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ABSTRACT

Joint Equalization and Decoding via Convex Optimization. (May 2012)

Byung Hak Kim, B.S., Korea University;

M.S., Korea University

Chair of Advisory Committee: Dr. Henry D. P�ster

The unifying theme of this dissertation is the development of new solutions

for decoding and inference problems based on convex optimization methods. The

�rst part considers the joint detection and decoding problem for low-density parity-

check (LDPC) codes on �nite-state channels (FSCs). Hard-disk drives (or magnetic

recording systems), where the required error rate (after decoding) is too low to be

veri�able by simulation, are most important applications of this research.

Recently, LDPC codes have attracted a lot of attention in the magnetic storage

industry and some hard-disk drives have started using iterative decoding. Despite

progress in the area of reduced-complexity detection and decoding algorithms, there

has been some resistance to the deployment of turbo-equalization (TE) structures

(with iterative detectors/decoders) in magnetic-recording systems because of error

�oors and the di�culty of accurately predicting performance at very low error rates.

To address this problem for channels with memory, such as FSCs, we propose a

new decoding algorithms based on a well-de�ned convex optimization problem. In

particular, it is based on the linear-programing (LP) formulation of the joint decoding

problem for LDPC codes over FSCs. It exhibits two favorable properties: provable

convergence and predictable error-�oors (via pseudo-codeword analysis).

Since general-purpose LP solvers are too complex to make the joint LP decoder

feasible for practical purposes, we develop an e�cient iterative solver for the joint LP

decoder by taking advantage of its dual-domain structure. The main advantage of
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this approach is that it combines the predictability and superior performance of joint

LP decoding with the computational complexity of TE.

The second part of this dissertation considers the matrix completion problem

for the recovery of a data matrix from incomplete, or even corrupted entries of an

unknown matrix. Recommender systems are good representatives of this problem,

and this research is important for the design of information retrieval systems which

require very high scalability. We show that our IMP algorithm reduces the well-known

cold-start problem associated with collaborative �ltering systems in practice.
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CHAPTER I

INTRODUCTION

Gallager's introduction of iterative message-passing decoding for error-correcting codes,

in his 1960 Ph.D. thesis, was an idea ahead of its time [1]. In the past twenty years,

however, message-passing inference has become very popular in research and prac-

tice. The sum-product algorithm (also known as belief propagation (BP)) is an it-

erative message-passing algorithm that computes the marginal distribution of each

variable in a cycle-free graphical model. It is based on an exact inference method for

trees, which involves passing messages along the edges of the tree. Each node fuses

messages, from all but one of its neighbors, and then propagates this information to

the excluded neighbor based on the edge potential linking the two nodes. In loopy

graphs, this procedure does not always converge to a �xed-point and may give inaccu-

rate marginals when it does converge. Its main bene�t is that, for the large problem

sizes, the complexity grows linearly with the problem size.

A convex-programming relaxation (CPR) is an approximate method to solve

intractable inference and estimation problems for more general graphs. A CPR is

formulated with respect to an augmented graphical model that includes replicas of

the nodes and edges of the original graph. By dualizing the constraint on the repli-

cated variables, one obtains a relaxed, convex dual problem, which is tractable to

solve. This involves using the Lagrangian decomposition technique to break up an

intractable graph into tractable subgraphs, such as small blocks of nodes. Then, a

distributed iterative algorithm can maximize the Lagrangian dual function via block

coordinate ascent algorithm. In particular, when strong duality holds, one can re-

 This dissertation follows the style of IEEE Trans. on Information Theory.
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cover the optimal MAP estimate. The advantage of dual methods is that they provide

e�cient solution methods based on BP-like distributed message-passing algorithms.

Because BP does not always converge, there is growing interest in convergent iterative

methods to solve these dual formulations using coordinate descent methods.

The unifying theme of this dissertation is the development of approximate solu-

tions for new decoding and inference problems based on these two popular techniques.

The �rst part considers the joint detection and decoding problem for low-density

parity-check (LDPC) codes on �nite-state channels (FSCs). Hard disk drives (or

magnetic recording systems) where the required decoding error rate is too low to be

veri�able by simulation are most critical applications of this research. The second

part considers the matrix comletion prolem for the recovery of a data matrix from

incomplete, or even corrupted information. Recommender systems are good represen-

tatives of this problem, and this research is important for the design of information

retrieval systems which require very high scalability.

A. Motivation and Overview

1. Joint Detection and Decoding Problem

Iterative decoding of error-correcting codes, while introduced by Gallager in his 1960

Ph.D. thesis, was largely forgotten until the 1993 discovery of turbo codes by Berrou et

al. Since then, message-passing iterative decoding has been a very popular decoding

algorithm in research and practice. In 1995, the turbo decoding of a �nite-state

channel (FSC) and a convolutional code (instead of two convolutional codes) was

introduced by Douillard et al. as turbo equalization (TE) and this enabled the joint-

decoding of the channel and the code by iterating between these two decoders [2].

Before this, one typically separated channel decoding (i.e., estimating the channel
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inputs from the channel outputs) from the decoding of the error-correcting code (i.e.,

estimating the transmitted codeword from estimates of the channel inputs) [1, 3]. This

breakthrough received immediate interest from the magnetic recording community,

and TE was applied to magnetic recording channels by a variety of authors (e.g.,

[4, 5, 6, 7]). TE was later combined with turbo codes and also extended to low-density

parity-check (LDPC) codes (and called joint iterative decoding) by constructing one

large graph representing the constraints of both the channel and the code (e.g., [8, 9]).

In the magnetic storage industry, error correction based on Reed-Solomon codes

with hard-decision decoding has prevailed for the last 25 years. Recently, LDPC codes

have attracted a lot of attention and some hard-disk drives (HDDs) have started us-

ing iterative decoding (e.g., [10, 11, 12]). Despite progress in the area of reduced-

complexity detection and decoding algorithms, there has been some resistance to the

deployment of TE structures (with iterative detectors/decoders) in magnetic record-

ing systems because of error �oors and the di�culty of accurately predicting perfor-

mance at very low error rates. Furthermore, some of the spectacular gains of iterative

coding schemes have been observed only in simulations with block-error rates above

10−6. The challenge of predicting the onset of error �oors and the performance at

very low error rates, such as those that constitute the operating point of HDDs (the

current requirement of an overall block error rate of 10−12), remains an open problem.

The presence of error �oors and the lack of analytical tools to predict performance

at very low error rates are current impediments to the application of iterative coding

schemes in magnetic recording systems.

In the last �ve years, linear programming (LP) decoding has been a popular topic

in coding theory and has given new insight into the analysis of iterative decoding algo-

rithms and their modes of failure [13, 14, 15]. In particular, it has been observed that

LP decoding sometimes performs better than iterative (e.g., sum-product) decoding



4

in the error-�oor region. We believe this stems from the fact that the LP decoder

always converges to a well-de�ned LP optimum point and either detects decoding

failure or outputs an ML codeword. For both decoders, fractional vectors, known as

pseudo-codewords (PCWs), play an important role in the performance characteriza-

tion of these decoders [14, 16]. This is in contrast to classical coding theory where the

performance of most decoding algorithms (e.g., maximum-likelihood (ML) decoding)

is completely characterized by the set of codewords.

While TE-based joint iterative decoding provides good performance close to ca-

pacity, it typically has some trouble reaching the low error rates required by magnetic

recording and optical communication. To combat this, we extend LP decoding to

perform joint-decoding of a binary-input FSC and an outer LDPC code. During the

review process of our conference paper on this topic [17], we discovered that this LP

formulation is mathematically equivalent to Flanagan's general formulation of linear-

programming receivers [18, 19]. Since our main focus was di�erent than Flanagan's,

our main results and extensions di�er somewhat from his. This extension had been

considered as a challenging open problem in the prior works [20, 13] and the problem

is well posed by Feldman in his Ph.D. thesis [13, page 146],

In practice, channels are generally not memoryless due to physical e�ects

in the communication channel. ... Even coming up with a proper linear

cost function for an LP to use in these channels is an interesting question.

The notions of pseudocodeword and fractional distance would also need to

be reconsidered for this setting.

Other than providing satisfying answer to the above open question, our main moti-

vation is that critical storage applications (e.g., HDDs) require block error rates that

are too low to be easily veri�able by simulation. For these applications, an e�cient
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Fig. 1. Net�ix challenge: Given a collection of ratings (yellow or light grey) between 1 to
5 that users gave to movies, predict the rating (red or dark grey) the given user
would give to the given movie.

iterative solver for the joint-decoding LP would have favorable properties: error �oors

predictable by pseudo-codeword analysis and convergence based on a well-de�ned op-

timization problem. Therefore, we introduce a novel iterative solver for the joint LP

decoding problem whose per-iteration complexity (e.g., memory and time) is similar

to that of TE but whose performance appears to be superior at high SNR [17, 21].

2. Matrix Completion Problem

An important new inference problem, called the matrix completion problem, has

recently come to light; it combines many elements of compressed sensing and collabo-

rative �ltering. This problem involves the recovery of a data matrix from incomplete

(or corrupted) information and is of great practical interest over a wide range of �elds

[22]. The basic idea is summarized well in the following quote by Candes and Plan

in [23],

In its simplest form, the problem is to recover a matrix from a small sample
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of its entries, and comes up in many areas of science and engineering in-

cluding collaborative �ltering, machine learning, control, remote sensing,

and computer vision... Imagine now that we only observe a few entries of

a data matrix. Then is it possible to accurately�or even exactly�guess

the entries that we have not seen?

In the Net�ix challenge, for example, one is given a subset of large data matrix in

which rows are users and columns are movies (e.g., see the Net�ix Prize [24] and

Fig. 1). An overwhelming portion of the user-movie matrix (e.g., 99%) is unknown

and the observation matrix is very sparse because most users rate only a few movies.

Randomness in the ratings process implies that one can also interpret the ratings as

noisy observations of some true matrix.

The goal is to predict the rating that a user would give, to a movie he/she

has not watched, based on the observed ratings. In other words, the problem is to

recover missing ratings of a data matrix using the subset of observed movie ratings.

In general, it would seem that this problem is di�cult, if not impossible. However,

if the unknown matrix has some structure, then approximate recovery is possible.

Recent progress on the matrix completion problem can be largely divided into two

areas:

1. The �rst area considers e�cient models and practical algorithms. For the matrix

completion problem, many researchers use models based on the assumption that

the matrix has low rank. This assumption allows one to reformulate the problem

into rank (or nuclear norm) minimization problem under certain incoherence

assumptions [22]. For exact and approximate matrix completion, these models

lead to convex relaxations, and semi-de�nite programming (SDP) [25, 26, 27,

28], and Bayesian-based approaches [29].
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2. The second area involves exploration of the fundamental limits of these methods.

Prior work has developed some precise relationships between sparse observation

models and the recovery of missing entries under the restriction of low-rank

matrices or clustering models [23, 30, 31, 32, 33]. This area is closely related

with the practical issues known as the cold-start problem of the recommender

system [34]. That is, giving recommendations to new users who have submitted

only a few ratings, or recommending new items that received only a few ratings

from users. In other words, how many ratings are needed to generate good

recommendations?

B. Outline of Dissertation

The dissertation consists of an introduction, four self-contained chapters and conclu-

sion.

In Chapters II, III and IV, we consider the joint-decoding problem for �nite-

state channels (FSCs) and low-density parity-check (LDPC) codes. In Chapter II,

we introduce the joint linear-programming (LP) decoder by extending the LP de-

coder for binary linear codes, introduced by Feldman et al to perform joint-decoding

of binary-input FSCs. In particular, we provide a rigorous de�nition of LP joint-

decoding pseudo-codewords (JD-PCWs) that enables evaluation of the pairwise error

probability between codewords and JD-PCWs in AWGN. This leads naturally to a

provable upper bound on decoder failure probability. If the channel is a �nite-state

intersymbol interference channel, then the joint LP decoder also has the maximum-

likelihood (ML) certi�cate property and all integer-valued solutions are codewords. In

this case, the performance loss relative to ML decoding can be explained completely

by fractional-valued JD-PCWs.
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Chapters III and IV are devoted to developing e�cient iterative solvers for the

joint LP decoder introduced in Chapter II. In Chapter III, we extend the approach of

iterative approximate LP decoding, proposed by Vontobel and Koetter and analyzed

by Burshtein, to this problem. By taking advantage of the dual-domain structure

of the joint-decoding LP, we obtain a convergent iterative algorithm for joint LP

decoding whose structure is similar to BCJR-based turbo equalization (TE). The

result is a joint iterative decoder whose per-iteration complexity is similar to that of

TE but whose performance is similar to that of joint LP decoding. In Chapter IV,

we propose a simpli�ed joint iterative solver LP decoder whose structure is similar

to SOVA-based turbo equalization (TE) with no smoothing parameters to tune. The

main advantage of these decoders are that it appears to provide the predictability

and superior performance of joint LP decoding with the computational complexity

of TE. One expected application is coding for magnetic storage where the required

block-error rate is extremely low and system performance is di�cult to verify by

simulation.

In Chapter V, a new message-passing (MP) method is considered for the matrix

completion problem associated with recommender systems. We attack the problem

using a (generative) factor graph model that is related to a probabilistic low-rank

matrix factorization. Based on the model, we propose a new inference algorithm,

termed IMP, for the recovery of a data matrix from incomplete observations. The al-

gorithm is based on a clustering followed by inference via MP (IMP). The algorithm is

compared with a number of other matrix completion algorithms on real collaborative

�ltering (e.g., Net�ix) data matrices. Our results show that, while many methods

perform similarly with a large number of revealed entries, the IMP algorithm outper-

forms all others when the fraction of observed entries is small. This is helpful because

it reduces the well-known cold-start problem associated with collaborative �ltering
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(CF) systems in practice.
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CHAPTER II

JOINT DECODING OF LDPC CODES AND FINITE-STATE CHANNELS VIA

LINEAR-PROGRAMMING*

Feldman et al. introduced the LP decoder for binary linear codes in [13, 14]. It is

is based on an LP relaxation of an integer program that is equivalent to ML decod-

ing. Later, this method was extended to codes over larger alphabets [35] and to the

simpli�ed decoding of intersymbol interference (ISI) [36]. In particular, this chap-

ter∗ describes an extension of the LP decoder to the joint-decoding of binary-input

FSCs and de�nes LP joint-decoding pseudo-codewords (JD-PCWs) [17]. This exten-

sion is natural because Feldman's LP formulation of a trellis decoder is general enough

to allow optimal (Viterbi style) decoding of FSCs, and the constraints associated with

the outer LDPC code can be included in the same LP. This type of extension has

been considered as a challenging open problem in prior works [13, 20] and was �rst

given by Flanagan [18, 19], but was discovered independently by us and reported in

[17]. In particular, Flanagan showed that any communication system which admits

a sum-product (SP) receiver also admits a corresponding linear-programming (LP)

receiver. Since Flanagan's approach is more general, it is also somewhat more com-

plicated. Still, the resulting LPs are mathematically equivalent though. One bene�t

of restricting our attention to FSCs is that our description of the LP is based on �nd-

ing a path through a trellis, which is somewhat more natural for the joint-decoding

∗This chapter is in part a reprint of the material in the papers: B.-H.Kim and H. D.
P�ster, "On the joint decoding of LDPC codes and �nite-state channels via linear
programming", in Proc. IEEE Int. Symp. Inform. Theory, Austin, TX, June 2010,
pp. 754-758 and B.-H. Kim and H. D. P�ster, "Joint decoding of LDPC codes and
�nite-state channels via linear-programming", in IEEE J. Select. Topics in Signal
Processing, pp. 1563-1576, Dec. 2011.
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problem.

These LP decoders provide a natural de�nition of PCWs for joint-decoding,

and they allow new insight into the joint-decoding problem. Joint-decoding pseudo-

codewords (JD-PCWs) are de�ned and the decoder error-rate is upper bounded by

a union bound sum over JD-PCWs. This leads naturally to a provable upper bound

(e.g., a union bound) on the probability of LP decoding failure as a sum over all

codewords and JD-PCWs. Moreover, we can show that all integer solutions are in-

deed codewords and that this joint LP decoder also has an ML certi�cate property.

Therefore, all decoder failures can be explained by (fractional) JD-PCWs. It is worth

noting that this property is not guaranteed by other convex relaxations of the same

problem (e.g., see Wadayama's approach based on quadratic programming [20]).

Our primary motivation is the prediction of the error rate for joint-decoding at

high SNR. The basic idea is to run simulations at low SNR and keep track of all

observed codeword and pseudo-codeword errors. An estimate of the error rate at

high SNR is computed using a truncated union bound formed by summing over all

observed error patterns at low SNR. Computing this bound is complicated by the

fact that the loss of channel symmetry implies that the dominant PCWs may depend

on the transmitted sequence. Still, this technique provides a new tool to analyze the

error rate of joint decoders for FSCs and low-density parity-check (LDPC) codes.

Thus, novel prediction results are given in Chapter III.

A. Notation

Throughout the paper we borrow notation from [14]. Let I = {1, . . . , N} and J =

{1, . . . , M} be sets of indices for the variable and parity-check nodes of a binary

linear code. A variable node i ∈ I is connected to the set N (i) of neighboring
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parity-check nodes. Abusing notation, we also let N (j) be the neighboring variable

nodes of a parity-check node j ∈ J when it is clear from the context. For the trellis

associated with a FSC, we let E = {1, . . . , O} index the set of trellis edges associated

with one trellis section, S be the set of possible states, and A be the set of noiseless

output symbols. For each edge1, e ∈ EN , in the length-N trellis, the functions

t : EN → {1, . . . , N}, s : EN → S, s′ : EN → S, x : EN → {0, 1}, and a : EN → A

map this edge to its respective time index, initial state, �nal state, input bit, and

noiseless output symbol. Finally, the set of edges in the trellis section associated with

time i is de�ned to be Ti =
{
e ∈ EN | t(e) = i

}
.

B. Background: LP Decoding and Finite-State Channels

In [13, 14], Feldman et al. introduced a linear-programming (LP) decoder for binary

linear codes, and applied it speci�cally to both LDPC and turbo codes. It is based

on solving an LP relaxation of an integer program that is equivalent to maximum-

likelihood (ML) decoding. For long codes and/or low SNR, the performance of LP

decoding appears to be slightly inferior to belief-propagation decoding. Unlike the

iterative decoder, however, the LP decoder either detects a failure or outputs a code-

word which is guaranteed to be the ML codeword.

