
1

Schedulability Analysis for Certification-friendly

Multicore Systems
Jung-Eun Kim ∗, Richard Bradford †, Tarek Abdelzaher∗, Lui Sha ∗

∗Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
†Rockwell Collins, Cedar Rapids, IA 52498, USA

Abstract

This paper presents a new schedulability test for safety-critical software undergoing a transition from single-core to

multicore systems - a challenge faced by multiple industries today. Our migration model, consisting of a schedulability test and

execution model, is distinguished by three aspects consistent with reducing transition cost. First, it assumes externally-driven

scheduling parameters, such as periods and deadlines, remain fixed (and thus known), whereas exact computation times are

not. Second, it adopts a globally synchronized conflict-free I/O model that leads to a decoupling between cores, simplifying the

schedulability analysis. Third, it employs global priority assignment across all tasks on each core, irrespective of application,

where budget constraints on each application ensure isolation. These properties enable us to obtain a utilization bound that

places an allowable limit on total task execution times. Evaluation results demonstrate the advantages of our scheduling

model over competing resource partitioning approaches, such as Periodic Server and TDMA.

F

1 INTRODUCTION

THIS paper presents a schedulability test to support migration of safety-critical software from single-core to multicore

systems. The work is motivated by the advent of multicore processors over the last decade, with increasing potential

for efficiency in performance, power and size. This trend has made new single-core processors relatively scarce and as a

result, has created a pressing need to transition to multicore processors. Existing previously-certified software, especially for

safety- critical applications such as avionics systems, underwent rigorous certification processes based on an underlying

assumption of running on a single-core processor. Providers of these certified applications wish to avoid changes that

would lead to costly recertification requirements when transitioning to multicore processors.

Our paper provides a significant step toward supporting multicore solutions for safety-critical applications. It does this

by building on three separate analysis methods that previously had not been applied together to multicore systems. These

are:

• Utilization bound analysis using task period information,

• Conflict-free I/O scheduling, and

• Global priority assignment across all tasks on a core, irrespective of application (defined by a group of tasks), while

enforcing application budgets

Our schedulability analysis can be viewed as an extension to the classical Liu and Layland (L&L) schedulability

bound [1]. When known values of task periods are used in the analysis, the bound becomes even better (i.e., less restrictive),

often significantly so. This is because the L&L analysis makes worst-case assumptions about task periods; actual periods

are unlikely to resemble the worst case (for example, the ratio of two task periods will often be a whole number, as opposed

to the square root of 2, as derived by L&L).

2

Conflict-free I/O scheduling treats I/O transactions as non-preemptive and globally synchronizes them in a conflict-free

schedule. In the analysis, I/O transactions are regarded as having the highest priority, since this is the most pessimistic

assumption for other tasks’ schedulability. This eliminates cross-core interference due to I/O and leads to a decoupling

between cores, simplifying the schedulability analysis.

In addition, the model assigns CPU utilization budgets to each application (i.e., a group of tasks), yet it schedules tasks

globally across applications sharing a core. Evaluation in a single-core model showed that this architecture significantly im-

proves schedulability over TDMA and Periodic Server, while maintaining isolation properties. We build on this model [2],

providing an overview in Sec. 2.1.

Our utilization bound and global priority assignment with enforced application budgets are complementary; the former

is useful early in the development process (indeed, even before coding begins) or during migration, whereas the latter is

applicable when development is complete and all tasks’ Worst Case Execution Times (WCET)s can be identified accurately.

During development, and before the code is instrumented completely enough to determine WCETs with interference

effects, developers can still execute the code under approximately worst-case conditions and measure processor idle time;

this allows a quick and easy estimation of application utilization for comparison with the utilization bound.

2 SOFTWARE MIGRATION TO MULTICORE SYSTEMS

This paper proposes a task execution model and a corresponding schedulability analysis test, motivated by the need to

transition safety-critical software certified on single-core systems to multicore systems. Toward that end, we make three

important assumptions motivated by likely transition realities and design choices: (i) task periods, deadlines, and I/O

durations are known since they are tied to system specifications or derived from physical constraints and data size, but our

schedulability analysis assumes exact execution times are not yet known, (ii) all I/O transactions are globally scheduled

in a conflict-free manner, and (iii) global priority assignment with application budgets enforced is employed on individual

cores. Our model attempts to remove all timing dependencies across applications to support portability of applications.

We provide a solution to the schedulability problem given the above model.

2.1 Task Execution Model

Schedulability Analysis with Task Period Data: In this paper, we assume that an allocation of application software to cores

has already taken place: we focus on scheduling instead. We are given M cores. In each core, m, we consider scheduling a

set, S(m), of periodic tasks, where each task, τm,i ∈ S(m), is described by a known period, Tm,i, a known relative deadline,

Dm,i, and a known I/O duration, IOm,i, but the worst case computation time of the task, denoted by Cm,i, may not be

known. Once development is complete, the various factors and details that affect WCETs, including timing interference

and delay due to shared resources (e.g., bus, cache, memory), are assumed to be abstracted (by techniques such as [3], [4],

[5], [6], [7]) and incorporated in the final WCETs. However, the utilization bound in our analysis framework allows for

WCETs that are not yet known and still obtains a bound on allowable application utilization. We assume that tasks are

indexed such that a lower number implies a higher priority in a core.

Conflict-free I/O: A key requirement for achieving isolation among cores is to ensure non-interference due to I/O. Hence,

in this paper, I/O transactions are scheduled such that they are conflict-free. As a result, all I/O activity occurs strictly

periodically and non-preemptively, which makes the implementation and analysis easier [8]. I/O scheduling thus reduces

to choosing phasing for the I/O transactions. I/O sizes tend to be relatively short, hence their strictly periodic scheduling

does not seriously degrade system schedulability - we show this property in the evaluation. I/O transactions are modeled

as periodic tasks with period Tm,i and execution time IOm,i. To ensure isolation and due to their relatively small size, I/O

transactions are analyzed as having the highest priority, and being globally scheduled in a conflict-free manner, such that

3

I/
O!

