View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by CiteSeerX

A Decentralized Network Coordinate System for
Robust Internet Distance Prediction

Li-wei Lehman
Massachusetts Institute of Technology
Cambridge, MA 02139
Email: llehman@mit.edu

Abstract— Network coordinate systems have recently been is to ensure that locally derived host coordinates conviage
developed as a scalable mechanism to predict latencies anpn a global geometric configuration that accurately captunes t

arbitrary Internet hosts. Our research addresses several ésign
challenges of a large-scale decentralized network coorcite
system that were not fully addressed in prior work. In partic-
ular, we examine the design issues of a decentralized netvkor
coordinate system operating in a peer-to-peer network witthigh
churn, high fractions of faulty or mishehaving peers, and hgh
degrees of network path anomalies. This paper presents a fiyl
decentralized network coordinate system, PCoord, for robst
and fault-tolerant Internet distance prediction. Through extensive
simulations, we examine the convergence behavior and prexdion
accuracy of PCoord under a variety of scenarios, and compargs
performance with an existing network coordinate system, \Waldi.
Our results indicate that PCoord is robust under high churn, and
degrades gracefully even under high fractions of faulty nods, and
high degrees of triangle inequality violations in the undelying
network distances. Finally, our results indicate that evenunder
an extremely challenging flash-crowd scenario where 1740 kts
simultaneously join the system, PCoord is able to convergeot
12% median relative prediction error within 10 seconds.

I. INTRODUCTION

actual network distancassing as few network measurements
as possible.

This paper presents a fully decentralized network cootdina
system, PCoord, for robust and fault-tolerant Internetadice
prediction. PCoord assigns coordinates to hosts on thenktte
so that the Euclidean distances between hosts’ coordinates
accurately predict their network latencies. In PCoord,heac
host updates its coordinates to minimize a loss functioh tha
measures the difference between the actual and the geometri
distances between itself and a small set of other hosts.

Our research addresses several design challenges of a large
scale decentralized network coordinate system that were no
fully addressed in prior work. In particular, we examine the
convergence behavior and performance characteristics of a
decentralized network coordinate system operating in & pee
to-peer network with high churn, high fraction of poterjal
faulty or misbehaving peers, and high degree of triangle
inequality violations in the underlying network paths.

Network coordinate systems have recently been developed hiS paper extends an earlier description of PCoord [9], and
as a scalable mechanism to predict latencies among amitrmtroduces the following stability mechanisms to factitdast

Internet hosts [12], [11], [15], [21], [10], [19], [20], [4]

convergence to low system prediction errors.

[2], [8], [9]. The idea of a network coordinate system, first « A weighted loss function to distinguish between nodes
proposed by the GNP system [12], is for each host to derive with high and low errors.

a mapping of itself in some D-dimensional geometric space. A “resistance” mechanism that helps to stabilize the
using a small set of sampled distances so that the actual convergence and avoid oscillation.

inter-host network latencies can be estimated as a function A “damping” mechanism to avoid instability and oscilla-

of the nodes’ geometric distances. GNP relies on a fixed

tion caused by noisy, mis-behaving or faulty information.

set of landmark nodes in the Internet to provide referencerp q,gh extensive simulations using real network measure-
coordinates. Hosts position themselves in the geometacesp ments, we examine the convergence behavior and prediction

using measured distances to these landmark nodes.

accuracy of PCoord under a variety of instability factors] a

More recently, several approaches were proposed 10 Ce@mpare its performance with an existing network coordinat
struct network coordinates in a completely decentralizesth f system, Vivaldi. Our findings are highlighted as follow.

ion [4], [2], [8], [9]. These decentralized approaches dd& no
rely on a fixed set of landmark nodes to construct coordinates
Instead, hosts compute their coordinates based on sample
distances and reference coordinates gathered from otler pa
ticipating peer hosts. Constructing network coordinates i
fully decentralized manner is a challenging task. It is diffi
because each host is making parallel, independent, loeal es’
timates of its network coordinates based on a small humber
of potentially noisy and faulty samples. The key challenge

To be submitted for publication. .

Our results suggest that, in a 1740 nodes peer-to-peer

g System, PCoord can converge to a low prediction error

configuration within 10 seconds, where each node per-
forms less than 10 coordinate updates using 10 reference
points per update.

