
AN ABSTRACT OF THE DISSERTATION OF

Gilberto Marcon dos Santos for the degree of Doctor of Philosophy in Robotics

presented on June 8, 2020.

Title: Coordination for Scalable Multiple Robot Planning Under Temporal

Uncertainty

Abstract approved:

Julie A. Adams

This dissertation incorporates coalition formation and probabilistic planning to-

wards a domain-independent automated planning solution scalable to multiple het-

erogeneous robots in complex domains. The first research direction investigates the

effectiveness of Task Fusion and introduces heuristics that improve task allocation

and result in better quality plans, while requiring lower computational cost than

the baseline approaches. The heuristics incorporate relaxed plans to estimate cou-

pling and determine which tasks to fuse. As a result, larger temporal continuous

planning problems involving multiple robots can be solved. The second research

direction introduces new coordination methods to merge plans and resolve conflicts

while extending the framework to domains with stochastic action duration. Merg-

ing distributedly generated plans becomes computationally costly when task plans

are tightly coupled, and conflicts arise due to dependencies between plan actions.

Existing methods either scale poorly as the number of agents and tasks increases,

or do not minimize makespan, the overall time necessary to execute all tasks. A

new family of plan coordination and conflict resolution algorithms is introduced to

merge independently generated plans, minimize the resulting makespan, and scale

to a large number of tasks and agents in complex problems. A thorough algorithmic

analysis and empirical evaluation demonstrates how the new conflict identification

and resolution models can impact the resulting plan quality and computational

cost across three heterogeneous multiagent domains and outperform the baseline

algorithms.

c©Copyright by Gilberto Marcon dos Santos
June 8, 2020

All Rights Reserved

Coordination for Scalable Multiple Robot Planning Under Temporal
Uncertainty

by

Gilberto Marcon dos Santos

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 8, 2020
Commencement June 2020

Doctor of Philosophy dissertation of Gilberto Marcon dos Santos presented on
June 8, 2020.

APPROVED:

Major Professor, representing Robotics

Director of the Robotics Program

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Gilberto Marcon dos Santos, Author

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my advisor, Dr. Julie A. Adams,

for her guidance while performing this research as well as her thorough and atten-

tive reading and editing of my writing. I would like to extend my sincere thanks

to all my committee members, Drs. Geoffrey Hollinger, Kagan Tumer, Prasad

Tadepalli, and Kipp Shearman, who inspired me and instilled confidence, either

through the teaching of classes during my doctoral studies, or through mentorship

and advice in the projects on which I collaborated. I would also like to thank all

of my coworkers and colleagues, who supported me during my graduate studies,

either through their direct feedback on my writing, or by providing me with advice

on technical matters. I would also like to thank all of my friends and roomates,

who offered their presence and emotional support. Ultimately, I would like to

thank my family, my parents, and my brother, who continually supported me from

a long distance. This work was partially supported by NSF grant #1723924.

TABLE OF CONTENTS

Page

1 Introduction 1

2 Background 6

2.1 Planning Models . 7
2.1.1 Planning Model Features . 7
2.1.2 Concurrent Planning Models 21
2.1.3 Planning Languages . 28

2.2 Planning Algorithms . 30
2.2.1 Planning Algorithm Features 30
2.2.2 Deterministic Centralized Planning Algorithms 40
2.2.3 Deterministic Decentralized and Hybrid Planning Algorithms 43
2.2.4 Fully Observable Probabilistic Planning Algorithms 46
2.2.5 Decentralized Partially Observable Markovian Algorithms . . 48

2.3 Coalition Formation for Scalable Multiple Robot Planning 58
2.3.1 Definitions . 59
2.3.2 Coalition Formation Algorithms for Multiple Robot Systems 62
2.3.3 Planning and Coalition Formation 63
2.3.4 Plan Merging . 71
2.3.5 Summary . 74

3 Outline 75

3.1 Multiagent Actions Concurrency and Time Uncertainty Planning
Language . 77

3.2 Experimental Domains . 80
3.2.1 Blocks World Domain . 80
3.2.2 The Logistics Domain . 82
3.2.3 First Response Domain . 83

4 Plan Distance Heuristics for Task Fusion in Distributed Temporal Planning 86

4.1 Object, Action, and Action-Object Heuristics 88

4.2 Object-Temporal, Action-Temporal, and Action-Object-Temporal
Heuristics . 89

4.3 Empirical Evaluation . 91
4.3.1 Domains . 92

TABLE OF CONTENTS (Continued)

Page

4.3.2 Experimental Design . 94

4.4 Results . 96
4.4.1 The Blocks World Domain with TFD 97
4.4.2 The Blocks World Domain with COLIN 102
4.4.3 The First Response Domain 107

4.5 Discussion . 112

4.6 Conclusion . 115

5 Scalable Temporal Plan Merging 117

5.1 Conflict Identification and Resolution 119
5.1.1 Open Precondition Identification 120
5.1.2 Open Precondition Resolution 120
5.1.3 Causal Conflict Identification 121
5.1.4 Causal Conflict Resolution 124
5.1.5 Conflict Models and the Overall Plan Merging Computa-

tional Cost . 126
5.1.6 Transitive Closure . 127

5.2 Temporal Plan Coordination . 128

5.3 Methodology . 135

5.4 Results . 137
5.4.1 The Logistics Domain . 138
5.4.2 The Blocks World Domain 142
5.4.3 The First Response Domain 144
5.4.4 Overall Results Across All Domains 147

5.5 Discussion . 148

5.6 Conclusion . 151

6 Multiple Robot System and Evaluation 153

6.1 Multiple Robot System Architecture 154
6.1.1 The Robot Execution System 154
6.1.2 The Safety Policy . 157

6.2 Experimental Methodology . 157

6.3 Results . 164

TABLE OF CONTENTS (Continued)

Page

6.4 Discussion . 168

6.5 Conclusion . 170

7 Conclusions 171

7.1 Contributions . 172

7.2 Future Work . 174

Appendices 196

A The MAPL Language . 197

B Extended Task Fusion Results . 200

C Extended Plan Merging Results . 206

LIST OF FIGURES

Figure Page

1.1 Scalability as a resource in multiple robot domain-independent plan-
ning. 3

2.1 Discrete-time Markovian planning models. 23

2.2 Hybrid parallel plan synthesis. 33

2.3 Hybrid serial plan synthesis. 34

2.4 Hybrid serial plan synthesis followed by optimal plan merging. . . . 36

2.5 Coalition Formation then Planning for uncoupled and coupled tasks. 67

3.1 Coalition Formation then Planning Overview 76

4.1 Blocks World with TFD . 101

4.2 Blocks World with COLIN . 106

4.3 First Response . 111

5.1 Illustrative Logistics problem and results for Serial, STA, and
TCRA∗. Task 1 actions shaded. 129

5.2 Logistics STA success (%) per number of tasks for two robots. . . . 138

5.3 Logistics STA success (%) per number of tasks for four robots. . . . 139

5.4 Logistics TCRA∗ (ε = 1) success (%) per number of tasks for two
robots. 140

5.5 Logistics TCRA∗ (ε = 1) success (%) per number of tasks for four
robots. 140

5.6 Logistics TCRA∗ (all ε values), STA, and Serial makespan (min) for
two robots. 141

5.7 Logistics TCRA∗ (all ε values), STA, and Serial makespan (min) for
ten robots. 141

LIST OF FIGURES (Continued)

Figure Page

5.8 Blocks World STA and TCRA∗ using the direct model without clo-
sure success (%) for ten robots. 143

5.9 Blocks World TCRA∗ (all ε values), STA, and Serial makespan (min)
for ten robots. 144

5.10 First Response STA success (%) per number of tasks for ten robots. 145

5.11 First Response TCRA∗ (ε = 1) success (%) per number of tasks for
ten robots. 145

5.12 First Response TCRA∗ (all ε values), STA, and Serial makespan
(min) for ten robots. 146

6.1 The Robot Execution System. 155

6.2 The metric map of the environment, segmented into six areas. Col-
ors represent each area’s navigable space. Black represents walls
and white obstacles. 159

6.3 The rescue base. Each robot has a logo indicating their assigned roles.160

6.4 An example First Response plan synthesized by the Coalition For-
mation then Planning framework using the TCRA∗ plan merging
algorithm. 161

6.5 Simulated and Real-world Mean Makespan (min) Results. 166

LIST OF TABLES

Table Page

2.1 Planning model features, their domain values and descriptions. . . . 22

2.2 Planning algorithm features and feature domains. 40

4.1 Coalition Composition for the Blocks World Domain [62]. 92

4.2 Tasks per mission for the Blocks World Domain [62]. 93

4.3 Coalition Composition for the First Response Domain. 93

4.4 Tasks per mission for the First Response Domain. 94

4.5 Blocks World with TFD planning results 98

4.6 Blocks World with COLIN planning results. 103

4.7 First Response planning results. 108

5.1 Conflict Identification and Resolution Overview. 120

5.2 Conflict Identification and Resolution Worst Case Time Complexity
per Conflict Model. 126

6.1 Simulated Makespan Descriptive Statistics. 165

6.2 Multiple Robot Makespan Descriptive Statistics Without the Safety
Policy. 165

6.3 Multiple Robot Makespan Descriptive Statistics Using the Safety
Policy. 166

6.4 Number of Multiple Robot Plan Execution Successful Trials. 168

LIST OF ALGORITHMS

Algorithm Page

2.1 The Task Fusion Algorithm. 71

5.1 The Solution Test Algorithm . 118

5.2 Open Precondition Identification. 120

5.3 The Open Precondition Resolution Algorithm. 121

5.4 The Causal Conflict Identification Algorithm. 123

5.5 The Causal Conflict Resolution Algorithm. 125

5.6 The Serial algorithm. 130

5.7 The Temporal Optimal Conflict Resolution Algorithm (TCRA∗). . . 131

6.1 The Plan Execution Algorithm. 156

LIST OF APPENDIX FIGURES

Figure Page

B.1 Quality Pareto Strength for Blocks World with TFD. 200

B.2 Cost Pareto Strength for Blocks World with TFD. 201

B.3 Quality Pareto Strength for Blocks World with COLIN. 202

B.4 Cost Pareto Strength for Blocks World with COLIN. 203

B.5 Quality Pareto Strength for First Response. 204

B.6 Cost Pareto Strength for First Response. 205

C.1 Logistics Domain Serial success (%). 207

C.2 Logistics Domain STA success (%). 208

C.3 Logistics Domain TCRA∗ (ε = 0) success (%). 209

C.4 Logistics Domain TCRA∗ (ε = 1) success (%). 210

C.5 Logistics Domain TCRA∗ (ε = 10) success (%). 211

C.6 Logistics Domain TCRA∗ (ε = 100) success (%). 212

C.7 Logistics Domain Serial makespan (min). 213

C.8 Logistics Domain STA makespan (min). 214

C.9 Logistics Domain TCRA∗ (ε = 0) makespan (min). 215

C.10 Logistics Domain TCRA∗ (ε = 1) makespan (min). 216

C.11 Logistics Domain TCRA∗ (ε = 10) makespan (min). 217

C.12 Logistics Domain TCRA∗ (ε = 100) makespan (min). 218

C.13 Blocksworld Domain Serial success (%) for 1-5 robots. 220

C.14 Blocksworld Domain Serial success (%) for 6-10 robots. 221

C.15 Blocksworld Domain STA success (%) for 1-5 robots. 222

C.16 Blocksworld Domain STA success (%) for 6-10 robots. 223

LIST OF APPENDIX FIGURES (Continued)

