8 research outputs found

    Inverse monoids of partial graph automorphisms

    Full text link
    A partial automorphism of a finite graph is an isomorphism between its vertex induced subgraphs. The set of all partial automorphisms of a given finite graph forms an inverse monoid under composition (of partial maps). We describe the algebraic structure of such inverse monoids by the means of the standard tools of inverse semigroup theory, namely Green's relations and some properties of the natural partial order, and give a characterization of inverse monoids which arise as inverse monoids of partial graph automorphisms. We extend our results to digraphs and edge-colored digraphs as well

    A note on vertex-transitive non-Cayley graphs from Cayley graphs generated by involutions

    Get PDF
    AbstractWe show that the result of Watkins (1990) [19] on constructing vertex-transitive non-Cayley graphs from line graphs yields a simple method that produces infinite families of vertex-transitive non-Cayley graphs from Cayley graphs generated by involutions. We also prove that the graphs arising this way are hamiltonian provided that their valency is at least six

    Graphs, groups and pseudo-similar vertices

    Get PDF

    Contents

    Get PDF

    Constructing Cospectral and Comatching Graphs

    Get PDF
    The matching polynomial is a graph polynomial that does not only have interesting mathematical properties, but also possesses meaningful applications in physics and chemistry. For a simple graph, the matching polynomial enumerates the number of matchings of different sizes in it. Two graphs are comatching if they have the same matching polynomial. Two vertices u, v in a graph G are comatching if G\ u and G\ v are comatching. In 1973, Schwenk proved almost every tree has the same characteristic polynomial with another tree. In this thesis, we extend Schwenk's result to maximal limbs and weighted trees. We also give a construction using 1-vertex extensions for comatching graphs and graphs with an arbitrarily large number of comatching vertices. In addition, we use an alternative definition of matching polynomial for multigraphs to derive new identities for the matching polynomial. These identities are tools used towards our 2-sum construction for comatching vertices and comatching graphs

    Subject Index Volumes 1–200

    Get PDF

    Impact of Symmetries in Graph Clustering

    Get PDF
    Diese Dissertation beschäftigt sich mit der durch die Automorphismusgruppe definierten Symmetrie von Graphen und wie sich diese auf eine Knotenpartition, als Ergebnis von Graphenclustering, auswirkt. Durch eine Analyse von nahezu 1700 Graphen aus verschiedenen Anwendungsbereichen kann gezeigt werden, dass mehr als 70 % dieser Graphen Symmetrien enthalten. Dies bildet einen Gegensatz zum kombinatorischen Beweis, der besagt, dass die Wahrscheinlichkeit eines zufälligen Graphen symmetrisch zu sein bei zunehmender Größe gegen Null geht. Das Ergebnis rechtfertigt damit die Wichtigkeit weiterer Untersuchungen, die auf mögliche Auswirkungen der Symmetrie eingehen. Bei der Analyse werden sowohl sehr kleine Graphen (10 000 000 Knoten/>25 000 000 Kanten) berücksichtigt. Weiterhin wird ein theoretisches Rahmenwerk geschaffen, das zum einen die detaillierte Quantifizierung von Graphensymmetrie erlaubt und zum anderen Stabilität von Knotenpartitionen hinsichtlich dieser Symmetrie formalisiert. Eine Partition der Knotenmenge, die durch die Aufteilung in disjunkte Teilmengen definiert ist, wird dann als stabil angesehen, wenn keine Knoten symmetriebedingt von der einen in die andere Teilmenge abgebildet werden und dadurch die Partition verändert wird. Zudem wird definiert, wie eine mögliche Zerlegbarkeit der Automorphismusgruppe in unabhängige Untergruppen als lokale Symmetrie interpretiert werden kann, die dann nur Auswirkungen auf einen bestimmten Bereich des Graphen hat. Um die Auswirkungen der Symmetrie auf den gesamten Graphen und auf Partitionen zu quantifizieren, wird außerdem eine Entropiedefinition präsentiert, die sich an der Analyse dynamischer Systeme orientiert. Alle Definitionen sind allgemein und können daher für beliebige Graphen angewandt werden. Teilweise ist sogar eine Anwendbarkeit für beliebige Clusteranalysen gegeben, solange deren Ergebnis in einer Partition resultiert und sich eine Symmetrierelation auf den Datenpunkten als Permutationsgruppe angeben lässt. Um nun die tatsächliche Auswirkung von Symmetrie auf Graphenclustering zu untersuchen wird eine zweite Analyse durchgeführt. Diese kommt zum Ergebnis, dass von 629 untersuchten symmetrischen Graphen 72 eine instabile Partition haben. Für die Analyse werden die Definitionen des theoretischen Rahmenwerks verwendet. Es wird außerdem festgestellt, dass die Lokalität der Symmetrie eines Graphen maßgeblich beeinflusst, ob dessen Partition stabil ist oder nicht. Eine hohe Lokalität resultiert meist in einer stabilen Partition und eine stabile Partition impliziert meist eine hohe Lokalität. Bevor die obigen Ergebnisse beschrieben und definiert werden, wird eine umfassende Einführung in die verschiedenen benötigten Grundlagen gegeben. Diese umfasst die formalen Definitionen von Graphen und statistischen Graphmodellen, Partitionen, endlichen Permutationsgruppen, Graphenclustering und Algorithmen dafür, sowie von Entropie. Ein separates Kapitel widmet sich ausführlich der Graphensymmetrie, die durch eine endliche Permutationsgruppe, der Automorphismusgruppe, beschrieben wird. Außerdem werden Algorithmen vorgestellt, die die Symmetrie von Graphen ermitteln können und, teilweise, auch das damit eng verwandte Graphisomorphie Problem lösen. Am Beispiel von Graphenclustering gibt die Dissertation damit Einblicke in mögliche Auswirkungen von Symmetrie in der Datenanalyse, die so in der Literatur bisher wenig bis keine Beachtung fanden
    corecore