Let C ⊆ {0, 1}N be the length-N binary linear code de�ned by a parity-check

matrix and c = (c1, . . . , cN) be a codeword. Let L be the set whose elements are the

sets of indices involved in each parity check, or

L = {N (j) ⊆ {1, . . . , N}| j ∈ J } .

1In this dissertation, e is used to denote a trellis edge while e denotes the universal
constant that satis�es ln e = 1.
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Then, we can de�ne the set of codewords to be

C =

{
c ∈ {0, 1}N

∣∣∣∣
∑

i∈L
ci ≡ 0 mod 2, ∀L ∈ L

}
.

The codeword polytope is the convex hull of C. This polytope can be quite compli-

cated to describe though, so instead one constructs a simpler polytope using local

constraints. Each parity-check L ∈ L de�nes a local constraint equivalent to the

extreme points of a polytope in [0, 1]N .

De�nition 1. The local codeword polytope LCP(L) associated with a parity check

is the convex hull of the bit sequences that satisfy the check. It is given explicitly by

LCP(L) ,
⋂

S⊆L
|S|odd

{
c ∈ [0, 1]N

∣∣∣∣
∑

i∈S
ci −

∑

i∈L−S
ci ≤ |S|−1

}
.

We use the notation P(H) to denote the simpler polytope corresponding to the

intersection of local check constraints; the formal de�nition follows.

De�nition 2. The relaxed polytope P(H) is the intersection of the LCPs over all

checks and

P(H) ,
⋂

L∈L
LCP(L).

The LP decoder and its ML certi�cate property is characterized by the following

theorem.

Theorem 1 ([13]). ConsiderN consecutive uses of a symmetric channel Pr (Y = y|C = c).

If a uniform random codeword is transmitted and y = (y1, . . . , yN) is received, then

the LP decoder outputs f = (f1, . . . , fN) given by

arg min
f∈P(H)

N∑

i=1

fi ln

(
Pr(Yi = yi |Ci = 0)

Pr(Yi = yi |Ci = 1)

)
,
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which is the ML solution if f is integral (i.e., f ∈ {0, 1}N).

From simple LP-based arguments, one can see that LP decoder may also output

nonintegral solutions.

De�nition 3. An LP decoding pseudo-codeword (LPD-PCW) of a code de�ned by

the parity-check matrix H is any nonintegral vertex of the relaxed (fundamental)

polytope P(H).

We also de�ne the �nite-state channel, which can be seen as a model for commu-

nication systems with memory where each output depends only on the current input

and the previous channel state instead of the entire past.

De�nition 4. A �nite-state channel (FSC) de�nes a probabilistic mapping from a

sequence of inputs to a sequence of outputs. Each output Yi ∈ Y depends only on

the current input Xi ∈ X and the previous channel state Si−1 ∈ S instead of the

entire history of inputs and channel states. Mathematically, we de�ne P (y, s′|x, s) ,

Pr (Yi=y, Si=s′|Xi=x, Si−1 =s) for all i, and use the shorthand notation P0(s) ,

Pr(S0 = s) and

P
(
yN1 , s

N
1 |xN1 , s0

)
,Pr

(
Y N

1 =yN1 , S
N
1 =sN1 |XN

1 =xN1 , S0 =s0

)

=
N∏

i=1

P (yi, si|xi, si−1) ,

where the notation Y j
i denotes the subvector (Yi, Yi+1, . . . , Yj).

An important subclass of FSCs is the set of �nite-state intersymbol interference

channels which includes all deterministic �nite-state mappings of the inputs corrupted

by memoryless noise.

De�nition 5. A �nite-state intersymbol interference channel (FSISIC) is a FSC

whose next state is a deterministic function, η(x, s), of the current state s and input
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Fig. 2. State diagrams for noiseless dicode channel without (left) and with precoding
(right). The edges are labeled by the input/output pair.

x. Mathematically, this implies that

∑

y∈Y
P (y, s′|x, s) =





1 if η(x, s) = s′

0 otherwise

.

Though our derivations are general, we use the following FSISIC examples through-

out the paper to illustrate concepts and perform simulations.

De�nition 6. The dicode channel (DIC) is a binary-input FSISIC with an impulse

response of G(z) = 1 − z−1 and additive Gaussian noise [37]. If the input bits are

di�erentially encoded prior to transmission, then the resulting channel is called the

precoded dicode channel (pDIC) [37]. The state diagrams of these two channels are

shown in Fig. 2. For the trellis associated with a DIC and pDIC, we let E =

{1, 2, 3, 4} , S = {0, 1} and A = {−1, 0, 1} . Also, the class-II Partial Response (PR2)

channel is a binary-input FSISIC with an impulse response of G(z) = 1 + 2z−1 + z−2

and additive Gaussian noise [37, 38].
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C. Joint LP Decoding Derivation

Now, we describe the joint LP decoder in terms of the trellis of the FSC and the checks

in the binary linear code2. Let N be the length of the code and y = (y1, y2, . . . , yN)

be the received sequence. The trellis consists of (N + 1)|S| vertices (i.e., one for each

state and time) and a set of at most 2N |S|2 edges (i.e., one edge for each input-labeled

state transition and time). The LP formulation requires one indicator variable for

each edge e ∈ Ti, and we denote that variable by gi,e. So, gi,e is equal to 1 if the

candidate path goes through the edge e in Ti. Likewise, the LP decoder requires one

cost variable for each edge and we associate the branch metric bi,e with the edge e

given by

bi,e ,





− lnP
(
yt(e), s

′(e)|x(e), s(e)
)

if t(e)>1

− ln
[
P
(
yt(e), s

′(e)|x(e), s(e)
)
P0 (s(e))

]
if t(e)=1.

First, we de�ne the trellis polytope T formally below.

De�nition 7. The trellis polytope T enforces the �ow conservation constraints for

the channel decoder. The �ow constraint for state k at time i is given by

Fi,k ,



g ∈ [0, 1]N×O

∣∣∣∣∣∣
∑

e:s′(e)=k

gi,e =
∑

e:s(e)=k

gi+1,e



 .

Using this, the trellis polytope T is given by

T ,



g ∈

N−1⋂

i=1

⋂

k∈S
Fi,k

∣∣∣∣∣∣
∑

e∈Tp
gp,e = 1, for any p ∈ I



 .

From simple �ow-based arguments, it is known that the ML edge path on trellis

can be found by solving a minimum-cost LP applied to the trellis polytope T .

2It is straightforward to extend this joint LP decoder to non-binary linear codes based
on [35].
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Theorem 2 ([13, p. 94]). Finding the ML edge-path through a weighted trellis is

equivalent to solving the minimum-cost �ow LP

arg min
g∈T

∑

i∈I

∑

e∈Ti
bi,egi,e

and the optimum g must be integral (i.e., g ∈ {0, 1}N×O) unless there are ties.

The indicator variables gi,e are used to de�ne the LP and the code constraints

are introduced by de�ning an auxiliary variable fi for each code bit.

De�nition 8. Let the code-space projection Q, be the mapping from g to the input

vector f = (f1, . . . , fN) ∈ [0, 1]N de�ned by f = Q (g) with

fi =
∑

e∈Ti:x(e)=1

gi,e.

For the trellis polytope T , PT (H) is the set of vectors whose projection lies inside

the relaxed codeword polytope P(H).

De�nition 9. The trellis-wise relaxed polytope PT (H) for P(H) is given by

PT (H) , {g ∈ T |Q (g) ∈ P(H)} .

The polytope PT (H) has integral vertices which are in one-to-one correspondence

with the set of trelliswise codewords.

De�nition 10. The set of trellis-wise codewords CT for C is de�ned by

CT ,
{
g ∈ PT (H)

∣∣∣g ∈ {0, 1}N×O
}
.

Finally, the joint LP decoder and its ML certi�cate property are characterized

by the following theorem.
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Theorem 3. The LP joint decoder computes

arg min
g∈PT (H)

∑

i∈I

∑

e∈Ti
bi,egi,e (2.1)

and outputs a joint ML edge-path if g is integral.

Proof. Let V be the set of valid input/state sequence pairs. For a given y, the ML

edge-path decoder �nds the most likely path, through the channel trellis, whose input

sequence is a codeword. Mathematically, it computes

arg max
(xN1 ,s

N
0 )∈V

P (yN1 , s
N
1 |xN1 , s0)P0 (s(e))

= arg max
g∈CT

P0 (s(e))
∏

i∈I

∏

e∈Ti: gi,e=1

P
(
yt(e), s

′(e)|x(e), s(e)
)

= arg min
g∈CT

∑

i∈I

∑

e∈Ti: gi,e=1

bi,e

= arg min
g∈CT

∑

i∈I

∑

e∈Ti
bi,egi,e,

where ties are resolved in a systematic manner and b1,e has the extra term− ln P0 (s(e))

for the initial state probability. By relaxing CT into PT (H), we obtain the desired

result.

Corollary 1. For a FSISIC3, the LP joint decoder outputs a joint ML codeword if

g is integral.

3In fact, this holds more generally for the restricted class of FSCs used in [39], which are
now called uni�lar FSCs because they generalize the uni�lar Markov sources de�ned
in [40].
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Proof. The joint ML decoder for codewords computes

arg max
xN1 ∈C

∑

sN1 ∈SN
P (yN1 , s

N
1 |xN1 , s0)P0 (s(e))

= arg max
xN1 ∈C

∑

sN1 ∈SN

∏

i∈I
P (yi, si+1|xi, si)P0 (s(e))

(a)
= arg max

xN1 ∈C

∏

i∈I
P
(
yi, η (xi, si)

∣∣xi, si
)
P0 (s(e))

(b)
= arg min

g∈CT

∑

i∈I

∑

e∈Ti
bi,egi,e,

where (a) follows from De�nition 5 and (b) holds because each input sequence de�nes

a unique edge-path. Therefore, the LP joint-decoder outputs an ML codeword if g is

integral.

Remark 1. If the channel is not a FSISIC (e.g., if it is a �nite-state fading chan-

nel), then integer valued solutions of the LP joint-decoder are ML edge-paths but not

necessarily ML codewords. This occurs because the joint LP decoder does not sum the

probability of the multiple edge-paths associated with the same codeword (e.g., when

multiple distinct edge-paths are associated with the same input labels). Instead, it

simply gives the probability of the most-likely edge path associated that codeword.

D. Joint LP Decoding Pseudo-codewords

Pseudo-codewords have been observed and given names by a number of authors (e.g.,

[41, 42, 43]), but the simplest general de�nition was provided by Feldman et al. in the

context of LP decoding of parity-check codes [14]. One nice property of the LP decoder

is that it always returns either an integral codeword or a fractional pseudo-codeword.

Vontobel and Koetter have shown that a very similar set of pseudo-codewords also

a�ect message-passing decoders, and that they are essentially fractional codewords
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0 0 0 0

1 1 1 1

0/0 0/0 0/0

1/1 1/1 1/1

0/− 1 0/− 1 0/− 1

1/0 1/0 1/0

0 0 0 0

1 1 1 1

0/0 0/0 0/0

1/1 1/1 1/1
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1/0 1/0 1/0

Fig. 3. Illustration of joint LP decoder outputs for the single parity-check code SPC(3,2)
over DIC (starts in zero state). By ordering the trellis edges appropriately, joint LP
decoder converges to either a TCW (0 1 0 0; 0 0 0 1; .0 0 1 0) (top dashed blue path)
or a JD-TPCW (0 1 0 0; 0 0 .5 .5; .5 0 .5 0) (bottom dashed red paths). Using Q to
project them into P(H), we obtain the corresponding SCW (1, 1, 0) and JD-SPCW
(1, .5, 0).

that cannot be distinguished from codewords using only local constraints [16]. The

joint-decoding pseudo-codeword (JD-PCW), de�ned below, can be used to character-

ize code performance at low error rates.

De�nition 11. If gi,e ∈ {0, 1} for all e, then the output of the LP joint decoder is

a trellis-wise codeword (TCW). Otherwise, gi,e ∈ (0, 1) for some e and the solution

is called a joint-decoding trellis-wise pseudo-codeword (JD-TPCW); in this case, the

decoder outputs �failure� (see Fig. 3 for an example of this de�nition).

De�nition 12. For any TCW g, the projection f = Q (g) is called a symbol-wise

codeword (SCW). Likewise, for any JD-TPCW g, the projection f = Q (g) is called
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a joint-decoding symbolwise pseudo-codeword (JD-SPCW) (see Fig. 3 for a graphical

depiction of this de�nition).

Remark 2. For FSISICs, the LP joint decoder has the ML certi�cate property; if the

decoder outputs a SCW, then it is guaranteed to be the ML codeword (see Corollary

1).

De�nition 13. If g is a JD-TPCW, then p = (p1, . . . , pN) with

pi =
∑

e∈Ti
gi,ea (e) ,

is called a joint-decoding symbol-wise signal-space pseudo-codeword (JD-SSPCW).

Likewise, if g is a TCW, then p is called a symbol-wise signal-space codeword (SSCW).

Example 1. Consider the single parity-check code SPC(3,2). Over precoded dicode

channel (starts in zero state) with AWGN, this code has �ve joint-decoding pseudo-

codewords. A simulation was performed for joint-decoding of the SPC(3,2) on the

pDIC trellis and the set of JD-TPCW, by ordering the trellis edges appropriately,

was found to be

{(0 1 0 0; 0 0 .5 .5; 0 .5 .5 0),(.5 .5 0 0; .5 0 0 .5; 0 1 0 0),

(.5 .5 0 0; 0 .5 .5 0; 0 0 1 0),(1 0 0 0; .5 .5 0 0; 0 .5 .5 0),

(.5 .5 0 0; .5 0 0 0; 0 .5 .5 0)}.

Using Q to project them into P(H), we get the corresponding set of JD-SPCW

{(1, .5, .5), (.5, .5, 1), (.5, .5, 0), (0, .5, .5), (.5, 0, .5)}.
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E. Union Bound for Joint LP Decoding

Now that we have de�ned the relevant pseudo-codewords, we consider how much

a particular pseudo-codeword a�ects performance; the idea is to quantify pairwise

error probabilities. In fact, we will use the insights gained in the previous section

to obtain a union bound on the decoder's word-error probability and to analyze the

performance of the proposed joint LP decoder. Toward this end, let's consider the

pairwise error event between a SSCW c and a JD-SSPCW p �rst.

Theorem 4. A necessary and su�cient condition for the pairwise decoding error

between a SSCW c and a JD-SSPCW p is

∑

i∈I

∑

e∈Ti
bi,egi,e ≤

∑

i∈I

∑

e∈Ti
bi,eg̃i,e, (2.2)

where g ∈ PT (H) and g̃ ∈ CT are the LP variables for p and c respectively.

Proof. By de�nition, the joint LP decoder (2.1) prefers p over c if and only if (2.2)

holds.

For the moment, let c be the SSCW of FSISIC to an AWGN channel whose

output sequence is y = c + v, where v = (v1, . . . , vN) is an i.i.d. Gaussian sequence

with mean 0 and variance σ2. Then, the joint LP decoder can be simpli�ed as stated

in the following theorem.

Theorem 5. Let y be the output of a FSISIC with zero-mean AWGN whose variance

is σ2 per output. Then, the joint LP decoder is equivalent to

arg min
g∈PT (H)

∑

i∈I

∑

e∈Ti
(yi − a (e))2 gi,e.

Proof. For each edge e, the output yi is Gaussian with mean a (e) and variance σ2,

so we have P
(
yt(e), s

′(e)|x(e), s(e)
)
∼ N (a (e) , σ2). Therefore, the joint LP decoder
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computes

arg min
g∈PT (H)

∑

i∈I

∑

e∈Ti
bi,egi,e = arg min

g∈PT (H)

∑

i∈I

∑

e∈Ti
(yi − a (e))2 gi,e.

We will show that each pairwise probability has a simple closed-form expression

that depends only on a generalized squared Euclidean distance d2
gen (c, p) and the

noise variance σ2. One might notice that this result is very similar to the pairwise

error probability derived in [44]. The main di�erence is the trellis-based approach

that allows one to obtain this result for FSCs. Therefore, the next de�nition and

theorem can be seen as a generalization of [44].

De�nition 14. Let c be a SSCW and p a JD-SSPCW. Then the generalized squared

Euclidean distance between c and p can be de�ned in terms of their trellis-wise

descriptions by

d2
gen (c, p) ,

(
‖d‖2 + σ2

p

)2

‖d‖2

where

‖d‖2 ,
∑

i∈I
(ci − pi)2 , σ2

p ,
∑

i∈I

∑

e∈Ti
gi,ea

2 (e)−
∑

i∈I
p2
i .

Theorem 6. The pairwise error probability between a SSCW c and a JD-SSPCW

p is

Pr (c→ p) = Q

(
dgen (c, p)

2σ

)
,

where Q (x) =
∫∞
x

e
−t2/2/

√
2πdt.

Proof. The pairwise error probability Pr (c→ p) that the LP joint-decoder will choose
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the pseudo-codeword p over c can be written as

Pr (c→ p)

= Pr

{∑

i∈I

∑

e∈Ti
gi,e (yi − a (e))2 ≤

∑

i∈I
(yi − ci)2

}

= Pr

{
∑

i yi (ci − pi) ≤ 1
2

(
∑

i c
2
i −

∑
i

∑
e gi,ea

2 (e))

}

(a)
= Q



∑

i ci (ci − pi)− 1
2

(
∑

i c
2
i −

∑
i

∑
e gi,ea

2 (e))

σ
√∑

i (ci − pi)
2




(b)
= Q

(
‖d‖2 + σ2

p

2σ ‖d‖

)
= Q

(
dgen (c, p)

2σ

)
,

where (a) follows from the fact that
∑

i yi (ci − pi) has a Gaussian distribution with

mean
∑

i ci(ci− pi) and variance
∑

i(ci− pi)2, and (b) follows from De�nition 14.

The performance degradation of LP decoding relative to ML decoding can be ex-

plained by pseudo-codewords and their contribution to the error rate, which depends

on dgen (c, p) . Indeed, by de�ning Kdgen(c) as the number of codewords and JD-

PCWs at distance dgen from c and G(c) as the set of generalized Euclidean distances,

we can write the union bound on word error rate (WER) as

Pw|c ≤
∑

dgen∈G(c)

Kdgen(c)Q

(
dgen
2σ

)
. (2.3)

Of course, we need the set of JD-TPCWs to compute Pr (c→ p) with the Theorem 6.

