78 research outputs found

    Structured Prediction Problem Archive

    Get PDF
    Structured prediction problems are one of the fundamental tools in machinelearning. In order to facilitate algorithm development for their numericalsolution, we collect in one place a large number of datasets in easy to readformats for a diverse set of problem classes. We provide archival links todatasets, description of the considered problems and problem formats, and ashort summary of problem characteristics including size, number of instancesetc. For reference we also give a non-exhaustive selection of algorithmsproposed in the literature for their solution. We hope that this centralrepository will make benchmarking and comparison to established works easier.We welcome submission of interesting new datasets and algorithms for inclusionin our archive.<br

    Structured Prediction Problem Archive

    Full text link
    Structured prediction problems are one of the fundamental tools in machine learning. In order to facilitate algorithm development for their numerical solution, we collect in one place a large number of datasets in easy to read formats for a diverse set of problem classes. We provide archival links to datasets, description of the considered problems and problem formats, and a short summary of problem characteristics including size, number of instances etc. For reference we also give a non-exhaustive selection of algorithms proposed in the literature for their solution. We hope that this central repository will make benchmarking and comparison to established works easier. We welcome submission of interesting new datasets and algorithms for inclusion in our archive.Comment: Added multicast instances from Andres grou

    Convex relaxation methods for graphical models : Lagrangian and maximum entropy approaches

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 241-257).Graphical models provide compact representations of complex probability distributions of many random variables through a collection of potential functions defined on small subsets of these variables. This representation is defined with respect to a graph in which nodes represent random variables and edges represent the interactions among those random variables. Graphical models provide a powerful and flexible approach to many problems in science and engineering, but also present serious challenges owing to the intractability of optimal inference and estimation over general graphs. In this thesis, we consider convex optimization methods to address two central problems that commonly arise for graphical models. First, we consider the problem of determining the most probable configuration-also known as the maximum a posteriori (MAP) estimate-of all variables in a graphical model, conditioned on (possibly noisy) measurements of some variables. This general problem is intractable, so we consider a Lagrangian relaxation (LR) approach to obtain a tractable dual problem. This involves using the Lagrangian decomposition technique to break up an intractable graph into tractable subgraphs, such as small "blocks" of nodes, embedded trees or thin subgraphs. We develop a distributed, iterative algorithm that minimizes the Lagrangian dual function by block coordinate descent. This results in an iterative marginal-matching procedure that enforces consistency among the subgraphs using an adaptation of the well-known iterative scaling algorithm. This approach is developed both for discrete variable and Gaussian graphical models. In discrete models, we also introduce a deterministic annealing procedure, which introduces a temperature parameter to define a smoothed dual function and then gradually reduces the temperature to recover the (non-differentiable) Lagrangian dual. When strong duality holds, we recover the optimal MAP estimate. We show that this occurs for a broad class of "convex decomposable" Gaussian graphical models, which generalizes the "pairwise normalizable" condition known to be important for iterative estimation in Gaussian models.(cont.) In certain "frustrated" discrete models a duality gap can occur using simple versions of our approach. We consider methods that adaptively enhance the dual formulation, by including more complex subgraphs, so as to reduce the duality gap. In many cases we are able to eliminate the duality gap and obtain the optimal MAP estimate in a tractable manner. We also propose a heuristic method to obtain approximate solutions in cases where there is a duality gap. Second, we consider the problem of learning a graphical model (both the graph and its potential functions) from sample data. We propose the maximum entropy relaxation (MER) method, which is the convex optimization problem of selecting the least informative (maximum entropy) model over an exponential family of graphical models subject to constraints that small subsets of variables should have marginal distributions that are close to the distribution of sample data. We use relative entropy to measure the divergence between marginal probability distributions. We find that MER leads naturally to selection of sparse graphical models. To identify this sparse graph efficiently, we use a "bootstrap" method that constructs the MER solution by solving a sequence of tractable subproblems defined over thin graphs, including new edges at each step to correct for large marginal divergences that violate the MER constraint. The MER problem on each of these subgraphs is efficiently solved using the primaldual interior point method (implemented so as to take advantage of efficient inference methods for thin graphical models). We also consider a dual formulation of MER that minimizes a convex function of the potentials of the graphical model. This MER dual problem can be interpreted as a robust version of maximum-likelihood parameter estimation, where the MER constraints specify the uncertainty in the sufficient statistics of the model. This also corresponds to a regularized maximum-likelihood approach, in which an information-geometric regularization term favors selection of sparse potential representations. We develop a relaxed version of the iterative scaling method to solve this MER dual problem.by Jason K. Johnson.Ph.D