Figure Page

C.17 Blocksworld Domain TCRA∗ (ε = 0) success (%) for 1-5 robots. . . 224

C.18 Blocksworld Domain TCRA∗ (ε = 0) success (%) for 6-10 robots. . 225

C.19 Blocksworld Domain TCRA∗ (ε = 1) success (%) for 1-5 robots. . . 226

C.20 Blocksworld Domain TCRA∗ (ε = 1) success (%) for 6-10 robots. . 227

C.21 Blocksworld Domain TCRA∗ (ε = 10) success (%) for 1-5 robots. . 228

C.22 Blocksworld Domain TCRA∗ (ε = 10) success (%) for 6-10 robots. . 229

C.23 Blocksworld Domain TCRA∗ (ε = 100) success (%) for 1-5 robots. . 230

C.24 Blocksworld Domain TCRA∗ (ε = 100) success (%) for 6-10 robots. 231

C.25 Blocksworld Domain Serial makespan (min) for 1-5 robots. 232

C.26 Blocksworld Domain Serial makespan (min) for 6-10 robots. 233

C.27 Blocksworld Domain STA makespan (min) for 1-5 robots. 234

C.28 Blocksworld Domain STA makespan (min) for 6-10 robots. 235

C.29 Blocksworld Domain TCRA∗ (ε = 0) makespan (min) for 1-5 robots. 236

C.30 Blocksworld Domain TCRA∗ (ε = 0) makespan (min) for 6-10 robots.237

C.31 Blocksworld Domain TCRA∗ (ε = 1) makespan (min) for 1-5 robots. 238

C.32 Blocksworld Domain TCRA∗ (ε = 1) makespan (min) for 6-10 robots.239

C.33 Blocksworld Domain TCRA∗ (ε = 10) makespan (min) for 1-5 robots.240

C.34 Blocksworld Domain TCRA∗ (ε = 10) makespan (min) for 6-10 robots.241

C.35 Blocksworld Domain TCRA∗ (ε = 100) makespan (min) for 1-5 robots.242

C.36 Blocksworld Domain TCRA∗ (ε = 100) makespan (min) for 6-10
robots. 243

C.37 First Response Domain Serial success (%). 245

C.38 First Response Domain STA success (%). 246

LIST OF APPENDIX FIGURES (Continued)

Figure Page

C.39 First Response Domain TCRA∗ (ε = 0) success (%). 247

C.40 First Response Domain TCRA∗ (ε = 1) success (%). 248

C.41 First Response Domain TCRA∗ (ε = 10) success (%). 249

C.42 First Response Domain TCRA∗ (ε = 100) success (%). 250

C.43 First Response Domain Serial makespan (min). 251

C.44 First Response Domain STA makespan (min). 252

C.45 First Response Domain TCRA∗ (ε = 0) makespan (min). 253

C.46 First Response Domain TCRA∗ (ε = 1) makespan (min). 254

C.47 First Response Domain TCRA∗ (ε = 10) makespan (min). 255

C.48 First Response Domain TCRA∗ (ε = 100) makespan (min). 256

Chapter 1: Introduction

Advancements in sensing, processing, and actuation technologies are rapidly ex-

panding robots’ capabilities. The growing number of robot capabilities enables

them to accomplish complex tasks and assist in first response to major disas-

ters. Robots are navigating rough terrain, manipulating objects, and perceiving

the environment, but integrating those individual capabilities into a coherent ef-

fort to accomplish specific goals requires complex decision making and planning.

Real-world applications predominantly rely on a human operator for reasoning

and decision making, because automated domain-independent planning methods

do not meet real-world requirements [4]. Real-world problems require devising

plans rapidly that account for uncertain environments, imprecise sensors, limited

communication, and multiple robots. Current automated planners offer features

targeting various subsets of these requirements, but no planner offers a complete

set of features necessary to meet all requirements. This dissertation introduces an

automated planning framework for multiple robot systems to accommodate the

distributed, dynamic, and uncertainty requirements, while solving complex prob-

lems within real-world processing time and computational resource constraints.

One set of features required to meet real-world requirements relates to the

dynamic and decentralized aspects of multiple robot systems. Concurrency, or

concurrent action execution, allows robots to act simultaneously and take actions

2

in parallel. Uncertain action outcomes break the assumption that each action has

a single deterministic result and requires contingency branching on each possible

action outcome. Partial observability breaks the assumption that robots have an

accurate perception of the world. The second set of required features relates to

planning model expressiveness, and includes features that will permit more com-

pact, expressive, and general representations of the planning problems. Many

expressive features are supported by most modern deterministic planners, but are

not supported by most probabilistic planners. Durative actions explicitly repre-

sents time for modeling actions that take different amounts of time to complete.

Continuous fluents permit modeling continuous numerical values and constraints,

such as battery power and payload weight. A comprehensive description of model

and algorithm features is presented in Chapter 2.

Covering a wide range of features is one side of the equation for effective multi-

ple robot planning. The other major limitation planners have is producing feasible

plans within limited computational processing time and resources. Balancing plan-

ning features and computing power leads to the definition of scalability. Scalability

is defined as a constraint over various factors, represented in Figure 1.1 by the

area of the filled hexagon. A planner’s scalability mutually constrains six factors,

represented on the axes. Robot heterogeneity is determined by the breadth of robot

capabilities across the available robots; where a larger variety of capabilities im-

plies higher heterogeneity. The time horizon represents the timespan permissible

for planning, where longer time horizons allow for planning actions over a larger

number of time steps, or longer time period. Domain model complexity determines

3

the complexity of the world model (i.e., how many different objects with which the

robots are assumed to interact). The number of robots defines how many robots

will cooperate to execute the plan. A goal of this dissertation is to generate plans

faster, while simultaneously using less memory in order to generate plans on the

smaller, cheaper computers often found in robotic systems. The mutual constraint

imposed by scalability requires trading-off one factor for the other when modeling a

problem. Increasing the model complexity and the number of robots, for example,

can require reducing the time horizon and the robot heterogeneity for any given

planner, as presented by the dotted line in Figure 1.1.

Less planning time

Less planning memory

Number of robots

Robot heterogeneneity

Time horizon

Domain model complexity

Figure 1.1: Scalability as a resource in multiple robot domain-independent plan-
ning. Domain-independent algorithms allow the arbitrary distribution of the avail-
able “scalability” across the multiple planning aspects when modeling a particular
problem.

No single planner in the literature incorporates all the features deemed neces-

sary for real-world planning. Further, the more expressive planners sacrifice the

needed scalability. General domain-independent multiple robot planning necessi-

tates facilitating a larger set of requirements and improved scalability. The pri-

mary contribution of this dissertation is a domain-independent planning approach

4

for real-world multiple robot systems. Dukeman and Adams [62] demonstrated

that coalition formation can dramatically improve the scalability of deterministic

multiple robot planners that incorporate concurrency and durative actions. This

dissertation incorporates coalition formation into planning with probabilistic tem-

poral domains. Integrating existing probabilistic planners and coalition formation

algorithms improves the scalability of probabilistic planners, while preserving their

features. The differences between deterministic and probabilistic planning created

significant research questions related to key process of the Coalition Formation

then Planning framework. The plan merging process, for example, is necessary

to fuse plans of multiple robot coalitions into a single coherent plan. Determin-

istic plans can be optimally merged using existing plan merge algorithms, such

as presented by Cox and Durfee [52]. However, the existing algorithms do not

support durative actions or action duration uncertainty. The plans generated by

probabilistic temporal planners with concurrent durative actions and action dura-

tion uncertainty, such as the Actions Concurrency and Time Uncertainty Planner

[24], are stochastic task networks (STNs) [110] and cannot be optimally merged

by existing algorithms.

Three research directions are presented towards incorporating coalition forma-

tion and probabilistic planning with the generation of a domain-independent auto-

mated planning solution scalable to multiple robot systems in complex uncertain

domains.

The first research direction, presented in Chapter 4, is a new family of coor-

dination heuristics that improve plan quality when solving continuous temporal

5

problems for dozens of heterogeneous robots. The new heuristics improve plan

quality, while requiring comparable computational resources, relative to baseline

heuristics across a First Response and an extended Blocks World domain.

The second research direction, presented in Chapter 5, adapts the framework to

probabilistic domains with temporal uncertainty. Partial-order planning models al-

low decentralized plan execution with concurrency and action duration uncertainty.

However, coordinating the distributedly generated plans becomes computationally

costly when task plans are tightly coupled, and conflicts arise due to dependencies

between plan actions. Existing coordination methods either scale poorly as the

number of robots and tasks increases, or do not minimize makespan, the overall

time necessary to execute all tasks. A new family of plan coordination and con-

flict resolution algorithms is introduced to merge independently generated plans,

minimize the resulting makespan, and scale to a large number of tasks and robots

in complex problems.

The third research direction, presented in Chapter 6, introduces a domain-

independent approach to coordinate heterogeneous multiple robot systems, while

executing complex plans. The system deploys the Coalition Formation then Plan-

ning framework in a physical real-world multiple robot system.

6

Chapter 2: Background

Planning for multiple robot systems leverages algorithms developed by the multia-

gent planning community. Multiagent planning algorithms extend the single-agent

planning literature, which roots back to the origins of artificial intelligence research

[142]. A comprehensive survey on planning models and algorithms is presented,

covering the modern multiagent planners and summarizing their fundamental com-

ponents that derive from the classical single-agent literature. Coalition formation,

a superset of task allocation, can enhance multiple robot planning to improve scal-

ability and solve complex problems. Coalition formation algorithms are presented,

in addition to the hybrid Coalition Formation then Planning framework [61] that

interleaves coalition formation and planning to solve temporal and continuous het-

erogeneous multiple robot planning problems that scale to dozens of agents in

complex domains. The terms robot and agent are used interchangeably, in the

sense that a robot is assumed to be driven by a decision-making agent.

Domain-independent multiple robot planning models and a generalized model

taxonomy are presented in Chapter 2.1. Domain-independent multiple robot plan-

ning algorithms and a generalized algorithm taxonomy are presented in Chap-

ter 2.2. Coalition formation models, algorithms, and a hybrid approach that ap-

plies coalition formation to accelerate domain-independent multiple robot planning

are presented in Chapter 2.3.

7

2.1 Planning Models

The planning model is a very important aspect of automated planning and estab-

lishes the constraints and assumptions related to the robots and the environment.

Different algorithms can yield different solutions that have different advantages

and limitations based on the planning model [76]. The automated planning liter-

ature is segmented around different model families, which makes it challenging to

establish a clear picture of the field. Models make varying assumptions about the

environment and the robots, many of which are implicit to the specific literature

segment. A planning model taxonomy is presented in order to provide a clearer

picture of the various models and their limitations.

2.1.1 Planning Model Features

The interactions between robots and the environment are specified by a planning

model [76]. Robot actions are the key element of the robot-environment interac-

tion, and the core objective of planning is to establish a course of action. Plans de-

termine actions that each robot must take to accomplish specific goals [76]. Robot

actions are defined in terms of action requirements (i.e., conditions upon which ac-

tions are applicable) and action effects (i.e., changes caused to the environment and

to the robots when a certain action is taken). Planning models determine which

real-world features are considered by the planning process and also determine im-

plicitly which solution algorithms can be applied [76]. Some features relate to the

dynamic and decentralized aspects of multiple robot systems, while other features

8

relate to planning model expressiveness, permitting more compact, expressive, and

general representations of the planning problems. Twenty-one features, considered

the most relevant to multiple robot planning, are presented.