There are two complications with this approach. One is that, like the original problem

[13], no general method is known yet for computing the generalized Euclidean distance

spectrum e�ciently. Another is, unlike original problem, the constraint polytope may

not be symmetric under codeword exchange. Therefore the decoder performance may

not be symmetric under codeword exchange. Hence, the decoder performance may

depend on the transmitted codeword. In this case, the pseudo-codewords will also



25

depend on the transmitted sequence.
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CHAPTER III

ITERATIVE SOLVER FOR THE JOINT LP DECODER*

In the past, the primary value of linear programming (LP) decoding was as an ana-

lytical tool that allowed one to better understand iterative decoding and its modes of

failure. This is because LP decoding based on standard LP solvers is quite impractical

and has a superlinear complexity in the block length. This motivated several authors

to propose low-complexity algorithms for LP decoding of LDPC codes in the last �ve

years (e.g., [20, 45, 46, 47, 48, 49, 50]). Many of these have their roots in the iter-

ative Gauss-Seidel approach proposed by Vontobel and Koetter for approximate LP

decoding [45]. This approach was also analyzed further by Burshtein [49]. Smoothed

Lagrangian relaxation methods have also been proposed to solve intractable optimal

inference and estimation for more general graphs (e.g., [51]).

In this chapter∗, we consider the natural extension of [45, 49] to the joint-decoding

LP formulation developed in Chapter II. We argue that, by taking advantage of the

special dual-domain structure of the joint LP problem and replacing minima in the

formulation with soft-minima, we can obtain an e�cient method that solves the joint

LP. While there are many ways to iteratively solve the joint LP, our main goal was to

derive one as the natural analogue of turbo equalization (TE). This should lead to an

e�cient method for joint LP decoding whose performance is similar to that of joint

LP and whose per-iteration complexity similar to that of TE. Indeed, the solution we

∗This chapter is in part a reprint of the material in the papers: B.-H.Kim and H. D.
P�ster, "An iterative joint linear-programming decoding of LDPC codes and �nite-
state channels", in Proc. IEEE Int. Conf. Commun., June 2011 and and B.-H.
Kim and H. D. P�ster, "Joint decoding of LDPC codes and �nite-state channels via
linear-programming", in IEEE J. Select. Topics in Signal Processing, pp. 1563-1576,
Dec. 2011.
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Table I. Primal Problem (Problem-P)

min
g,w

∑

i∈I

∑

e∈Ti
bi,egi,e

subject to
∑

B∈Ej
wj,B = 1, ∀j ∈ J ,

∑

e∈Tp
gp,e = 1, for any p ∈ I

∑

B∈Ej ,B3i
wj,B =

∑

e:x(e)=1

gi,e, ∀i ∈ I, j ∈ N (i)

∑

e:s′(e)=k

gi,e =
∑

e:s(e)=k

gi+1,e, ∀i ∈ I \N, k ∈ S

wj,B ≥ 0, ∀j ∈ J , B ∈ Ej, gi,e ≥ 0, ∀i ∈ I, e ∈ Ti.

provide is a fast, iterative, and provably convergent form of TE whose update rules

are tightly connected to BCJR-based TE. This demonstrates that an iterative joint

LP solver with a similar computational complexity as TE is feasible (see Remark 3).

In practice, the complexity reduction of this iterative decoder comes at the expense of

some performance loss, when compared to the joint LP decoder, due to convergence

issues (discussed in Section B).

Previously, a number of authors have attempted to reverse engineer an objective

function targeted by turbo decoding (and TE by association) in order to discuss its

convergence and optimality [52, 53, 54]. For example, [52] uses a duality link between

two optimality formulations of TE: one based on Bethe free energy optimization and

the other based on constrained ML estimation. This results of this section establish

a new connection between iterative decoding and optimization for the joint-decoding

problem that can also be extended to turbo decoding.
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Table II. Dual Problem 1st Formulation (Problem-D1)

max
m,n

∑

j∈J
min
B∈Ej

[∑

i∈B
mi,j

]
+min
e∈Tp

[
Γp,e−np−1,s(e)+np,s′(e)

]

subject to

Γi,e ≥ ni−1,s(e) − ni,s′(e), ∀i ∈ I \ p, e ∈ Ti
and

n0,k = nN,k = 0, ∀k ∈ S,

where

Γi,e , bi,e − δx(e)=1

∑

j∈N (i)

mi,j.

Table III. Dual Problem 2nd Formulation (Problem-D2)

max
m

∑

j∈J
min
B∈Ej

[∑

i∈B
mi,j

]
+ min

e∈Tp

[
Γp,e−−→n p−1,s(e)+

←−n p,s′(e)
]

where −→n i,k is de�ned for i = 1, . . . , p− 1 by

−−→n i,k = min
e∈s′−1(k)

−−→n i−1,s(ei) + Γi,e, ∀k ∈ S

and ←−n i,k is de�ned for i = N − 1, N − 2, . . . , p by

←−n i,k = min
e∈s−1(k)

←−n i+1,s′(ei+1) + Γi+1,e, ∀k ∈ S

starting from
−→n 0,k =←−n N,k = 0, ∀k ∈ S.



29

A. Iterative Joint LP Decoding Derivation

In Chapter II, joint LP decoder is presented as an LDPC-code constrained shortest-

path problem on the channel trellis. In this section, we develop the iterative solver for

the joint-decoding LP. There are few key steps in deriving iterative solution for the

joint LP decoding problem. For the �rst step, given by the primal problem (Problem-

P) in Table I, we reformulate the original LP (2.1) in Theorem 3 using only equality

constraints involving the indicator variables1 g and w. The second step, given by the

1st formulation of the dual problem (Problem-D1) in Table II, follows from standard

convex analysis (See Appendix A). Strong duality holds because the primal problem

is feasible and bounded. Therefore, the Lagrangian dual of Problem-P is equivalent

to Problem-D1 and the minimum of Problem-P is equal to the maximum of Problem-

D1. From now on, we consider Problem-D1, where the code and trellis constraints

separate into two terms in the objective function. See Fig. 4 for a diagram of the

variables involved.

The third step, given by the 2nd formulation of the dual problem (Problem-D2)

in Table III, observes that forward/backward recursions can be used to perform the

optimization over n and remove one of the dual variable vectors. This splitting is

enabled by imposing the trellis �ow normalization constraint in Problem-P only at

one time instant p ∈ I. This detail gives N di�erent ways to write the same LP and

is an important part of obtaining update equations similar to those of TE.

Lemma 1. Problem-D1 is equivalent to Problem-D2.

1The valid patterns Ej , {B ⊆ N (j) | |B| is even} for each parity-check j ∈ J allow
us to de�ne the indicator variables wj,B (for j ∈ J and B ∈ Ej) which equal 1 if the
codeword satis�es parity-check j using con�guration B ∈ Ej.
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0 0 0 0

1 1 1 1

g1,1 g2,1 g3,1

g1,2 g2,2 g3,2

g1,3 g2,3 g3,3

g1,4 g2,4 g3,4

g = {gi,e}i∈I, e∈Ti

n0,0 n1,0 n2,0 n3,0

n0,1 n1,1 n2,1 n3,1

m1,1 m2,1 m3,1

w = {w1,B}B∈E1
Fig. 4. Illustration of primal variables g and w de�ned for Problem-P and dual variables

n and m de�ned for Problem-D1 on the same example given by Fig. 3: SPC(3,2)
with DIC for N = 3.
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Proof. By rewriting the inequality constraint in Problem-D1 as

−ni,s′(ei) ≤ −ni−1,s(ei) + Γi,e

we obtain the recursive upper bound for i = p− 1 as

− np−1,k

≤−np−2,s(ep−1) + Γp−1,e

∣∣
s′(ep−1)=k

≤−np−3,s(ep−2)+Γp−2,e

∣∣
s′(ep−2)=s(ep−1)

+ Γp−1,e|s′(ep−1)=k

...

≤−n1,s(e2)+

p−1∑

i=2

Γi,e

∣∣∣∣∣
s′(ep−1)=k,s′(ep−2)=s(ep−1),...,s′(e1)=s(e2).

This upper bound −np−1,k ≤ −−→n p−1,k is achieved by the forward Viterbi update in

Problem-D2 for i = 1, . . . , p− 1. Again, by expressing the same constraint as

ni−1,s(ei) ≤ Γi,e + ni,s′(ei)

we get a recursive upper bound for i = p + 1. Similar reasoning shows this upper

bound np,k ≤ ←−n p,k is achieved by the backward Viterbi update in Problem-D2 for

i = N − 1, N − 2, . . . , p. See Fig. 5 for a graphical depiction of this.

The fourth step, given by the softened dual problem (Problem-DS) in Table IV, is

formulated by replacing the minimum operator in Problem-D2 with the soft-minimum

operation

min (x1, x2, . . . , xm) ≈ − 1

K
ln

m∑

i=1

e
−Kxi .

This smooth approximation converges to the minimum function as K increases [45].

Since the soft-minimum function is used in two di�erent ways, we use di�erent con-

stants, K1 and K2, for the code and trellis terms. The smoothness of Problem-DS
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Table IV. Softened Dual Problem (Problem-DS)

max
m
− 1

K1

∑

j∈J
ln
∑

B∈Ej
e
−K1{∑i∈N (j)mi,j1B(i)} (3.1)

− 1

K2

ln
∑

e∈Tp
e
−K2{Γp,e−−→n p−1,s(e)+

←−n p,s′(e)}

where 1B (i) is the indicator function of the set B, −→n i,k is de�ned for i = 1, . . . , p−1

by

−−→n i,k = − 1

K2

ln
∑

ei∈s′−1(k)

e
−K2{−−→n i−1,s(ei)

+Γi,e}, (3.2)

and ←−n i,k is de�ned for i = N − 1, N − 2, . . . , p by

←−n i,k = − 1

K2

ln
∑

ei+1∈s−1(k)

e
−K2

{←−n i+1,s′(ei+1)+Γi+1,e

}
(3.3)

starting from
−→n 0,k =←−n N,k = 0, ∀k ∈ S.

0 0 0 0

1 1 1 1

−−→n 0,0 = 0 −−→n 1,0
←−n 2,0

←−n 3,0 = 0

−−→n 0,1 = 0 −−→n 1,1
←−n 2,1

←−n 3,1 = 0

Fig. 5. Illustration of Viterbi updates in Problem-D2 on the same example given by Fig.
3: DIC for N = 3 with forward −→n and backward ←−n .
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allows one to to take derivative of (3.1) (giving the Karush�Kuhn�Tucker (KKT)

equations, derived in Lemma 2), and represent (3.2) and (3.3) using BCJR-like for-

ward/backward recursions (given by Lemma 3).

Lemma 2. Consider the KKT equations associated with performing the minimization

in (3.1) only over the variables {mp,j′}j′∈N (p). These equations have a unique solution

given by

mp,j′ = Mp,j′ +
γp
K1

, Mp,j′ ,
1

K1

ln
1− lp,j′
1 + lp,j′

for j′ ∈ N (p) where

lp,j′ ,
∏

i∈N (j′)\p
tanh

(
K1mi,j′

2

)
,

and

γp , ln

∑
e∈Tp:x(e)=0 e

−K2(Γp−−→n p−1,s(e)+
←−n p,s′(e))

∑
e∈Tp:x(e)=1 e

−K2(Γp−−→n p−1,s(e)+
←−n p,s′(e))

.

Proof. Restricting the minimization in (3.1) to the variables {mp,j′}j′∈N (p) gives

− min
{mp,j}j∈N (p)





1

K1

∑

j∈N (p)

ln
∑

B∈Ej
e
−K1

∑
i∈N (j) mi,j1B(i)+

1

K2

ln
∑

e∈Tp
e
−K2(Γp,e−−→n p−1,s(e)+

←−n p,s′(e))



 . (3.4)

The solution to (3.4) can be obtained by solving the KKT equations. For p ∈ I, we

take the �rst derivative with respect to {mp,j′}j′∈N (p) and set it to zero; this yields

(∑
B∈Ej′ ,p/∈B e

−K1
∑

i∈N (j′)\pmi,j′1B(i)

∑
B∈Ej′ ,B3p e

−K1
∑

i∈N (j′)\pmi,j′1B(i)

)
· eK1mp,j′ =



∑

e∈Tp:x(e)=0 e
−K2(Γp,e−−→n p−1,s(e)+

←−n p,s′(e))

∑
e∈Tp:x(e)=1 e

−K2(Γp,e−−→n p−1,s(e)+
←−n p,s′(e))


 (3.5)
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By de�ning −K1Mp,j′ as

ln

∑
B∈Ej′ ,p/∈B e

−K1
∑

i∈N (j′)\pmi,j′1B(i)

∑
B∈Ej′ ,B3p e

−K1
∑

i∈N (j′)\pmi,j′1B(i)
(3.6)

= ln

∏
i∈N (j′)\p (1 + νi,j′) +

∏
i∈N (j′)\p (1− νi,j′)∏

i∈N (j′)\p (1 + νi,j′)−
∏

i∈N (j′)\p (1− νi,j′)

=− ln
1− lp,j′
1 + lp,j′

,

where νi,j′ , e
−K1mi,j′ , we can rewrite (3.5) to obtain the desired result.

Lemma 3. Equations (3.2) and (3.3) are equivalent to the BCJR-based forward and

backward recursion given by (3.7), (3.8), and (3.9).

Proof. By letting, αi (k) ∝ e
K2
−→n i,k , λi+1,e = e

−K2Γi+1,e , and βi (k) ∝ e
−K2

←−n i,k , we

obtain the desired result by normalization.

Now, we have all the pieces to complete the algorithm. As the last step, we

combine the results of Lemma 2 and 3 to obtain the iterative solver for the joint-

decoding LP, which is summarized by the iterative joint LP decoding in Algorithm 1

(see Fig. 6 for a graphical depiction).

Remark 3. While Algorithm 1 always has a bit-node update rule di�erent from stan-

dard belief propagation (BP), we note that setting K1 = 1 in the inner loop gives

the exact BP check-node update and setting K2 = 1 in the outer loop gives the exact

BCJR channel update. In fact, one surprising result of this work is that such a small

change to the BCJR-based TE update provides an iterative solver for the LP whose

per-iteration complexity similar to TE. It is also possible to prove the convergence of

a slightly modi�ed iterative solver that is based on a less e�cient update schedule (See

Figs. 7 - 12 for details).
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0 0 0 0

1 1 1 1

α0 (0) = .5 α1 (0) β2 (0) β3 (0) = .5

α0 (1) = .5 α1 (1) β2 (1) β3 (1) = .5

m1,1 m2,1 m3,1

{λ2,e}e∈T2

0 0 0 0

1 1 1 1

γ2

m1,1 m2,1 m3,1

M1,1 M2,1 M3,1

Fig. 6. Illustration of Algorithm 1 steps for i = 2 on the same example given by Fig. 3:
Outer loop update (top) and inner loop update (bottom).
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Algorithm 1 Iterative Joint Linear-Programming Decoding

• Step 1. Set ` = 0 and initialize mi,j = 0 for i ∈ I, j ∈ N (i) .

• Step 2. Update Outer Loop: For i ∈ I,

� (i) Compute bit-to-trellis message

λi,e = e
−K2{bi,e−δx(e)=1

∑
j∈N (i)mi,j}

� (ii) Compute forward/backward trellis messages

αi+1 (k) =

∑
e∈s′−1(k) αi (s(e)) · λi+1,e∑

k

∑
e∈s′−1(k) αi (s(e)) · λi+1,e

(3.7)

βi−1 (k) =

∑
e∈s−1(k) βi (s′(e)) · λi,e∑

k

∑
e∈s−1(k) βi (s′(e)) · λi,e

, (3.8)

where βN (k) = α0 (k) = 1/ |S| for all k ∈ S.
� (iii) Compute trellis-to-bit message γi

γi=ln

∑
e∈Ti:x(e)=0 αi−1 (s(e))λi,eβi (s′(e))

∑
e∈Ti:x(e)=1 αi−1 (s(e))λi,eβi (s′(e))

(3.9)

• Step 3. Update Inner Loop for `inner rounds: For i ∈ I,

� (i) Compute bit-to-check msg mi,j for j ∈ N (i)

mi,j =
γi
K1
−Mi,j

� (ii) Compute check-to-bit msg Mi,j for j ∈ N (i)

Mi,j =
2

K1
tanh−1


 ∏

r∈N (j)\i
tanh

(
K1mr,j

2

)
 (3.10)

• Step 4. Compute hard decisions and stopping rule

� (i) For i ∈ I,
f̂i = (1− sgn (γi)) /2

� (ii) If f̂ satis�es all parity checks or the maximum outer iteration number, `outer,
is reached, stop and output f̂ . Otherwise increment ` and go to Step 2.
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0 0 0 0 0 0

1 1 1 1 1 1

α0 (0) = .5 α1 (0) αi−1 (0)

α0 (1) = .5 α1 (1) αi−1 (1)

βN (0) = .5βN−1 (0)βi (0)

βN (1) = .5βN−1 (1)βi (1)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

γi

{λi,e}e∈Ti
Fig. 7. Messages passing through the trellis for joint iterative MP decoding: Recursive

BCJR update with forward/backward state probabilities αi (s) , βi (s) and edge-
output probabilities λi,e.

0 0 0 0 0 0

1 1 1 1 1 1

α0 (0) = .5 α1 (0) αi−1 (0)

α0 (1) = .5 α1 (1) αi−1 (1)

βN (0) = .5βN−1 (0)βi (0)

βN (1) = .5βN−1 (1)βi (1)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

γi

{λi,e}e∈Ti
Fig. 8. Messages passing through the trellis for joint iterative LP decoding: Recursive

BCJR update with di�erent edge-output probabilities λi,e (setting K1 = K2 = 1
gives the exact BCJR channel update).
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mi,j = γi +
∑

q∈N (i)\j Mi,q

Mi,qjMi,q1
Mi,q|N (i)|

γi

. . .

. . .

Mi,j = 2tanh−1
(∏

r∈N (j)\i tanh
(
mr,j

2

))

mr|N (j)|,jmri,j
mr1,j

. . . . .
.