Under an extremely challenging flash-crowd scenario
where 1740 nodes join simultaneously, PCoord is able
to converge to a 12% system-wide medium relative
prediction error using half as many samples as Vivaldi.
PCoord is robust under high churn, and degrades grace-
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fully even under high fraction of faulty nodes, and higlthree phases: (1) the sampling and information exchangeepha
degree of triangle inequality violations in the networkn which a node select3/ reference points, gathers distance
distances. measurements and coordinates, and exchanges peer list in-
« PCoord’s damping and resistance mechanisms reduce filmenation with thoseM reference points, (2) the coordinate
instability caused by network path anomalies, and thugpdate phase, in which a new coordinate is computed to
enable PCoord to be more robust than Vivaldi undeninimize a loss function defined in terms of thasereference
heavy triangle inequality violations. points, and (3) the near peer probing phase in which each host
« Vivaldi's performance, both in terms of convergenceefines its search for its nearby peers by probing other hosts
speed and prediction accuracy, is more sensitive to thased on their triangulated distances.
degree of path anomalies in the underlying network In this paper, we focus on phase two only, which is the
topologies than PCoord. When the number of triangordinate update step. A variation of the Simple algorithm
inequality violations doubles in the underlying networkvas previously described in [9], [7], which gave a detailed
topology, Vivaldi's performance degradation is 60% mordescription on the peer sampling and probing strategias fro
than that of PCoord’s. phase one and three above. Next, we summarize the notations
The rest of the paper is organized as follows. Section Pelow and then present the algorithm in more details.
describes the PCoord algorithm. In section lll, we presemt 0, — yymber of reference points for each coordinate update
S|mulat|0n rgsglts and compare thg performance _of PCoocridz Coordinates of host
with other existing schemes. In section 1V, we describeteela d;; = RTT between and j
. . . 1]
work. Finally, we present our conclusions and ideas forrﬁutuc

K in Section V origin = Coordinates at the origin
work in Section V.

Il. THE ALGORITHM /i is the node that is running the procedure
PCoord is a fully decentralized network coordinate systerimPlePCoord() {
with each host updating its coordinate iteratively to refime Ci = Corigin
prediction accuracy of its estimated position. Each host up While (in the system)
dates its coordinates to minimize a loss function that messu Samples = SamplePeers()
the difference between the actual and the geometric dissanc ¢ = MinimizeError(Samples, c;)
between itself and a small set of other hosts. G=cv
We previously introduced the term PCoord in [9] to refer to ProbeNearNeighbors()

a general set of peer-to-peer based approaches in decedral ) //end while

network coordinates construction. Under the PCoord frame-
work in [9], we evaluated several proof-of-concept cooatis

mapping strategies and explored their performance cteracy/Sqamples consist of M sampled peer nodes

istics under different peer sampling strategies. Our psiork llcguess is the initial guess for the coordinates
in [9] did not provide any mechanisms to stabilize systeminimizeError ( Samples, Cauess ) {

convergence, nor did it address issues in dynamic joirdleav find < that minimizesE using

and fault-tole_zran_ce. In this paper, we present _the PCoord Cquess @S an initial guess, where

algorithm which introduces the following mechanisms. E=Y. (dij — |lcrew — ¢;))2
jE€Samples\'t] J

i

« Aweighted loss function that allows sampled coordinates return c¢v

with higher prediction accuracy to have a higher weight

in the loss function.
« A weighted “resistance” factor in the loss function that ) . . .

helps to stabilize the convergence process. At each update iteration, each hasmeasures its round
« A threshold-based mechanism to dampen the amoun[r'g Iafency to M other peer podes, and optams thm

node moves toward new coordinates by a factor that ri@des current coordinates. Hasthen updates its coordinates

inversely proportional to the fit error of the current batcf? Minimize the sum of sguared dnfferences between the
of sampled peer nodes’ coordinates and distances. measured and computed distances with thbseeer nodes.

