225,515 research outputs found

    The alldifferent Constraint: A Survey

    Full text link
    The constraint of difference is known to the constraint programming community since Lauriere introduced Alice in 1978. Since then, several solving strategies have been designed for this constraint. In this paper we give both a practical overview and an abstract comparison of these different strategies.Comment: 12 pages, 3 figures, paper accepted at the 6th Annual workshop of the ERCIM Working Group on Constraint

    Abstract semantics for functional constraint programming

    Get PDF
    technical reportA denotational semantics is given for a lazy functional language with monotonic side-effects arising from the unification of singly-bound logical variables. The semantics is based on a Scott-style information system, which elegantly captures the notion of "constraint additin" inherent in unification. A novel feature of our approach is exploitation of the representational duality of denotations defined by information systems: (i) as domain elements in the traditional sense, and (ii) as sets of propositions or constraints. Spread care is taken to express accurately the interactions of lazy evaluation (e.g. evaluation by need), and read-only accesses of logical variables defer function applications. The purpose of our semantic description is to establish language properties such as determinacy under parallel evaluation, to validate implementation strategies, and to support the design of program analysis techniques such as those based on abstract interpretation

    An interactive semantics of logic programming

    Full text link
    We apply to logic programming some recently emerging ideas from the field of reduction-based communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.Comment: 42 pages, 24 figure, 3 tables, to appear in the CUP journal of Theory and Practice of Logic Programmin

    Constraint-based reachability

    Get PDF
    Iterative imperative programs can be considered as infinite-state systems computing over possibly unbounded domains. Studying reachability in these systems is challenging as it requires to deal with an infinite number of states with standard backward or forward exploration strategies. An approach that we call Constraint-based reachability, is proposed to address reachability problems by exploring program states using a constraint model of the whole program. The keypoint of the approach is to interpret imperative constructions such as conditionals, loops, array and memory manipulations with the fundamental notion of constraint over a computational domain. By combining constraint filtering and abstraction techniques, Constraint-based reachability is able to solve reachability problems which are usually outside the scope of backward or forward exploration strategies. This paper proposes an interpretation of classical filtering consistencies used in Constraint Programming as abstract domain computations, and shows how this approach can be used to produce a constraint solver that efficiently generates solutions for reachability problems that are unsolvable by other approaches.Comment: In Proceedings Infinity 2012, arXiv:1302.310

    The Role of Commutativity in Constraint Propagation Algorithms

    Full text link
    Constraint propagation algorithms form an important part of most of the constraint programming systems. We provide here a simple, yet very general framework that allows us to explain several constraint propagation algorithms in a systematic way. In this framework we proceed in two steps. First, we introduce a generic iteration algorithm on partial orderings and prove its correctness in an abstract setting. Then we instantiate this algorithm with specific partial orderings and functions to obtain specific constraint propagation algorithms. In particular, using the notions commutativity and semi-commutativity, we show that the {\tt AC-3}, {\tt PC-2}, {\tt DAC} and {\tt DPC} algorithms for achieving (directional) arc consistency and (directional) path consistency are instances of a single generic algorithm. The work reported here extends and simplifies that of Apt \citeyear{Apt99b}.Comment: 35 pages. To appear in ACM TOPLA
    • …
    corecore