Fig. 9. Computation of code update messages for joint iterative MP decoding: Standard
BP update with bit-to-check messages (left) and check-to-bit messages (right).

mi,j =
γi
K1
−Mi,j

Mi,j

γi

. . .

. . .

Mi,j =
2
K1

tanh−1
(∏

r∈N (j)\i tanh
(
K1mr,j

2

))

mr|N (j)|,jmri,j
mr1,j

. . . . .
.

Fig. 10. Computation of code update messages for joint iterative LP decoding: Bit-to-
check messages (left) and BP check update with hardening parameter K1 for
check-to-bit messages (right).
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. . .

. . .

λi,e

Mi,qjMi,q1
Mi,q|N (i)|

γi
. . .

. . .

Fig. 11. Bit-to-trellis messages for joint iterative MP decoding: Passing extrinsic informa-

tion with λi,e = e
−{bi,e−δx(e)=0(

∑
q∈N (i) Mi,q−γi)}.

mi,jjmi,j1
mi,j|N (i)|

. . .

. . .

λi,e

Fig. 12. Bit-to-trellis messages for joint iterative LP decoding: Passing with λi,e =

e
−K2(bi,e−δx(e)=1

∑
j∈N (i)mi,j).
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B. Convergence Analysis

This section considers the convergence properties of Algorithm 1. Although simula-

tions have not shown any convergence problems with Algorithm 1 in its current form,

our proof requires a modi�ed update schedule that is less computationally e�cient.

Following Vontobel's approach in [45], which is based on general properties of Gauss-

Seidel-type algorithms for convex minimization, we show that the modi�ed version

Algorithm 1 is guaranteed to converge. Moreover, a feasible solution to Problem-P

can be obtained whose value is arbitrarily close to the optimal value of Problem-P.

The modi�ed update rule for Algorithm 1 consists of cyclically, for each p =

1, . . . , N , computing the quantity γp (via step 2 of Algorithm 1) and then updating

mp,j for all j ∈ N (p) (based on step 3 of Algorithm 1). The drawback of this

approach is that one BCJR update is required for each bit update, rather than for N

bit updates. This modi�cation allows us to interpret Algorithm 1 as a Gauss-Seidel-

type algorithm. We believe that, at the expense of a longer argument, the convergence

proof can be extended to a decoder which uses windowed BCJR updates (e.g., see

[55]) to achieve convergence guarantees with much lower complexity. Regardless, the

next few lemmas and theorems can be seen as a natural generalization of [45, 49] to

the joint-decoding problem.

Proposition 1. Consider the problem

min
x∈X

f (x)

where X = X1 × X2 × · · · × Xm and each Xi is a closed convex subset of Rni . The

vector x is partitioned so x = (x1, x2, . . . , xm) with xi ∈ Rni . Suppose that f is

continuously di�erentiable and convex on X and that, for every x ∈ X and every
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i = 1, . . . ,m, the problem

min
ξi∈Xi

f (x1, . . . , xi−1, ξi, xi+1, . . . , xm)

has a unique minimum. Now, consider the sequence xk+1 =
(
xk+1

1 , . . . , xk+1
m

)
de�ned

by

xk+1
i = arg min

ξi∈Xi

f
(
xk+1

1 , . . . , xk+1
i−1 , ξi, x

k
i+1, . . . , x

k
m

)
,

for i = 1, . . . ,m. Then, every limit point of this sequence minimizes f over X .

Lemma 4. Assume that all the rows of H have Hamming weight at least 3. Then,

the modi�ed Algorithm 1 converges to the maximum of the Problem-DS.

Proof. To characterize the convergence of the iterative joint LP decoder, we consider

the modi�cation of Algorithm 1 with cyclic updates. The analysis follows [45] and

uses the proposition about convergence of block coordinate descent methods from

[56, p. 247]. By using Proposition 1, we will show that the modi�ed Algorithm 1

converges. De�ne mi = {mi,j}j∈N (i) and

f (m) ,f (m1, . . . , mN)

=
1

K1

∑

j∈J
ln
∑

B∈Ej
e
−K1{∑i∈N (j) mi,j1B(i)}+

1

K2

ln
∑

e∈Tp
e
−K2{Γp,e−−→n p−1,s(ep)+

←−n p,s′(ep)}.

Let us consider cyclic coordinate decent algorithm which minimizes f cyclically with

respect to the coordinate variable. Thus m1 is changed �rst, then m2 and so forth

through mN . Then (3.1), (3.2), and (3.3) are equivalent to for each p ∈ I with proper
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Table V. Softened Primal Problem (Problem-PS)

min
g,w

∑

i∈I

∑

e∈Ti
bi,egi,e −

1

K1

∑

j∈J
H(wj)−

1

K2

H(gp)

subject to the same constraints as Problem-P.

Xp as

min
ξp∈Xp

f (m1, . . . , mp−1, ξp, mp+1, . . . , mN)

= min
ξp∈Xp

1

K1

∑

j∈J
ln
∑

B∈Ej
e

−K1

{
ξp,j1N (j)(p)1B(p)+

∑
i∈N (j)\p

mi,j1B(i)

}

+
1

K2

ln
∑

e∈Tp
exp



−K2


bp,e −

∑

j∈N (p)

ξp,jδx(ep)=1




+ ln
∑

{e1,...,ep−1}
e

−K2

{
n1,s(e2)−

p−1∑
i=2

bi,e+
p−1∑
i=2

∑
j∈N (i)

mi,jδx(ei)=1

}

+ ln
∑

{ep+1,...,eN}
e

−K2

{
N∑

i=p+1
bi,e−

N∑
i=p+1

∑
j∈N (i)

mi,jδx(ei)=1

}

 .

Using the properties of log-sum-exp functions (e.g., see [57, p. 72]), one can verify

that f is continuously di�erentiable and convex. The minimum over ξp for all p ∈ I

is uniquely obtained because of the unique KKT solution in Lemma 2. Therefore,

we can apply the Proposition 1 to achieve the desired convergence result under the

modi�ed update schedule. It is worth mentioning that the Hamming weight condition

prevents degeneracy of Problem-DS based on the fact that, otherwise, some pairs of

bits must always be equal.

Next, we introduce the softened primal problem (Problem-PS) in Table V, using

the de�nitions wj , {wj,B}B∈Ej and gp , {gp,e}e∈Tp . Using standard convex analysis

(See Appendix B), one can show that Problem-PS is the Lagrangian dual of Problem-
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DS and that the minimum of Problem-PS is equal to the maximum of Problem-

DS. In particular, Problem-PS can be seen as a maximum-entropy regularization

of Problem-DS that was derived by smoothing dual problem given by Problem-D2.

Thus, Algorithm 1 is dually-related to an interior-point method for solving the LP

relaxation of joint ML decoding on trellis-wise polytope using the entropy function

(for x in the standard simplex)

H(x) , −
∑

i

xi lnxi (3.11)

as a barrier function (e.g., see [51, p. 126]) for the polytope.

Remark 4. By taking su�ciently large K1 and K2, the primal LP of joint LP de-

coder in Problem-P, emerges as the �zero temperature� limit of the approximate LP

relaxations given by Problem-PS [45, 51]. Also, Problem-PS can be seen as a convex

free-energy minimization problem [51].

Next, we develop a relaxation bound, given by Lemma 5 and Lemma 6 to quantify

the performance loss of Algorithm 1 (when it converges) in relation to the joint LP

decoder.

Lemma 5. Let P ∗ be the minimum value of Problem-P and P̃ be the minimum value

of Problem-PS. Then, one �nds that

0 ≤ P̃ − P ∗ ≤ δN,

where

N̄ ,

∑
j∈J |N (j)|
N

, R , 1− M

N

and

δ ,

(
1−R + N̄

)
ln 2

K1

+
ln O

K2N
.
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Proof. Denote the optimum solution of Problem-P by g∗ and w∗ and the optimum

solution of Problem-PS by g̃ and w̃. Since g∗ and w∗ are the optimal with respect to

the Problem-P, we have

P ∗ =
∑

i∈I

∑

e∈Ti
bi,eg

∗
i,e ≤

∑

i∈I

∑

e∈Ti
bi,eg̃i,e = P̃ . (3.12)

On the other hand, g̃ and w̃ are the optimal with respect to the Problem-PS, we have

∑

i∈I

∑

e∈Ti
bi,eg̃i,e −

1

K1

∑

j∈J
H(w̃j)−

1

K2

H(g̃p)

≤
∑

i∈I

∑

e∈Ti
bi,eg

∗
i,e −

1

K1

∑

j∈J
H(w∗j )−

1

K2

H(g∗p),

where H(·) is the entropy de�ned by (3.11). Rewrite this gives

∑

i∈I

∑

e∈Ti
bi,eg̃i,e

≤
∑

i∈I

∑

e∈Ti
bi,eg

∗
i,e +

1

K1

(∑

j∈J
H(w̃j)−

∑

j∈J
H(w∗j )

)

+
1

K2

(
H(g̃p)−H(g∗p)

)

≤
∑

i∈I

∑

e∈Ti
bi,eg

∗
i,e +

1

K1

∑

j∈J
H(w̃j) +

1

K2

H(g̃p). (3.13)

The last inequality is due to nonnegativity of entropy. Using Jensen's inequality, we

obtain

∑

j∈J
H(w̃j) ≤

∑

j∈J
ln |Ej| =

∑

j∈J
(|N (j)| − 1) ln 2

= N
(
1−R + N̄

)
ln 2 (3.14)

and

H(g̃p) ≤ ln O. (3.15)
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By substituting (3.14) and (3.15) to (3.13), we have

P̃ − P ∗ ≤ N
(
1−R + N̄

)
ln 2

K1

+
ln O

K2

. (3.16)

Combining (3.12) and (3.16) gives the result.

Lemma 6. For any ε > 0, su�ciently many iterations of the modi�ed Algorithm 1

produces a feasible solution for Problem-DS that satis�es the KKT conditions within

ε. If ε < 1/6, then one can construct a solution (g̃ε, w̃ε) for Problem-PS that is

feasible and whose value P̃ε satis�es

0 ≤ P̃ε − P̃ ≤ δN,

where

δ ,

(
1−R + N̄

)
ln 2

K1

+ ε

(
3

N

∑

l∈I

∑

e∈Tl
|bl,e|+ C

)
.

Proof. Proof follows from careful modi�cation of the arguments in [49, p. 4840-4841].

For the coordinate-descent solution of Problem-DS, minimizing over the p-th block

gives

− min
{mp,j}j∈N (p)

1

K1

∑

j∈N (p)

ln
∑

B∈Ej
e
−K1{∑i∈N (j) mi,j1B(i)} (3.17)

subject to

Γp,e = −→n p−1,s(e) −←−n p,s′(e), ∀e ∈ Tp.

The solution can be obtained by applying the KKT conditions and this yields

∑
e:x(e)=1 λp,e

1−∑e:x(e)=1 λp,e
= e

K1(Mp,j−mp,j). (3.18)
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Given a feasible solution of the modi�ed Algorithm 1, we de�ne

λji ,
∑

e:x(e)=1

λji,e =
1

1 + e
K1(mi,j−Mi,j)

,

λi ,
1

|N (i)|
∑

j∈N (i)

λji =
∑

e:x(e)=1

λi,e

with

λi,e ,
1

|N (i)|
∑

j∈N (i)

λji,e

and

ε , max
i∈I

max
j∈N (i)

|λji − λi|.

Suppose we stop iterating when ε ≤ 1
6
and de�ne

λ̂i , (1− 6ε)λi + 6ε
∑

e:x(e)=1

1

|E|

= (1− 6ε)λi + 3ε =
∑

e:x(e)=1

λ̂i,e,

where

λ̂i,e , (1− 6ε)λi,e +
6ε

|E| .

First, we claim that λ̂ ,
{
λ̂i

}
∈ P(H). This is because setting

wj,B ,
e
−K1

∑
l∈N (j) ml,j1B(l)

∑
B′∈Ej e

−K1
∑

l∈N (j) ml,j1B′ (l)
(3.19)

obviously satis�es for ∀j ∈ J

wj,B ≥ 0, ∀B ∈ Ej,
∑

B∈Ej
wj,B = 1

and satis�es for ∀i ∈ I, j ∈ N (i)

∑

B∈Ej ,B3i
wj,B =

∑
B∈Ej ,B3i e

−K1
∑

l∈N (j) ml,j1B(l)

∑
B′∈Ej e

−K1
∑

l∈N (j) ml,j1B′ (l)
= λji .
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From [49, p. 4841], it follows that λ̃ ∈ P(H). Next, we show that
{
λ̂i,e

}
∈ T . Note

that de�ning

λi,e ,
e
−K2{Γi,e−−→n i−1,s(ei)

+←−n i,s′(ei)}
∑

e∈Ti e
−K2{Γi,e−−→n i−1,s(ei)

+←−n i,s′(ei)}

implies that (by (3.5))

∑
e:x(e)=1 λi,e

1−∑e:x(e)=1 λi,e
= e

K1(Mp,j−mp,j),

obviously satis�es for ∀i ∈ I

λi,e ≥ 0, ∀e ∈ Ti,
∑

e∈Ti
λi,e = 1

and for ∀i ∈ I \N, k ∈ S by (3.2) and (3.3)

∑

e:s′(e)=k

λi,e =

∑
e:s′(e)=k e

−K2{Γi,e−−→n i−1,s(ei)
+←−n i,s′(ei)}

∑
e∈Ti e

−K2{Γi,e−−→n i−1,s(ei)
+←−n i,s′(ei)}

=
∑

e:s(e)=k

λi+1,e.

Furthermore,

∑

e∈Ti
λ̂i,e = (1− 6ε)

∑

e∈Ti
λi,e + 6ε

∑

e∈Ti

1

|E| = 1,

∑

e:s′(e)=k

λ̂i,e = (1− 6ε)
∑

e:s′(e)=k

λi,e + 6ε
∑

e:s′(e)=k

1

|E|

= (1− 6ε)
∑

e:s(e)=k

λi+1,e + 6ε
∑

e:s(e)=k

1

|E|

=
∑

e:s(e)=k

λ̂i+1,e,

and by De�nition 7, λ̂ ∈ P(H). Therefore, we conclude that
{
λ̂i,e

}
∈ PT (H) is

feasible in Problem-P. From [49, p. 4855], it follows that there exist feasible ŵj
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vectors associated with
{
λ̂i,e

}
. Furthermore for ∀i ∈ I, j ∈ N (i)

∑

B∈Ej ,B3i
wj,B =

∑
B∈Ej ,B3i e

−K1
∑

l∈N (j)ml,j1B(l)

∑
B′∈Ej e

−K1
∑

l∈N (j) ml,j1B′ (l)

=
1

1 +
∑

e:x(e)=0 e
−K2{Γi,e−−→n i−1,s(ei)

+←−n i,s′(ei)}∑
e:x(e)=1 e

−K2{Γi,e−−→n i−1,s(ei)
+←−n i,s′(ei)}

=
∑

e:x(e)=1

gi,e,

where the second equality follows from (3.5). Also, for ∀i ∈ I \N, k ∈ S

∑

e:s′(e)=k

gi,e =

∑
e:s′(e)=k e

−K2{Γi,e−−→n i−1,s(ei)
+←−n i,s′(ei)}

∑
e∈Ti e

−K2{Γi,e−−→n i−1,s(ei)
+←−n i,s′(ei)}

=
∑

e:s(e)=k

gi+1,e,

where the second equality follows from (3.2) and (3.3). Thus, w and g are feasible in

Problem-P.

Next, de�ne the solution vector λ with

λi,j ,
1

1 + e
K1(mi,j−Mi,j)

and

ε , max
i∈I

max
j,j′∈N (i)

|λi,j − λi,j′ |.

Denote the minimum value of Problem-PS by P̃ . Then by the Lagrange duality we
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can upper bound P̃ε − P̃ with

∑

i∈I

∑

e∈Ti
bi,eλ̂i,e −

1

K1

∑

j∈J
H(ŵj)−

1

K2

H(λ̂p)− P̃

≤
∑

i∈I

∑

e∈Ti
bi,eλ̂i,e −

1

K1

∑

j∈J
H(ŵj)−

1

K2

H(λ̂p)

+
1

K1

∑

j∈J
ln
∑

B∈Ej
e
−K1{∑i∈N (j)mi,j1B(i)}

(a)

≤ 1

K1

∑

j∈J
[H(wj)−H(ŵj)]−

1

K2

H(λ̂p)

+ε

(
3
∑

l∈I

∑

e∈Tl
|bl,e|+CN

)

≤ 1

K1

∑

j∈J
H(wj) + εN

(
3

N

∑

l∈I

∑

e∈Tl
|bl,e|+ C

)
,

where (a) is given by rewriting (3.19) as

1

K1

∑

j∈J
ln
∑

B∈Ej
e
−K1{∑i∈N (j) mi,j1B(i)}

=
1

K1

∑

j∈J
H(wj)−

∑

j∈J

∑

B∈Ej
wj,B

∑

l∈N (j)

ml,j1B(l)

≤ 1

K1

∑

j∈J
H(wj)−

∑

l∈I

∑

e∈Tl
bl,eλ̂l,e+ε

(
3
∑

l∈I

∑

e∈Tl
|bl,e|+CN

)
.
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The last step of this equation follows from

∑

j∈J

∑

B∈Ej
wj,B

∑

l∈N (j)

ml,j1B(l)

=
∑

l∈I

∑

j∈N (l)

ml,jλ
j
l

≥
∑

l∈I

∑

j∈N (l)

ml,j (λl − ε)

≥
∑

l∈I

∑

e∈Tl


δx(e)=1

∑

j∈N (l)

ml,j


λl,e−ε

∑

l∈I

∑

j∈N (l)

|ml,j|

≥
∑

l∈I

∑

e∈Tl
bl,eλl,e − εCN

≥
∑

l∈I

∑

e∈Tl
bl,eλ̂l,e − 3ε

∑

l∈I

∑

e∈Tl
|bl,e| − εCN.

In the above equation, the details of the last two inequalities are not included due

to space limitations, but they can be derived using arguments very similar to [49, p.