. ) . The computation of the coordinates for nodéen involves
We present the PCoord algorithm in two steps. We first P &

: : : . ihding ¢ that minimizes the following loss function.
present a Simple algorithm that provides the basic stractur ga 9

and steps taken by each PCoord host to perform coordinate j=M
update. Next, we present the actual PCoord algorithm which E = Z (dij — |lc — ¢;]])?
introduces several mechanisms to ensure convergence to a j=1

lower prediction error.
B. The PCoord Algorithm
A. A Smple Algorithm There are several potential problems with the above simple

In Simple PCoord, each node performs continuous updatersion of the algorithm. One problem is that it does not
on its coordinate. Each of the coordinate update consistsdi$tinguish between nodes with coordinates that haverdiife



prediction accuracy. To avoid reacting too quickly to bad for eachj in Samples {
reference points, we propose a weighted loss function, in  ¢». — Mei=cjll=dij|
which the loss each reference point contributes is weighyed '
the prediction accuracy of each reference point’s cootd®a (D)2 +(e0)?
The weight is computed based on the relative prediction e M=elixwel x(1—w)
accuracy of each reference point so that the nodes with more e = axel + (1 —a) xe;“""
accurate coordinates will have more influence on the salutio e = MIN(1,¢e?)
than the less accurate ones. } llend for
Another problem is that the algorithm determines the neyv
coordinate entirely based on measurements from the current
batch of reference points. There is no mechanism for the

coordinates generated using previous samples to cast agy eight is assigned based on the relative prediction etror.

on the the position of the new coordinate in the current LEpdalS a small constant added to one to defiffe, , for weight

The simple scheme thus tends to react too quickly based codhputation. When = 0, nodes with relative prediction error

the measurements of the current batch of reference poinds, 3t one have zero weight in the loss function. Setting: 0

leads to potential oscnlatlgn._ . ” a]IIows nodes with relative error of one to have a non-zero
In order to reduce oscillation, we introduce an add't'on@veight In this study is set to 0.05

“resistance” factor into the loss function so that a nodehwit
highly accurate coordinates will not overly react to refee
points with less accurate coordinates. When computfitj, Weight Assignment
nodei adds itself as théM + 1)th node in its reference points
set, and thus introduces into the loss function as a resistance
factor that penalizes movement ef” to a new location.
This term is weighted by the relative prediction accuracy
(relative to other reference points Qfof nodei’s coordinates,

so that the more confident a node is about the accuracy of
its own coordinates, the more resistance the term intraduce
For a newly joined node, the weight to this resistance term
is initialized to zero. Each node continuously updates the }

confidence index of its own coordinates as a function of the

weighted moving average of its current and past prediction

error.

1) Weighted Error Function with a Resistance Factor: 2) Adjusting Amount of Coordinate Updates Based on
More precisely, the weighted loss function with the resisea Goodness-of-Fit: The weighted loss function described above
factor is as follows. Letw; be the weight of node. The co- helps to reduce the negative effect of reference points with
ordinate update procedure now becomes a problem of findifigh prediction error. However, the prediction error does

crev that minimizes the weighted losg where€ is defined not necessarily reflect whether a particular pair-wiseatist
as follows. between nodesandj serves as a good sample to predict the

position of the two nodes.

2ij
v D

The following pseudocode fragment describes how the

7 = a small constant; > 0

erop=1+T

/lassign weight to each sample fmmples, which
/lincludes the “resistance” term

for each nodg in Samples {

_ P _.p
aj = €prop — €

AN D
k€Samples k

j=M
€ = wildy — ||} —cil)* + Y wildy — [l = ¢5)°
j=1

whered;; = 0,0 < w; < 1,0 < wy; < 1, andw; +

j=M

In this section, we introduce a mechanism that allows a node
to adjust how much it should move its coordinates in response
to a particular batch of samples based on the goodness-of-
fit index. The goodness-of-fit is a confidence measurement
associated with an entire batch of samples. The idea is that
a batch of samples containing “un-representative” diganc

The procedure for maintaining the weighted moving averagéll likely yield higher residual error than good batches of
of the relative prediction error is invoked at each coorténasamples. To avoid reacting to a batch of samples with bad fit,

update iteration after the sampling phase.

e? = weighted moving average of relative
prediction error at nodé

e;; = relative prediction error for distance
between node andj

« = weight for computing weighted moving
average of prediction error

/li is this node
UpdatePredictionError( Samples) {

each PCoord node maintains a weighted moving average of
the fit error over time. A node assigns a weight to each batch
of samples as a function of the ratio between the average and
current fit error, and then decides how much it should react
to the current batch of samples based on the weight. More
precisely, if the fit error of the current batch of samplesseds
the average fit error, then the node dampens the amount it
moves toward the new coordinate by a factowhich is the
ratio between the average and current fit error.

