29,154 research outputs found

    Plan validation and mixed-initiative planning in space operations

    Get PDF
    Bringing artificial intelligence planning and scheduling applications into the real world is a hard task that is receiving more attention every day by researchers and practitioners from many fields. In many cases, it requires the integration of several underlying techniques like planning, scheduling, constraint satisfaction, mixed-initiative planning and scheduling, temporal reasoning, knowledge representation, formal models and languages, and technological issues. Most papers included in this book are clear examples on how to integrate several of these techniques. Furthermore, the book also covers many interesting approaches in application areas ranging from industrial job shop to electronic tourism, environmental problems, virtual teaching or space missions. This book also provides powerful techniques that allow to build fully deployable applications to solve real problems and an updated review of many of the most interesting areas of application of these technologies, showing how powerful these technologies are to overcome the expresiveness and efficiency problems of real world problems

    Finding regions of local repair in hierarchical constraint satisfaction

    Get PDF
    Algorithms for solving constraint satisfaction problems (CSP) have been successfully applied to several fields including scheduling, design, and planning. Latest extensions of the standard CSP to constraint optimization problems (COP) additionally provided new opportunities for solving several problems of combinatorial optimization more efficiently. Basically, two classes of algorithms have been used for searching constraint satisfaction problems (CSP): local search methods and systematic tree search extended by the classical constraint-processing techniques like e.g. forward checking and backmarking. Both classes exhibit characteristic advantages and drawbacks. This report presents a novel approach for solving constraint optimization problems that combines the advantages of local search and tree search algorithms which have been extended by constraint-processing techniques. This method proved applicability in a commercial nurse scheduling system as well as on randomly generated problems

    Production/maintenance cooperative scheduling using multi-agents and fuzzy logic

    Get PDF
    Within companies, production is directly concerned with the manufacturing schedule, but other services like sales, maintenance, purchasing or workforce management should also have an influence on this schedule. These services often have together a hierarchical relationship, i.e. the leading function (most of the time sales or production) generates constraints defining the framework within which the other functions have to satisfy their own objectives. We show how the multi-agent paradigm, often used in scheduling for its ability to distribute decision-making, can also provide a framework for making several functions cooperate in the schedule performance. Production and maintenance have been chosen as an example: having common resources (the machines), their activities are actually often conflicting. We show how to use a fuzzy logic in order to model the temporal degrees of freedom of the two functions, and show that this approach may allow one to obtain a schedule that provides a better compromise between the satisfaction of the respective objectives of the two functions

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP

    A survey of planning and scheduling research at the NASA Ames Research Center

    Get PDF
    NASA Ames Research Center has a diverse program in planning and scheduling. This paper highlights some of our research projects as well as some of our applications. Topics addressed include machine learning techniques, action representations and constraint-based scheduling systems. The applications discussed are planetary rovers, Hubble Space Telescope scheduling, and Pioneer Venus orbit scheduling
    corecore