I/
O!

I/
O!

I/
O!

I/
O!

I/
O!

I/
O!

I/
O!

I/
O!

I/
O!

I/
O!

I/
O!

I/
O!

Core 1

Core 2

Core 3

Core 4

Fig. 1. Conflict-free I/O section schedule over multiple cores. I/O sections are non-preemptive and strictly periodic.

IO exec ! IO exec ! IO

(a) In the perspective of execution

(b) In the perspective of quantitative analysis

. . . !

. . . ! . . . !

. . . !

IOm,i IOm,i IOm,iCm,i Cm,i

Fig. 2. Top: task execution model with I/O sections, bottom: quantitatively lumping input and output time in the analysis.

only a single section executes at a time across all cores as shown in Figure 1. Hence no I/O on any core will ever be blocked,

preempted, or otherwise delayed by I/O from another core.

In our model, an I/O transaction must first occur to acquire input, the processing component of a task then runs,

followed by I/O to deliver the output. The I/O transactions are supposed to occur strictly periodically at a pre-designated

instant, even though raw I/Os from external sources are asynchronous. We assume that output and input occur at period

boundaries back-to-back, thus combining the output and input into a contiguous interval of I/O processing. In this paper,

we use the term I/O section to refer to such an object, having total duration, IOm,i, for task τm,i, as shown in Fig. 2. The

I/O section’s duration is relatively easy to bound since it depends mainly on data needs of control loops and so can be

known. This duration can of course be affected by interference on shared resources such as bus and cache. We assume such

interferences can be bounded by techniques such as [3], [4], [5], [6], [7] and incorporated into the I/O duration estimation.1

Processing tasks and I/O transactions constitute separately schedulable entities. The processing component runs at a

known fixed priority value, Prm,i, whereas (as we explain later) I/O is regarded as top priority. Summing up I/O and

execution time, we define the task’s total utilization, um,i = (Cm,i + IOm,i)/Tm,i. The total number of tasks allocated to

core m is |S(m)| = N(m). Each task belongs to an application αz , (z = 1, · · · , Z(m)), where α(τm,i) denotes the application

to which task τm,i belongs to. Table 1 summarizes the notation used in this paper.

Global priority assignment, yet enforcing application budgets: Each application (i.e., a group of tasks) is assigned to one

core. Note that, in principle, an application might be allocated to span several cores. However, we do not expect this to be

the common case when migrating safety-critical software certified on single-core systems to multicore platforms. This is

because individual applications comprising the original single-core system must have been certified to run on a single-core.

While the allocation of applications might change upon transition, we expect that in order to minimize re-certification cost,

it makes sense that tasks belonging to the same application should be assigned together on the same core 2.

We further assume that Core m’s utilization, Um, is given by Um =
∑N(m)

i=1 um,i. At design time, each application αz

1. Because of interference at run time, the start of an I/O section could be delayed slightly. We assume such delays (along with other context-
switching delays) are captured in the assumed duration of an I/O section. Note that such interference could come only from non-I/O tasks; as
explained herein, I/O sections cannot interfere with each other.

2. We would always expect system developers to avoid - if at all possible - breaking an application across cores. To do otherwise would invite
additional complications without any additional benefit. Indeed, some processors have no shared cache between cores, so two threads of the same
application running on different cores lose the advantage of caching, resulting in a significant performance loss. Meanwhile, much additional
analysis would be required to manage the timing of thread execution and of resource availability on separate cores. Breaking large applications
may become unavoidable for some future migrations, but it is outside the scope of this paper.

4

TABLE 1
Notation

Symbol Description
τm,i task i in core m
Tm,i period of τm,i

Cm,i computation time of τm,i not given
Prm,i priority of τm,i

IOm,i duration of I/O transaction of τm,i

ψm,i offset of I/O transaction of τm,i

um,i utilization of τm,i

Um utilization of core m
αz application z
α(τm,i) application to which τm,i belongs
Bz CPU utilization budget assigned for αz

An
(m) a set of applications to which τm,n’s higher pri-

ority tasks belongs but excluding to which τm,n

belongs
M core count
N(m) task count in core m

is assigned a budget Bz , defined as the maximum CPU utilization allowable for the sum of its tasks. Hence, for each αz ,

when development is complete, the code should satisfy

∑
∀τm,is.t.α(τm,i)=αz

um,i ≤ Bz. (1)

Observe that the budget,Bz , of application αz is a design-time constraint, not a run-time resource partitioning mechanism.

Compliance with application budgets is checked repeatedly throughout the software development process. In cases of

noncompliance, either software must be refactored, or else new schedules must be computed. For fielded software,

WCET bounds for individual tasks will be enforced, thereby indirectly enforcing application budget compliance. Such

WCET-enforced tasks will be scheduled using regular fixed priority scheduling. Hence, this mechanism indirectly allows

enforcement of resource budgets, without employing resource partitioning mechanisms at run-time. [2] The mechanism

avoids inefficiencies of resource-partitioned systems, such as the Periodic Server and TDMA, arising due to priority

inversion when a high-priority task in one partition must wait because the CPU is presently allocated to another partition

(where a lower-priority task might be executing). See Figure 3. 3 Tasks’ schedulability is analyzed in a fixed-priority fashion

no matter which application they belong to.