4840-4841]. For any δ > 0, after su�ciently many iterations with su�ciently large

K1 and K2 until ε becomes su�ciently small, the modi�ed Algorithm 1 outputs g̃ε

with the minimum value P̃ε which satis�es

P̃ε − P̃
N

≤ δ

2

by Lemma 4. By combining with Lemma 5, the �nal g̃ε satis�es the given relaxation

bound as
P̃ε − P ∗
N

=
P̃ε − P̃
N

+
P̃ − P ∗
N

≤ δ.

Lastly, we obtain the desired conclusion, which is stated as Theorem 7.

Theorem 7. For any ε > 0, su�ciently many iterations of the modi�ed Algorithm 1
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produces a feasible solution for Problem-DS that satis�es the KKT conditions within

ε. If ε < 1/6, then one can construct a solution (g̃ε, w̃ε) for Problem-P that is feasible

and whose value P ∗ε satis�es

0 ≤ P ∗ε − P ∗ ≤ δN,

where

δ ,
2
(
1−R + N̄

)
ln 2

K1

+
ln O

K2N
+ ε

(
3

N

∑

l∈I

∑

e∈Tl
|bl,e|+ C

)
.

Proof. Combining results of Lemma 4, Lemma 5, and Lemma 6, we obtain the desired

error bound.

Remark 5. The modi�ed (i.e., cyclic schedule) Algorithm 1 is guaranteed to converge

to a solution whose value can be made arbitrarily close to P ∗. Therefore, the joint

iterative LP decoder provides an approximate solution to Problem-P whose value is

governed by the upper bound in Theorem 7. Algorithm 1 can be further modi�ed to

be of Gauss-Southwell type so that the complexity analysis in [49] can be extended to

this case. Still, the analysis in [49], although a valid upper bound, does not capture

the true complexity of decoding because one must choose δ = o (1/N) to guarantee that

the iterative LP solver �nds the true minimum. Therefore, the exact convergence rate

and complexity analysis of Algorithm 1 is left for future study. In general, the con-

vergence rate of coordinate-descent methods (e.g., Gauss-Seidel and Gauss-Southwell

type algorithms) for convex problems without strict convexity is an open problem [58].

C. Error Rate Prediction and Validation

In this section, we validate the proposed joint-decoding solution and discuss some

implementation issues. Then, we present simulation results and compare with other

approaches. In particular, we compare the performance of the joint LP decoder and
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joint iterative LP decoder with the joint iterative message-passing decoder on two

�nite-state intersymbol interference channels (FSISCs) described in De�nition 6. For

preliminary studies, we use a (3, 5)-regular binary LDPC code on the precoded di-

code channel (pDIC) with length 155 and 455. For a more practical scenario, we also

consider a (3, 27)-regular binary LDPC code with length 4923 and rate 8/9 on the

class-II Partial Response (PR2) channel used as a partial-response target for perpen-

dicular magnetic recording. All parity-check matrices were chosen randomly except

that double-edges and four-cycles were avoided. Since the performance depends on

the transmitted codeword, the WER results were obtained for a few chosen codewords

of �xed weight. The weight was chosen to be roughly half the block length, giving

weights 74, 226, and 2462 respectively.

The performance of the three algorithms was assessed based on the following

implementation details.

Joint LP Decoder: Joint LP decoding is performed in the dual domain because this

is much faster than the primal domain when using MATLAB. Due to the slow speed

of LP solver, simulations were completed up to a WER of roughly 10−4 on the three

di�erent non-zero LDPC codes with block lengths 155 and 455 each. To extrapolate

the error rates to high SNR (well beyond the limits of our simulation), we use a

simulation-based semi-analytic method based on the truncated union bound, (2.3),

as discussed in Chapter II. The idea is to run a simulation at low SNR and keep

track of all observed codeword and pseudo-codeword (PCW) errors and a truncated

union bound is computed by summing over all observed errors. The truncated union

bound is obtained by computing the generalized Euclidean distances associated with

all decoding errors that occurred at some low SNR points (e.g., WER of roughly

than 10−1) until we observe a stationary generalized Euclidean distance spectrum. It
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is quite easy, in fact, to store these error events in a list which is �nally pruned to

avoid overcounting. Of course, low SNR allows the decoder to discover PCWs more

rapidly than high SNR and it is well-known that the truncated bound should give

a good estimate at high SNR if all dominant joint decoding PCWs have been found

(e.g., [59, 60]). One nontrivial open question is the feasibility and e�ectiveness of

enumerating error events for long codes. In particular, we do not address how many

instances must be simulated to have high con�dence that all the important error

events are found so there are no surprises at high SNR.

Joint Iterative LP Decoder: Joint iterative decoding is performed based on the

Algorithm 1 on all three LDPC codes of di�erent lengths. For block lengths 155

and 455, we chose the codeword which shows the worst performance for the joint

LP decoder experiments. We used a simple scheduling update scheme: variables are

updated according to Algorithm 1 with cyclically with `inner = 2 inner loop iterations

for each outer iteration. The maximum number of outer iterations is `outer = 100, so

the total iteration count, `outer`inner, is at most 200. The choice of parameters are

K1 = 1000 and K2 = 100 on the LDPC codes with block lengths 155 and 455. For

the LDPC code with length 4923, K2 is reduced to 10. To prevent possible under�ow

or over�ow, a few expressions must be implemented carefully. When

K1 min
r∈N (j)\i

|mr,j| ≥ 35,
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a well-behaved approximation of (3.10) is given by


 1

K1

ln






2+ 2

∑

r∈N (j)\i
e
−K1(|mr,j |−minr∈N (j)\i |mr,j |)







− min
r∈N (j)\i

|mr,j|
]
 ∏

r∈N (j)\i
sgn (mr,j)


 ,

where sgn (x) is the usual sign function. Also, (3.9) should be implemented as

max
e∈Ti:x(e)=0

{
ᾱi−1 (s(e)) + λ̄i,e + β̄i (s

′(e))
}

− max
e∈Ti:x(e)=1

{
ᾱi−1 (s(e)) + λ̄i,e + β̄i (s

′(e))
}

+ log


 ∑

e∈Ti:x(e)=0

ᾱi−1 (s(e)) + λ̄i,e + β̄i (s
′(e))−

max
e∈Ti:x(e)=0

{
ᾱi−1 (s(e)) + λ̄i,e + β̄i (s

′(e))
}]

− log


 ∑

e∈Ti:x(e)=1

ᾱi−1 (s(e)) + λ̄i,e + β̄i (s
′(e))−

max
e∈Ti:x(e)=1

{
ᾱi−1 (s(e)) + λ̄i,e + β̄i (s

′(e))
}]

,

where ᾱi (k) , lnαi (k) , β̄i (k) , ln βi (k) and λ̄i,e , lnλi,e.

Joint Iterative Message-Passing Decoder: Joint iterative message decoding is per-

formed based on the state-based algorithm described in [55] on all three LDPC codes

of di�erent lengths. To make a fair comparison with the Joint Iterative LP Decoder,

the same maximum iteration count is used and the same codewords are transmitted.
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Fig. 13. Comparison between joint LP decoding, joint iterative LP decoding, and joint
iterative message-passing (MP) decoding on the pDIC with AWGN for random
(3,5) regular LDPC codes of length N = 155 (top) and N = 450 (bottom).
The joint LP decoding experiments were repeated for three di�erent non-zero
codewords and depicted in three di�erent curves. The dashed curves are computed
using the union bound in Equation (2.3) based on JD-PCWs observed at 3.46 dB
(left) 2.67 dB (right). Note that SNR is de�ned as channel output power divided
by σ2.
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1. Results

Fig. 13 compares the results of all three decoders and the error-rate estimate given

by the union bound method discussed in Chapter II. The solid lines represent the

simulation curves while the dashed lines represent a truncated union bound for three

di�erent non-zero codewords. Surprisingly, we �nd that joint LP decoder outperforms

joint iterative message passing decoder by about 0.5 dB at WER of 10−4. We also

observe that that joint iterative LP decoder loses about 0.1 dB at low SNR. This may

be caused by using �nite values for K1 and K2. At high SNR, however, this gap disap-

pears and the curve converges towards the error rate predicted for joint LP decoding.

This shows that joint LP decoding outperforms belief-propagation decoding for short

length code at moderate SNR with the predictability of LP decoding. Of course, this

can be achieved with a computational complexity similar to turbo equalization.

One complication that must be discussed is the dependence on the transmit-

ted codeword. Computing the bound is complicated by the fact that the loss of

channel symmetry implies that the dominant PCWs may depend on the transmitted

sequence. It is known that long LDPC codes with joint iterative decoding experience

a concentration phenomenon [55] whereby the error probability of a randomly chosen

codeword is very close, with high probability, to the average error probability over

all codewords. This e�ect starts to appear even at the short block lengths used in

this example. More research is required to understand this e�ect at moderate block

lengths and to verify the same e�ect for joint LP decoding.

Fig. 14 compares the joint iterative LP decoder and joint iterative message-

passing decoder in a practical scenario. Again, we �nd that the joint iterative LP

decoder provides gains over the joint iterative message-passing decoder at high SNR.

The slope di�erence between the curves also suggests that the performance gains of
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Fig. 14. Comparison between joint iterative LP decoding, joint iterative MP decoding
and soft-output Viterbi algorithm (SOVA)-based TE decoding (taken from [38])
on the PR2 channel with AWGN for random (3,27) regular LDPC codes of length
N = 4923. Note that SNR is de�ned as channel output power divided by σ2.

joint iterative LP decoder will increase with SNR. This shows that joint iterative LP

decoding can provide performance gains at high SNR with a computational complex-

ity similar to that of turbo equalization.
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CHAPTER IV

SIMPLIFIED ITERATIVE LP DECODING FOR BINARY PROBLEMS

A. Motivation

In Chapter III, smoothed Lagrangian relaxation methods were shown to greatly re-

duce the computational complexity of the joint LP solver and combine the predictabil-

ity of LP decoding with a computational complexity similar to turbo equalization

(TE). In addition, they provide provable convergence guarantees with performance

gains over TE in the error-�oor region. Inspired by these gains, we reconsider the

problem of iterative linear-programming (LP) decoding for low-density parity-check

(LDPC) codes and develop computationally simpli�ed solutions.

The main idea is applying block-coordinate maximization algorithms directly to

the dual problem. This direct approach is similar in spirit to [61, 62]. But, our

results and methods are customized for decoding problems [45, 49, 63]. The primary

result is a simpli�ed joint iterative LP decoder with SOVA-based channel update and

min-sum-like code update. Moreover, it has no smoothing parameters to tune. We

anticipate this approach will lead eventually to a compact analysis of a bound on the

iteration complexity (or convergence rate).

B. Derivation of Simpli�ed Iterative Solver for the LP Decoder

First, we derive a a block coordinate ascent algorithm that cyclically, for p = 1, . . . , n,

maximizes over the block mp , {mp,j}j∈N (p) of dual-domain variables for the LP

decoder. For �xed p ∈ I, one can separate the objective function of the dual problem
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Algorithm 2 Simpli�ed Iterative Linear-Programming Decoding

• Step 1. Set ` = 0 and initialize mi,j = γi
|N (i)| for i ∈ I, j ∈ N (i) .

• Step 2. For i ∈ I,

� (i) Compute bit-to-check msg mi,j for j ∈ N (i)

mi,j =
γi +

∑
j′∈N (i) Mi,j′

|N (i)| −Mi,j

� (ii) Compute check-to-bit msg Mi,j for j ∈ N (i)

Mi,j =


 ∏

i∈N (j)\p
sgn (mi,j)


 min

i′∈N (j)\p
|mi′,j| (4.1)

• Step 3. Compute hard decisions and stopping rule

� (i) For i ∈ I,

f̂i =


1− sgn


γi +

∑

j′∈N (i)

Mi,j′




 /2

� (ii) If f̂ satis�es all parity checks or the maximum iteration number, `max,

is reached, stop and output f̂ . Otherwise increment ` and go to Step 2.

Table VI. Dual Problem for the LP Decoder (Problem-D)

max
m

∑

j∈J
min
B∈Ej

[∑

i∈B
mi,j

]

subject to
∑

j∈N (i)

mi,j = γi, ∀i ∈ I
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(i.e., Problem-D in Table VI) into two parts with

max
mp

g (m) , max
mp

g (m1, . . . , mN)

= max
mp

∑

j∈J
min
B∈Ej




∑

i∈N (j)

mi,j1B(i)





=
∑

j∈J\N (p)

min
B∈Ej




∑

i∈N (j)

mi,j1B(i)



+ max

mp

∑

j∈N (p)

min
B∈Ej




∑

i∈N (j)

mi,j1B(i)



 .

Since the �rst term does not depend on mp, we can focus on the second term. Using

the simple equality

∑

i∈N (j)

m
(t)
i,j1B(i) = m

(t)
p,j1B(p) +

∑

i∈N (j)\p
m

(t)
i,j1B(i),

one can rewrite the second term as

max
mp

∑

j∈N (p)

min
B∈Ej




∑

i∈N (j)

m
(t)
i,j1B(i)





= max
mp

∑

j∈N (p)

min


 min
B∈Ej :p∈B




∑

i∈N (j)

m
(t)
i,j1B(i)



 , min

B∈Ej ,p/∈B




∑

i∈N (j)

m
(t)
i,j1B(i)








= max
mp

∑

j∈N (p)

min


m(t)

p,j + min
B∈Ej ,p∈B





∑

i∈N (j)\p
m

(t)
i,j1B(i)



 , min

B∈Ej ,p/∈B





∑

i∈N (j)\p
m

(t)
i,j1B(i)






 .

Because the sum of the minimums is less than the minimum of the sum, one has the

upper bound

max
mp

min


 ∑

j∈N (p)



m

(t)
p,j + min

B∈Ej ,p∈B





∑

i∈N (j)\p
m

(t)
i,j1B(i)







 ,

∑

j∈N (p)



 min
B∈Ej ,p/∈B





∑

i∈N (j)\p
m

(t)
i,j1B(i)










 .
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From the constraint on
∑

j∈N (p)mp,j and the fact that the inner expression no longer

depends on mp, we obtain

min


γp +

∑

j∈N (p)

min
B∈Ej ,p∈B





∑

i∈N (j)\p
m

(t)
i,j1B(i)



 ,

∑

j∈N (p)

min
B∈Ej ,p/∈B





∑

i∈N (j)\p
m

(t)
i,j1B(i)






 ,

Proposition 2. Maximizing g (m) over mp yields the following ascent step

M
(t+1)
p,j , min

B∈Ej ,p∈B





∑

i∈N (j)\p
m

(t)
i,j1B(i)



− min

B∈Ej ,p/∈B





∑

i∈N (j)\p
m

(t)
i,j1B(i)





and

m
(t+1)
p,j ,

γp +
∑

j′∈N (p) M
(t+1)
p,j′

|N (p)| −M (t+1)
p,j .

Proof. First, we verify that this choice satis�es the constraint with equality by ob-

serving that

∑

j∈N (p)

m
(t+1)
p,j =

∑

j∈N (p)

[
γp +

∑
j′∈N (p) M

(t+1)
p,j′

|N (p)| −M (t+1)
p,j

]
= γp.

To see that it also achieves the upper bound with equality, we compute

∑

j∈N (p)

min
B∈Ej




∑

i∈N (j)

m
(t+1)
i,j 1B(i)





=
∑

j∈N (p)

min


 min
B∈Ej :p∈B




∑

i∈N (j)

m
(t+1)
i,j 1B(i)



 , min

B∈Ej′ ,p/∈B




∑

i∈N (j)

m
(t+1)
i,j 1B(i)








=
∑

j∈N (p)

min


m(t+1)

p,j + min
B∈Ej ,p∈B





∑

i∈N (j)\p
m

(t)
i,j1B(i)



 ,

min
B∈Ej ,p/∈B





∑

i∈N (j)\p
m

(t)
i,j1B(i)






 ,
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Using the de�nition of M (t+1)
p,j , one can rewrite this as

∑

j∈N (p)

min
[
m

(t+1)
p,j +M

(t+1)
p,j , 0

]
+
∑

j′∈N (p)

min
B∈Ej′ ,p/∈B





∑

i∈N (j′)\p
m

(t)
i,j′1B(i)





=
∑

j∈N (p)

min


m(t+1)

p,j +M
(t+1)
p,j +

∑
j′∈N (p) minB∈Ej′ ,p/∈B

{∑
i∈N (j′)\pm

(t)
i,j′1B(i)

}

|N (p)| ,

∑
j′∈N (p) minB∈Ej′ ,p/∈B

{∑
i∈N (j′)\pm

(t)
i,j′1B(i)

}

|N (p)|




=
1

|N (p)|
∑

j∈N (p)

min


γp +

∑

j′∈N (p)

min
B∈Ej′ ,p∈B





∑

i∈N (j′)\p
m

(t)
i,j′1B(i)



 ,

∑

j′∈N (p)

min
B∈Ej′ ,p/∈B





∑

i∈N (j′)\p
m

(t)
i,j′1B(i)








= min


γp +

∑

j′∈N (p)

min
B∈Ej′ ,p∈B





∑

i∈N (j′)\p
m

(t)
i,j′1B(i)



 ,

∑

j′∈N (p)

min
B∈Ej′ ,p/∈B





∑

i∈N (j′)\p
m

(t)
i,j′1B(i)






 .

Proposition 3. The quantity M (t+1)
p,j can be computed e�ciently using

M
(t+1)
p,j =


 ∏

i∈N (j)\p
sgn

(
m

(t)
i,j

)

 min

i′∈N (j)\p
|m(t)

i′,j|.

Proof. From [45], we have

min (x1, x2, . . . , xm) = lim
K→∞

− 1

K
ln

m∑

i=1

e
−Kxi .
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Therefore, we can write M (t+1)
p,j as

M
(t+1)
p,j = min

B∈Ej ,p∈B





∑

i∈N (j)\p
m

(t)
i,j1B(i)



− min

B∈Ej ,p/∈B





∑

i∈N (j)\p
m

(t)
i,j1B(i)





= lim
K→∞

− 1

K
ln

∑
B∈Ej ,p∈B e

−K∑i∈N (j)\pm
(t)
i,j1B(i)

∑
B∈Ej ,p/∈B e

−K∑i∈N (j)\pm
(t)
i,j1B(i)

.

