42,985 research outputs found

    Schedulability Analysis for Certification-friendly Multicore Systems

    Get PDF
    This paper presents a new schedulability test for safety-critical software undergoing a transition from single-core to multicore systems - a challenge faced by multiple industries today. Our migration model, consisting of a schedulability test and execution model, is distinguished by three aspects consistent with reducing transition cost. First, it assumes externally-driven scheduling parameters, such as periods and deadlines, remain fixed (and thus known), whereas exact computation times are not. Second, it adopts a globally synchronized conflict-free I/O model that leads to a decoupling between cores, simplifying the schedulability analysis. Third, it employs global priority assignment across all tasks on each core, irrespective of application, where budget constraints on each application ensure isolation. These properties enable us to obtain a utilization bound that places an allowable limit on total task execution times. Evaluation results demonstrate the advantages of our scheduling model over competing resource partitioning approaches, such as Periodic Server and TDMA.Ope

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Control Aware Radio Resource Allocation in Low Latency Wireless Control Systems

    Full text link
    We consider the problem of allocating radio resources over wireless communication links to control a series of independent wireless control systems. Low-latency transmissions are necessary in enabling time-sensitive control systems to operate over wireless links with high reliability. Achieving fast data rates over wireless links thus comes at the cost of reliability in the form of high packet error rates compared to wired links due to channel noise and interference. However, the effect of the communication link errors on the control system performance depends dynamically on the control system state. We propose a novel control-communication co-design approach to the low-latency resource allocation problem. We incorporate control and channel state information to make scheduling decisions over time on frequency, bandwidth and data rates across the next-generation Wi-Fi based wireless communication links that close the control loops. Control systems that are closer to instability or further from a desired range in a given control cycle are given higher packet delivery rate targets to meet. Rather than a simple priority ranking, we derive precise packet error rate targets for each system needed to satisfy stability targets and make scheduling decisions to meet such targets while reducing total transmission time. The resulting Control-Aware Low Latency Scheduling (CALLS) method is tested in numerous simulation experiments that demonstrate its effectiveness in meeting control-based goals under tight latency constraints relative to control-agnostic scheduling

    Solving the Resource Constrained Project Scheduling Problem with Generalized Precedences by Lazy Clause Generation

    Full text link
    The technical report presents a generic exact solution approach for minimizing the project duration of the resource-constrained project scheduling problem with generalized precedences (Rcpsp/max). The approach uses lazy clause generation, i.e., a hybrid of finite domain and Boolean satisfiability solving, in order to apply nogood learning and conflict-driven search on the solution generation. Our experiments show the benefit of lazy clause generation for finding an optimal solutions and proving its optimality in comparison to other state-of-the-art exact and non-exact methods. The method is highly robust: it matched or bettered the best known results on all of the 2340 instances we examined except 3, according to the currently available data on the PSPLib. Of the 631 open instances in this set it closed 573 and improved the bounds of 51 of the remaining 58 instances.Comment: 37 pages, 3 figures, 16 table

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    PERTS: A Prototyping Environment for Real-Time Systems

    Get PDF
    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems

    A hierarchical approach to multi-project planning under uncertainty

    Get PDF
    We survey several viewpoints on the management of the planning complexity of multi-project organisations under uncertainty. A positioning framework is proposed to distinguish between different types of project-driven organisations, which is meant to aid project management in the choice between the various existing planning approaches. We discuss the current state of the art of hierarchical planning approaches both for traditional manufacturing and for project environments. We introduce a generic hierarchical project planning and control framework that serves to position planning methods for multi-project planning under uncertainty. We discuss multiple techniques for dealing with the uncertainty inherent to the different hierarchical stages in a multi-project organisation. In the last part of this paper we discuss two cases from practice and we relate these practical cases to the positioning framework that is put forward in the paper
    • ā€¦
    corecore