The following pseudocode presents the above procedure in
two steps: (1) a procedure to update fit error, which is indoke



at the end of each coordinate update phase, and (2) a codee!*"’/ = D ke Samples Wr(dix — i — ex|])?

fragment that computes fraction of coordinate movement.

ef = Weighted average of fit error of node
newf = The fit error of the new batch of data

3

£ = Weight for computing weighted moving averageecﬁf
p = Fraction of movement toward the new coordinates

/li is this node
UpdateFitError( e/ ) {

/lupdate the weighted moving average of fit error

ezf =[x ezf +(1—0) % e?ewf

Compute Fraction of Coordinate Movement
lle?*7 is the residual error

e?ewj = Zkeﬁamples Wk (dlk - ”C;ww - Ck”)Q
p=MIN(=57.1)

//move p fraction of the way toward new solution

U = et (pr (e — )

3) Summary: the PCoord Algorithm: In this section, we

A !

/Imove toward new coordinates
P = MIN(ai—{wfv 1)
/Imove p fraction of the way toward the new solution
G =it (o (0 = o)
return e, e/ )
} llend MinimizeWeightedError

The SamplePeer() and ProbeNearNeighbor() procedures are
described in [9], [7]. In order to compare with Vivaldi, we
have turned off the PCoord probe near peer option. The sesult
generated in this paper use a random peer sampling strategy.

Ill. EVALUATION OF PCOORD
A. Evaluation Methodology

We evaluate the PCoord approach extensively through sim-
ulations using both real network measurements and sintulate
topologies. We compare the performance of PCoord with
Vivaldi, and the original GNP scheme (referred to as the
FixedLM scheme from now on) in terms of pairwise distance
prediction accuracy.

1) Performance Metrics: We define theprediction error
(PE), or simply error, of a link as the absolute difference

pull the above pieces together and summarize the PCOQid een the predicted RTT and the actual RTT. Following

pseudocode below.

/li is this node
PCoord() {
Ci = Corigin
while (in the systemY
Samples = SamplePeers()
UpdatePredictionErrofamples)

/ladd nodei’'s own coordinates to the samples

Samples = Samples.addf)

(2

— anew
C; = C;

UpdateFitError(e]*"” )
ProbeNearNeighbors()

MinimizeWeightedError ( Samples, cguess ) {
e’%op =147
for each nodé: in Samples {
/lassign weight to each node Bumples
ar = hop — €}
ay

WE = 0

a’
jESamples J

} llend for

/Inow find new coordinate
find ¢'** that minimizes
2
ZkGSamples Wk (dlk - ”c?ew - Ck”)

lle?**7 is the residual error after minimization

(chew, e?ewf) = MinimizeWeightedErrot§amples, c;)

the conventions in Vivaldi [4], we define the error of a node
as the median of the link errors for links involving that node
The error of the system is defined as the median of the node
errors for all nodes in the system.

We use the absolute relative error (RE) defined in [12] as our
performance metric when comparing with the GNP scheme.
For each pair of nodes, their absolute relative error is ddfin
as - Mei—cjli=dij|

MIN (dij,|lci—c;ll)” .

2) Data Collection: We evaluate our scheme using the

following network measurements.

« The King data set from Vivaldi [4], which involves the
round-trip latency among 1740 Internet DNS servers.

o The PlanetLab [16] all-pairs-ping data set among 127
nodes collected on May 10, 2004.

o The AMP [6] data set January 30, 2003 which measure
the round-trip ping time among 104 nodes.

o The RON2 data set [17], [1], which measures the RTTs
among 15 Internet hosts.

We only present the King results here due to space con-
straints. The results from other data sets are qualitaitivies
and can be found in [7].

3) Smulation Setup: We have simulated the execution
of PCoord using p2psim [13], an event-driven, packet-level
network simulator. We use the Simplex Downhill algorithm
to minimize the loss function at each coordinate update. We
measure the processing cost of the Simplex Downhill oparati
on a Sun UltraSparc (with 150 MHz CPU and 4096 Megabytes
of memory), and use the measured median processing time in
our PCoord simulation. The median processing time is 10 ms
per coordinate update when 10 reference points are used. Our
results are consistent with the measured Simplex algorithm
processing time in GNP [12].



Each node proceeds in its coordinate update independent of
other nodes’ update progress. Asynchronous communication
is used when gathering samples fravh peer nodes in each
coordinate update step.