Next, we rewrite ln
∑
B∈Ej ,p∈B e

−K∑i∈N (j)\pm
(t)
i,j1B(i)/

∑
B∈Ej ,p/∈B e

−K∑i∈N (j)\pm
(t)
i,j1B(i) as

ln

∑
B∈Ej ,p∈B

∏
i∈N (j)\p x

1B(i)
i

∑
B∈Ej ,p/∈B

∏
i∈N (j)\p x

1B(i)
i

= ln

∏
i∈N (j)\p (1 + xi,j) +

∏
i∈N (j)\p (1− xi,j)∏

i∈N (j)\p (1 + xi,j)−
∏

i∈N (j)\p (1− xi,j)

= ln
1 +

∏
i∈N (j)\p

(
1−xi,j
1+xi,j

)

1−∏i∈N (j)\p

(
1−xi,j
1+xi,j

) ,

where xi , e
−Km(t)

i,j . Equivalently, we obtain

ln

1 +
∏

i∈N (j)\p tanh

(
Km

(t)
i,j

2

)

1−∏i∈N (j)\p tanh

(
Km

(t)
i,j

2

)

(a)
= 2 tanh−1


 ∏

i∈N (j)\p
tanh

(
Km

(t)
i,j

2

)


(b)
= 2 sgn


 ∏

i∈N (j)\p
tanh

(
Km

(t)
i,j

2

)
 tanh−1



∣∣∣∣∣∣
∏

i′∈N (j)\p
tanh

(
Km

(t)
i′,j

2

)∣∣∣∣∣∣




(c)
=


 ∏

i∈N (j)\p
sgn

(
m

(t)
i,j

)



2 tanh−1


 ∏

i′∈N (j)\p
tanh



K
∣∣∣m(t)

i′,j

∣∣∣
2






 ,

where (a) follows from tanh−1 (x) = (1/2) ln ((1 + x)/(1− x)) , (b) and (c) follows

from the fact that tanh (x) and tanh−1 (x) are monotonically increasing and have odd
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symmetry, implying

tanh−1 (x) = sgn (x) tanh−1 (|x|) ,

sgn


 ∏

i∈N (j)\p
tanh

(
Km

(t)
i,j

2

)
 =

∏

i∈N (j)\p
sgn

(
tanh

(
Km

(t)
i,j

2

))

=
∏

i∈N (j)\p
sgn

(
Km

(t)
i,j

2

)
=

∏

i∈N (j)\p
sgn

(
m

(t)
i,j

)

and
∣∣∣∣∣∣
∏

i∈N (j)\p
tanh

(
Km

(t)
i,j

2

)∣∣∣∣∣∣
=

∏

i∈N (j)\p

∣∣∣∣∣tanh

(
Km

(t)
i,j

2

)∣∣∣∣∣ =
∏

i∈N (j)\p
tanh



K
∣∣∣m(t)

i,j

∣∣∣
2


 .

Finally, one gets

M
(t+1)
p,j = −


 ∏

i∈N (j)\p
sgn

(
m

(t)
i,j

)

 lim

K→∞


 2

K
tanh−1


 ∏

i′∈N (j)\p
tanh



K
∣∣∣m(t)

i′,j

∣∣∣
2








(a)
=


 ∏

i∈N (j)\p
sgn

(
m

(t)
i,j

)

 min

i′∈N (j)\p
|m(t)

i′,j|,

where (a) holds because

2

K
tanh−1


 ∏

i′∈N (j)\p
tanh



K
∣∣∣m(t)

i′,j

∣∣∣
2






=
1

K
ln

1 +
∏

i′∈N (j)\p e
K
∣∣∣m(t)

i′,j

∣∣∣
∑

i′∈N (j)\p e
K
∣∣∣m(t)

i′,j

∣∣∣

= − min
i′∈N (j)\p

|m(t)
i′,j|+

1

K
ln

e

ln

(
1+
∏

i′∈N (j)\p e
K

∣∣∣∣m(t)

i′,j

∣∣∣∣)

∑
i′∈N (j)\p e

K
(∣∣∣m(t)

i′,j

∣∣∣−mini′∈N (j)\p |m
(t)

i′,j |
) .

The resulting algorithm is summarized in Algorithm 2.
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C. Derivation of Simpli�ed Iterative Solver for the Joint LP Decoder

Minimizing Problem-D2 (in Chapter III) over the p-th block gives

max
mp

∑

j∈N (p)

min
B∈Ej




∑

i∈N (j)

mi,j1B(i)





subject to

Γp,e = −→n p−1,s(e) −←−n p,s′(e), e ∈ Tp

where −→n i,k is de�ned for i = 1, . . . , p− 1 by

−−→n i,k = min
e∈s′−1(k)

−−→n i−1,s(ei) + Γi,e, ∀k ∈ S

and ←−n i,k is de�ned for i = N − 1, N − 2, . . . , p by

←−n i,k = min
e∈s−1(k)

←−n i+1,s′(ei+1) + Γi+1,e, ∀k ∈ S

starting from
−→n 0,k =←−n N,k = 0, ∀k ∈ S.

By de�ning

γp ,

∑
e∈Tp

(
bp,e −−→n p−1,s(e) +←−n p,s′(e)

)

| {e ∈ Tp |x(e) = 1} |
and

Γp,e = bi,e − δx(e)=1

∑

j∈N (i)

mi,j,

this problem can be written equivalently as

max
mp

∑

j∈N (p)

min
B∈Ej




∑

i∈N (j)

mi,j1B(i)
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Algorithm 3 Simpli�ed Iterative Joint Linear-Programming Decoding

• Step 1. Set ` = 0 and initialize mi,j = 0 for i ∈ I, j ∈ N (i) .

• Step 2. Update Outer Loop: For i ∈ I,

� (i) Compute bit-to-trellis message

Γi,e = bi,e − δx(e)=1

∑

j∈N (i)

mi,j

� (ii) Compute forward/backward trellis messages

−−→n i+1,k = min
e∈s′−1(k)

−−→n i,s(ei) + Γi+1,e (4.2)

←−n i−1,k = min
e∈s−1(k)

←−n i,s′(ei+1) + Γi,e, (4.3)

where −→n 0,k =←−n N,k = 0 for all k ∈ S.

• Step 3. Update Inner Loop for `inner rounds: For i ∈ I,

� (i) Compute trellis-to-bit message γi

γi =

∑
e∈Ti

(
bi,e −−→n i−1,s(e) +←−n i,s′(e)

)

| {e ∈ Ti |x(e) = 1} |

� (ii) Compute bit-to-check msg mi,j for j ∈ N (i)

mi,j =
γi +

∑
j′∈N (i)Mi,j′

|N (i)| −Mi,j

� (iii) Compute check-to-bit msg Mi,j for j ∈ N (i)

Mi,j =


 ∏

i∈N (j)\p
sgn (mi,j)


 min

i′∈N (j)\p
|mi′,j | (4.4)

• Step 4. Compute hard decisions and stopping rule

� (i) For i ∈ I,
f̂i = (1− sgn (γi)) /2

� (ii) If f̂ satis�es all parity checks or the maximum outer iteration number, `outer,
is reached, stop and output f̂ . Otherwise increment ` and go to Step 2.
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subject to
∑

j∈N (p)

mp,j = γp.

To obtain a simple and e�cient algorithm, we again use a block coordinate ascent

strategy to this problem by following the same argument in Section B. The resulting

algorithm is summarized in Algorithm 3.
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CHAPTER V

IMP: A MESSAGE-PASSING ALGORITHM FOR MATRIX COMPLETION*

This chapter∗ considers an important subclass of the matrix completion problem

where the entries (drawn from a �nite alphabet) are modeled by a (generative) factor

graph. Based on this factor graph model, we propose a message-passing (MP) based

algorithm, termed IMP, to estimate missing entries. This algorithm seems to share

some of the desirable properties demonstrated by MP in its successful application to

modern coding theory [64]. The IMP algorithm tries to combine the bene�ts of soft

clustering of users/movies into groups and message-passing based on the unknown

groups to make predictions. In addition, simulation results for cold-start settings

(i.e., less than 0.5% randomly sampled entries) show that the cold start problem is

reduced greatly by IMP in comparison to other methods on real collaborative �ltering

(or Net�ix) data matrices.

A. Factor Graph Model

Consider a collection of N users and M movies when the set O of user-movie pairs

have been observed. The main theoretical question is, �How large should the size of

O be to estimate the unknown ratings within some distortion δ?�. Answers to this

question certainly require some assumptions about the movie rating process. So we

begin di�erently by introducing a probabilistic model for the movie ratings. The basic

idea is that hidden variables are introduced for users and movies, and that the movie

∗This chapter is in part a reprint of the material in the paper: B.-H.Kim, A. Yedla,
and H. P�ster, "IMP: A message-passing algorithm for matrix completion",in Proc.
Int. Symp. on Turbo Codes & Iterative Inform. Proc., Brest, France,Sept. 2010, pp.
469-473.
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ratings are conditionally independent given these hidden variables. It is convenient

to think of the hidden variable for any user (or movie) as the user group (or movie

group) of that user (or movie) and this can be viewed as a simplistic assumption

about the psychological nature of movie preferences [65, 66]. In this context, the

rating associated with a user-movie pair depends only on the user group and the

movie group. [67]

Since the number of movie groups are very small compared to the number of

movies, this idea is similar to mapping movies to a low-dimensional movie group.

Each movie group may correspond to a genre (e.g., comedy, drama, action, ...). Each

user group tries to capture sets of users that have similar taste in movies. For example,

a movie may be classi�ed as a comedy, and a user may be classi�ed as a comedy

lover. The model may use 20 to 40 such groups to locate each movie and user in

a multidimensional space. It then predicts a user's rating of a movie according to

the movie's rating on the dimensions that person cares about most since similar

user/movie map to similar groups in the low-dimensional (group) space.

The goal is to design a probabilistic mapping such that re�ects group associations

in the low-dimensional (group) space. Let there be gu user groups, gv movie groups,

and de�ne [k] , {1, 2, . . . , k}. The user group of the n-th user, Un ∈ [gu], is a discrete

random variable drawn from Pr(Un = u) , pU(u) and U = U1, U2, . . . , UN is the user

group vector. Likewise, the movie group of the m-th movie, Vm ∈ [gv], is a discrete

random variable drawn from Pr(Vm = v) , pV (v) and V = V1, V2, . . . , VM is the

movie group vector. Then, the rating of the m-th movie by the n-th user is a discrete

random variable Rnm ∈ R (e.g., Net�ix uses R = [5]) drawn from Pr(Rnm = r|Un =

u, Vm = v) , w(r|u, v) and the rating Rnm is conditionally independent given the user

group Un and the movie group Vm. Let R denote the rating matrix and the observed

submatrix be RO with O ⊆ [N ]× [M ]. In this setup, some of the entries in the rating
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permutation

permutation

U0

V0

U1

V1

U2

V2

U3

V3

U4

V4

U5

V5

U6

V6

UN

VM

U y(i)

Users

Ratings

RO

V x(i)

Movies

Fig. 15. The factor graph model for the matrix completion problem. The graph is sparse
when there are few ratings. Edges represent random variables and nodes represent
local probabilities. The node probability associated with the ratings implies that
each rating depends only on the movie group (top edge) and the user group (bot-
tom edge). Synthetic data can be generated by picking i.i.d. random user/movie
groups and then using random permutations to associate groups with ratings.
Note x(i) and y(i) are the messages from movie to user and user to movie during
iteration i for the Algorithm 4.

matrix are observed while others must be predicted. The conditional independence

assumption in the model implies that

Pr (RO|U,V) ,
∏

(n,m)∈O
w (Rnm|Un, Vm) .

Speci�cally, we consider the factor graph (composed of 3 layers, see Fig. 15) as a

randomly chosen instance of this problem based on this probabilistic model. The key

assumptions are that these layers separate the in�uence of user groups, movie groups,

and observed ratings. A random permutation is used to map the edges attached to

user nodes to the edges attached to movie nodes.

This model attempts to exploit correlation in the ratings based on similarity

between users (and movies). It also tries to include the noisy rating process in the
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model and reduce the impact of corrupted ratings on prediction by dimension re-

duction. These advantages allows one to approximates real Net�ix data generation

process more closely than other simpler factor models. In fact this model can be seen

as a generalization of [29] and [32]. It is also important to note that this is a proba-

bilistic generative model which generalizes the clustering model in and also allows one

to evaluate di�erent learning algorithms on synthetic data and compare the results

with theoretical bounds (see Section F for details).

B. The IMP Algorithm

1. Initializing w(r|u, v) for Group Ratings

The IMP algorithm requires reasonable initial estimates, of the observation model

w(r|u, v), to get started. To get these estimates, we cluster users (and movies) �rst.

The basic method uses a variable-dimension vector quantization (VDVQ) clustering

algorithm and the standard codebook splitting approach known as the generalized

Lloyd algorithm (GLA) to generate codebooks whose size is any power of 2 [68].

Though our approach was motivated by the VDVQ clustering algorithm, it turns out

to be equivalent to soft K-means clustering with an appropriate distance measure.

So we will refer VDVQ clustering as soft K-means clustering.

The soft K-means clustering algorithm is based on the alternating minimization

of the average distance between users (or movies) and codebooks (that contain no

missing data). This leads to alternating application of nearest neighbor and centroid

rules. The distance is computed only on the elements both vectors share. In the

case of users, one can think of this Algorithm 5 as a �K-critics� algorithms which

tries to design K critics (i.e., people who have seen every movie) that cover the space

of all user tastes and each user is given a soft �degree of assignment (or soft group
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Algorithm 4 IMP Algorithm
Step I: Initialization of w(r|u, v) via Algorithm 5 and randomized initialization of

user/movie group probabilities x(0)
m→n(v) and y

(0)
n→m(u).

Step II: Recursive update for user/movie group probabilities

y(i+1)
n→m(u)∝y(0)

n (u)
∏

k∈Vn\m

∑

v

w (r|u, v)x
(i)
k→n(v)

x(i+1)
m→n(v)∝x(0)

m (v)
∏

k∈Um\n

∑

u

w (r|u, v)y
(i)
k→m(u)

Step III: Update w(r|u, v) and output probability of rating Rnm given observed

ratings

p̂
(i+1)
Rnm|RO

(r)∝
∑

u,v

y(i+1)
n→m(u)w (r|u, v)x(i+1)

m→n(v)

membership)� to each of the critics which can take on values between 0 and 1. After

soft-clustering users/movies each into user/movie groups, we estimate w(r|u, v) by

computing the soft frequency of each rating for each user-movie group pair.

2. Message-Passing Updates of Group Vectors

Using the model from Section A, we describe how message-passing can be used for the

prediction of hidden variables based on observed ratings. Ideally, we could perform

exact inference of our factor graph model. But exact learning and inference for this

model is intractable, so we turn to approximate message-passing algorithms (e.g., the

sum-product algorithm) [69]. The basic idea is that the local neighborhood of any

node in the factor graph is tree-like (see [70] for details). For iteration i, we simplify

notation by denoting the message from movie m to user n by x
(i)
m→n and the message

from user n to movie m by y
(i)
n→m. The iteration is initialized with
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xm→n(v)=xm(v)=pV (v), yn→m(u)=yn(u)=pU(u).

The set of all users who rated movie m is denoted Um and the set of all movies whose

rating by user n was observed is denoted Vn. The exact update equations are given

in Algorithm 4. The group probabilities are randomly initialized by assuming that

the initial group (of the user and movie) probabilities are uniform across all groups.

3. Approximate Matrix Completion

Since the primary goal is the prediction of hidden variables based on observed ratings,

the IMP algorithm focuses on estimating the distribution of each hidden variable given

the observed ratings. In particular, the outputs of the algorithm (after i iterations) are

estimates of the distributions for Rnm, Un, and Vm. They are denoted, respectively,

as

p̂
(i+1)
Rnm|RO

(r)∝
∑

u,v

y(i+1)
n→m(u)w (r|u, v)x(i+1)

m→n(v)

p̂
(i+1)
Un|RO

(u)∝y(0)
n (u)

∏

k∈Vn

∑

v

w (r|u, v)x
(i)
k→n(v)

p̂
(i+1)
Vm|RO

(v)∝x(0)
m (v)

∏

k∈Um

∑

u

w (r|u, v)y
(i)
k→m(u).

Using these, one can minimize various types of prediction error. For example, min-

imizing the mean-squared prediction error results in the conditional mean estimate

(see Fig. 16)

r̂(i)
n,m =

∑

r∈R
r p̂

(i)
Rnm|RO

(r).
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Algorithm 5 Initializing Group Ratings (shown only for users)
Step I: Initialization

Let i = j = 0 and c(0,0)
m (0) be the average rating vector of users for movie m.

Step II: Splitting of critics

Set

c(i+1,j)
m (u)=





c
(i,j)
m (u) u=0, . . . , 2i−1

c
(i,j)
m (u−2i)+z

(i+1,j)
m (u) u=2i, . . . , 2i+1−1

where the z(i+1,j)
m (u) are i.i.d. random variables with small variance.

Step III: Recursive soft K-means clustering for c(i,j)
m (u) for j = 1, . . . , J .

1. Each user is assigned a soft group membership πn (u) to each of the critics using

π(i,j)
n (u) ∝ exp


−β

√
1

|Vn|
∑

m∈Vn

(
c

(i,j)
m,n(u)−Rnm

)2




where Vn = {m ∈ [M ] | (n,m) ∈ O} and gu = 2i+1.

2. Update all critics as

c(i,j+1)
m (u) ∝

∑

n

π(i,j)
n (u) c(i,j)

m (u).

Step IV: Repeat Steps II and III until the desired number of critics gu is obtained.

Step V: Estimate of w(r|u, v)

After clustering users/movies each into user/movie groups with the soft group mem-

bership πn (u) and π̃m (v), compute the soft frequencies of ratings for each user/movie

group pair as

w(r|u, v) ∝
∑

(n,m)∈O:Rnm=r

πn (u) π̃m (v) .
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Fig. 16. Minimum mean square estimator (MMSE) estimates R̂ can be written as a ma-
trix factorization. Each element of Σ represents the conditional mean rating of
w (r|u, v) given u, v and each row of PU/PV represents a user/movie group prob-
abilities. In contrast to the basic low-rank matrix model, we add non-negativity
(to Σ, PU and PV ) and normalization constraints (to both PU and PV ).