2.1.1.1 Centralized and Decentralized Plan Execution

A variety of definitions exist for multiagent planning [51]. Distributed plan synthe-

sis for single agent execution employs multiple planning agents that cooperate to

formulate a plan for a single agent to execute [85, 192]. Centralized plan synthesis

for multiagent execution employs a single planning agent to formulate a plan for

multiple executing agents [34]. Distributed plan synthesis for multiagent execu-

tion employs multiple planning agents to formulate a plan for multiple executing

agents [52, 178]. Centralized and distributed plan synthesis are discussed in detail

in Chapter 2.2. Multiple robot systems require multiple executing agents; thus,

distributed plan synthesis for single agent execution is outside the scope of this

dissertation. However, single agent execution is not to be confused with centralized

plan execution for multiple agents.

Centralized plan execution models assume that a central decision-making au-

thority will coordinate the plan execution and will command agents as a master

puppeteer [142]. Centralized plan execution allows using the same planning solu-

tions available for single-agent planning, but assumes perfect instantaneous com-

munication between the decision-making authority and each agent. Decentralized

plan execution models assume agents will independently make decisions, while ex-

9

ecuting the plan without using a centralized authority. Models for decentralized

plan execution generate plans that each agent can follow independently to achieve

the system goals [142]. Real-world multiple robot planning systems employ a hy-

brid approach that combines aspects of both centralized and decentralized plan

execution [76]. Combined with a hierarchical problem decomposition, high level

planning and execution monitoring can be employed in a centralized fashion, while

low level planning and reactive control operate locally to give agents autonomy.

2.1.1.2 Concurrency

Sequential planning algorithms assume actions are taken one at a time. Multiple

robot systems require action concurrency, or concurrent action execution. Con-

currency breaks the sequential assumption and allows actions to be executed in

parallel, potentially by a large number of robots. Some models permit concur-

rency, but impose other unrealistic assumptions. A common assumption is that of

time discretization, which permits concurrency, but requires perfect synchroniza-

tion across all robots during plan execution. Synchronization is often infeasible

due to unreliable and delayed communication [104]. Another factor that can ei-

ther facilitate or prevent effective automated planning for multiple robot systems

is model abstractedness.

10

2.1.1.3 Model abstractedness

Planning models offer various levels of abstraction. More compact and abstract

models have higher semantic value and facilitate modeling real-world problems.

Flat models represent the lowest level of abstraction and describe the planning

problem in terms of discrete states and actions. Transitions between states are

represented as the cross product of all states and actions, which must be exhaus-

tively enumerated, generating sparse and inefficient representations that have little

semantic value [170]. Factored models, also known as state-variable models, rep-

resent the planning problem in terms of state variables and yield more compact

representations than flat models [82]. Transitions between states are implicitly rep-

resented as conditional action effects on the state variables, which are succinctly

described by propositional logic. Factored models can be directly converted into

flat models by enumerating all combinations of valid state variable values. Re-

lational models, also known as first-order models, represent the highest level of

abstraction for existing planning models and describe planning problems in terms

of objects, functions, relations, and predicates [143]. Relational models generate

the most compact and semantically valuable problem representations and can be

converted into factored models by instantiating all relationships into state vari-

ables. Converting relational models into factored models and factored models into

flat models generates a combinatorial increase in representation, because of the

combinatorial nature of the factored and relational representations [145]. Planners

that operate directly on factored and relational models benefit from the compact-

11

ness and have significant efficiency gains [104]. Propositional and first-order logic

are supported by most modern deterministic planners, but lack support by many

probabilistic planners. Model compactness and expressiveness are further devel-

oped by representing time and temporal constraints.

2.1.1.4 Temporal Planning and Durative Actions

Time and temporal constraints are commonly represented using durative actions.

Temporal constraints establish that the start, or the end of one action must occur

before or after another action, respectively. Durative actions take a finite amount

of time to execute and enhance model representation for multiple robot planning,

because action execution time plays a fundamental role in most domains when

multiple robots execute actions concurrently [76]. Durative actions incorporate

start time and execution duration; thus, they require specific preconditions to be

satisfied by the action start deadline. Indoor firefighting, for example, involves

opening doors, which can take seconds, and putting down fires, which can take

minutes. The time difference required to execute each action means that multiple

short actions can be scheduled simultaneously with the execution of a longer action.

Planners that ignore differences in action execution times result in idle robots

during plan execution and longer execution duration [76].

Temporal models often go beyond durative actions by defining temporal con-

straints that are independent of each robots’ actions. Timed initial-literals allow

modeling arbitrarily timed conditions and effects, such as general deadlines [76].

12

Durative goals, a special case of timed initial-literals, allow specifying deadlines rep-

resentative of when specific goals must be accomplished [76]. Timed initial-literals

require advanced temporal models, which have been incorporated by a small set

of planners [76]. Multi-valued, numeric, and continuous variable representations

further extend abstractedness.

2.1.1.5 Boolean, Multi-Valued, Numeric, and Continuous Fluents

Early planning models rely on Boolean state variables, or fluents, for describing

the robots and the environment. Multi-valued fluents simplify the problem descrip-

tion by fusing multiple Boolean variables into a concise multi-valued state variable

[76]. Numeric fluents allow more compact representations by enabling quantified

resources, such as the number of a robot’s spare tires or payload slots. Numeric

continuous fluents permit modeling continuous numeric values and constraints,

such as a robot’s battery power and payload weight [76]. Continuous fluents re-

quire factored or relational levels of abstractedness, because a flat model requires

an infinite number of state transitions to represent continuous state variables [76].

Continuous observations allow agent percepts to be a real-valued reading, rather

than a discrete reading. Continuous observations are often found in partially ob-

servable models, where the agent observation is a numeric value on a continuous

range, such as the certainty output of an object classifier [45]. Continuous actions

allow robots to take actions involving continuous parameters (e.g., the action de-

termines how much torque the robot must apply on its motors from a continuous

13

range of valid torque values) [104]. Continuous effects allow durative actions to

continuously change fluent values (e.g., the move action will continuously decrease

the fuel level over time) [104]. Continuous time models explicitly represent time

as a real-valued dimension and allow action-independent timed events, such as

timed initial-literals. Continuous time is not necessary for continuous actions,

and most planners implement continuous actions without continuous time using

temporal dependency graphs that allow discrete reasoning about the continuous

actions. Continuous effects and continuous actions are strictly different. Contin-

uous actions can have continuous effects, but most models implement continuous

effects for discrete actions [104]. Incorporating continuous fluents, continuous ob-

servations, and continuous actions generates a variety of model classes, such as

continuous-state, continuous-action, hybrid-state, and hybrid-action models.

2.1.1.6 Hybrid and Continuous-State and Continuous-Action Models

Continuous fluents produce continuous-state models, where every state variable is

continuous, and hybrid-state models, where some state variables are continuous and

others are discrete [104]. Similarly, continuous actions produce continuous-action

and hybrid-action models. Models that incorporate both continuous-states and

continuous-actions are commonly studied in control theory. The complexity of con-

tinuous control restricts it to low level models of single-robot domains, which is be-

yond the scope of this dissertation [95]. Early approaches for solving nondetermin-

istic continuous-state and continuous-action models include the linear-quadratic-

14

Gaussian model, which incorporates continuous noise, but does not incorporate

piece-wise linear transition dynamics and rewards [19]. Recent approaches include

the extended algebraic decision diagrams [146] that compactly represent general

piece-wise linear functions, and the continuous-state and continuous-action Markov

Decision Process (MDP), which incorporates piece-wise linear transition dynam-

ics and rewards [202]. Uncertainty, typically incorporated into advanced control

systems’ models, also plays an important role in planning models for real-world

problems.

2.1.1.7 Deterministic, Nondeterministic, and Probabilistic Models

Deterministic models assume actions have deterministic outcomes, duration, and

resource requirements, which must be predictable at the time of planning. Real-

world scenarios have multiple sources of uncertainty, including uncertain action

outcomes, uncertain action duration, and uncertain action resource consumption.

The various levels of uncertainty incorporated into the planning model require re-

strictive assumptions and determines the applicable solution algorithms. Russell

and Norvig [142] divide planning for nondeterministic domains into three cate-

gories: Sensorless planning, contingent planning, as well as online planning and

replanning. Sensorless planning, also known as conformant planning or coercive

planning, occurs in the absence of observations and takes actions to reduce the

belief space down to goal states [142]. Sensorless planning lacks feedback from

the environment; thus, the resulting plan consists of a sequence of actions, as in

15

classical deterministic planning [142]. Contingent planning incorporates observa-

tions and satisfies environments with uncertain outcomes, generating conditional

plans with branching based on percepts [142]. Online planning and replanning

interleaves planning and execution in order to tackle the exponential growth in

complexity caused by extended time horizon planning, and extends planning to

unknown environments [142].

Sensorless planning is effective under strong assumptions about the robots’ and

the environments’ attributes, which can be achievable in controlled manufacturing

tasks [71]. However, in a broad range of environments such assumptions cannot

be made and contingent planning is necessary. Online planning and replanning

often use contingent planners with a fixed time horizon and replan according to

heuristic conditions [75]. Multiple robot systems replanning requires a reliable

communication infrastructure to share the updated plans across all robots. Both

centralized plan synthesis, in which one robot replans and communicates the new

plans to all other robots, and decentralized plan synthesis, were robots exchange

messages to replan in a distributed manner, require synchronization and extensive

message passing [76]. Faulty communications can cause inconsistencies among

the plans each robot executes, generating suboptimal and potentially catastrophic

results; thus, replanning has limited benefit for limited communication scenarios

[76]. Contingent planning is a better alternative to replanning.

Contingent planning models can be separated into nondeterministic and proba-

bilistic [75]. Probabilistic planning is a subset of nondeterministic planning where

certain outcomes are more likely than others, which allows for leveraging proba-

16

bilistic patterns in the form of an estimated likelihood of action outcomes. The

probabilistic approach to nondeterministic planning brings decision theory into

planning by incorporating the concept of state-action utility as a substitute for

the set of goal states [75]. The utility encapsulates state-action values as a reward

function, which enhances the problem representation capability by allowing for a

quantitative preference model for state-action sets. Probabilistic planning can be

applied to domains in which the objective is not to reach a goal state, but rather

to spend more time in high-valued states (i.e., preferred states), while avoiding

low-valued states (i.e., undesirable states). The decision-theoretic approach also

permits solving infinite-horizon problems, where the goal is not necessarily to reach

an end state, but rather to harvest the most rewards per time step and achieve

the most profitable behavior in the domain [76].

Models incorporate forms of nondeterminism, other than uncertain action out-

comes, including uncertain action execution duration and uncertain action resource

requirements [54]. Incorporating uncertain outcomes can be used to devise contin-

gent plans, also known as policies, and enables decision making according to the

environmental state, rather than a predefined sequence of actions [54]. Probabilis-

tic models with uncertain outcomes account for the likelihood of action outcomes,

specify a probability density function over a set of action effects, and allow the

planner to benefit from action outcomes that are more likely than others [54].

Uncertain duration allows modeling durative actions with nondeterministic exe-

cution time and associates a probability density function with a range of possible

action execution durations [54]. Uncertain resource requirements allow modeling

17

nondeterministic resource requirements for each action, and resource consumption

is modeled probabilistically. Purely nondeterministic planners assume unknown

action outcome likelihoods and build contingent plans for all possible action out-

comes, while probabilistic planners account for probabilities in order to generate

plans with higher expected value [76]. Modeling uncertainty permits incorporat-

ing partial observability, a fundamental concept for many deployed multiple robot

systems.