4) PCoord Parameter Setting: We ran the PCoord simula-
tions with various sample batch si2¢ to explore its effect on
convergence and prediction accuracy. Our results sugigast t 50
using 10 reference points at each update sidp= 10) yields
quick convergence to low error and achieves good tradeoff
between communication and computation overhead. The rest
of the parameters are set as follaw= 0.95, 7 = 0.05, and
6 =10.6.

Smplex Downhill Settings: In order to obtain high quality
solutions, the Simplex algorithm usually restarts the mina-
tion routine after it claims to have found a solution. Within
each restart, the terminating criteria are usually spetcifie 0 - - - - - -
some tolerance and some threshald/ AX, which denotes 0 0 1000 150 200 250 300 350
the maximum allowed function evaluations. Number of Samples

In PCoord, the Simplex algorithm is run in a “light-weight”
mode. More specifically, within each coordinate update,siep
most 1000 evaluations of the objective function are peréarm
and we do not restart the minimization procedure within each 120 ———

Vivaldi Random Global(C=0.25) "
PCoord Random Global (M=10) ---+---

30

20

e
F b e
10 B

Median Prediction Error (ms)

(a) Median error

coordinate update step. Our results indicate that the-light \ e ey .
weight setting performs as well as a more computationally £ T T
expensive setting, such as 500,000 objective functionueval 8 g | i
ations with 3 restarts. We believe PCoord is able to perform ”g
well using the light-weight Simplex procedure because R€oo & O T
itself maps the coordinates iteratively; at each coor@inat & w0k . A
update, PCoord uses the “optimal” solution found in the & B e s
previous iteration as its initial guess for the minimizatio £ 20 1
procedure in the next iteration. o , , , , , ,

5) Vivaldi Parameter Setting: All Vivaldi simulations pre- 0 50 100 150 200 250 300 350
sented in this work use the adaptive time step mechanism Number of Samples
described in [4] and implemented in the p2psim [13]. In
Vivaldi, a constantC, (0 < C. < 1) is used to control how (b) 95th Percentile Error
much a node reacts to each new sample. WeCsetio 0.25,
which is reported to yield the best overall convergence o lo o . . . . .
prediction error [4]_ ! Vivaldi Random Global(C=0.25)

& PCoord Random Global (M=10) ---+---
£ 40 4

B. Convergence Behavior of PCoord and Vivaldi &

In this section, we compare PCoord and Vivaldi in terms ué %0 i
of number of samples required for convergence. We compare %
PCoord and Vivaldi using random sampling strategy, in which E 20 |
each peer randomly samples other peers drawn from the global 10 e
population of the system.

Figure 1 plots the median, 95th and 5th percentile error 0 . . . . . .
of PCoord and Vivaldi using the King data set. Our results 0 50 100 150 200 250 300 350

indicate that PCoord is able to converge faster than Viviald: Number of Samples

takes PCoord approximately 170 samples to converge to the
12 ms error range, and Vivaldi requires approximately 350
samples to reach the same error range.

(c) 5th Percentile Error

Fig. 1. Convergence of PCoord (10 reference points) anddfiva’.=0.25)
using random peer sampling. King data.

C. Comparison of PCoord, Vivaldi and FixedLM

Figure 2 shows the cumulative distribution of relative erro
of PCoord, Vivaldi, and the FixedLM scheme after PCoord and
Vivaldi hosts have updated their coordinates using an geera
of 100, 150, and 300 samples. With the FixedLM scheme,



each host uses 30 fixed landmarks; the results shown have the
lowest median error of all 20 different randomly-generated
landmark configurations.

We note that PCoord’s prediction accuracy is comparable  °of J
to that of the FixedLM scheme after 100 samples. After 100  os| T .
samples, PCoord’s median relative error is approximat2dp 1 o7l L i
which is only 2% more than that of the FixedLM scheme.
Vivaldi (C,. = 0.25) takes about 300 samples to achieve 12%
median relative error. After 100 samples, Vivaldi's median
relative error is 21%, which is about twice as much as that of )
PCoord’s using the same number of samples. osp 7 :
02t [f ./ —

D. PCoord Performance under Incremental Join ol o]
] PCoord (M=10) --—+--

We have also simulated PCoord in an incremental join ok ‘ ‘ ‘ | Vivaldi
scenario, where a node joins one at a time after the rest of  ° ’ ! e Eror °? '
the system has converged. On average, the median prediction
error of a newly joined node can decrease to the 12 ms range (a) After 100 Samples
within two coordinate updates using 10 reference points per

update (i.e., within 20 samples).