2.2 An Equivalent Independent Task Model

Before developing our schedulability test, we note that the task model above can be transformed to one of scheduling

independent tasks on each core. By assumption, we require I/O to be non-preemptible, and we require the following

precedence constraints involving execution and I/O tasks to be satisfied for every invocation of every task: (i) the processing

component does not begin until after the sub-task of acquiring input is complete, (ii) the sub-task of delivering the

output does not begin until after the processing component is completed, and (iii) the sub-task of acquiring input for

the next period’s invocation of the task does not begin until after the sub-task of delivering the output from the current

period’s invocation is completed. (Note that the very first invocation of the task in the global schedule does not require a

predecessor.) The following theorem shows that using the concept of I/O sections allows these precedence constraints to

be satisfied automatically.

Theorem 1. If a feasible schedule exists with I/O sections scheduled strictly periodically and conflict-free, then there exists a feasible

schedule in which the precedence constraints in our task execution model are satisfied.

3. In this experiment, I/O sections are considered. The detailed information can be found in Sec. 6.

5

Number of Cores
2 3 4 5 6 7 8

N
u

m
b

er
 o

f
sc

h
ed

u
la

b
le

 s
am

p
le

s
0

10

20

30

40

50

60

70

Fig. 3. Low scalability of TDMA: the number of instances schedulable by TDMA according to core count.

Proof. Consider an arbitrary task τm,i. In a feasible schedule with I/O sections scheduled periodically and conflict-free,

each invocation of τm,i gets a total I/O processing time of Im,i+Om,i within each period. In addition, τm,i gets an allocation

of at least Cm,i units of processor time in each period. If I/O sections consist of an output sub-task followed by an input

sub-task, and if each invocation of the processing task follows after the I/O section, then the precedence constraint (i)

above is satisfied. Since the processing task gets at least Cm,i units of processor time in each period, each invocation of the

processing component can complete before the next I/O section begins; hence precedence constraint (ii) is satisfied. Finally

precedence constraint (iii) is satisfied by the construction of I/O sections.

Accordingly, we are eliminating cross-core interference due to I/O and obtaining the utilization bound to place an

allowable limit on total task execution times including other interference effects. As a result, our schedulability problem is

distilled into two subproblems:

• Ensure that I/O sections are scheduled strictly periodically and conflict-free.

• Analyze task schedulability on each core separately.

3 SCHEDULABILITY ANALYSIS WITH BUDGET CONSTRAINTS

Per the discussion above, in this section, we analyze the schedulability of tasks on each core. We do so by analyzing

schedulability of one task at a time, considering its application budget constraint.

3.1 Overview of Approach

A valid utilization bound for an individual task, say τm,n on core m, denoted by Unm,bound means that it is schedulable

whenever the overall utilization of the task set on core m satisfies Um ≤ Unm,bound. Since periods, relative deadlines,

priorities, and I/O sections are known, the bound is computed by minimizing the utilization of a critically schedulable4 task

set on core m,
∑n
i=1 um,i, over all possible values of computation times Cm,i for 1 ≤ i ≤ n.

Consider the critical time zone5 of task τm,n, of application αz , where the task arrives at time t=0 together with

its all higher priority tasks. Suppose that the invocations in this time interval are a critically schedulable task set. Since

scheduling is work-conserving, it follows that the time interval 0 ≤ t < Dm,n is continuously busy. At the same time,

budget constraints limit the utilization of all the tasks in αz up to Bz . However, these two constraints conflict with each

4. A task set is critically schedulable if any increase in execution time of any task would make the set unschedulable [1].
5. A critical time zone is defined as the time interval between a critical instant and the end of the response to the corresponding request of the

task [1].

6

↵2↵1 ↵3 ↵4

B1
B2

B3

B4 ⌧m,n

Lower priority tasks than

Higher priority tasks than⌧m,n

⌧m,n

(0. Test if there exists a feasible I/O schedule using the MILP formulation in Sec. 4.)
1. Calculate Unm,released with α1 and α4.
2. Calculate Bnm.total which is B1 +B3 +B4.
3. If Bnm,total ≤ Unm,released, τm,n is schedulable.

Un
m,released

Un
m,bound

Bn
m,total

Un
m,released

Un
m,bound

Bn
m,total

Schedulable May not be schedulable

Fig. 4. The overview of schedulability analysis with budget constraints, and the relationship between Un
m,released, Un

m,bound and Bn
m,total.

other since budgets could be too small to make the critical interval continuously busy with no gaps, and thus could make

Unm,bound not obtainable.

To tackle this issue, we release (i.e., remove) the budget constraint for the application α(τm,n). Let the resultant bound

be Unm,released. Note that removing a constraint in a minimization problem cannot lead to a higher-value solution, because

the optimal solution to the problem before the removal remains feasible for the problem after the removal. Therefore,

Unm,released ≤ Unm,bound. (2)

Define set An(m) as the set of applications, excluding α(τm,n), on core m containing higher priority tasks than τm,n.

Then, budget constraints for the applications are as follows,

∀αz ∈ An(m), α(τm,i) 6= αz,
n−1∑
i=1

um,i ≤ Bz.

Let us denote Bnm,total as the budget sum of the applications to which τm,n and its higher priority tasks belong, i.e.,

Bnm,total =
∑

1≤z≤Z(m)

Bz, ∀αz ∈ (An(m) ∪ {α(τm,n)}).

Then, if Bnm,total, is less than or equal to Unm,released, τm,n is determined to be schedulable by the following theorem.

Theorem 2. If τm,n is compliant with its budget and Bnm,total is less than or equal to Unm,released, τm,n is schedulable.

Proof. If Bnm,total ≤ Unm,released, by (2)

Bnm,total ≤ Unm,released ≤ Unm,bound,

Then Bnm,total ≤ Unm,bound. It means that τm,n is schedulable by the definition of utilization bound for schedulability.

This test is applied to one task at a time, and a core is determined to be schedulable if all tasks on the core are

schedulable. The procedure is illustrated in Fig. 4. In the next section, we show how to compute Unm,released.

