Localization of nodes in wired and wireless networks

Abstract

This thesis focuses on the implementation of algorithms for localization of nodes in wired and wireless networks. The thesis is organized into two papers. The first paper presents the localization algorithms based on time of arrival (TOA) and time difference of arrival (TDOA) techniques for computer networks such as the Internet by using round-trip-time (RTT) measurements obtained from known positions of the gateway nodes. The RTT values provide an approximate measure of distance between the gateway nodes and an unknown node. The least squares technique is then used to obtain an estimated position of the unknown node. The second paper presents localization of an unknown node during route setup messages in wireless ad hoc and sensor networks using a new routing protocol. A proactive multi-interface multichannel routing (MMCR) protocol, recently developed at Missouri S&T, was implemented on the Missouri S&T motes. This protocol calculates link costs based on a composite metric defined using the available end-to-end delay, energy utilization, and bandwidth, and it chooses the path that minimizes the link cost factor to effectively route the information to the required destination. Experimental results indicate enhanced performance in terms of quality of service, and implementation of this protocol requires no modification to the current IEEE 802.11 MAC protocol. Received signal strength indicator (RSSI) values are recorded from the relay nodes (gateway nodes) to the unknown node during route setup messages. The location of the unknown node is estimated using these values with some a priori profiling and the known positions of the relay nodes as inputs to the least squares technique --Abstract, page iv

    Similar works