0.6 |- i 1
05 | s R

04 [ B

Cumulative Distribution
+

E. PCoord Performance under High Churn

In this section, we examine PCoord’s performance under

churn, i.e., when the system experiences continuous member _ °'[ A 1
ship changes as a result of nodes joining and leaving. We 2 os| ;o |
examine the following questions. How robust is PCoord under
high churn? At what point do we begin to observe significant
performance degradation as the join/leave rate increases?

Under the dynamic join and leave mode, each node alter-
nately leaves and re-joins the system. The time intervaldeno :
stays in and out of the system is exponentially distributed o1/’ Fredu oL ——
with a mear¢. Recent studies suggest that the median session ! - - - I 1
duration of hosts in peer-to-peer systems is approximately Relative Error
one hour [18]. We have chosen to use shorter time intervals,
and thus higher churn rates, in our simulations in order to (b) After 150 Samples
examine PCoord’s performance under extreme conditions. We
have experimented withh equal to 2, 5, 10, 20, 30 and 40
seconds, with a total simulated time of 300 seconds. When a
node re-joins the system, its coordinates are re-inigdlito
the origin.

Figure 3 plots the median prediction accuracy of PCoord o7t
as a function of time when is 2, 5 and 20 seconds. As a
comparison, we also plot prediction accuracy of PCoord when
there is no churn, i.e., when all nodes join simultaneously
in the beginning and none subsequently leave. Figure 4 plots
the average median prediction accuracy (averaged ove) time /
as a function of the mean host session life time,The o2 1
average median prediction accuracy represents the steady- o.lf FvedLm (oLt)
state prediction error of the system averaged over timegusin , ‘ ‘ ‘ Pe W -
statistics gathered after 60 seconds of simulated time. ° o2 4 e o 8 !

Figure 4 shows that when join/leave intervas 10 seconds
or greater, the median prediction error stays in the range of (c) After 300 Samples
12 ms, indicating that the churn has very little effect on the

prediction accuracy of PCoord. Fig. 2. Comparing PCoord, Vivaldi and FixedLM in terms ofatale error
using King data set. We show results of PCoord and Vivaldérattsing

. . approximately 100, 150, and 300 samples per host on aveaagecompare
F. Effects of Different PCoord Mechanisms with the FixedLM results where each host uses 30 fixed lankimades.

In this section, we examine the effects of different PCoorgng: N = 1740,D =5, M =10, Cc = 0.25.
mechanisms under churn. In particular, we would like to
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Churn (mean = 20s) -------- HH Damp --------
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Fig. 3. PCoord performance under dynamic join and leavegKvi = 1740, Fig. 5. PCoord performance under dynamic join and leavev/lJeave mean
M =10, andD = 5. interval is 20 seconds. King data séf. = 1740, M = 10, D = 5.
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with median system prediction error in the 12 ms range. The

v 1 prediction error of the Simple algorithm is approximate0f6
R higher than that of PCoord.
é o 1 Damping alone decreases the prediction error the Simple
w algorithm by about 10 to 15%. A combination of weighted loss
g T 1 and resistance out-performs the Simple algorithm by almost
s 30%. Adding damping further decreases the prediction error
g ur 1 by 20%.

Our results from the RON2 data set suggest that different
PCoord mechanisms tend to be useful under different scenar-
ios. For example, nodes with paths that heavily violate the
o s 0 15 2z w3 w0 triangle inequality property tend to oscillate in the gedtnice

Viean JenlLeae inene (seconce) space; for these nodes, the damping mechanism is able to
Fig. 4. PCoord prediction accuracy as a function of mearline intervals. Significantly reduce the amount of oscillation of those redde
King, N = 1740, M = 10, andD = 5. coordinates, whereas the resistance mechanism provites li
help. This is due to the fact that nodes with paths that have
high degree of triangle inequality violations tend to have |
answer the following questions. How much better is PCoognfidence on its own coordinates; as a result, the resistanc
in comparison to the Simple algorithm? How much addegctor has a minimal effect on stabilizing the coordinates.
benefit does damping provide? Is the damping mechanigh the other hand, for nodes that have mostly well-behaved
alone sufficient to yield good prediction accuracy? Undeathjatencies to other nodes, the friction mechanism provides
scenario is each PCoord mechanism useful? substantial benefits in improving the accuracy of the node’s

To answer the above questions, we have simulated PCoorgb®rdinate mapping, whereas damping provides little added
performance with different combinations of the mechanismgenefit.