2.1.1.8 Partial observability

Observability determines whether the robots can perceive perfectly all environmen-

tal aspects during plan execution, or if the robots make incomplete and inaccurate

observations according to problem-specific conditions. Full observability occurs

when all state aspects yield complete and accurate observations of their true value

[142]. Partial observability assumes that robots do not have perfectly accurate per-

ception, which captures models that include the uncertainties and limitations of

robots’ sensing. Partial observability accounts for the limited information robots

possess regarding one another, allowing for decentralized execution, where each

robot makes noisy and limited observations from its individual perspective [142].

Partial observability also enables planning for environments that require limited

communication. Robots have to use costly actions and make noisy observations

in order to communicate and share information. Deciding when to communicate

becomes part of the planning process, which accounts for the cost and the un-

18

certainties of sending and receiving messages [76]. Domains with no observability

require open-loop plans, where the world is either assumed to behave determinis-

tically, or the plan is expected to funnel the initial belief state into the goal states

[142].

2.1.1.9 Limited or Absent Communication

Limited or non-existing communication infrastructure is associated with partial

observability, but not all partially observable models permit limited communica-

tions. Real-world settings often involve costly, delayed, and error-prone commu-

nication that is dependent upon distance, line-of-sight, and nondeterministic fail-

ures [37]. Communication may not exist due to constrained hardware and power

or environmental features. Most planners generate solutions that accommodate

multiple robot systems, but require perfect communications during plan execu-

tion. Few planners generate solutions executable within limited communication

domains, and such planners tend to have poor scalability due to model complexity

[124]. A more strict subset of models relaxes the communication requirement, but

demands synchronization. Models with required synchronization do not demand

data transmission or message sharing, other than broadcast pulses that synchronize

time across all agents [157].

19

2.1.1.10 Explicit and Implicit Communication

Models that incorporate explicit communication make strong assumptions regard-

ing the nature and availability of a communication infrastructure [124]. Models

that incorporate implicit communication are applicable to a wider variety of envi-

ronments and make no assumptions regarding the availability of a communication

infrastructure [124]. Models with implicit communication do not describe com-

munication as part of the framework, rather they incorporate communication by

means of individual robot actions and observations [124]. For example, there can

be a broadcast action that has specific requirements, cost, and execution time, and

a received message observation, which has a conditional probability distribution on

success and correctness. Implicit communication occurs via various mediums, be-

yond traditional radio-frequency networks, such as using gestures, lights, sounds,

and any other actions that modify the environment. Models with implicit com-

munication generate plans that adapt to the limitations of the medium, such as

inaccuracies and delays endured when generating and receiving a message. How-

ever, implicit communication requires probabilistic models with partial observabil-

ity [124]. The expressive features reviewed thus far allow for a more compact and

accurate world model. The last model feature leverages the problem structure

to reduce the overall computational complexity and accelerate the plan synthesis

process.

20

2.1.1.11 Agent-Wise Independence

Real-world problems can often be simplified by factoring the model around certain

aspects of the multiple robot system and the environment [124]. The actions of

one robot may have no impact on the state of other robots, meaning that the state

of a robot depends only on its own state and actions in transition-independent

models. The state of a robot is independent of other robots’ states and actions

[157]. Multi-robot underwater ocean mapping is an example domain that can be

modeled with transition-independence. Robots can be assumed to be indepen-

dent, because collisions are unlikely. Urban and indoor mapping, on the other

hand, cannot be assumed to be transition independent, because robots are capable

of blocking each other. A robot’s observations depend only on its own state and

its own actions with observation-independent models (i.e., the observations are in-

dependent of other robots’ states and actions). The underwater model can also be

assumed to be observation-independent, because the sensors’ relative ranges and

the environment size make it unlikely that one robot will influence other robot’s

sensing. Urban and indoor mapping cannot be assumed to be observation in-

dependent, because robots may occlude each other’s sensors. Reward-independent

models assume that maximizing local robot rewards leads to maximizing the global

system reward, such as with additive rewards. Exploration domains often cannot

be assumed to be reward-independent, because the value of exploring a single area

multiple times is less than the value of exploring multiple areas once. Models

that assume independence allow for faster algorithms, but can only be applied to

21

domains where the assumptions are valid [157]. Model features often determine al-

gorithm features, but a clear distinction is made in this Chapter to present features

that distinctively belong to the algorithms alone.

The planning model features are summarized in Table 2.1. The feature domains

are defined to accommodate planning models relevant for multiple robot systems,

and can be extended into sub-sets. Plan execution, for example, can be broken into

several levels of decentralization, but dividing it into centralized and decentralized

is deemed sufficient for the scope of this Dissertation. Some features are found

on a broad range of planning models, such as uncertain action outcomes, whereas

others can only be found on a handful of models, such as timed initial-literals [75].

2.1.2 Concurrent Planning Models

A variety of mutually incompatible planning models that make different implicit

assumptions and restrict the domain of applications in different ways have been

developed [142]. Most deterministic temporal and continuous planning models

evolved from discrete and non-temporal models and inherited their incompatibil-

ities associated with probabilistic domains. Most probabilistic planning models

assume time is discrete; thus, they cannot seamlessly incorporate concurrency

or durative actions [76]. Markovian and non-Markovian planning models, which

incorporate inherently different advantages and limitations, are reviewed with a

particular focus on concurrent models, a minimal requirement for multiple robot

planning.

22

T
ab

le
2.

1:
P

la
n
n
in

g
m

o
d
el

fe
at

u
re

s,
th

ei
r

d
om

ai
n

va
lu

es
an

d
d
es

cr
ip

ti
on

s.

F
e
a
tu

re
N

a
m

e
F
e
a
tu

re
D

o
m

a
in

F
e
a
tu

re
D

e
sc

ri
p
ti

o
n

C
o
n
cu

rr
e
n
cy

<
Y

es
,

N
o>

P
ar

al
le

l
ac

ti
on

ex
ec

u
ti

on
.

D
u

ra
ti

v
e

a
ct

io
n
s

<
Y

es
,

N
o>

T
im

e-
ex

te
n
d
ed

ac
ti

on
ex

ec
u
ti

on
.

T
im

e
d

in
it

ia
l-

li
te

ra
ls

<
Y

es
,

N
o>

E
x
og

en
ou

s
ti

m
ed

ev
en

ts
,

in
d
ep

en
d
en

t
of

ac
ti

on
s.

D
u

ra
ti

v
e

g
o
a
ls

<
Y

es
,

N
o>

G
oa

ls
w

it
h

d
ea

d
li
n
es

.
M

u
lt

i-
v
a
lu

e
d

fl
u
e
n
ts

<
Y

es
,

N
o>

S
ta

te
va

ri
ab

le
s

h
av

e
m

u
lt

i-
va

lu
ed

d
om

ai
n
s.

N
u

m
e
ri

c
fl
u
e
n
ts

<
Y

es
,

N
o>

S
ta

te
va

ri
ab

le
s

h
av

e
n
u
m

er
ic

d
om

ai
n
s.

C
o
n
ti

n
u
o
u
s

fl
u
e
n
ts

<
Y

es
,

N
o>

S
ta

te
va

ri
ab

le
s

h
av

e
co

n
ti

n
u
ou

s
d
om

ai
n
s.

C
o
n
ti

n
u
o
u
s

O
b
se

rv
a
ti

o
n

<
Y

es
,

N
o>

O
b
se

rv
at

io
n

va
ri

ab
le

s
h
av

e
co

n
ti

n
u
ou

s
d
om

ai
n
s.

C
o
n
ti

n
u
o
u
s

a
ct

io
n
s

<
Y

es
,

N
o>

A
ct

io
n

va
ri

ab
le

s
h
av

e
co

n
ti

n
u
ou

s
d
om

ai
n
s.

C
o
n
ti

n
u
o
u
s

e
ff

e
ct

s
<

Y
es

,
N

o>
A

ct
io

n
s

h
av

e
co

n
ti

n
u
ou

s
ti

m
e-

va
ry

in
g

eff
ec

ts
.

C
o
n
ti

n
u
o
u
s

ti
m

e
<

Y
es

,
N

o>
T

im
el

in
e

m
o
d
el

ed
as

a
co

n
ti

n
u
ou

s
va

ri
ab

le
.

R
e
q
u
ir

e
d

co
m

m
u
n
ic

a
ti

o
n

<
Y

es
,

N
o>

C
om

m
u
n
ic

at
io

n
m

u
st

b
e

p
ar

t
of

th
e

fr
am

ew
or

k
.

R
e
q
u
ir

e
d

sy
n
ch

ro
n
iz

a
ti

o
n

<
Y

es
,

N
o>

S
y
n
ch

ro
n
iz

at
io

n
m

u
st

b
e

p
ar

t
of

th
e

fr
am

ew
or

k
.

P
la

n
e
x
e
cu

ti
o
n

<
C

en
tr

al
iz

ed
,

D
ec

en
tr

al
iz

ed
>

W
h
et

h
er

a
ce

n
tr

al
iz

ed
au

th
or

it
y

co
or

d
in

at
es

ex
-

ec
u
ti

on
co

m
m

u
n
ic

at
in

g
ac

ti
on

s
to

ea
ch

ro
b

ot
.

M
o
d

e
l

a
b

st
ra

ct
e
d
n
e
ss

<
F

la
t,

F
ac

to
re

d
,

R
el

at
io

n
al
>

L
ev

el
of

m
o
d
el

re
p
re

se
n
ta

ti
on

ab
st

ra
ct

io
n
,

fr
om

m
or

e
gr

ou
n
d
ed

to
m

or
e

li
ft

ed
.

A
ct

io
n

o
u
tc

o
m

e
s

<
D

et
er

m
in

is
ti

c,
N

on
d
et

er
m

in
is

ti
c,

P
ro

b
ab

il
is

ti
c>

A
ct

io
n
s

h
av

e
p
re

d
ic

ta
b
le

,
u
n
p
re

d
ic

ta
b
le

,
or

st
o
ch

as
ti

ca
ll
y

p
re

d
ic

ta
b
le

ou
tc

om
es

.

A
ct

io
n

d
u
ra

ti
o
n

<
D

et
er

m
in

is
ti

c,
N

on
d
et

er
m

in
is

ti
c,

P
ro

b
ab

il
is

ti
c>

A
ct

io
n
s

h
av

e
p
re

d
ic

ta
b
le

,
u
n
p
re

d
ic

ta
b
le

,
or

st
o
ch

as
ti

ca
ll
y

p
re

d
ic

ta
b
le

d
u
ra

ti
on

s.

A
ct

io
n

re
so

u
rc

e
re

q
u

ir
e
d

<
D

et
er

m
in

is
ti

c,
N

on
d
et

er
m

in
is

ti
c,

P
ro

b
ab

il
is

ti
c>

A
ct

io
n
s

h
av

e
p
re

d
ic

ta
b
le

,
u
n
p
re

d
ic

ta
b
le

,
or

st
o
ch

as
ti

ca
ll
y

p
re

d
ic

ta
b
le

re
so

u
rc

e
co

n
su

m
p
ti

on
.

O
b

se
rv

a
b

il
it

y
<

F
u
ll
,

P
ar

ti
al

,
N

o>
R

ob
ot

s’
p

er
ce

p
ti

on
is

p
er

fe
ct

an
d

co
m

p
le

te
,

im
-

p
er

fe
ct

an
d

p
ar

ti
al

,
or

h
av

e
n
o

p
er

ce
p
ti

on
.