7

3.2 The Utilization Bound

It remains to compute the utilization bound, Unm,released, which is the lowest possible utilization when task τm,n and its

higher priority tasks are critically schedulable. It is computed over all possible values of the executions times of the higher-

priority tasks on the same core. This is formulated as a linear programming (LP) problem and solved by a standard LP

solver.

[Constraint 1] – Critically schedulable:

For task τm,n and its higher priority tasks to be critically schedulable, computation times need to fully utilize the available

processor time within the critical time zone from the critical instant to the deadline. Hence, as all higher priority tasks and

τm,n release at time 0, collectively their maximum possible amount of computation times must add up to Dm,n:

Cm,n +
n−1∑
i=1

dDm,n

Tm,i
eCm,i +

n∑
i=1

dDm,n

Tm,i
eIOm,i = Dm,n.

[Constraint 2] – Fully utilized:

Even though Constraint 1 is satisfied, there could be empty gaps prior to Dm,n, which violates the assumption of fully

(i.e., continuously) utilizing the processor time. To prevent such a situation we need an additional constraint which checks,

at every arrival (l · Tk) of a task, if the cumulative demand up to time l · Tk is greater than or equal to l · Tk [9], [10]:

∀1 ≤ k ≤ n, ∀1 ≤ l ≤ bDm,n

Tm,k
c,

Cm,n+
n−1∑
i=1

d l · Tm,k
Tm,i

eCm,i +
n∑
i=1

d l · Tm,k
Tm,i

eIOm,i ≥ l · Tm,k. (3)

For testing, τm,n,
∑n
k=1b

Dm,n

Tm,k
c constraints are generated. This number can be reduced by using Pi(t) presented in [11],

which is defined as follows (see (6) in [11]):

P0(t) = {t}, Pi(t) = Pi−1(b
t

Ti
cTi) ∪ Pi−1(t).

Accordingly, not all the arrivals at l · Tk (∀1 ≤ k ≤ n, ∀1 ≤ l ≤ bDm,n

Tm,k
c) but only the subset of them, t ∈ Pn−1(Dm,n),

are considered as follows:

t ∈ Pn−1(Dm,n),

Cm,n +
n−1∑
i=1

d t

Tm,i
eCm,i +

n∑
i=1

d t

Tm,i
eIOm,i ≥ t. (4)

In the worst case, the number of constraints can be 2n [11]. However, set Pi(t) generates redundantly identical values.

Hence we remove the redundancy and thus have fewer constraints. Fig. 5 shows the average number of constraints

generated by the original formulation (3) of Constraint 2 and by (4) (but after removing redundant values).

Finally, we formulate the LP problem of finding Unm,released for a given task τm,n as follows:

[Find Un
m,released] Minimize

∑n
i=1 um,i

8

Task count per core
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
o
n
st

ra
in

t
co

u
n
t

o
n
 a

v
er

ag
e

0

500

1000

1500

by original formulation
by applied formulation

Fig. 5. Comparison of the number of constraints generated by original formulation of Constraint 2 vs. redundancy removed from (4). The result is
shown for the data from Fig. 7 in the evaluation section.

Subject to:

•
n−1∑
i=1

um,i ≤ Bz, ∀αz ∈ An(m), α(τm,i) 6= αz.

• Cm,n +
n−1∑
i=1

dDm,n

Tm,i
eCm,i +

n∑
i=1

dDm,n

Tm,i
eIOm,i = Dm,n.

• Cm,n +
n−1∑
i=1

d t

Tm,i
eCm,i +

n∑
i=1

d t

Tm,i
eIOm,i ≥ t,

where t ∈ Pn−1(Dm,n).

The return value of the problem above is Unm,released which minimizes the total utilization of all higher priority tasks and

τm,n. If Bnm,total ≤ Unm,released, then τm,n is determined to be schedulable by Theorem 2.

4 CONFLICT-FREE I/O

Since a bus is shared by multiple cores commonly on multicore processors, unpredictable interference among I/O sections

could occur if conflicted. Hence we schedule I/O sections in a way that only one I/O section must be executed at a time

across all cores. The I/O sections are non-preemptive and strictly periodic as can be seen in [12], [13], [14], [15], [16]. In [17],

a necessary and sufficient condition that any two non-preemptive and strictly periodic intervals do not overlap each other

was presented. We apply this condition to our problem for any two I/O sections of τp,i and τq,j on any core p and q as

follows (core p and q may or may not be same):

IOp,i ≤ (ψq,j−ψp,i) mod gcd(Tp,i, Tq,j)

≤ gcd(Tp,i, Tq,j)− IOq,j

where ψ∗,x denotes the initial offset of IO∗,x (appearing at every ψ∗,x+kT∗,x, k = 0, 1, . . .) and gcd is the greatest common

divisor function. The current form of the inequality above is not linear due to the modulo operation. Hence, we reformulate

it as the following mixed integer linear programming problem:

IOp,i ≤ (ψq,j−ψp,i)− gcd(Tp,i, Tq,j) ·K (5)

(ψq,j − ψp,i)− gcd(Tp,i, Tq,j) ·K ≤ gcd(Tp,i, Tq,j)− IOq,j (6)

where K is a new real-valued variable bounded in⌊ 1− Tp,i
gcd(Tp,i, Tq,j)

⌋
− 1 ≤ K ≤

⌊ Tq,j − 1

gcd(Tp,i, Tq,j)

⌋
+ 1.

9

If a feasible conflict-free I/O schedule exists, we individually obtain Unm,released to test schedulability of each task on

each core, as explained in the previous section (Sec. 3).

5 AN ILLUSTRATIVE EXAMPLE

TABLE 2
Task set for an illustrative example

budget period deadline I/O

core 1 application 1 0.5 τ1,2 12 12 2
τ1,3 16 16 1

application 2 0.25 τ1,1 8 8 1
core 2 application 1 0.9 τ2,1 24 21 1

To illustrate how to apply the approach explained in the previous sections, let us consider an example which has 4 tasks

in three applications running on two cores, as shown in Table 2.

