47 research outputs found

    Mechanisms for Automated Negotiation in State Oriented Domains

    Full text link
    This paper lays part of the groundwork for a domain theory of negotiation, that is, a way of classifying interactions so that it is clear, given a domain, which negotiation mechanisms and strategies are appropriate. We define State Oriented Domains, a general category of interaction. Necessary and sufficient conditions for cooperation are outlined. We use the notion of worth in an altered definition of utility, thus enabling agreements in a wider class of joint-goal reachable situations. An approach is offered for conflict resolution, and it is shown that even in a conflict situation, partial cooperative steps can be taken by interacting agents (that is, agents in fundamental conflict might still agree to cooperate up to a certain point). A Unified Negotiation Protocol (UNP) is developed that can be used in all types of encounters. It is shown that in certain borderline cooperative situations, a partial cooperative agreement (i.e., one that does not achieve all agents' goals) might be preferred by all agents, even though there exists a rational agreement that would achieve all their goals. Finally, we analyze cases where agents have incomplete information on the goals and worth of other agents. First we consider the case where agents' goals are private information, and we analyze what goal declaration strategies the agents might adopt to increase their utility. Then, we consider the situation where the agents' goals (and therefore stand-alone costs) are common knowledge, but the worth they attach to their goals is private information. We introduce two mechanisms, one 'strict', the other 'tolerant', and analyze their affects on the stability and efficiency of negotiation outcomes.Comment: See http://www.jair.org/ for any accompanying file

    Coalition Formation under Uncertainty

    Get PDF
    Many multiagent systems require allocation of agents to tasks in order to ensure successful task execution. Most systems that perform this allocation assume that the quantity of agents needed for a task is known beforehand. Coalition formation approaches relax this assumption, allowing multiple agents to be dynamically assigned. Unfortunately, many current approaches to coalition formation lack provisions for uncertainty. This prevents application of coalition formation techniques to complex domains, such as real-world robotic systems and agent domains where full state knowledge is not available. Those that do handle uncertainty have no ability to handle dynamic addition or removal of agents from the collective and they constrain the environment to limit the sources of uncertainty. A modeling approach and algorithm for coalition formation is presented that decreases the collective\u27s dependence on knowing agent types. The agent modeling approach enforces stability, allows for arbitrary expansion of the collective, and serves as a basis for calculation of individual coalition payoffs. It explicitly captures uncertainty in agent type and allows uncertainty in coalition value and agent cost, and no agent in the collective is required to perfectly know another agents type. The modeling approach is incorporated into a two part algorithm to generate, evaluate, and join stable coalitions for task execution. A comparison with a prior approach designed to handle uncertainty in agent type shows that the protocol not only provides greater flexibility, but also handles uncertainty on a greater scale. Additional results show the application of the approach to real-world robotics and demonstrate the algorithm\u27s scalability. This provides a framework well suited to decentralized task allocation in general collectives

    A Mechanism Design Approach to Bandwidth Allocation in Tactical Data Networks

    Get PDF
    The defense sector is undergoing a phase of rapid technological advancement, in the pursuit of its goal of information superiority. This goal depends on a large network of complex interconnected systems - sensors, weapons, soldiers - linked through a maze of heterogeneous networks. The sheer scale and size of these networks prompt behaviors that go beyond conglomerations of systems or `system-of-systems\u27. The lack of a central locus and disjointed, competing interests among large clusters of systems makes this characteristic of an Ultra Large Scale (ULS) system. These traits of ULS systems challenge and undermine the fundamental assumptions of today\u27s software and system engineering approaches. In the absence of a centralized controller it is likely that system users may behave opportunistically to meet their local mission requirements, rather than the objectives of the system as a whole. In these settings, methods and tools based on economics and game theory (like Mechanism Design) are likely to play an important role in achieving globally optimal behavior, when the participants behave selfishly. Against this background, this thesis explores the potential of using computational mechanisms to govern the behavior of ultra-large-scale systems and achieve an optimal allocation of constrained computational resources Our research focusses on improving the quality and accuracy of the common operating picture through the efficient allocation of bandwidth in tactical data networks among self-interested actors, who may resort to strategic behavior dictated by self-interest. This research problem presents the kind of challenges we anticipate when we have to deal with ULS systems and, by addressing this problem, we hope to develop a methodology which will be applicable for ULS system of the future. We build upon the previous works which investigate the application of auction-based mechanism design to dynamic, performance-critical and resource-constrained systems of interest to the defense community. In this thesis, we consider a scenario where a number of military platforms have been tasked with the goal of detecting and tracking targets. The sensors onboard a military platform have a partial and inaccurate view of the operating picture and need to make use of data transmitted from neighboring sensors in order to improve the accuracy of their own measurements. The communication takes place over tactical data networks with scarce bandwidth. The problem is compounded by the possibility that the local goals of military platforms might not be aligned with the global system goal. Such a scenario might occur in multi-flag, multi-platform military exercises, where the military commanders of each platform are more concerned with the well-being of their own platform over others. Therefore there is a need to design a mechanism that efficiently allocates the flow of data within the network to ensure that the resulting global performance maximizes the information gain of the entire system, despite the self-interested actions of the individual actors. We propose a two-stage mechanism based on modified strictly-proper scoring rules, with unknown costs, whereby multiple sensor platforms can provide estimates of limited precisions and the center does not have to rely on knowledge of the actual outcome when calculating payments. In particular, our work emphasizes the importance of applying robust optimization techniques to deal with the uncertainty in the operating environment. We apply our robust optimization - based scoring rules algorithm to an agent-based model framework of the combat tactical data network, and analyze the results obtained. Through the work we hope to demonstrate how mechanism design, perched at the intersection of game theory and microeconomics, is aptly suited to address one set of challenges of the ULS system paradigm - challenges not amenable to traditional system engineering approaches