C
o
m

m
u
n
ic

a
ti

o
n

m
o
d
e

<
E

x
p
li
ci

t,
Im

p
li
ci

t>
C

om
m

u
n
ic

at
io

n
is

a
m

an
d
at

or
y

p
ar

t
of

th
e

fr
am

ew
or

k
,

or
is

re
le

ga
te

d
to

ro
b

ot
ac

ti
on

s.
A

g
e
n
t

in
d
e
p

e
n
d
e
n
ce

<
T

ra
n
si

ti
on

,
O

b
se

rv
a-

ti
on

,
R

ew
ar

d
,

N
on

e>
M

o
d
el

d
ec

ou
p
li
n
g

re
la

ti
ve

to
th

e
ac

ti
on

s,
ob

se
r-

va
ti

on
s

an
d

re
w

ar
d
s

of
ea

ch
ro

b
ot

.

23

2.1.2.1 Markovian Models

Most of the probabilistic planning literature assumes discrete time and Markovian

dynamics [157]. The Markovian planning model family, summarized in Figure 2.1,

incorporates deterministic discrete-time models as a subset. Markovian models

assume that state transition and observation functions depend exclusively on the

current world state and the robots’ current actions [63]. The discrete time as-

sumption makes basic Markovian models unfit for multiple robot planning, but

generalizations to the model are promising, and extend to well-understood adver-

sarial domains.

POSG

Dec-POMDP

POMDP Dec-MDP

MDP

Deterministic

Figure 2.1: Discrete-time Markovian planning models, expanded from Amato [14].

Partially observable stochastic games include cooperative domains in which all

robots receive the same reward, and adversarial domains in which robots have dif-

ferent reward functions, such as in zero-sum games [122]. Incorporating the Marko-

vian assumption and decision-theoretic state-action values, the Markov Decision

Process is a principled model for probabilistic planning [27]. Partially Observable

Markov Decision Processes (POMDPs) incorporate partial observability over state

variables and explicitly represent belief, which permits problem-solving to perform

24

information gathering actions [84].

Decentralized POMDPs allow each robot to maintain a separate set of actions

and observations, and permit action execution concurrency [14]. Decentralized

POMDP algorithms are solved in a centralized manner, but the policies generated

are executed in a decentralized manner. Decentralized MDPs are a special case of

Decentralized POMDPs in which the observation of all robots determines the global

state (i.e., each robot perfectly observes part of the world state, and each part of the

world state is observed by at least one robot) [11]. Decentralized MDPs apply to

controlled environments in which robot sensors can be assumed to reliably cover all

relevant world aspects, but do not generalize to large dynamic environments, where

robots must balance gathering information and acting towards their goals. Solving

Decentralized POMDPs generates individual policies for each robot. Executing

Decentralized POMDPs’ policies does not require explicit communication, because

the robots are assumed to have individual belief spaces, do not share observations,

and do not observe other robots’ actions directly.

Two limitations make Decentralized POMDPs ill-suited for multiple robot do-

mains [15]. Decentralized POMDPs require synchronized plan execution, because

of the Markovian time discretization. Robots do not have to communicate during

execution, but must take actions synchronously. Decentralized POMDP extensions

permit real-world multiple robot implementations that circumvent this limitation

[128]. The second drawback of Decentralized POMDPs is the plan synthesis com-

putational complexity, which is O(A
n(Oh−1)

O−1) [15], where O denotes the largest agent

observation set, A denotes the largest agent action set, n is the number of agents,

25

and h is the time horizon. However, variations and extensions have proven success-

ful for solving real-world problems, such as warehouse management, bar-tending,

and delivering packages [14].

Multiagent POMDPs allow action execution concurrency and leverage the ef-

ficiency of centralized POMDP algorithms, but require centralized plan execu-

tion. Multiagent POMDPs have demonstrated applicability to complex multiple

robot systems for environments with fast, stable, and freely available communica-

tions, such as in controlled indoor environments [107]. MDPs and POMDPs are

inadequate for multiple robot systems for not allowing concurrency. Multiagent

POMDPs require centralized execution and reliable communication infrastructure,

whereas Decentralized POMDPs require synchronization during plan execution.

None of the models support durative actions and uncertain durations, which can

be addressed by some extended Markovian models.

Extended abstract MDP representations have generated compact models that

are easy for humans to model and specify, while facilitating efficient algorithmic

solutions. The Stochastic Planning Using Decision Diagrams model [82] extends

binary decision diagrams into algebraic decision diagrams to represent MDPs with

multivalued discrete state variables. Algebraic decision diagrams have been used

to generate solutions for more compact and abstract MDP models, such as the

factored MDP [35], relational POMDP [145], and relational continuous-state and

continuous-action MDP [202], but none supports concurrency. Both Concurrent

MDPs [103] and Generalized Semi MDPs [201] support concurrency, durative ac-

tions, and uncertain durations. However, neither supports partial observability,

26

which is addressed by Decentralized POMDPs.

Semi MDPs relax the synchronous time assumption [141] by permitting deci-

sion epochs to occur asynchronously at irregular intervals that can only be esti-

mated probabilistically. Semi MDPs associate random variables with each time

step, permit durative actions and asynchronous execution in multiple robot sys-

tems. Combined with a hierarchical domain decomposition, Semi MDPs involve

temporally-extended macro-actions, which abstract away the continuous nature of

time and the state space of the underlying low level actions [171]. Some of the

extended Markovian models permit durative actions and uncertain durations, but

do not permit continuous fluents or uncertain resource requirements, which are

addressed by some non-Markovian models.

2.1.2.2 Non-Markovian Models

The Markovian planning models accommodate uncertain outcomes, but suffer from

the time discretization and require synchronized action execution; thus, imposing

restrictions on modeling concurrency and durative actions [37]. Non-Markovian

models more naturally accommodate concurrency and durative actions [104].

Environments with uncertain outcomes lacking any statistics regarding the

state transition probabilities have been attempted using Fully Observable Non-

deterministic models [76]. The absence of probabilistic patterns from the state-

action transition function requires plans to include contingency branches for all

action outcomes [113]. The Fully Observable Nondeterministic models maximize

27

the probability of reaching goal states, rather than maximizing the expected re-

wards, but do not support concurrency [48].

The earliest non-Markovian planning model incorporating concurrency, dura-

tive actions, and uncertain duration was the Simple Temporal Network with Un-

certainty, which separates scheduling and planning [183]. Contingent scheduling

policies are generated at planning time, but the actual action scheduling is de-

ferred until execution time. Suboptimal solutions are generated and a centralized

execution authority capable of scheduling and communicating in real time is nec-

essary in order to communicate scheduling decisions to all robots. The Simple

Temporal Network with Uncertainty model is effective for controlled real-world

environments, such as in harbor operations management [32].

The Resources and Time Uncertainty model is a non-Markovian continuous

time model that supports uncertain resource requirements and uncertain action

duration [23]. The hybrid of state-space models and dynamic Bayes networks lacks

support for uncertain outcomes, which renders the planner incapable of generat-

ing contingency plans [23]. The Strong Temporal Planning with Uncontrollable

Durations model incorporates durative actions, uncertain duration, multi-valued

fluents, and timed initial-literals [43], but does not support uncertain outcomes or

uncertain resource requirements [44].

None of the models support all types of uncertainty, which is addressed by some

algorithms, presented in Chapter 2.2, by using their own models.

28

2.1.3 Planning Languages

Human-readable planning problem modeling languages facilitate modeling complex

problems and establishing a common user interface across multiple planners [142].

Language definitions can specify model features and limitations, while permitting

high-level problem decomposition. Standardization efforts attempted to establish

a common denominator language across multiple planners, but the wide variety

of models and the limitations of the proposed standard languages jeopardized the

effort, as such no language satisfies all planning models and domains [144].

The Planning Domain Definition Language (PDDL) [105] is a deterministic re-

lational problem modeling language based on first-order logic and inspired by the

action description language [132]. PDDL’s action schema represents actions in a

compact manner by explicitly stating action preconditions and effects on state vari-

ables [99]. PDDL assumes that anything not explicitly mentioned is false, making

domain descriptions compact. The Probabilistic PDDL language extends PDDL to

incorporate uncertain action outcomes [199]. Problems described in Probabilistic

PDDL can be efficiently solved using determinization, which translates a prob-

abilistic domain into a deterministic domain by selecting the most likely action

outcome as the deterministic action outcome and discarding all other outcomes;

thus, allowing the use of deterministic planners [181].

The Relational Dynamic Influence Diagram Language [144] is a compact

POMDP representation based on Dynamic Bayes Networks. The Relational Dy-

namic Influence Diagram Language permits representing domains where nonde-

29

terminism plays a stronger role and allows defining problems that are impossible

to solve using trivial determinized translations [144]. The lack of continuous time

and durative actions are the primary limitations with this language, which also

lacks strict uncertainty (nondeterministic non-probabilistic action outcomes). The

Relational Dynamic Influence Diagram Language permits exogenous stochasticity

and concurrency for stronger probabilistic domains where determinization-based

planners have had limited success. The prevalence of Probabilistic PDDL and the

Relational Dynamic Influence Diagram Language have resulted in current state-

of-the art planners adopting either language or incorporating translators, such as

Stochastic Planning Using Decision Diagrams [82] and Symbolic Perseus [137].

The more recent planners, the Probabilistic Planning Based on Upper Confidence

Bounds Applied to Trees [87] for MDPs and the Determinized Sparse Partially

Observable Tree [164] for POMDPs, do not support durative actions.

The Action Notation Modeling Language extends PDDL to support hierarchi-

cal task decomposition and advanced temporal modeling features, such as timed

initial-literals, and durative goals [163], but it does not support uncertainty [64].

The Action Notation Uncertain Modeling Language extends the Action Notation

Modeling Language in order to bridge the gap between temporal and probabilistic

planning languages, while incorporating uncertain duration [108]. The Probabilis-

tic Graphical Model Extensive Markup Language is a factored Dynamic Bayes

Networks description language used to model MDPs, POMDPs and Decentralized

POMDPs [17]. The Probabilistic Graphical Model Extensive Markup Language is

used to describe Decentralized POMDP and Decentralized MDP problems for the

30

Multiagent Decision Process Toolbox solvers [125].

2.2 Planning Algorithms

Planning algorithms are generally tied to a specific model type. Some algorith-

mic approaches have several adaptations into multiple models, but have not been

generalized to all models. Dynamic programming, for example, has influenced al-

gorithms across all MDP derivatives, but has been applied to a few Non-Markovian

models with durative actions [76]. A general algorithm taxonomy is presented to

classify algorithms across the wide range of presented models. Deterministic algo-

rithms, while not directly applicable to real-world problems, represent the building

blocks of modern planners [76]. Most probabilistic algorithms do not support con-

currency; thus, the small subset of concurrent probabilistic planners are presented.

2.2.1 Planning Algorithm Features

A wide variety of algorithms can be applied to each type of planning model. The

algorithms offer various trade-offs and significantly different features, which are

summarized.

Decentralized plan synthesis distributes the planning effort across multiple

agents in order to leverage parallel processing, eliminate points of failure, and

preserve agents’ privacy and autonomy [63, 179]. Preserving agents’ privacy and

autonomy while planning for a common goal is important, as the planning agents

31

can have undisclosed sub-goals and leverage private sensitive information they are

unwilling to disclose [40, 109]. Robots from two separate teams, for example, can

plan for achieving a shared goal, while each team is also trying to achieve private

goals not to be disclosed to the other team, and each team can leverage private

knowledge that must not be shared. However, the computational benefits of par-

allel processing do not pay off, and the decentralized plan synthesis is generally

less efficient due to excessive communication requirements [52, 178].

Centralized plan synthesis, in which a single processing unit performs all the

planning computations, regardless of how many robots will execute the plan, is

more computationally efficient than decentralized plan synthesis [178]. Centralized

plan synthesis permits the use of highly efficient optimization methods and is

applied to multiple robot systems by assigning concurrent plans to each robot

[142]. A centralized plan is devised, tasks are assigned, and agents determine

locally how to execute actions designated by the centralized plan, and possibly

devise local operational plans. Existing planners capable of satisfying real-world

requirements and scalability constraints synthesize plans in a centralized manner,

but allow plan execution to be decentralized [76].