We first check if a conflict-free I/O schedule exists. For this, we solve the mixed integer linear program in (5) and (6)

for every pair among IO1,1, IO1,2, IO1,3 and IO2,1. Then, one of possible solutions is: ψ1,1 = 1, ψ1,2 = 2, ψ1,3 = 5,

and ψ2,1 = 16. Hence the existence of a global I/O schedule is checked. Below we shall compute U3
1,released which is the

theoretical bound on utilization for checking the schedulability of task τ1,3 on core 1.

The objective function of the optimization problem (presented at the end of Sec. 3) is

3∑
i=1

C1,i

T1,i
+
IO1,i

T1,i
=
C1,1

8
+
C1,2

12
+
C1,3

16
+

1

8
+

2

12
+

1

16
.

The budget constraint is:
C1,1 + IO1,1

T1,1
=
C1,1 + 1

8
≤ 0.25⇒ C1,1 ≤ 1

Note that τ1,1 is the only higher-priority task than τ1,3 in other applications on the same core.

For τ1,3 to be critically schedulable:

C1,3 + d
16

8
eC1,1 + d

16

12
eC1,2 + d

16

8
e · 1 + d16

12
e · 2 + d16

16
e · 1 = 16

C1,3 + 2C1,1 + 2C1,2 = 9

For τ1,3’s critical zone to be fully utilized:

C1,3 + d
8

8
eC1,1 + d

8

12
eC1,2 + d

8

8
e · 1 + d 8

12
e · 2 + d 8

16
e · 1 ≥ 8,

C1,3 + d
12

8
eC1,1 + d

12

12
eC1,2 + d

12

8
e · 1 + d12

12
e · 2 + d12

16
e · 1 ≥ 12.

Then,

C1,3 + C1,1 + C1,2 ≥ 4,

and

C1,3 + 2C1,1 + C1,2 ≥ 7.

10

Finally, solving the linear program above results in the computation times of C1,1 = 0; C1,2 = 2; C1,3 = 5. It should be

noted that a solution to this optimization problem does not necessarily correspond to a realistic task set; instead, it gives

us a limiting case that defines a sufficient condition for schedulable utilization. The corresponding utilization bound is

U3
1,released =

C1,1

8
+
C1,2

12
+
C1,3

16
+

1

8
+

2

12
+

1

16
' 83.333%.

Comparing this with the allowed total budget on core 1, we have 75% ≤ 83.333%. This means τ1,3 is schedulable as long

as its execution time when development is complete (and also estimated bounds on any inter-core interference are taken

into account) is compliant with its application budget. For instance, suppose C1,2 and C1,3 are finally bounded to 1 and 3,

respectively. This is good because the utilization is under the budget. On the other hand, if C1,2 = 2 and C1,3 = 2, they are

not compliant with the budget and thus the task set might not be schedulable.

The bounds U1
1,released and U2

1,released are computed similarly. Trivially, U1
1,released = 100%, and thus τ1,1 is schedulable.

For U2
1,released, we can obtain C1,1 = 1 and C1,2 = 6. The resulting bound U2

1,released is

1 + 1

8
+

2 + 6

12
' 91.667%.

Since B2
1,total = 75%, τ1,2 is schedulable. As a result, since all three tasks are schedulable, core 1 is schedulable. In addition,

since τ2,1 is schedulable as its utilization bound is 87.5% while B1
2,total = 0.9, core 2 might not be schedulable.

In this example, the worst-case scenario ended up with C1,1 = 0. As mentioned earlier, such solutions are derived

to obtain the extreme utilization ‘bound’ with the worst-case combination; no lower bound can be found by other

combinations. In other words, if there is any increase on the resulting task execution times, the utilization bound would

not be lower than the current utilization. For example, if we increase C1,1 to 1 in the above example, and solve for the other

execution times, we could get C1,2 = 1 and C1,3 = 5. The resulting utilization is then

C1,1

8
+
C1,2

12
+
C1,3

16
+

1

8
+

2

12
+

1

16
= 87.5%

which is higher than what is computed before (83.333%). Hence, it is not the lowest-utilization critically-schedulable

scenario. In short, we only aim to obtain the lowest ‘bound’ to compare for schedulability.

6 EVALUATION

We first evaluate the impact of I/O on schedulability then compare our new schedulability test for individual cores to

the Liu and Layland bound, showing the impact of using information on periods and deadlines. Lastly, we apply these

results in comparing the count of schedulable instances using our approach, Periodic Server and TDMA. The results show

that our approach can schedule more instances since it can avoid any unnecessary priority inversion. We evaluate with

synthetic data since actual avionics systems have yet to be certified when multiple cores are running. However, we model

tasks similar to actual ones - tasks are periodic, deadline-constrained, and contain I/O sections. All experiments ran on an

Intel Core i7-2600 CPU 3.40 GHz with 16GB RAM, using IBM ILOG Cplex Optimizer for the linear programs, and solved

essentially instantaneously.

6.1 I/O schedulability

We compare the cases of non- and harmonic periods:

• NON-HARMONIC PERIODS: we generated 1,000 task sets from ten groups having, respectively, total I/O utilization

(across the entire system), 0-10%, · · · , 90-100%, 100 instances per group. For each instance, there are 4 cores, and up

to 60 tasks. Each task period is a divisor of 54000 which is 24 · 33 · 53 and I/O duration is randomly drawn but not

11

I/O utilization

0-
10

%

10
-2

0%

20
-3

0%

30
-4

0%

40
-5

0%

50
-6

0%

60
-7

0%

70
-8

0%

80
-9

0%

90
-1

00
%

C
o
u
n
t

o
f

sc
h
ed

u
la

b
le

 I
/O

0

10

20

30

40

50

60

70

80

90

100

Non-harmonic periods
Harmonic periods

Fig. 6. Number of task set instances that have schedulable I/O when task periods are non-harmonic vs. harmonic.

longer than half of the gcd of the periods.

