192,362 research outputs found

    Autocalibration with the Minimum Number of Cameras with Known Pixel Shape

    Get PDF
    In 3D reconstruction, the recovery of the calibration parameters of the cameras is paramount since it provides metric information about the observed scene, e.g., measures of angles and ratios of distances. Autocalibration enables the estimation of the camera parameters without using a calibration device, but by enforcing simple constraints on the camera parameters. In the absence of information about the internal camera parameters such as the focal length and the principal point, the knowledge of the camera pixel shape is usually the only available constraint. Given a projective reconstruction of a rigid scene, we address the problem of the autocalibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. We propose an algorithm that only requires 5 cameras (the theoretical minimum), thus halving the number of cameras required by previous algorithms based on the same constraint. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient way. This parameterization is then used to solve autocalibration from five or more cameras, reducing the three-dimensional search space to a two-dimensional one. We provide experiments with real images showing the good performance of the technique.Comment: 19 pages, 14 figures, 7 tables, J. Math. Imaging Vi

    Linear Global Translation Estimation with Feature Tracks

    Full text link
    This paper derives a novel linear position constraint for cameras seeing a common scene point, which leads to a direct linear method for global camera translation estimation. Unlike previous solutions, this method deals with collinear camera motion and weak image association at the same time. The final linear formulation does not involve the coordinates of scene points, which makes it efficient even for large scale data. We solve the linear equation based on L1L_1 norm, which makes our system more robust to outliers in essential matrices and feature correspondences. We experiment this method on both sequentially captured images and unordered Internet images. The experiments demonstrate its strength in robustness, accuracy, and efficiency.Comment: Changes: 1. Adopt BMVC2015 style; 2. Combine sections 3 and 5; 3. Move "Evaluation on synthetic data" out to supplementary file; 4. Divide subsection "Evaluation on general data" to subsections "Experiment on sequential data" and "Experiment on unordered Internet data"; 5. Change Fig. 1 and Fig.8; 6. Move Fig. 6 and Fig. 7 to supplementary file; 7 Change some symbols; 8. Correct some typo

    Towards Automatic SAR-Optical Stereogrammetry over Urban Areas using Very High Resolution Imagery

    Full text link
    In this paper we discuss the potential and challenges regarding SAR-optical stereogrammetry for urban areas, using very-high-resolution (VHR) remote sensing imagery. Since we do this mainly from a geometrical point of view, we first analyze the height reconstruction accuracy to be expected for different stereogrammetric configurations. Then, we propose a strategy for simultaneous tie point matching and 3D reconstruction, which exploits an epipolar-like search window constraint. To drive the matching and ensure some robustness, we combine different established handcrafted similarity measures. For the experiments, we use real test data acquired by the Worldview-2, TerraSAR-X and MEMPHIS sensors. Our results show that SAR-optical stereogrammetry using VHR imagery is generally feasible with 3D positioning accuracies in the meter-domain, although the matching of these strongly hetereogeneous multi-sensor data remains very challenging. Keywords: Synthetic Aperture Radar (SAR), optical images, remote sensing, data fusion, stereogrammetr
    • …
    corecore