Hybrid plan synthesis combines aspects of both centralized and decentralized

plan synthesis. Weerdt and Clement [191] separate hybrid plan synthesis into co-

ordination before planning and coordination after planning. Coordination before

planning allocates tasks to agents followed by each agent individually devising plans

to achieve its tasks. Coordination after planning involves each agent individually

devising plans to achieve private goals followed by coordination to minimize con-

32

flicts and redundancies between each agents’ plans. Torreno, Onaindia, Komenda,

and Stolba [179] extended this taxonomy by dividing coordination before planning

into two categories, according to how agents plan after coordination. Coordina-

tion before planning with parallel planning assumes that coordination will prevent

planning conflicts, and robots can plan in parallel. Coordination before planning

with serial planning, or iterative response planning, assumes that robots will co-

ordinate and take turns planning. Robots generate plans iteratively, where each

robot assumes that its initial state is the final state of the prior robot’s plan.

This dissertation breaks Torreno, Onaindia, Komenda, and Stolba’s hybrid plan

synthesis taxonomy into two separate axis. Coordination that is carried out before,

after, before and after, or during planning and plan synthesis that is completed

either in parallel or serial. Note that coordination during planning is equivalent

to decentralized plan synthesis.

Hybrid parallel plan synthesis assumes that robots simultaneously synthesize

plans. A minimal example illustrates the result of parallel plan synthesis with two

robots and two room cleaning tasks. Robot A and robot B begin in the middle

room, as shown in Figure 2.2 (a.i), where there is a broom. Robot A is tasked with

cleaning the left-side room and robot B is tasked with cleaning the right-side room,

but they have to share the broom. The robots need to use the broom in order to

clean either room. Parallel plan synthesis assumes that both robots will plan in

parallel and that both planning processes will have the same initial state, which is

presented in Figures 2.2 (a.i) and (b.i). Robot A’s plan is to move the broom to

the left-side room (Figure 2.2 a.ii); and clean the left-side room (Figure 2.2 a.iii).

33

Robot B’s plan is to move the broom to the right-side room (Figure 2.2 b.ii); and

cleans that room (Figure 2.2 b.iii).

b) Parallel Plan for Robot B:

A B

A B

A B

A B

B

B

A

A

a) Parallel Plan for Robot A:

i)

ii)

iii)

i)

ii)

iii)

Figure 2.2: Hybrid parallel plan synthesis.

Merging the two plans is not straightforward, because the execution of one

plan renders the other plan infeasible. The shared object, a broom, causes tight

coupling between the two tasks, and generates a race condition. Whichever robot

starts first will be able to complete its task; however, the other robot will encounter

a modified initial state, where the broom is not in the middle room. Parallel plan

synthesis requires loosely coupled or uncoupled tasks in order to avoid conflicting

plans.

Hybrid serial plan synthesis, analogous to Torreno, Onaindia, Komenda, and

Stolba’s iterative response planning, assumes that robots will take turns during

34

planning. Serial plan synthesis assumes that robot A will plan first, generating the

same plan as parallel planning did for robot A, presented Figure 2.2 (a). However,

robot B will assume robot A’s plan final state as its initial state, as shown in

Figure 2.3 (b.i) and will move to the left-side room, where robot A is with the

broom (Figure 2.3 b.ii); transport the broom to the right-side room (Figure 2.3

b.iii); and clean that room (Figure 2.3 b.iv).

BA

A B

A B

BA

iv)

i)

ii)

iii)

b) Serial Plan for Robot B:

A B

B

B

A

A

a) Serial Plan for Robot A:

i)

ii)

iii)

Figure 2.3: Hybrid serial plan synthesis.

The serial plans can be merged without any additional actions, and can be

optimized by parallelizing actions. The shortest viable plan is obtained by merging

35

the two serial plans and eliminating redundant actions, producing the optimal plan

presented in Figure 2.4. Robots A and B simultaneously move to the left-side room

(Figure 2.4 ii); robot A cleans the left-side room (Figure 2.4 iii); robot B moves

the broom to the right-side room (Figure 2.4 iv); and robot B cleans the right-

side room (Figure 2.4 v). Note that each robot is essentially executing its own

serial plan, as presented in Figure 2.3, and no extra actions are added. Serial plan

synthesis supports tightly coupled tasks and permits applying merge algorithms

that do not add actions, such as Cox and Durfee’s [52].

The algorithm time horizon can be finite, infinite, or indefinite. Algorithms

for problems with a finite-horizon develop a policy for a limited execution time,

planning up to a specified time point in the future [157]. The infinite-horizon

algorithms develop a policy for an unlimited execution time, allowing the robots

to execute indefinitely [157]. Infinite-horizon problems often involve a discount

factor for computing action values, and are often associated with models that

incorporate uncertain outcomes [157]. Indefinite-horizon is a special case of the

infinite-horizon, where the problem ends when terminal states are reached [124].

Some algorithms can operate in all horizons [124].

Algorithms offer different solution quality guarantees, which commonly fall into

three categories. Exact algorithms have globally optimal guarantees on solution

quality [157]. Approximation algorithms, also known as ε-optimal algorithms, have

a provable bound on solution quality, a constant factor from the globally opti-

mal solution [157]. Heuristic algorithms, also known as approximate algorithms,

offer no bounds on solution quality [157]. The artificial intelligence community

36

A B

A B

v)

iv)

A B

i)

ii)

iii)

BA

BA

Figure 2.4: Hybrid serial plan synthesis followed by optimal plan merging.

refers to approximate algorithms as heuristic algorithms with no performance guar-

antees, while the theoretical computer science community defines approximation

algorithms as providing provable bounds on its solution quality [124]. Solution

representation is often tied to the algorithm adopted, but is commonly determined

by the time horizon and the model observability.

Planning solutions can be divided into open-loop and closed-loop representa-

tions [76]. Open-loop solutions do not require sensing and assume the initial world

37

state is known. Closed-loop solutions, also known as policies and contingent plans,

require observing the world state via sensor perception [76]. Closed-loop solu-

tions have branches conditioned to robot observations and are robust to uncertain

outcomes.

Open-loop solutions can be a sequence or a schedule of actions [76], which

is determined by the model features. Non-observable algorithms produce open-

loop action sequences, because no sensing is available. Temporal algorithms with

deterministic action outcomes and deterministic action durations produce action

schedules [76].

Closed-loop solutions for deterministic action outcomes and uncertain action

durations can be a partial-order plan [34] or a stochastic task network (STN)

[110]. Partial-order plans represent actions as nodes, while the edges represent

action precedence requirements. Precedence requirements indicate which actions

must complete prior to executing other actions. Precedence requirements are es-

tablished between a subset of actions; not all actions are strictly ordered. The final

action execution order is decided while executing the plan, as the action execution

durations are uncertain. Partial-order plans do not incorporate action duration es-

timates. Algorithms with uncertain action duration estimates produce stochastic

task networks (STNs) [110]. Stochastic task networks [110], also known as program

evaluation and review technique networks [3, 100], extend partial-order plans with

probability density functions over action durations.

Closed-loop solutions for uncertain action outcomes can be a decision tree,

a deterministic finite-sate controller (FSC), or a stochastic finite-state controller

38

[124]. Decision trees interleave decision and outcome nodes, as in game trees [193],

and have exponentially increasing memory complexity in the time horizon. At

every decision point, the tree growth is combinatorial. FSCs offer a compact policy

representation by allowing cyclic action outcomes, but unlike policy trees, states

are mapped to actions in a one-to-one fashion that does not permit different action

sequences for the same state. Partially observable planning generates belief-based

or observation-based policies, depending on the planning approach [75]. Belief-

based policies are mappings of belief states to actions, while observation-based

policies are FSCs that require an internal state representation.

A decision tree assumes a known initial state [124]. Nodes represent actions and

arcs represent observations. The root node action is executed and the observation

received determines which arc to follow, leading to a child node. The child node

determines the next action, and the cycle repeats. The time horizon T determines

the tree depth, as the agent moves down a node with each time step t when

executing the policy. Decision trees are commonly generated by finite-horizon

algorithms.

Finite-state controllers represent a generalization of policy trees by permitting

cycles in order to support more compact policy representations [124]. FSCs are

also more appropriate for infinite-horizon problems and their associated algorithms

[124]. An optimal infinite-horizon decision tree will have infinite depth, while an

infinite-horizon FSCs can have finite size. Stochastic finite-state controllers have

a probability distribution over their actions. Deterministic finite-state controllers

represent a specific case of stochastic FSCs in which one action has likelihood 1

39

and the other actions have a likelihood 0. Stochastic FSCs provide higher value

policies for the same controller size [157].

The probabilistic planning literature focuses on two FSC representations:

Moore and Mealy [124]. Moore FSCs represent actions as nodes and observations

as arcs, while Mealy machines represent both actions and observations as arcs.

Moore and Mealy FSCs have equivalent representation capability, which allows

Moore machines to be translated into Mealy machines and vice-versa. However,

the Mealy representation is more compact and has fewer nodes and arcs than the

equivalent Moore controller.

Planning algorithms optimize a variety of objectives [76]. Deterministic sequen-

tial planners often minimize the number of actions required by the plan. Determin-

istic temporal planners minimize the total time necessary to execute the plan, also

known as plan makespan [76]. Goal-oriented probabilistic planners maximize the

probability of successful goal achievement, whereas utility-oriented probabilistic

planners maximize the utility, or expected net rewards, for a given time horizon,

or for a discounted-rewards infinite time horizon. Some planners allow optimiz-

ing for multiple objectives, such as minimizing a specific numerical resource under

constraints [168].

The planning algorithm features are summarized in Table 2.2. Analogous to

the planning model feature domains, planning algorithm feature domains can be

expanded into sub-domains. The solution representation feature domain, for exam-

ple, can be expanded into a hierarchical domain by expanding FSCs into stochastic

and deterministic, and into Moore and Mealy FSCs [124]. Most algorithms oper-

40

ate on finite and infinite time horizons, and only a handful operate on indefinite

horizons [124].

Table 2.2: Planning algorithm features and feature domains.

Feature Name Feature Domain Feature Description
Plan synthesis <Centralized, Decentral-

ized, Hybrid>
Single or multiple pro-
cessing units synthesize
the plan.

Coordination <Before, After, Before
and After, During>

Hybrid plan synthesis
scheme.

Planning Synchro-
nization

<Serial, Parallel> Hybrid plan synthesis
mode.

Time horizon <Finite, Infinite, Indefi-
nite, Any>

Time extent accounted
by the plan synthesis
process.

Quality guarantees <Exact, Approximation,
Heuristic>

Plan quality guarantees
offered by the planning
algorithm.

Solution representa-
tion

<Sequence, Schedule,
Partial-order, STN,
Decision Tree, FSC>

Format of the generated
plan.

Solution objectives <Number of Actions,
Makespan, Utility,
Success Probability,
Multiple>

Variables minimized or
maximized by the plan
synthesis process.

2.2.2 Deterministic Centralized Planning Algorithms

Early approaches to automated planning have inspired the more recent advanced

planners [142]. Forward and backward search as well as planning-graph methods

41

are the simplest and most commonly used planning methods. Forward search is

limited by exponential state space growth and requires heuristics to scale. Back-

ward search reduces the branching factor, but requires state sets instead of indi-

vidual states, which hinders derivation of well-informed heuristics [142].