• HARMONIC PERIODS: instances are generated same as the non-harmonic period case, but task periods are harmonic

(each period is either a divisor or a multiple of any other).

Figure 6 shows the number of task sets that have a feasible schedule of I/O section for different I/O utilization. As the

I/O load increases, the schedulable rate of non-harmonic periods decreases, and there is no single schedulable instance

when utilization is over 70%. Harmonic I/Os can achieve much higher utilization; nevertheless, because of their non-

preemptivity, the I/O sections cannot always be schedulable even when the utilization is 100%. Beyond the comparison

between harmonic and non-harmonic cases, we can see that relatively lower I/O utilization would not impact the entire

system schedulability. Even in the non-harmonic case, I/O sections are always schedulable with I/O load of up to about

20%. As we have found that I/O utilization in practice is small (e.g., less than 5%), it is reasonable to conclude our model

of non-preemptive I/O sections is not overly restrictive.

6.2 Utilization Bound

As an alternative to existing resource partitioning schemes, we used a global scheduling approach that ignores application

boundaries and schedules tasks according to their fixed priorities on each core. For per-core bound, we have obtained

min
1≤n≤N(m)

Unm,released

on each core m. In Figure 7, each point corresponds to per-core bound for each task set. For this experiment, we used

the same parameters as the non-harmonic period case in Sec. 6.1 above, but kept I/O utilization in 1%-5%. We generated

1,500 task sets with evenly-distributed numbers of tasks per core, i.e., 100 instances per task count. For comparison, the Liu

and Layland utilization bound is plotted as well (line plot), when deadlines are equal to periods.

As seen from the result, the bounds calculated by our approach are above the L&L bound. This is because the analysis

takes advantage of the information on task periods. In practice, as development proceeds and teams gain more information

on task WCETs, they can recalculate the utilization. As long as the eventual task WCETs yield utilization levels that comply

with the bounds, the tasks will be schedulable.

12

Task count per core
0 2 4 6 8 10 12 14 16

R
es

u
lt

 b
o
u
n
d

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Bound by our approach
L&L bound

Fig. 7. Utilization bounds per core with known periods (points) are higher than the Liu and Layland bound (line) (when deadline is equal to period).

Core count
2 3 4 5 6 7 8

N
u
m

b
er

 o
f

fo
u
n
d
 s

o
lu

ti
o
n
s

0

50

100

150

200

250

300

Our approach
Periodic server
TDMA

Fig. 8. The number of instances schedulable by our approach, Periodic Server, and TDMA.

6.3 Our Approach vs. Other Resource Partitioning Mechanisms

The same parameters were used as in the previous cases except that here we vary core count from 2 to 8 – we generated 300

instances for each core count. Fig. 8 shows the number of task set instances that are schedulable by our approach, Periodic

Server, and TDMA. In order for an instance to be schedulable, all tasks in all applications (i.e., partitions and servers) on

every core must be schedulable. In Periodic Server approach, each application is assigned its own server. The period of

the server is the greatest common divisor of the periods of tasks that belong to the server, which is essentially a best-case

assumption for Periodic Server. The utilization of the server is equal to the application budget. This allows us to compute

server parameters. The analysis in [18] is used to test the schedulability. This analysis requires execution time information.

For fairness, the execution times and all other data (if applicable) used here by Periodic Server are also applied in our

approach and TDMA as well. When TDMA is used, each application is assigned a TDMA partition. The utilization of the

partition is equal to the application budget. Then the greatest common divisor of the periods is used as a major cycle for a

TDMA schedule. The schedulability of TDMA was analyzed by the method presented in [19].

From Fig. 8, we can see that our approach schedules more task sets than the TDMA or Periodic Server can. This is

because our approach avoids priority inversions by scheduling tasks irrespective of their assignments to applications. All

13

the three approaches show also that task sets with higher core count are less schedulable. Our result should not be read

as saying Periodic Server is inferior to TDMA, because in some instances Periodic Server can successfully schedule them

while TDMA does not and vice versa.

7 RELATED WORK

I/O is one of the most serious interference sources on multicore processors. However, it has not been extensively researched

in real-time computing literature, whereas bus, cache and memory related issues have been extensively addressed in [3],

[4], [5], [6], [7]. In this paper, we tackle the I/O issue by a conflict-free I/O model, which is motivated by concepts such

as zero partition or device management partition [12], [13], [14], [15], [16] that are used in IMA (Integrated Modular

Avionics) systems. The strictly periodic and non-preemptive model of I/O sections makes implementation and analysis

easier [8]. There has been a stream of work on scheduling optimization for non-preemptive and strictly periodic tasks on

multiprocessor systems. In [17], [20], Korst et al. addressed the problem of scheduling strictly periodic and non-preemptive

tasks on a multiprocessor with the minimum number of processors. The authors showed that the problem is NP-complete

in the strong sense even for a uniprocessor case. Al Sheikh et al. [21] addressed a similar problem by proposing a Game

Theory based algorithm that not only finds a feasible schedule of tasks but also maximizes the relative distances between

them. Kermia et al. [22] presented a greedy heuristic approach to find a non-preemptive multiprocessor schedule of strictly

periodic tasks with precedence constraints. However, exclusiveness in resource sharing across processors is not modeled

in these work. In [16], IMA-partition level exclusive I/O model was addressed, while in this paper each task has its own

I/O section.

Perhaps the earliest work in a single-core system for utilization bound to account for unknown execution times was a

generalized utilization bound for fixed-priority scheduling by Park et al. [23] that takes into account task periods, deadlines,

and arbitrary fixed priorities. The underlying optimization problem was later simplified, leading to a solution that was not

tight [24]. Chen et al. proposed other approximations [25], together with a tight utilization bound computed in exponential

time for a periodic task model with known periods and implicit deadlines, under rate monotonic scheduling. A more recent

approach to solve the problem offered another linear programming formulation [26]. In [11], Bini and Buttazzo proposed

a method to reduce the number of constraints that should be considered.