C. The IEM Algorithm

We reformulate the problem in a standard variational Expectation Maximization

(EM) framework and propose iterative EM based algorithm, termed IEM, by mini-

mizing an upper bound on the free energy [71]. In other words, we view the prob-

lem as maximum-likelihood parameter estimation problem where pUn(·), pVm(·), and

pR|U,M(·|·) are the model parameters θ and U,V are the missing data. For each of

these parameters, the i-th estimate is denoted f
(i)
n (u), h(i)

m (v), and w(i)(r|u, v). Let

O ⊆ [N ] × [M ] be the set of user-movie pairs that have been observed. As the �rst

step, we specify a complete data likelihood as

Pr (Rnm = rn,m, Un = un, Vm = vm) = w (rn,m|un, vm) fn (un)hm (vm) .
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Then, we can write the complete data (negative) log-likelihood as

Rc (θ) = − ln
∏

(n,m)∈O
Pr (Rnm = rn,m, Un = un, Vm = vm)

= − ln
∏

(n,m)∈O
w (rn,m|un, vm) fn (un)hm (vm) .

Using a variational approach, this can be upper bounded by

∑

(n,m)∈O
D
(
QUn,Vn|Rnm(·, ·|rn,m)||p̂Un,Vm|Rnm(·, ·|rn,m)

)
,

where we introduce the variational probability distributions QUn,Vm|Rnm (u, v|r) that

satisfy
∑

u,v

QUn,Vm|Rnm (u, v|r) = 1

and let

p̂Un,Vm|Rnm(u, v|r) =
w (rn,m|u, v) fn (u)hm (v)∑

u′,v′ w (rn,m|u′, v′) fn (u′)hm (v′)
.

The IEM algorithm now consists of two steps that are performed in alternation with

a Q distribution to approximate a general distribution.

1. E-step

Since the states of the latent variables are not known, we introduce a variational

probability distribution

QUn,Vm|Rnm (u, v|r) subject to
∑

u,v

QUn,Vm|Rnm (u, v|r) = 1
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Algorithm 6 IEM Algorithm
Step I: Initialization of w(r|u, v) via Algorithm 5 and randomized initialization of

user/movie group probabilities f (0)
n (u) and h(0)

m (v).

Step II: Recursive update for user/movie group probabilities and w(r|u, v)

f (i+1)
n (u)∝

∑

m∈Vn
f (i)
n (u)

∑

v∈[gm]

w(i) (rn,m|u, v)h(i)
m (v)

h(i+1)
m (v)∝

∑

n∈Um
h(i)
m (v)

∑

u∈[gu]

w(i) (rn,m|u, v) f (i)
n (u)

w(i+1) (r|u, v)∝
∑

(n,m):rn,m=r

w(i) (rn,m|u, v) f (i+1)
n (u)h(i+1)

m (v)

Step III: Output probability of rating Rnm given observed ratings

p̂
(i+1)
Rnm|RO

(r)∝
∑

u,v

f (i+1)
n (u)h(i+1)

m (v)w(i+1) (r|u, v)

p̂
(i+1)
Un|RO

(u)=f (i+1)
n (u), p̂

(i+1)
Vm|RO

(v)=h(i+1)
m (v)

for all observed pairs (n,m). Exploiting the concavity of the logarithm and using

Jensen's inequality, we have

R (θ) = −
∑

(n,m)∈O
ln
∑

u,v

Pr (Rnm = rn,m, Un = un, Vm = vm)

= −
∑

(n,m)∈O
ln
∑

u,v

QUn,Vm|Rnm (u, v|r) w (rn,m|u, v) fn (u)hm (v)

QUn,Vm|Rnm (u, v|r)

≤ −
∑

(n,m)∈O

∑

u,v

QUn,Vm|Rnm (u, v|r) ln
w (rn,m|u, v) fn (u)hm (v)

QUn,Vm|Rnm (u, v|r)

, R̄ (θ |Q)−
∑

(n,m)∈O
H (Q (·|u, v, r))

, R (θ; Q)
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To compute the tightest bound given parameters θ̂ i.e., we optimize the bound w.r.t

the Qs using

∇Q


R (θ; Q) +

∑

(n,m)∈O

∑

u,v

λu,vQ


 = 0.

These yield posterior probabilities of the latent variables,

p̂Un,Vm|Rnm(u, v|r; θ̂) = Q∗Un,Vm|Rnm

(
u, v|r; θ̂

)
=

w (rn,m|u, v) fn (u)hm (v)∑
u′,v′ w (rn,m|u′, v′) fn (u′)hm (v′)

.

Also note that we can get the same result by Gibbs inequality as

R (θ) ≤ −
∑

(n,m)∈O

∑

u,v

QUn,Vm|Rnm (u, v|r) ln
w (rn,m|u, v) fn (u)hm (v)

QUn,Vm|Rnm (u, v|r)

=
∑

(n,m)∈O
D
(
QUn,Vn|Rnm(·, ·|rn,m)||p̂Un,Vm|Rnm(·, ·|rn,m)

)
.

2. M-step

Obviously the posterior probabilities need only to be computed for pairs (n, m) that

have actually been observed. Thus optimize

R̄
(
θ, θ̂
)

= −
∑

(n,m)∈O

∑

u,v

Q∗Un,Vm|Rnm

(
u, v|r; θ̂

)
lnw (rn,m|u, v) fn (u)hm (v)

= −
∑

(n,m)∈O

∑

u,v

w (rn,m|u, v) fn (u)hm (v)∑
u′,v′ w (rn,m|u′, v′) fn (u′)hm (v′)

lnw (rn,m|u, v) fn (u)hm (v)

with respect to parameters θ which leads to the three sets of equations for the update

of

w (r|u, v) , fn (u) , hm (v) .

Moreover, for large scale problems, to avoid computational loads of each step, com-

bining both E and M steps by plugging Q function into M-step gives more tractable

EM Algorithm. The resulting equations are presented in Algorithm 6.
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Remark 6. The results show that this variational approach gives the equivalent up-

date rule as the standard EM framework with a simpler derivation which guarantees

convergence to local minima. This IEM algorithm, in fact, extends Thomas Hof-

mann's work and generalizes probabilistic matrix factorization (PMF) results [72, 73]

and uses alternating steps of KL divergence minimization to estimate the underlying

generative model [74]. Its main drawback is that it is di�cult to analyze because the

e�ects of initial conditions and local minima can be very complicated. Though the

idea is similar to an IMP update, the resulting equations are di�erent and seem to

perform much worse.

D. Generalization Error Bound

In this section, we consider bounds on generalization from partial knowledge of the

(binary-rating) matrix for collaborative �ltering application. The tighter bound im-

plies one can use most of known ratings for learning the model completely. Since

computation of R can be viewed as the product of three matrices, we consider the

simpli�ed class of tri-factorized matrices χgu,gv as,

{
X|X = UTWV,U ∈ [0, 1]gu×N , V ∈ [0, 1]gv×M ,W ∈ {±1}gu×gv

}
.

We bound the overall distortion between the entire predicted matrix X and the true

matrix Y as a function of the distortion on the observed set of size |O| and the error

ε. Let y ∈ {±1} be binary ratings and de�ne a zero-one sign agreement distortion as

d (x, y) ,





1 ifxy ≤ 0

0 otherwise

.
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Also, de�ne the average distortion over the entire prediction matrix as

D (X, Y ) ,
∑

(n,m)∈[N ]×[M ]

d (x, y) /NM

and the averaged observed distortion as

DO (X, Y ) ,
∑

(n,m)∈O
d (x, y) /|O|.

Theorem 8. For any matrix Y ∈ {±1}N×M , N, M > 2, δ > 0 and integers gu

and gv, with probability at least 1 − δ over choosing a subset O of entries in Y

uniformly among all subsets of |O| entries ∀X ∈ χgu,gv , |D (X, Y ) − DO (X, Y ) | is

upper bounded by
√{

(Ngu +Mgv + gugv) ln
12eM

min(gu, gv)
− ln δ

}
/2|O| , h (gu, gv, N, M, |O|) .

Proof. This proof follows arguments of the generalization error in [75]. First, �x Y

as well as X ∈ RN×M . When an index pair (n, m) is chosen uniformly random,

d (xn,m, yn,m) is a Bernoulli random variable with probability D (X, Y ) of being one.

If the entries of O are chosen independently random, |O|DO (X, Y ) is binomially

distributed with parameters |O|D (X, Y ) and |O|ε. Using Cherno�'s inequality, we

get

Pr (D (X, Y ) ≥ DO (X, Y ) + ε) = Pr (|O|DO (X, Y ) ≤ |O|D (X, Y )− |O|ε)

≤ e
−2|O|ε2 .

Now note that d (x, y) only depends on the sign of xy, so it is enough to consider

equivalence classes of matrices with the same sign patterns. Let f (N, M, gu, gv) be

the number of such equivalence classes. For all matrices in an equivalence class, the

random variable DO (X, Y ) is the same. Thus we take a union bound of the events
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{X|D (X, Y ) ≥ DO (X, Y ) + ε} for each of these f (N, M, gu, gv) random variables

with the bound above and ε =
√

(ln f (N, M, gu, gv)− ln δ)/(2|O|), we have

Pr

(
∃X ∈ χgu,gv D (X, Y ) ≥ DO (X, Y ) +

√
ln f (N, M, gu, gv)− ln δ

2|O|

)
≤ δ.

Since any matrix X ∈ χgu,gv can be written as X = UTGV , to bound the number of

sign patterns of X, f (N, M, gu, gv), consider Ngu+Mgv +gugv entries of U, G, V as

variables and the NM entries of X as polynomials of degree three over these variables

as

xn,m =

gu∑

k=1

gv∑

l=1

uk,n · gk,l · vl,m.

By the use of the bound in Lemma 7, we obtain

f (N, M, gu, gv) ≤
(

4e · 3 ·NM
Ngu +Mgv + gugv

)Ngu+Mgv+gugv

≤
(

12eM

min(gu, gv)

)Ngu+Mgv+gugv

.

This bound yields a factor of ln 12eM/min(gu, gv) in the bound and establishes the

theorem.

Lemma 7 ([76]). Total number of sign patterns of r polynomials, each of degree at

most d, over q variables, is at most (8edr/q)q if 2r > q > 2. Also, total number of

sign patterns of r polynomials with {±1} coordinates, each of degree at most d, over

q variables, is at most (4edr/q)q if r > q > 2.

Remark 7. There are two implications of the Theorem. 8 in terms of the �ve pa-

rameters: gu, gv, N, M, |O|. For �xed group numbers gu and gv, as number of users

N and movies M increases, to keep the bound tight, number of observed ratings |O|

also needs to grow in the same order. For a �xed sized matrix, when the choice of gu

and/or gv increases, |O| needs to grow in the same order to prevent over-learning the
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model. Also, as |O| increases, we could increase the value of gu and/or gv.

E. Density Evolution (DE) Analysis

DE is a well-known technique for analyzing probabilistic message-passing inference

algorithms that was originally developed to analyze belief-propagation decoding of

error-correcting codes and was later extended to more general inference problems

[77]. It works by tracking the distribution of the messages passed on the graph

under the assumption that the local neighborhood of each node is a tree. While this

assumption is not rigorous, we consider that, in Fig. 15, the outgoing edges from each

user node are attached to movie nodes via random permutations. This is identical to

the model used for irregular LDPC codes [78]. While this assumption is not rigorous,

it is motivated by the following lemma. We consider the factor graph for a randomly

chosen instance of this problem. The key assumption is that the outgoing edges

from each user node are attached to movie nodes via a random permutation. This is

identical to the model used for irregular LDPC codes.

Lemma 8. Let Nl(v) denote the depth-l neighborhood (i.e., the induced subgraph

including all nodes within l steps from v) of an arbitrary user (or movie) node v. Let

the problem size N become unbounded with M = βN for β < 1, maximum degree

dN , and depth-lN neighborhoods. One �nds that if

(2lN + 1) ln dN
lnN

< 1− δ,

for some δ > 0 and all N , then the graph Nl(v) is a tree w.h.p. for almost all v as

N →∞.

Proof. The proof follows from a careful treatment of standard tree-like neighborhood

arguments. Starting from any node v, we can recursively grow Ni+1(v) from Ni(v) by
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adding all neighbors at distance i+ 1. Let Ai be the number of outgoing edges from

Ni(v) to the next level and b(i)
1 , . . . , b

(i)
n be the degrees of the ni available nodes that

can be chosen in the next level. The probability that the graph remains a tree is

p
(
Ai,b

(i)
)

=

∑
S⊂[n],|S|=Ai

∏
s∈S b

(i)
s

(∑n
j=1 b

(i)
j

Ai

) ,

where the numerator is the number of ways that the Ai edges can attach to distinct

nodes in the next level and the denominator is the total number of ways that the

Ai edges may attach to the available nodes. Using the fact that the numerator is an

unnormalized expected value of the product of Ai b's drawn without replacement, we

can lower bound the numerator using

∑

S⊂[n],|S|=Ai

∏

s∈S
b(i)
s ≥

(
ni
Ai

)(
bi −

(d− 1)Ai
ni

)Ai

≥ (ni − Ai)Ai

Ai!

(
bi −

(d− 1)Ai
ni

)Ai

.

This can be seen as lower bounding the expected value of Ai b's drawn from with

replacement from a distribution with a slightly lower mean. Upper bounding the

denominator by (nibi)
Ai/Ai! gives

p
(
Ai,b

(i)
)
≥

(ni − Ai)Ai Ai!
(
bi − (d−1)Ai

ni

)Ai

(
nibi
)Ai

Ai!

=

(
1− Ai

ni

)Ai
(

1− (d− 1)Ai

bini

)Ai

≥
(

1− A2
i

ni
− A2

i (d− 1)

bini

)
.
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Now, we can take the product from i = 0, . . . , l − 1 to get

Pr (Nl(v) is a tree) =
l−1∏

i=0

Pr (Ni+1(v) is a tree|N0(v), . . . ,Ni(v) are trees)

≥
l−1∏

i=0

(
1− A2

i

ni
− A2

i (d− 1)

bini

)

≥ 1−
l−1∑

i=0

(
A2
i

ni
+
A2
i (d− 1)

bini

)

≥ 1−
(

1 +
1

d2 − 1

)(
d2l

βN − dl +
d2l(d− 1)

βN − dl
)

≥ 1−
(

1 +
1

d2 − 1

)
d2l+1

βN − dl ,

because Ai ≤ di+1,
∑l−1

i=0A
2
i ≤ d2d2l/(d2 − 1) = d2l (1 + 1/(d2 − 1)), and ni ≥ βN −

∑i
j=0 d

j ≥ βN − di+1. Examining the expression

ln
d2l+1

βN − dl ≤ (2lN + 1) ln dN − lnN +O(1) ≤ −δ lnN +O(1)

shows that the probability of failure is O
(
N−δ

)
. Let Z be a r.v. whose value is the

number of user nodes whose depth-l neighborhood is not a tree. We can upper bound

the expected value of Z with

E[Z] ≤ d2l+1

Θ(N)− dlN ≤
O
(
N−δ

)

Θ (N)−O (N1/2)
N = O

(
N1−δ) .

With Markov's inequality, one can show that

Pr
(
Z ≥ N1−δ/2) ≤ E[Z]

N1−δ/2 ≤
O
(
N1−δ)

N1−δ/2 .

Therefore, the depth-l neighborhood is a tree (w.h.p. as N → ∞) for all but a

vanishing fraction of user nodes.

For this problem, the messages passed during inference consist of belief functions

for user groups (e.g., passed from movie nodes to user nodes) and movie groups (e.g.,
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passed form user nodes to movie nodes). The message set for user belief functions

is Mu = P([gu]), where P(S) is the set of probability distributions over the �nite

set S. Likewise, the message set for movie belief functions is Mv = P([gv]). The

decoder combines d user (resp. movie) belief-functions a1(·), . . . , ad(·) ∈ Mu (resp.

b1(·), . . . , bd(·) ∈Mv) using

Fd (a1, r1, ..., ad, rd; b),
b(v)

∏d
j=1

∑
uaj(u)w (rj|u, v)∑

v b(v)
∏

j

∑
uaj(u)w (rj|u, v)

Gd (b1, r1, ..., bd, rd; a),
a(u)

∏d
j=1

∑
vbj(v)w (rj|u, v)∑

u a(u)
∏

j

∑
vbj(v)w (rj|u, v)

.

Since we need to consider the possibility that the ratings are generated by a

process other than the assumed model, we must also keep track of the true user (or

movie) group associated with each belief function. Let µ(i)(u,A) (resp. ν(i)(v,B)) be

the probability that, during the i-th iteration, a randomly chosen user (resp. movie)

message is coming from a node with true user group u (resp. movie group v) and has

a user belief function a(·) ∈ A ⊆ Mu (resp. movie belief function b(·) ∈ B ⊆ Mv).

The DE update equations for degree d user and movie nodes, in the spirit of [77], are

shown in equations (5.1) and (5.2) where I(x ∈ A) is de�ned as a indicator function

I(x ∈ A) =





1 ifx ∈ A

0 ifx /∈ A
.

Like LDPC codes, we expect to see that the performance of Algorithm 4 depends

crucially on the degree structure of the factor graph. Therefore, we let Λj (resp. Γj)

be the fraction of user (resp. movie) nodes with degree j and de�ne the edge degree

distribution to be λj = Λjj/
∑

k≥1 Λkk (resp.ρj = Γjj/
∑

k≥1 Γkk). Averaging over

the degree distribution gives the �nal update equations
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µ
(i+1)
d (u,B)

=

∫ ∑

r1,...,rd

I (G ((b1, r1), . . . , (bd, rd); a)∈B)µ(0)(u, da)
d∏

j=1

∑

v

ν(i)(v, dbj)w (rj|u, v)

(5.1)

ν
(i+1)
d (v,A)

=

∫ ∑

r1,...,rd

I (F ((a1, r1), . . . , (ad, rd); b)∈A) ν(0)(v, db)
d∏

j=1

∑

u

µ(i)(u, daj)w (rj|u, v)

(5.2)

µ(i+1)(u,B) =
∑

d≥1

λdµ
(i+1)
d (u,B)

ν(i+1)(v, A) =
∑

d≥1

ρdν
(i+1)
d (v, A).

We anticipate that this analysis will help us understand the IMP algorithm's ob-

served performance for large problems based on the success of DE for channel coding

problems.