Factored representations facilitate deriving domain-independent admissible

heuristics that estimate the distance from a state to the goal [142]. Domain-

independent heuristics are obtained by solving a relaxed version of the problem,

adding edges, grouping node states, or using a planning graph. Adding more edges

is achieved by ignoring action preconditions, so that every action becomes appli-

cable at every state [142]. Grouping nodes reduces the number of states, which

generates a state abstraction and ignores fluents. Planning graphs offer better in-

formed admissible domain-independent heuristic estimates than relaxed plans and

are the basis for graph-based planners [142]. Graphplan uses the planning graph

directly and does not perform forward search [28].

Forward and backward state space search aided by admissible heuristics and

Graphplan represent the majority of modern automated planners. Alternative ap-

proaches include Boolean satisfiability, situational calculus, and partially-ordered

planning. Factored and relational problems can be solved as a Boolean satisfi-

ability problem by converting action schemas into propositional ground actions

[86]. Propositional logic approaches allow for domain-independent heuristics, but

scale poorly [142]. Situation calculus has proven theoretical value, but lacks heu-

ristics for planning and no scalable planner has been developed [94]. Partially-

ordered planning searches for sub-goals using a least commitment approach and

42

merges sub-plans, while eliminating conflicts [75]. The promise of partially-ordered

planning, including the ability to facilitate human understanding of the resulting

plans, has been superseded by advancements incorporating forward search heuris-

tics, such as those employed by the Fast Forward [83] and Fast Downward [81]

planners. However, distributed state-space search planning can be enhanced with

partially-ordered plan merging in order to permit scaling to larger problems, as

demonstrated in the approach presented in Chapter 2.3.

Temporal planning permits durative actions, which allow multiple executors

performing different actions at different execution times. Planning is intended

to minimize makespan, the total execution time [142]. The simplest approach

applies classical sequential planning and schedule plan actions, which fails when

concurrency is required [61]. A common heuristic applies a classical planner to a

relaxed version of the domain; thus, converting temporal actions into instantaneous

actions [76]. Successful temporal planners include Temporal Graphplan [162] and

the Flexible Acting and Planning Environment [64], none of which support numeric

and continuous fluents.

The introduction of continuous fluents facilitates more concisely representing

the world. Numerical fluents enhance the model’s expressiveness by representing

both continuous and discrete values, such as vehicle fuel, cargo load, or battery

voltage levels [142]. Combining continuous fluents with durative actions enhances

the model’s fidelity by representing numerical quantities that change over time.

The planners Zeno [133] and Yet Another Heuristic Search Planner [184] support

continuous effects, but do not permit concurrency. The Temporal Fast Downward

43

[73] and the Forward-Chaining Partial-Order [46] planners support durative ac-

tions, concurrency, and continuous fluents, but do not support continuous effects

[47]. The Continuous Linear [49] planner extends the Forward-Chaining Partial-

Order planner to support linear continuous effects. Finally, dReal [38] supports

nonlinear continuous effects, but suffers from limited scalability [61]. Most deter-

ministic temporal planners support concurrency, durative actions, multi-valued,

numeric, and continuous fluents, but lack support to any type of uncertainty and

require centralized plan execution.

2.2.3 Deterministic Decentralized and Hybrid Planning Algorithms

Decentralized planning algorithms imply agents devise a plan cooperatively and

coordinate throughout the planning process. The Divide and Conquer algorithm

[70] leverages loose coupling in multiagent planning with multiple goals. The

planning problem is resolved by distributing a graph search across all agents. The

result is suboptimal in the general case and the algorithm does not scale well as the

number of agents increases, even if the plans are loosely coupled [52]. The Forward

Multiagent Planning algorithm supports heterogeneous agents and tightly coupled

goals, but its intensive communication requirements stifle scalability to a large

number of agents [178].

The Task Coordination and Decomposition algorithm [109] employs coordina-

tion before planning to preserve the privacy of self-interested planning agents. The

algorithm imposes ordering constraints on tasks allocated to each agent, so that

44

planning can be accomplished independently. However, the method ignores the

fact that one agent’s plans can modify the environment in a manner that makes

another agent’s plans invalid.

CSP+Planing introduces the agent interaction digraph to estimate task cou-

pling [36]. Task coupling is defined as the level of interaction between agents,

where tighter coupling leads to higher computational complexity. The algorithm

seeks to minimize the coupling when allocating tasks in order to improve plan-

ning complexity. Problem decomposition is formulated as a constraint satisfaction

problem. Solving the constraint satisfaction problem dominates the plan synthesis

time, rendering the algorithm inefficient [1].

Cox and Durfee’s plan merging algorithm solves action redundancy and con-

sistency flaws, while merging plans generated by multiple planning agents [52].

Action redundancy flaws are resolved to minimize the plans’ number of actions,

whereas consistency flaws must be resolved to generate valid plans. The merging

mechanism operates in the plan space and allows for a set of actions to collec-

tively replace a single redundant action, while attaining computational efficiency

for loosely coupled and uncoupled tasks. However, the algorithm does not ac-

count for durative actions, does not minimize makespan, and does not scale to a

large number of robots when tasks are tightly coupled. A recent temporal plan

merge algorithm supports concurrent actions for single mobile robot tasks [111].

The algorithm generates relaxed plans for each task prior to merging. However,

the method requires adding literals manually to each task’s initial state and is

not applicable to multiple robot tasks. Chapter 2.3.4 presents a formal definition

45

of the plan merging problem, and Chapter 5 introduces a plan merging problem

formulation that incorporates durative actions and new algorithms.

Zhang, Sreedharan, and Kambhampati apply a model of capabilities as a heuris-

tic for state-space forward search [204]. Capabilities are modeled as the likelihoods

of an agent achieving a particular state from any other state. The method em-

ploys a Bayesian network to learn the likelihood capabilities from plan traces, but

requires an arbitrarily large number of plan execution simulations covering initial

and goal states.

Recent decentralized planning algorithms use hybrid serial plan synthesis, or

iterative response planning, to improve scalability. The Multi-Agent Planning

by Plan Reuse algorithm performs task allocation then planning using relaxed

reachability analysis after generating relaxed plans for all agent-task combinations.

However, the method requires homogeneous agents [31]. The algorithm can be

applied to a heterogeneous mobile multiple robot system by using actuation maps

instead of relaxed plans, but it does not generalize to complex tasks [134]. The

Agent Decomposition-Based Planner uses causal graphs to decompose the planning

problem [1], and has been extended to support concurrent actions in a real-world

industrial mobile manipulator robot domain [53], but does not scale to a large

number of robots. The Multiagent Planner for Required Cooperation uses m

planning agents and n executing agents, where m ≤ n [166]. Tasks are allocated to

the m planning agents, which devise plans for the n executing agents. The goals of

a planner are concatenated with the goals of the next planning agent to guarantee

that the next agent will not undo the goals achieved by the previous agent. The

46

µ-SATPLAN algorithm performs task allocation prior to planning [60]. None of

the existing hybrid serial plan synthesis planners support concurrency.

2.2.4 Fully Observable Probabilistic Planning Algorithms

Multiple robot planning problems have multiple sources of uncertainty and re-

quire concurrency [103]. Many algorithms exist for solving centralized MDPs and

POMDPs, but the need for concurrency renders them insufficient for the multiple

robot systems; thus, the focus is on decentralized Markovian and non-Markovian

algorithms [103].

Fully Observable MDP algorithms do not support concurrency without exten-

sions, which imposes limitations [103]. The Probabilistic Planning Based on Upper

Confidence Bounds Applied to Trees uses badit methods [88] to achieve high scal-

ability on factored MDPs, but does not support concurrency [87]. Recent planners

for Fully Observable Nondeterministic models include Fast-Forward Hindsight+

[198] and the Planner for Relevant Policies [112], which was further extended to

support multiagent systems, do not support concurrency [114]. The Duration and

Uncertainty on Resources planner family solves Concurrent MDPs, but the dis-

cretized model of time severely limits scalability, due to combinatorial explosion

when all features are enabled [103]. The Tempastic planner [200] solves Gener-

alized Semi MDPs and generates deterministic plans that are repaired on failure

points to build a contingent plan, supporting durative actions and uncertain ac-

tion outcomes, but not action duration uncertainty. Generalized Semi MDPs were

47

implemented in real-world multiple robot domains, but used centralized execution

[106].

Forward state-space search extended with dynamically generated Bayesian net-

works is used to solve first-order problems by modeling continuous probability dis-

tributions on durative actions [22]. A Bayesian network is built and evaluated

incrementally alongside the state-space search, outperforming concurrent planners

that discretize time on multiple robot domains [22]. The method generates goal-

oriented probabilistic plans with a lower bound on the probability of success, and

facilitates decentralized asynchronous execution by producing STNs [110]. The

Resources and Time Uncertainty planner extends the Bayesian networks approach

to model uncertainty over the continuous fluents [23], while Actions Concurrency

and Time Uncertainty Planner (ActuPlan) extends the Resources and Time Un-

certainty planner to generate conditional plans [24]. ActuPlan does not support

uncertain outcomes, and the generated conditional plans offer different trade-offs

in plan quality and probability of success [24]. The Continuous Linear [49] plan-

ner was extended to support the Strong Temporal Planning with Uncontrollable

Durations models, which generated schedules of actions that guarantee achieving

the problem goals, but does not support uncertain outcomes [44].

Contingent non-Markovian probabilistic planners incorporate uncertain out-

comes and generate policies. The Probabilistic Temporal Planner incorporates a

non-Markovian model that addresses uncertain outcomes, concurrency, durative

actions, and uncertain duration [97] using labeled real-time dynamic programming

[29], plans for a finite-horizon, and generates decision trees that maximize the

48

probability of reaching a goal. The Factored Policy Gradient planner searches for

plans directly using local optimization and uses the planning model only to build

a plan execution simulator [39]. The Factored Policy Gradient model includes

concurrency, durative actions, numeric fluents, uncertain outcomes, uncertain du-

ration, and uncertain resource requirements. The Factored Policy Gradient uses

policy-gradient methods to minimize the plan steps or maximize the probability

of success. The Quantum Planner extends ActuPlan with labeled real-time dy-

namic programming in order to support uncertain outcomes, and generates results

faster than the Duration and Uncertainty on Resources and the Factored Policy

Gradient planners for a mars rovers domain [37]. The non-Markovian probabilistic

planners offer the largest set of temporal, continuous, and uncertainty features,

but do not support partial observability, which is provided by the Decentralized

POMDP algorithms.

2.2.5 Decentralized Partially Observable Markovian Algorithms

Decentralized Partially Observable Markov Decision Processes (Decentralized

POMDPs) algorithms incorporate concurrency, decentralized execution, partial

observability, and limited communication. Three primary algorithmic approaches

are presented: Heuristic search, dynamic programming, and optimization algo-

rithms. Further, general enhancements that improve all the associated algorithms

are presented.

49

2.2.5.1 Heuristic Search Algorithms

Heuristic search algorithms represent top-down approaches that start at the initial

node at time t0 and progress towards the time horizon T . All presented heuristic

search algorithms produce an optimal decision tree policy, with the exception of

Szer and Charpillet’s algorithm [174], which produces sub-optimal deterministic

FSCs for infinite-horizon Decentralized POMDPs [174]. The simplest top-down

algorithm for solving Decentralized POMDPs is the best first search, also known as

brute force search for Decentralized POMDPs [174]. The best first search algorithm

is complete and offers an optimal solution, but takes a double exponential time

(O(A
n(Oh−1)

O−1)), relative to the time horizon T . This algorithm is a degenerate

heuristic search algorithm, because its heuristic value is a constant zero. The

infinite-horizon best first search algorithm finds the optimal deterministic FSC

for a given controller size with a discounted reward [174]; however, the algorithm

requires the controller size to be specified, and finds the best controller for that

size. Other heuristic search algorithms incorporate an admissible heuristic that

does not compromise completeness and optimality [142].