Some work has addressed temporal modularity for resource partitioning. In [19], the author presented a scheduling

bound when only information of higher-level partitions is given. The work was based on TDMA and assumes that periods

are the same as deadlines. Shin and Lee [27] proposed the periodic resource model for hierarchical scheduling. They

propose schedulability analysis of tasks mapped to a periodic resource supply (server). The authors presented the exact

schedulability analysis under RM and EDF scheduling and derived the corresponding utilization bounds. Davis et al. [18],

[28] presented the exact worst-case response time analysis under the periodic server, sporadic server, and deferrable server.

Differently from their work, [2] assigns only CPU utilization for each application (a group of tasks) and then globally

schedules tasks (i.e., ignores application-level isolation). We employed this model in this paper.

Others have made efforts to find good parameters for a higher-level resource (e.g., server, partition, or budget) in

hierarchical scheduling. That is to calculate the minimal amount for the allocated partitioned resource so the system is

schedulable. Almeida et al. [29] analyzed a periodic server model by introducing the server availability function. They also

developed a heuristic algorithm for server (resource) parameter optimization achieving the minimum system utilization.

Lipari et al. [30] also considered the server parameter optimization problem in a hierarchical scheduling system with a

different approach of schedulability analysis. Yoon et al. [31] considered multiple resources for parameter optimization

achieving the minimum system utilization. In that work, the authors solved the problem with Geometric Programming. In

[32], Saewong et al. presented a response time analysis for real-time guarantees for deferrable and sporadic servers. [18],

[28] also presented a greedy algorithm to select multiple server parameters and addressed optimal selection as a holistic

problem.

14

As a hierarchical scheduling framework for safety-critical systems, specifically such as avionics, the IMA architecture

has been widely adopted in industry. In [33], [34], Lee et al. considered an IMA system in which multiple processors are

connected over an Avionics Full-Duplex Switched Ethernet. The authors presented a method to find a cyclic schedule for

both IMA partitions and bus channels that guarantees the timing requirements of tasks and messages. Tămaş–Selicean

et al. [35], [36] considered an optimization problem of scheduling mixed-criticality partitioned resources in a distributed

architecture. The presented algorithm finds an assignment of tasks and partitions as well as their schedules that satisfy

application schedulability while minimizing the design cost. Rufino et al. in [37] addressed a Temporal and Spatial

Partitioning system that includes a partitioning concept that is relevant for IMA. Unlike ours, the IMA solutions are

based on TDMA, which we show is inferior in terms of schedulability.

8 CONCLUSION

In this paper, we presented a schedulability test and task execution model to support reducing the cost of migrating

software from single-core to multicore systems. Our schedulability test improves upon classical schedulability bounds by

taking advantage of known information on task periods and deadlines. By synchronizing I/O sections globally so as to be

conflict-free across cores, I/O-level isolation was achieved between cores. Once the existence of a global I/O schedule was

assured, periodic tasks were analyzed for schedulability on each core subject to application budgets that provide temporal

modularity. Together, our schedulability test and task execution model enable us to obtain a utilization bound that places

an allowable limit on total task execution times. We compared our approach to other resource partitioning approaches and

showed a considerable advantage in schedulability.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard real-time environment,” Journal of the ACM, vol. 20,

no. 1, pp. 46–61, January 1973.

[2] J.-E. Kim, T. Abdelzaher, and L. Sha, “Budgeted generalized rate monotonic analysis for the partitioned, yet globally scheduled uniprocessor

model,” in IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2015), Seattle, WA, USA. IEEE, April 2015.

[3] J. Rosén, A. Andrei, P. Eles, and Z. Peng, “Bus Access Optimization for Predictable Implementation of Real-Time Applications on

Multiprocessor Systems-on-Chip,” in Proc. of IEEE Int’l Real-Time Systems Symposium, 2007, pp. 49–60.

[4] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero, “Hardware Support for WCET Analysis of Hard Real-Time Multicore

Systems,” in Proc. of IEEE/ACM Int’l Symp. on Comp. Arch., 2009.

[5] M.-K. Yoon, J.-E. Kim, and L. Sha, “Optimizing Tunable WCET with Shared Resource Allocation and Arbitration in Hard Real-Time Multicore

Systems,” in Proceedings of the 32nd IEEE Int’l Real-Time Systems Symposium, 2011, pp. 227–238.

[6] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson, “Making shared caches more predictable on multicore platforms,” in Proceedings

of the 25th Euromicro Conference on Real-Time Systems, 2013.

[7] M. Chisholm, B. C. Ward, N. Kim, and J. H. Anderson, “Cache sharing and isolation tradeoffs in multicore mixed-criticality systems,” in

Proceedings of the IEEE Real-Time Systems Symposium, 2015.

[8] A. K.-L. Mok, “Fundamental design problems of distributed systems for the hard–real–time environment,” Ph.D. dissertation, Department

of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1983, ph.D. Thesis.

[9] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: exact characterization and average case behavior,” in Real Time

Systems Symposium, 1989., Proceedings., Dec 1989, pp. 166–171.

[10] D.-W. Park, S. Natarajan, A. Kanevsky, and M. J. Kim, “A generalized utilization bound test for fixed-priority real-time scheduling,” in

Proceedings of the 2nd International Workshop on Real-Time Computing Systems and Applications, 1995.

[11] E. Bini and G. C. Buttazzo, “Schedulability analysis of periodic fixed priority systems,” IEEE Trans. Comput., vol. 53, no. 11, Nov. 2004.

