14,266 research outputs found

    Constructing multiple unique input/output sequences using metaheuristic optimisation techniques

    Get PDF
    Multiple unique input/output sequences (UIOs) are often used to generate robust and compact test sequences in finite state machine (FSM) based testing. However, computing UIOs is NP-hard. Metaheuristic optimisation techniques (MOTs) such as genetic algorithms (GAs) and simulated annealing (SA) are effective in providing good solutions for some NP-hard problems. In the paper, the authors investigate the construction of UIOs by using MOTs. They define a fitness function to guide the search for potential UIOs and use sharing techniques to encourage MOTs to locate UIOs that are calculated as local optima in a search domain. They also compare the performance of GA and SA for UIO construction. Experimental results suggest that, after using a sharing technique, both GA and SA can find a majority of UIOs from the models under test

    Solving the undirected feedback vertex set problem by local search

    Full text link
    An undirected graph consists of a set of vertices and a set of undirected edges between vertices. Such a graph may contain an abundant number of cycles, then a feedback vertex set (FVS) is a set of vertices intersecting with each of these cycles. Constructing a FVS of cardinality approaching the global minimum value is a optimization problem in the nondeterministic polynomial-complete complexity class, therefore it might be extremely difficult for some large graph instances. In this paper we develop a simulated annealing local search algorithm for the undirected FVS problem. By defining an order for the vertices outside the FVS, we replace the global cycle constraints by a set of local vertex constraints on this order. Under these local constraints the cardinality of the focal FVS is then gradually reduced by the simulated annealing dynamical process. We test this heuristic algorithm on large instances of Er\"odos-Renyi random graph and regular random graph, and find that this algorithm is comparable in performance to the belief propagation-guided decimation algorithm.Comment: 6 page

    Molecular geometry optimization with a genetic algorithm

    Full text link
    We present a method for reliably determining the lowest energy structure of an atomic cluster in an arbitrary model potential. The method is based on a genetic algorithm, which operates on a population of candidate structures to produce new candidates with lower energies. Our method dramatically outperforms simulated annealing, which we demonstrate by applying the genetic algorithm to a tight-binding model potential for carbon. With this potential, the algorithm efficiently finds fullerene cluster structures up to C60{\rm C}_{60} starting from random atomic coordinates.Comment: 4 pages REVTeX 3.0 plus 3 postscript figures; to appear in Physical Review Letters. Additional information available under "genetic algorithms" at http://www.public.iastate.edu/~deaven

    Stochastic optimization methods for extracting cosmological parameters from CMBR power spectra

    Get PDF
    The reconstruction of the CMBR power spectrum from a map represents a major computational challenge to which much effort has been applied. However, once the power spectrum has been recovered there still remains the problem of extracting cosmological parameters from it. Doing this involves optimizing a complicated function in a many dimensional parameter space. Therefore efficient algorithms are necessary in order to make this feasible. We have tested several different types of algorithms and found that the technique known as simulated annealing is very effective for this purpose. It is shown that simulated annealing is able to extract the correct cosmological parameters from a set of simulated power spectra, but even with such fast optimization algorithms, a substantial computational effort is needed.Comment: 7 pages revtex, 3 figures, to appear in PR
    • 

    corecore