« Simple: this is the Simple algorithm without weighted

loss, resistance, or damping.

o WLoss + Resistance: this is a version of PCoord th
implements weighted loss function and the resistanceln this section, we examine PCoord’s robustness against
mechanism. Damping is turned off in this version. faulty information. We are interested in understanding how

« Damp: this version only implements the damping mecii2Coord behaves under increasing amount of faulty or cor-
anism without the weighted loss and resistance mechapted information.
nisms. We study the effects of faults by randomly selecting some

« PCoord (WLoss + Resistance + Damp): this is the defaditaction of nodes as “faulty” nodes that provide incorrect
PCoord algorithm with all three mechanisms turned orinformation to the other nodes. We then measure the predic-

We examine performance of the above PCoord optioHQn accuracy among non-faulty nodes as a function of the
using the King data set with a dynamic join/leave intervdfaction of faulty nodes in the system. We model two types of
of 20 seconds. Each node uses random peer sampling witf@@lty information: (1) corrupted coordinates and (2) opted
default sample batch size of ten samples per coordinateeipdgoordinates with a falsely high confidence index.

The results are presented in Figure 5. We observe that the Corrupted coordinates. Nodes with corrupted coordinates
default PCoord mechanism has the best prediction accuracy, will generally report low confidence on their coordinates.

13 | —

12

g. Robustness of PCoord against Faulty Information



Average Median Prediction Error

80 T T T T T

oot (Resance + 5108 —— Since the Simple algorithm does not associate weights with
PCoord (Woss + Resistance + amp) - - samples, Simple’s performance is the same under buggy and
malicious modes. The same is true for PCoord when the
weighted loss function is turned off.

We observe that the Simple algorithm’s prediction erragsis
rapidly as the percentage of faulty nodes increases. Bath ve
sions of PCoord (with or without the weighted loss function)
are significantly more robust than the Simple algorithm ia th
face of high percentage of buggy nodes.

Under the malicious model, the prediction accuracy of PCo-
ord with the weighted loss can degrade quickly under heavy
‘ ‘ ‘ ‘ ‘ ‘ ‘ malicious attacks. In general, the combination of dampimdj a
LT o " resistance provides a fairly robust mechanism in copindy wit

both buggy and malicious nodes. This suggests that, in a real

Fig. 6. Compare different PCoord’s mechanisms under varfaactions of world deployment, a good engineering choice may be to turn

buggy nodes. King data seW = 1740, M = 10, D = 5.

Average Median Prediction Error

off the weighted loss function if a large number of malicious
nodes is expected.

80 T
Simple —+—

PCoord (Resistance + Damp) ---%---

PCoord (WLoss + Resistance + Damp) ---%---

H. Effects of Triangle Inequality Violations

In this section, we examine the effects of triangle inedquali
violations of the measured end-to-end paths on PCoord and
Vivaldi. In particular, we would like to know the performaac
characteristics of PCoord and Vivaldi when increasing num-
bers of the measured paths violate the triangle inequaitity.
order to examine the effects of increasing path anomalies, w
randomly perturb 2% - 10% of the total links in the King
data set by some arbitrary amount, thereby generating mletwo
latencies with varying degrees of triangle inequality atans.

0 10 P e 70 Y Figure 8 plots the median, 95th and 5th percentile error of
PCoord and Vivaldi when 5% of the RTTs in the King data set

10

Fig. 7. Compare different PCoord’s mechanisms under varfaactions of are perturbed, which causes the number of triples thatteiola

malicious nodes. King data se¥ = 1740,M =10, D = 5.

triangle inequality to double in comparison to the origikaig

data set. In comparing Figure 1 and Figure 8, we observe that
. e performance gap between PCoord and Vivaldi has widened
YVe caI’I’ nodes that generates corrupted coordinates MWder heavier triangle inequality violations. This suggélat
buggy” nodes. i ) ) i Vivaldi is more sensitive to the increase in path anomalies.
porrupted cqordmates with a falsely high COandenC\While PCoord’s medium prediction error worsens by 10 ms
index. For this category of faults, we model a rathgfan 504 of the paths are perturbed, Vivaldi's performance

naive form of “malicious” attack, in which case a nodyqq o qation under the same scenario is approximately 60%
reports a randomly generated coordinates and Cla'rﬂi@her than that of PCoord’s

that the coordinates have low prediction error (i.e., high Comparing the prediction accuracies of the two schemes