[12] J. Rushby, “Partitioning in avionics architectures: Requirements, mechanisms, and assurance,” NASA Langley Technical Report, Mar. 1999.

[13] J. Krodel, “Commercial off-the-shelf real-time operating system and architectural considerations,” Federal Aviation Administration, Feb. 2004.

[14] P. Parkinson and L. Kinnan, “Safety-critical software development for integrated modular avionics,” White Paper, Wind River Systems, 2007.

[15] J.-E. Kim, M.-K. Yoon, S. Im, R. Bradford, and L. Sha, “Optimized scheduling of multi-IMA partitions with exclusive region for synchronized

real-time multi-core systems,” in Proceedings of the Conference on Design, Automation and Test in Europe (DATE), 2013, pp. 970–975.

[16] J.-E. Kim, M.-K. Yoon, , R. Bradford, and L. Sha, “Integrated modular avionics (IMA) partition scheduling with conflict-free I/O for multicore

avionics systems,” in Proceedings of the 38th IEEE Computer Software and Applications Conference, 2014.

15

[17] J. H. M. Korst, E. H. L. Aarts, and J. K. Lenstra, “Scheduling periodic tasks,” INFORMS Journal on Computing, vol. 8, no. 4, 1996.

[18] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive scheduling,” in Proc. of the 24th IEEE RTSS, 2005.

[19] L. Sha, “Real-time virtual machines for avionics software porting and development.” in Real-Time and Embedded Computing Systems and

Applications, 9th International Conference, RTCSA 2003, February 18-20, 2003., J. Chen and S. Hong, Eds., 2003, pp. 123–135.

[20] J. Korst, E. Aarts, J. K. Lenstra, and J. Wessels, “Periodic assignment and graph colouring,” Discrete Appl. Math., vol. 51, no. 3, pp. 291–305,

Jul. 1994.

[21] A. Al Sheikh, O. Brun, P.-E. Hladik, and B. J. Prabhu, “A best-response algorithm for multiprocessor periodic scheduling,” in Proc. of the 23rd

Euromicro Conference on Real-Time Systems, 2011, pp. 228–237.

[22] O. Kermia and Y. Sorel, “A rapid heuristic for scheduling non-preemptive dependent periodic tasks onto multiprocessor.” in Proc. of ISCA

20th International Conference on Parallel and Distributed Computing Systems, PDCS’07, 2007, pp. 1–6.

[23] D.-W. Park, S. Natarajan, A. Kanevsky, and M. J. Kim, “A generalized utilization bound test for fixed-priority real-time scheduling,” in

Proceedings of the 2Nd International Workshop on Real-Time Computing Systems and Applications, ser. RTCSA ’95. Washington, DC, USA: IEEE

Computer Society, 1995, pp. 73–.

[24] D.-W. Park, S. Natarajan, and A. Kanevsky, “Fixed-priority scheduling of real-time systems using utilization bounds,” Journal of Systems and

Software, vol. 33, no. 1, pp. 57 – 63, 1996.

[25] D. Chen, A. K. Mok, and T.-W. Kuo, “Utilization bound revisited,” IEEE Trans. Comput., vol. 52, no. 3, pp. 351–361, Mar. 2003.

[26] C.-G. Lee, L. Sha, and A. Peddi, “Enhanced utilization bounds for qos management,” IEEE Trans. Comput., vol. 53, no. 2, pp. 187–200, Feb.

2004.

[27] I. Shin and I. Lee, “Periodic resource model for compositional real-time guarantees,” in Proceedings of the 24th IEEE International Real-Time

Systems Symposium, ser. RTSS ’03, 2003, pp. 2–13.

[28] R. I. Davis and A. Burns, “An investigation into server parameter selection for hierarchical fixed priority pre-emptive systems,” in Proceedings

of Real-Time and Network Systems, RTNS, 2008.

[29] L. Almeida and P. Pedreiras, “Scheduling within temporal partitions: response-time analysis and server design,” in Proceedings of the 4th

ACM international conference on Embedded software, 2004, pp. 95–103.

[30] G. Lipari and E. Bini, “Resource partitioning among real-time applications,” in Proceedings of the 15th Euromicro Conference on Real-Time

Systems, 2003, pp. 151–158.

[31] M.-K. Yoon, J.-E. Kim, R. Bradford, and L. Sha, “Holistic design parameter optimization of multiple periodic resources in hierarchical

scheduling,” in Proceedings of the 16th ACM/IEEE Design, Automation, and Test in Europe (DATE 2013), 2013, pp. 1313 – 1318.

[32] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein, “Analysis of hierarchical fixed-priority scheduling,” in Proceedings of the 14th

Euromicro Conference on Real-Time Systems, 2002, pp. 152–160.

[33] Y.-H. Lee, D. Kim, M. Younis, J. Zhou, and J. Mcelroy, “Resource scheduling in dependable integrated modular avionics,” in Proc. of the

International Conference on Dependable Systems and Networks (FTCS-30 and DCCA-8), 2000, pp. 14–23.

[34] Y.-H. Lee, D. Kim, M. Younis, and J. Zhou, “Scheduling tool and algorithm for integrated modular avionics systems,” in Proc. of the 19th

Digital Avionics Systems Conference (DASC), 2000.

[35] D. Tămaş-Selicean and P. Pop, “Design optimization of mixed-criticality real-time applications on cost-constrained partitioned architectures,”

in Proc. of the 32nd IEEE Real-Time Systems Symposium, 2011, pp. 24–33.

[36] ——, “Optimization of time-partitions for mixed-criticality real-time distributed embedded systems,” in Proc. of the 2011 14th IEEE

International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, 2011, pp. 1–10.

[37] J. Rufino, J. Craveiro, and P. Verissimo, “Architecting robustness and timeliness in a new generation of aerospace systems,” Architecting

dependable systems VII, LNCS, vol. 6420, pp. 146–170, 2010.