F. Simulation Results with Real Data Matrices

1. Details of Training

The key challenge of matrix completion problem is predicting the missing ratings

of a user for a given item based only on very few known ratings in a way that

minimizes some per-letter metric d(r, r′) for ratings. To provide further insights into

the proposed factor graph model and the IMP algorithm, we compared our results

against three other algorithms: OptSpace [27], SET [28] and SVT [25]. Due to
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time and space constraints, we have chosen three algorithms among all the available

algorithms. OptSpace and the more recent SET appear to be the best (this is also

apparent from experimental results), and can handle reasonably large matrix sizes.

In some cases, the programs are publicly available (e.g., [27, 25]) and others (e.g.,

[28]) have been obtained from their respective authors.

To make a fair comparison between di�erent algorithms/models whose com-

plexity varies widely, we have created two smaller submatrices from the real Net�ix

dataset:

• Net�ix Data Matrix 1 is a matrix given by the �rst 5,000 movies and users.

This matrix contains 280,714 user/movie pairs. Over 15% of the users and 43%

of the movies have less than 3 ratings.

• Net�ix Data Matrix 2 is a matrix of 5,035 movies and 5,017 users by selecting

some 5,300 movies and 7,250 users and avoiding movies and users with less than

3 ratings. This matrix contains 454,218 user/movie pairs. Over 16% of the users

and 41% of the movies have less than 10 ratings.

To provide further insights into the quality of the proposed factor graph model and

suboptimality of the algorithms by comparison with the theoretical lower bounds,

we generated two synthetic datasets from the above partial matrices. The syn-

thetic datasets are generated once with the learned density p̂
(i)
Rnm|RO

(r), p̂(i)
Un|RO

(u),

and p̂(i)
Vm|RO

(v) and then randomly subsampled as the partial Net�ix datasets.

• Synthetic Dataset 1 is generated after learning Net�ix Dataset 1 with gu =

gv=8.

• Synthetic Dataset 2 is generated after learning Net�ix Dataset 2 with gu =

gv=16.
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Also, we hide 1,000 randomly selected user/movie entries as a validation set S. The

performance is evaluated using the root mean squared error (RMSE) of prediction on

this set de�ned by √ ∑

(n,m)∈S
(r̂n,m − rn,m)2 / |S|.

We primarily focused on the RMSE as a function of the average number of observation

ratings per user (i.e., how many ratings, |O|, are needed to get each algorithm in

shape). Simulations were performed in the very small sample regime (e.g., much less

than 0.5% of ratings) by varying the randomly selected average number of observed

ratings per user between 1 and 30 and the average results are shown in Fig. 17

and Fig. 18. Note that the choice of parameters for each algorithm (e.g., gu and

gv for IMP and rank for others) was optimized over the validation set S by running

each algorithm multiple times. For IMP, we used hard K-means clustering (i.e., soft

K-means clustering with large β) for Algorithm 5 Step III to improve the speed of

w(r|u, v) initialization. Also, to make a fair comparison with algorithms that provide

unbounded predictions, we clip the out-of-range predictions (i.e., ratings greater than

5 or less than 1), if there are any.

2. Discussion

Our results do shed some light on the performance of recommender systems based

on the MP framework. First, we have veri�ed that IMP really does improve the

cold-start problem. From simulation results on Net�ix submatrices in Fig. 17, we

clearly see while other matrix completion algorithms perform similarly with large

amounts of revealed entries, the IMP algorithm can estimate the matrix very well

only after a few observed entries. The performance of other algorithms for users

with fewer than 5 ratings is generally poorer than that of the simple movie average
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Fig. 17. Remedy for the Cold-Start Problem: RMSE performance is compared with other
di�erent competing algorithms [27, 28, 25] on the validation set versus the average
number of observations per user for Net�ix submatrices.
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Fig. 18. Each plot shows the RMSE on the validation set versus the average number of
observations per user for synthetic datasets. Performance is compared with an
(analytical) lower bound on RMSE assuming known user and movie group.
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algorithm that uses the average rating for each movie as the prediction. The IMP

algorithm, however, performs considerably better on users with a very few ratings.

This better threshold performance (see the steep RMSE decay) of the IMP algorithm

in comparison to other algorithms helps to reduce the cold start problem. It is worth

noting that the simple K-means clustering (used for w(r|u, v) initialization) performs

worse than movie average in the small sample regime (due to space limits, this curve

is not shown). This implies that the improvement of IMP for the cold start problem

comes from the MP update steps and not the clustering initialization. We believe

this will be a major bene�t of MP approaches to standard CF problems. Other than

these important advantages, each output group has generative nature with explicit

semantics. In other words, after learning the density, we can use them to generate

synthetic data with clear meanings. These bene�ts do not extend to general low-rank

matrix models easily.
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CHAPTER VI

CONCLUSION

In this dissertation, we have developed convex optimization based algorithms to ad-

dress joint detection and decoding problem and message passing based algorithm to

address matrix completion problem. Our approach to both of these problems is in-

spired by methods of convex optimization, information and coding theory. Let us now

highlight what we consider the most interesting aspects of our research and summarize

a few of the other directions for further work.

A. Joint Detection and Decoding Problem

1. Summary

• To address this problem for channels with memory, such as �nite-state channels

(FSCs), we propose new decoding algorithms based on a well-de�ned convex

optimization problem. In particular, it is based on Linear-programing (LP)

formulation of joint decoding for LDPC codes on FSCs and shows two favor-

able properties: guranteed convergence and predictable error-�oors via pseudo-

codeword analysis. An important aspect of this method is the application of

convex-programming relaxation to the problem of decoding an error-correcting

code in more general channels.

• Since general-purpose LP solvers are highly complex for the joint LP decod-

ing problem, we develop an e�cient iterative solver for the joint LP decoder.

To handle the fact that the Lagrangian dual function is non-di�erentiable, we

use smoothed Lagrangian relaxation methods and maximize the smoothed dual
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function by block coordinate ascent on the Lagrangian multipliers. This leads to

an iterative solver for the joint LP decoder that is closely related to BCJR-based

turbo equalization (TE). This iterative algorithm shows the predictability and

superior error-�oor performance of joint LP decoding with the computational

complexity of conventional TE. Essentially, we can achieve these bene�ts by

small change to the current TE implementations.

• Lastly, we derive a block-coordinate ascent algorithm to maximize Lagrangian

dual function. One motivation for this approach is to accelerate the rate to con-

vergence and so as to more e�ciently decode. It is also hoped this approach will

later prove useful in practical use by providing a desirable iteration complexity

bound, possibly leading to reduced computational complexity in applications

where these e�ects are important.

2. Possible Extensions

Universal Joint LP Decoding

• A restrictive assumption made so far is that the coe�cients of the FSCs are

known. Indeed, running current iterative joint LP algorithm requires knowledge

of channel coe�cient. The idea is to formulate the universal LP joint decoder

for joint channel parameter estimation and decoding for FSISI by letting y be

the output of a �nite-state ISI channel (FSISI) with zero-mean AWGN whose

variance is σ2 per output as

min
g∈PT (H),a

∑

i∈I

∑

e∈Ti
(yi − ae)2 gi,e (6.1)

subject to aei = ae for i ∈ I. This LP formulation will lead to an iterative

algorithm for joint channel parameter estimation and decoding for FSISI that
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is analogue to EM-based algorithm.

Joint Decoding for Two-dimensional (2D) ISI Channel

• Dramatic increase in the demand for data storage over the past decade has fueled

new interest in increasing the capacity of magnetic and optical storage. While

both of the these storage media are physically 2D, current storage techniques

store the data in one-dimension (1D). Unlike the 1D case, the lack of an optimal

detector for the channel makes this problem very challenging. Joint LP decoding

idea proposed for 1D-FSC can be leveraged for 2D-ISI. The idea is to formulate

a similar LP based on pairwise potentials of the factor graph. We believe the

resulting iterative algorithm will be similar to the iterative multistrip joint-

decoding method with expected gains in error-�oor.

B. Matrix Completion Problem

1. Summary

• In collaborative �ltering applications, matrix completion problem is studied

from a graphical models perspective. Exact learning of the model parameters

is intractable for such models, we use a factor graph model to characterize

the probability distribution underlying the collaborative �ltering dataset. Main

bene�ts of the factor-graph model is that an establishment of a generative model

for data matrices and exploiting sparse observations which reduce complexity.

Then, a message passing based algorithm, dubbed IMP, is introduced to infer the

underlying distribution from the observed entries. IMP combines clustering with

message passing and we attempt partial performance analysis of IMP algorithm

via density evolution.
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2. Possible Extensions

Convex-programming Relaxations Framework

• Major drawback of the current approach is that it mixes clustering and message-

passing. Therefore it is di�cult to analyze the algorithm's behavior. To get

a fully iterative solution which combines clustering via message-passing, we

can express the factor graph model for matrix completion problem in convex

optimization framework as

max
X,Y

∥∥XTROY
∥∥2

F

subject to

X1gu = 1N , Y1gv = 1M

and

X ≥ 0, Y ≥ 0,

then using a similar approach developed for joint detection and decoding prob-

lem, we hope to obtain a fully distributed algorithm that is amenable to analysis.
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APPENDIX A

DERIVATION OF DUAL OF THE JOINT LP DECODING PROBLEM

In this section, we show how to derive the dual of the joint LP decoding problem in

Problem-P (in Table I) using the technique of Lagrangian relaxation. Consider the

primal LP,

min
g,w

∑

i∈I

∑

e∈Ti
bi,egi,e

subject to
∑

B∈Ej :i∈B
wj,B =

∑

e:x(e)=1

gi,e, ∀i ∈ I, j ∈ N (i)

∑

e:s′(e)=k

gi,e =
∑

e:s(e)=k

gi+1,e, ∀i ∈ I \N, k ∈ S

∑

B∈Ej
wj,B = 1, ∀j ∈ J ,

∑

e∈Tp
gp,e = 1, for any p ∈ I

wj,B ≥ 0, ∀j ∈ J , B ∈ Ej, gi,e ≥ 0, ∀i ∈ I, e ∈ Ti.

We introduce the Lagrange multipliers mi,j and ni,k for the �rst two constraints and

cj and r for the last two constraints. For this problem, the Lagrangian dual function

h(c,m,n,r) is given by
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inf
g≥0,w≥0


∑

i∈I

∑

e∈Ti
bi,egi,e +

∑

i∈I

∑

j∈N (i)

mi,j


−

∑

e:x(e)=1

gi,e +
∑

B∈Ej :i∈B
wj,B




+
∑

i∈I

∑

k∈S
ni,k


−

∑

e∈Ti+1

gi+1,eδs(e)=k +
∑

e∈Ti
gi,eδs′(e)=k




+
∑

j∈J
cj


−

∑

B∈Ej
wj,B + 1


+ r


−

∑

e∈Tp
gp,e + 1






where nN,k = 0, ∀k ∈ S. Rearranging the objective, we get

∑

j∈J
cj + r + inf

g≥0

[∑

i∈I

∑

e∈Ti

(
bi,e −

∑

k∈S
ni−1,sδs(e)=k +

∑

k∈S
ni,sδs′(e)=k

−
∑

j∈N (i)

mi,jδx(e)=1 − rδi=p


 gi,e


+ inf

w≥0


∑

B∈Ej
wj,B

∑

j∈J

(∑

i∈B
mi,j − cj

)


where n0,k = nN,k = 0, ∀k ∈ S. Finally, we obtain the dual objective as





∑
j∈J cj + r, if bi,e ≥ ni−1,s(e) − ni,s′(e) +

∑
j∈N (i) mi,jδx(e)=1 + rδi=p, ∀i ∈ I, e ∈ Ti

n0,k = nN,k = 0, ∀k ∈ S and cj ≤
∑

i∈Bmi,j ∀j ∈ J , B ∈ Ej

−∞, otherwise

The dual optimization problem is then

max
m,n

∑

j∈J
cj + r

subject to

r ≤ bp,e −
∑

j∈N (p)

mp,jδx(e)=1 − np−1,s(e) + np,s′(e), e ∈ Tp
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bi,e −
∑

j∈N (i)

mi,jδx(e)=1 ≥ ni−1,s(e) − ni,s′(e), ∀i ∈ I \ p, e ∈ Ti

cj ≤
∑

i∈B
mi,j ∀j ∈ J , B ∈ Ej

and

n0,k = nN,k = 0, ∀k ∈ S.

This linear program can be expressed as Problem-D1 given in Table II.
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APPENDIX B

DERIVATION OF DUAL OF THE SOFTENED DUAL PROBLEM

We can analogously derive the dual of the softened dual problem in Problem-DS

(in Table IV). Rewrite the Problem-DS as

−min
m,n

1

K1

∑

j∈J
ln
∑

B∈Ej
e
−K1{∑i∈N (j) mi,j1B(i)}

+
1

K2

ln
∑

e∈Tp
e
−K2{Γp,e−np−1,s(e)+np,s′(e)}

subject to

Γi,e ≥ ni−1,s(e) − ni,s′(e), ∀i ∈ I \ p, e ∈ Ti

and

n0,k = nN,k = 0, ∀k ∈ S,

where

Γi,e , bi,e − δx(e)=1

∑

j∈N (i)

mi,j.

We introduce the Lagrange multipliers gi,e for the �rst constraint. For this problem,

the Lagrangian dual function h(g) is given by

inf
m≥0,n≥0


 1

K1

∑

j∈J
ln
∑

B∈Ej
e
−K1{∑i∈N (j)mi,j1B(i)}

+
1

K2

ln
∑

e∈Tp
e
−K2{Γp,e−np−1,s(e)+np,s′(e)}

+
∑

i∈I\p

∑

e∈Ti
gi,e
(
−Γi,e + ni−1,s(e) − ni,s′(e)

)

 .

where n0,k = nN,k = 0, ∀k ∈ S. Rearranging the objective, we get
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−
∑

i∈I\p

∑

e∈Ti
bi,egi,e

+ inf
m≥0


 1

K1

∑

j∈J
ln
∑

B∈Ej
e
−K1{∑i∈N (j) mi,j1B(i)} +

∑

i∈I\p

∑

e∈Ti
gi,eδx(e)=1

∑

j∈N (i)

mi,j

+ inf
n≥0


 1

K2

ln
∑

e∈Tp
e
−K2{Γp,e−np−1,s(e)+np,s′(e)} +

∑

i∈I\p

∑

e∈Ti
gi,e
(
ni−1,s(e) − ni,s′(e)

)





We analytically solve the minimization with respect to n as

inf
n≥0


 1

K2

ln
∑

e∈Tp
e
−K2{Γp,e−np−1,s(e)+np,s′(e)} +

∑

i∈I\p

∑

e∈Ti
gi,e
(
ni−1,s(e) − ni,s′(e)

)



=
∑

i∈I
inf
ni

[(
1

K2

ln
∑

e∈Ti
e
−K2{Γp,e−np−1,s(e)+np,s′(e)}

)
δi=p +

∑

e∈Ti
gi,e
(
ni−1,s(e) − ni,s′(e)

)
1I\p(i)

]

=
∑

i∈I
inf
ni

[(
1

K2

ln
∑

e∈Ti
e
−K2{Γp,e−np−1,s(e)+np,s′(e)}

)
δi=p

+
∑

k∈S
ni,k


−

∑

e:s(e)=k

gi,e +
∑

e:s′(e)=k

gi−1,e


1I\p(i)




= inf
np


 1

K2

ln
∑

e∈Tp
e
−K2{Γp,e−np−1,s(e)+np,s′(e)}


 , if

∑

e:s(e)=k

gi,e =
∑

e:s′(e)=k

gi−1,e, ∀i ∈ I \ p, k ∈ S

(a)
= A

where (a) follows from the strong duality argument as in [57, Example 5.5, p. 254])

to obtain

A = max
gp

−
∑

e∈Tp
bp,egp,e +

∑

e∈Tp
gp,eδx(e)=1

∑

j∈N (p)

mp,j −
1

K2

∑

e∈Tp
gp,e ln gp,e

subject to
∑

e:s(e)=k

gi,e =
∑

e:s′(e)=k

gi+1,e, ∀i ∈ I \N, k ∈ S
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and
∑

e∈Tp
gp,e = 1 and gi,e ≥ 0, ∀i ∈ I, e ∈ Ti.

Then again, we analytically solve the minimization with respect to m as

inf
m≥0


 1

K1

∑

j∈J
ln
∑

B∈Ej
e
−K1{∑i∈N (j) mi,j1B(i)} +

∑

i∈I

∑

e∈Ti
gi,eδx(e)=1

∑

j∈N (i)

mi,j




=
∑

j∈J
inf
mj


 1

K1

ln
∑

B∈Ej
e
−K1{∑i∈N (j) mi,j1B(i)} +

∑

i∈N (j)

∑

e∈Ti
gi,eδx(e)=1mi,j




=
∑

j∈J
inf
mj


 1

K1

ln
∑

B∈Ej
e
K1
∑

i∈N (j){∑e∈Ti gi,eδx(e)=1−1B(i)}mi,j




(c)
=
∑

j∈J
Bj,

where (c) follows from the strong duality argument as in [57, Example 5.5, p. 254])

to obtain

Bj = max
wj

− 1

K1

∑

B∈Ej
wj,B ln wj,B

subject to

∑

B∈Ej :i∈B
wj,B =

∑

e:x(e)=1

gi,e ∀i ∈ N (j),
∑

B∈Ej
wj,B = 1, andwj,B ≥ 0,

Finally, the dual optimization problem is

− max
g,w
−
∑

i∈I

∑

e∈Ti
bi,egi,e − 1

K1

∑

j∈J

∑

B∈Ej
wj,B ln wj,B − 1

K2

∑

e∈Tp
gp,e ln gp,e

subject to
∑

B∈Ej :i∈B
wj,B =

∑

e:x(e)=1

gi,e, ∀i ∈ I, j ∈ N (i)

∑

e:s′(e)=k

gi,e =
∑

e:s(e)=k

gi+1,e, ∀i ∈ I \N, k ∈ S
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∑

B∈Ej
wj,B = 1, ∀j ∈ J ,

∑

e∈Tp
gp,e = 1, for any p ∈ I

wj,B ≥ 0, ∀j ∈ J , B ∈ Ej, gi,e ≥ 0, ∀i ∈ I, e ∈ Ti

and can be expressed as Problem-PS given in Table V.
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