    A Free Exchange e-Marketplace for Digital Services

    Get PDF
    The digital era is witnessing a remarkable evolution of digital services. While the prospects are countless, the e-marketplaces of digital services are encountering inherent game-theoretic and computational challenges that restrict the rational choices of bidders. Our work examines the limited bidding scope and the inefficiencies of present exchange e-marketplaces. To meet challenges, a free exchange e-marketplace is proposed that follows the free market economy. The free exchange model includes a new bidding language and a double auction mechanism. The rule-based bidding language enables the flexible expression of preferences and strategic conduct. The bidding message holds the attribute-valuations and bidding rules of the selected services. The free exchange deliberates on attributes and logical bidding rules for automatic deduction and formation of elicited services and bids that result in a more rapid self-managed multiple exchange trades. The double auction uses forward and reverse generalized second price auctions for the symmetric matching of multiple digital services of identical attributes and different quality levels. The proposed double auction uses tractable heuristics that secure exchange profitability, improve truthful bidding and deliver stable social efficiency. While the strongest properties of symmetric exchanges are unfeasible game-theoretically, the free exchange converges rapidly to the social efficiency, Nash truthful stability, and weak budget balance by multiple quality-levels cross-matching, constant learning and informs at repetitive thick trades. The empirical findings validate the soundness and viability of the free exchange

    Manipulation of elections by minimal coalitions

    Get PDF
    Social choice is the study of the issues arising when a population of individuals attempts to combine its views with the objective of determining a collective policy. Recent research in artificial intelligence raises concerns of articial intelligence agents applying computational resources to attack an election. If we think of voting as a way to combine honest preferences, it would be undesirable for some voters cast ballots that differ from their true preferences and achieve a better result for themselves at the expense of the general social welfare. Such an attack is called manipulation. The Gibbard-Satterthwaite theorem holds that all reasonable voting rules will admit a situation in which some voter achieves a better result for itself by misrepresenting its preferences. Bartholdi and Orlin showed that finding a beneficial manipulation under the single transferable vote rule is NP-Complete. Our work explores the practical dificulty of the coalitional manipulation problem. We computed the minimum sizes of successful manipulating coalitions, and compared this to theoretical results

    Automated Service Negotiation Between Autonomous Computational Agents

    Get PDF
    PhDMulti-agent systems are a new computational approach for solving real world, dynamic and open system problems. Problems are conceptualized as a collection of decentralised autonomous agents that collaborate to reach the overall solution. Because of the agents autonomy, their limited rationality, and the distributed nature of most real world problems, the key issue in multi-agent system research is how to model interactions between agents. Negotiation models have emerged as suitable candidates to solve this interaction problem due to their decentralised nature, emphasis on mutual selection of an action, and the prevalence of negotiation in real social systems. The central problem addressed in this thesis is the design and engineering of a negotiation model for autonomous agents for sharing tasks and/or resources. To solve this problem a negotiation protocol and a set of deliberation mechanisms are presented which together coordinate the actions of a multiple agent system. In more detail, the negotiation protocol constrains the action selection problem solving of the agents through the use of normative rules of interaction. These rules temporally order, according to the agents' roles, communication utterances by specifying both who can say what, as well as when. Specifically, the presented protocol is a repeated, sequential model where offers are iteratively exchanged. Under this protocol, agents are assumed to be fully committed to their utterances and utterances are private between the two agents. The protocol is distributed, symmetric, supports bi and/or multi-agent negotiation as well as distributive and integrative negotiation. In addition to coordinating the agent interactions through normative rules, a set of mechanisms are presented that coordinate the deliberation process of the agents during the ongoing negotiation. Whereas the protocol normatively describes the orderings of actions, the mechanisms describe the possible set of agent strategies in using the protocol. These strategies are captured by a negotiation architecture that is composed of responsive and deliberative decision mechanisms. Decision making with the former mechanism is based on a linear combination of simple functions called tactics, which manipulate the utility of deals. The latter mechanisms are subdivided into trade-off and issue manipulation mechanisms. The trade-off mechanism generates offers that manipulate the value, rather than the overall utility, of the offer. The issue manipulation mechanism aims to increase the likelihood of an agreement by adding and removing issues into the negotiation set. When taken together, these mechanisms represent a continuum of possible decision making capabilities: ranging from behaviours that exhibit greater awareness of environmental resources and less to solution quality, to behaviours that attempt to acquire a given solution quality independently of the resource consumption. The protocol and mechanisms are empirically evaluated and have been applied to real world task distribution problems in the domains of business process management and telecommunication management. The main contribution and novelty of this research are: i) a domain independent computational model of negotiation that agents can use to support a wide variety of decision making strategies, ii) an empirical evaluation of the negotiation model for a given agent architecture in a number of different negotiation environments, and iii) the application of the developed model to a number of target domains. An increased strategy set is needed because the developed protocol is less restrictive and less constrained than the traditional ones, thus supporting development of strategic interaction models that belong more to open systems. Furthermore, because of the combination of the large number of environmental possibilities and the size of the set of possible strategies, the model has been empirically investigated to evaluate the success of strategies in different environments. These experiments have facilitated the development of general guidelines that can be used by designers interested in developing strategic negotiating agents. The developed model is grounded from the requirement considerations from both the business process management and telecommunication application domains. It has also been successfully applied to five other real world scenarios
    corecore