less than 60% of the total system population.

• PCoord’s damping and resistance mechanisms reduce the
instability caused by network path anomalies, and thus
enables PCoord to be more robust than Vivaldi under
heavy triangle inequality violations. PCoord is able to
converge to a median system prediction error below 25
ms even when the number of triangle inequality violations
in the underlying network topology doubles.

• Vivaldi’s performance, both in terms of convergence
speed and prediction accuracy, is more sensitive to the
degree of path anomalies in the underlying network
topologies than PCoord. When the number of triangle
inequality violations doubles in the King data set, Vi-
valdi’s performance degradation is 60% more than that
of PCoord’s.

• PCoord is robust under high churn. We have shown that
dynamic join and leave has little effect on PCoord’s
prediction accuracy when the host’s mean session life
time is 10 seconds or longer. This suggests that PCoord is
likely to do well under the dynamic membership changes
of existing peer-to-peer systems, which were reported
to have a median session duration on the order of 60
minutes [18].

As part of the future work, we plan to explore PCoord’s
performance under dynamic network route changes, and ex-
plore possible extensions of the PCoord framework to model
“distance” measurements other than Internet latencies.
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