    CRF Learning with CNN Features for Image Segmentation

    Full text link
    Conditional Random Rields (CRF) have been widely applied in image segmentations. While most studies rely on hand-crafted features, we here propose to exploit a pre-trained large convolutional neural network (CNN) to generate deep features for CRF learning. The deep CNN is trained on the ImageNet dataset and transferred to image segmentations here for constructing potentials of superpixels. Then the CRF parameters are learnt using a structured support vector machine (SSVM). To fully exploit context information in inference, we construct spatially related co-occurrence pairwise potentials and incorporate them into the energy function. This prefers labelling of object pairs that frequently co-occur in a certain spatial layout and at the same time avoids implausible labellings during the inference. Extensive experiments on binary and multi-class segmentation benchmarks demonstrate the promise of the proposed method. We thus provide new baselines for the segmentation performance on the Weizmann horse, Graz-02, MSRC-21, Stanford Background and PASCAL VOC 2011 datasets

    Exact Algorithms for the Maximum Planar Subgraph Problem: New Models and Experiments

    Get PDF
    Given a graph G, the NP-hard Maximum Planar Subgraph problem asks for a planar subgraph of G with the maximum number of edges. The only known non-trivial exact algorithm utilizes Kuratowski\u27s famous planarity criterion and can be formulated as an integer linear program (ILP) or a pseudo-boolean satisfiability problem (PBS). We examine three alternative characterizations of planarity regarding their applicability to model maximum planar subgraphs. For each, we consider both ILP and PBS variants, investigate diverse formulation aspects, and evaluate their practical performance

    Complexity Theory, Game Theory, and Economics: The Barbados Lectures

    Full text link
    This document collects the lecture notes from my mini-course "Complexity Theory, Game Theory, and Economics," taught at the Bellairs Research Institute of McGill University, Holetown, Barbados, February 19--23, 2017, as the 29th McGill Invitational Workshop on Computational Complexity. The goal of this mini-course is twofold: (i) to explain how complexity theory has helped illuminate several barriers in economics and game theory; and (ii) to illustrate how game-theoretic questions have led to new and interesting complexity theory, including recent several breakthroughs. It consists of two five-lecture sequences: the Solar Lectures, focusing on the communication and computational complexity of computing equilibria; and the Lunar Lectures, focusing on applications of complexity theory in game theory and economics. No background in game theory is assumed.Comment: Revised v2 from December 2019 corrects some errors in and adds some recent citations to v1 Revised v3 corrects a few typos in v

    Joint Equalization and Decoding via Convex Optimization

    Get PDF
    The unifying theme of this dissertation is the development of new solutions for decoding and inference problems based on convex optimization methods. Th first part considers the joint detection and decoding problem for low-density parity-check (LDPC) codes on finite-state channels (FSCs). Hard-disk drives (or magnetic recording systems), where the required error rate (after decoding) is too low to be verifiable by simulation, are most important applications of this research. Recently, LDPC codes have attracted a lot of attention in the magnetic storage industry and some hard-disk drives have started using iterative decoding. Despite progress in the area of reduced-complexity detection and decoding algorithms, there has been some resistance to the deployment of turbo-equalization (TE) structures (with iterative detectors/decoders) in magnetic-recording systems because of error floors and the difficulty of accurately predicting performance at very low error rates. To address this problem for channels with memory, such as FSCs, we propose a new decoding algorithms based on a well-defined convex optimization problem. In particular, it is based on the linear-programing (LP) formulation of the joint decoding problem for LDPC codes over FSCs. It exhibits two favorable properties: provable convergence and predictable error-floors (via pseudo-codeword analysis). Since general-purpose LP solvers are too complex to make the joint LP decoder feasible for practical purposes, we develop an efficient iterative solver for the joint LP decoder by taking advantage of its dual-domain structure. The main advantage of this approach is that it combines the predictability and superior performance of joint LP decoding with the computational complexity of TE. The second part of this dissertation considers the matrix completion problem for the recovery of a data matrix from incomplete, or even corrupted entries of an unknown matrix. Recommender systems are good representatives of this problem, and this research is important for the design of information retrieval systems which require very high scalability. We show that our IMP algorithm reduces the well-known cold-start problem associated with collaborative filtering systems in practice
    corecore