When 150 samples are used, Vivaldi's median predictionrerro

high weights on the faulty coordinates. is 6 ms higher than that of PCoord’s under the original

We vary the fraction of faulty nodes in the system fronking data set. Under the perturbed data set, Vivaldi's media
0 up to 80%. Figures 6 and 7 present PCoord's predictigfediction error is 12 ms higher than that of PCoord’s — i.e.,
accuracy as a function of the fraction of buggy and malicioyge performance gap between the two schemes doubles when
nodes respectively. The average median prediction acgurgge number of triangle inequality violations doubles.
represents the steady-state prediction error of the system  Figure 9 further shows that the performance gap between

In

order to understand how different PCoord mechanismgoord and Vivaldi increases as the percentage of perturbed

are affected by faulty information, we present PCoord’s pefinks increases. The plot essentially shows how much worse
formance with different combinations of the mechanisms: Vivaldi performs relative to PCoord as the percentage of

Simple: this is the Simple algorithm without weightedperturbed links increases. More specifically, the Y-axigveh
loss, resistance, or damping. the amount by which Vivaldi's 95th, 50th, 5th percentile
Resistance + Damp: this is a version of PCoord thatediction errors are higher than those of PCoord’s under th
implements the resistance and damping mechanisms. same topology. For both schemes, the error statistics shown
PCoord (WLoss + Resistance + Damp): this is the defaudt taken after on average 300 samples per host. The plot
PCoord algorithm with all three mechanisms turned orshows that under the original King data set, Vivaldi's media



Fig. 8. Convergence of PCoord and Vivaldi when randomlyctete 5% of
the King paths are perturbed. Kingy = 1740, M = 10, C. = 0.25, andD
=5.
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Fig. 9. Difference between Vivaldi and PCoord predictiomoerunder
increasing fraction of randomly perturbed links. The Ysaghows the amount
by which Vivaldi's 95th, 50th, 5th percentile predictiorr@ns are higher than
those of PCoord’'s under the same topology. For both schetheserror
statistics shown is taken after on average 300 samples r Kmg, NV
=1740,M = 10,C. = 0.25, andD = 5.

prediction error is very close to that of PCoord’s (when both
schemes use 300 samples per host on average); however, when
10% of the links are randomly perturbed, Vivaldi's median
prediction error is close to 9 ms worse than that of PCoord’s.

In summary, Vivaldi's performance, both in terms of con-
vergence speed and prediction accuracy, is sensitive to the
amount of path anomalies in the underlying network topolo-
gies. PCoord’s damping and resistance mechanisms redeice th
instability caused by path anomalies, and thus are morestobu
under heavy triangle inequality violations.

IV. RELATED WORK

The IDMaps [5], GNP [12], NPS [11], and King [14] are
all architectures for a global distance estimation servine
contrast, PCoord’s goal is for peer nodes in an overlay rndtwo
to estimate their locations relative to other nodes in thaesa
overlay using purely peer-to-peer measurements.

To avoid the fixed landmark problem in GNP, several
schemes [15], [21], [10] have been proposed that allow
hosts to use different subsets of landmarks to construct a
local coordinate system, which are then transformed to a
global coordinate system. These schemes, however, are not
fully decentralized. Several other works focus on the geo-
metric models and coordinates computation that yield low
embedding error assuming global distance measurements are
available [19], [20]. Their work did not address issues in
decentralized coordinates constructions.

In [22], an approach that buildeetwork distance maps
based on hierarchical clustering is proposed. The Mith8% [2
system embeds the network into a multi-dimensional space.
The focus of their work is more on overlay construction
and efficient lookup forwarding and less on network distance
prediction.

Similar to our work, Vivaldi [3], [4] is a fully decentralizk
coordinate system. One major difference between PCoord and
Vivaldi is that in PCoord a node computes its coordinate by
optimizing a loss function over batch of samples, whereas in
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As part of the future work, we plan to explore PCoord’s

performance under dynamic network route changes, and ex-

plore possible extensions of the PCoord framework to model

“distance” measurements other than Internet latencies.