The Multiagent A* (MAA*) is an optimal heuristic search algorithm for Decen-

tralized POMDPs that ranks nodes according to the net expected value of arriving

at the node, plus the expected value of a child node estimated by the admissible

heuristic [175]. The initial MAA* incorporated three heuristics: The MDP heuris-

tic, the POMDP heuristic, and the Recursive MAA* heuristic [175]. The heuristics

provide increased accuracy. More elaborate heuristics can result in faster search-

50

ing, due to more aggressive search space pruning. MAA* can only expand one time

step further into the time horizon, when compared to best first search algorithm

[157]. Most of the expanded states for Decentralized POMDPs are nodes at the

last time step t of the time horizon T .

The Search for Policies in Distributed Environments algorithm [182] incor-

porates an MDP-based branch and bound heuristic. The Search for Policies in

Distributed Environments algorithm exploits the agents’ network structure by or-

ganizing agents into a depth first search tree in order to capitalize on the indepen-

dence of the different tree branches. The heuristic is only accurate when teammate

interactions are loosely coupled, which provides no benefits in tightly coupled De-

centralized POMDPs.

The Generalized MAA* algorithm [118] established the basis for a new fam-

ily of heuristic search algorithms. The Exploiting the Last-Stage Independence

Generalized MAA* algorithm [119] uses collaborative graphical Bayesian games

and leverages locality of interaction to more quickly solve Decentralized POMDPs,

while the Lossless Clustering of Observation Histories Generalized MAA* [120] gen-

erates optimal solutions orders of magnitude faster than other Generalized MAA*

approaches. The Bayesian Game Branch and Bound algorithm [121] exploits the

Bayesian game structure of Decentralized POMDPs in order to prune nodes more

efficiently. Generalized MAA* with Incremental Clustering and Generalized MAA*

with Incremental Clustering and Expansion [165] both greatly improve search scal-

ability compared to previous exact heuristic-search methods. Refinements cluster

equivalent histories and expand nodes incrementally [123].

51

All of the heuristic search methods offer exact solutions for finite-horizon De-

centralized POMDPs, but suffer from worst case complexity of O(A
n(Oh−1)

O−1) [15].

Execution times can be improved by a constant factor and generate solutions within

a bound of the optimal by relaxing the heuristic. Recent admissible heuristics have

improved scalability by orders of magnitude, but heuristic search approaches re-

main restricted to small time horizons for finite-horizon problems and are not

applicable to infinite-horizon domains.

2.2.5.2 Dynamic Programming Algorithms

Dynamic programming algorithms perform a bottom up search [11]. The Joint

Equilibrium-Based Search for Policies [115] applies dynamic programming and

search for the locally optimal policy for finite-horizon Decentralized POMDPs.

The Joint Equilibrium-Based Search for Policies algorithms employs an alternat-

ing maximization, or hill-climbing for Decentralized POMDPs, which optimizes

one agent’s policy at a time, while the others are held fixed. The Forward-Sweep

Policy Computation [69] algorithm for finite-horizon Decentralized POMDPs effi-

ciently solves each time step as a separate Bayesian Game, but offers no quality

guarantees. The Bounded Policy Iteration algorithm [25] iteratively improves each

agent’s FSC by linear programming, while other FSCs are fixed. A node is chosen

from one FSCs whose parameters are updated by solving a linear program on each

iteration. The Bounded Policy Iteration algorithm solves infinite-horizon Decen-

tralized POMDPs, but offers no quality bounds. The Generalized Bounded Policy

52

Iteration algorithm [26] provides an approximate solution with quality within a

bound of the global optimum for infinite-horizon Decentralized POMDPs.

The first dynamic programming algorithm to optimally solve Decentralized

POMDPs has a very high memory complexity, which exhausts the memory prior

to exceeding the computational limits [79]. The ε-pruning Dynamic Programming

algorithm reduces the memory requirements and produces solutions within a bound

of the optimal [5]. The error bound ε determines a value margin by which policies

are pruned. ε-pruning guarantees a bound of the optimal, but other solutions with

no guarantees have been shown to provide better quality results for benchmark

problems [172].

The Memory Bounded Dynamic Programming algorithm [172] and the Im-

proved Memory Bounded Dynamic Programming algorithm [173] address the mem-

ory complexity and provide better quality policies than the ε-pruning Dynamic

Programming. The Memory Bounded Dynamic Programming and the Improved

Memory Bounded Dynamic Programming algorithms impose limits on the number

of decision trees and the number of observations evaluated at each time horizon,

bounding memory demand growth, and expanding the size of the Decentralized

POMDPs that can be solved.

The dynamic programming backup operation is the most influential in terms of

complexity [11]. Several exact algorithms incorporate different pruning approaches.

A heuristic search prunes unreachable points in the Point-Based Dynamic Pro-

gramming algorithm [176]. The Point-Based Incremental Pruning algorithm [55]

replaces the dynamic programming backup step with a branch-and-bound search in

53

the space of the joint policies. The Point-Based Incremental Pruning Incremental

Policy Generation algorithm [7] incorporates reachability analysis pruning, while

the Constraint Based Point Backup algorithm [90] uses a weighted constraint satis-

faction formulation to reduce the complexity of the dynamic programming backup

operation. The Point-Based Policy Generation algorithm [194] is a linear program

incorporating an the Improved Memory Bounded Dynamic Programming that in-

creases the efficiency of selecting the best trees to expand. The Point-Based Policy

Generation algorithm offers solutions within a bound of the global optimal, and

performs as well as the original Improved Memory Bounded Dynamic Program-

ming algorithm with the pruning technique removed.

Other algorithms improve scalability by compressing action and observation

histories. The Lossless Policy Compression Dynamic Programming algorithm [33]

employs a compressed policy representation and uses a mixed integer linear pro-

gram to find the optimal policies. The Memory Bounded Dynamic Programming

Observation Compression algorithm [41] provides higher quality policies and im-

proved scalability relative to the original Improved Memory Bounded Dynamic

Programming algorithm by compressing observations. The Feature-Based Heuris-

tic Search Value Iteration algorithm [56] solves Decentralized POMDPs represented

as continuous-state MDPs with piecewise-linear convex value functions.

54

2.2.5.3 Optimization Algorithms

Several promising algorithms have framed the Decentralized POMDP problem as

a combinatorial optimization problem and applied various optimization methods

[11]. A mixed integer linear program formulation was adopted to optimally solve

finite-horizon Decentralized POMDPs using off-the-shelf solvers [16]. The mixed

integer linear program approach solves Decentralized POMDPs faster than previ-

ous exact algorithms, but runtime remains orders of magnitude slower than heuris-

tic algorithms. Nonlinear programming algorithms search for stochastic controllers

for Decentralized POMDP problems with an infinite-horizon [6, 9], but cannot

guarantee global optimality.

Various forms of Monte-Carlo sampling algorithms have been applied to solve

infinite-horizon Decentralized POMDPs [67]. Evolution strategies [65] and genetic

algorithms [68] can solve Decentralized POMDPs for real-world multiple robot sys-

tems [66]. The Direct Cross-Entropy Method is a Monte-Carlo sampling algorithm

similar to evolutionary algorithms [117] that offers comparable performance to

heuristic approaches, such as the Joint Equilibrium-Based Search for Policies algo-

rithms [115], but does not offer quality guarantees. An Expectation-Maximization

sampling algorithm is applied to the infinite-horizon Decentralized POMDPs plan-

ning problem transformed into its equivalent mixture of dynamic Bayes nets [91].

The resulting Expectation-Maximization algorithm has the anytime property. The

Expectation-Maximization algorithm achieves similar quality and scalability to the

nonlinear programming approach, but does not offer bounds on global optimality.

55

Periodic FSCs are applied to the Expectation-Maximization sampling algorithms

in order to solve larger infinite-horizon Decentralized POMDPs [129]. Scalabil-

ity is improved by applying Expectation-Maximization to factored Decentralized

POMDPs [130]. Average rewards are optimized instead of discounted cumulative

rewards to achieve better quality results with Expectation-Maximization [131].

The Monte-Carlo Expectation Maximization algorithm [195] allows solving De-

centralized POMDPs without full prior knowledge of the model parameters. The

method employs sampling strategies from reinforcement learning to efficiently ex-

plore the policy space, such as upper confidence bounds. The model-free Monte-

Carlo Expectation Maximization converges faster to local optima, but can produce

worse quality solutions. None of the Expectation-Maximization methods offer qual-

ity guarantees [11].

The Direct Cross-Entropy Method is the most directly applicable to multi-

ple robot systems, because it supports an infinite time horizon and has superior

scalability, yet Decentralized POMDPs do not support temporal and continuous

features, and uncertainty other than action outcomes. Enhancements to Decen-

tralized POMDPs enabled real-world multiple robot proofs of concept.

2.2.5.4 Enhancements

A number of enhancements are applicable to the existing Decentralized POMDP

algorithms [107]. The enhancements include different forms of FSCs, such

as Mealy FSCs [10], applying hierarchical task decomposition to Decentralized

56

POMDPs, and transforming Decentralized POMDPs into continuous-state MDPs.

Some infinite-horizon Decentralized POMDP problems can be reformulated into

indefinite-horizon Decentralized POMDPs and can be solved faster [8]. A sample-

based approach can exploit the goal structure effectively, while more quickly gen-

erating higher quality solutions [8].

Decentralized POMDPs are transformed into Occupancy MDPs and can

be solved faster as continuous-state MDPs [57]. The Feature-Based Heuristic

Search Value Iteration algorithm solves Decentralized POMDPs represented as

continuous-state MDPs with piecewise-linear convex value functions [58]. The

Feature-Based Heuristic Search Value Iteration algorithm improves scalability, due

to its compact feature-based representation of occupancy states and decision rules

[59].

Recent approaches incorporate hierarchical decomposition of actions for solving

Decentralized POMDPs [124], which was proven feasible for multiple robot plan-

ning in complex environments under uncertainties. Macro-Action Decentralized

POMDPs incorporate temporally-extended macro-actions to more quickly solve

the underlying Decentralized POMDPs problem [12]. The Memory Bounded Dy-

namic Programming method was extended to solve Macro-Action Decentralized

POMDPs, but requires full specification of the underlying Decentralized POMDP

model, domain-specific handcrafted Macro-Actions, and imposes a discrete model

of time [12].

The Macro-Action Decentralized POMDP Heuristic Search algorithm relaxes

the requirements of the Memory Bounded Dynamic Programming method by in-

57

corporating the Decentralized Partially Observable Semi MDP model and models

continuous time [15]. The Macro-Action Decentralized POMDP Heuristic Search

algorithm breaks the problem into a high level discrete Decentralized Partially Ob-

servable Semi MDP and a low level continuous-time and continuous-state control

problem. The decomposition permits incorporating existing discrete Decentralized

POMDP solvers, while abstracting away the continuous time and continuous-state

of the underlying control problem to low level controllers. The low level con-

trollers can be either handcrafted or automatically synthesized, depending on the

domain. Each low level controller is treated as a macro-action by the higher level

Decentralized Partially Observable Semi MDP. However, the Macro-Action De-

centralized POMDP Heuristic Search algorithm requires estimating macro-actions’

values, transition times, and terminal conditions using a domain-specific model or

simulator [15]. Nevertheless, the Macro-Action Decentralized POMDP Heuristic

Search algorithm generates effective policies for coordinating multiple heteroge-

neous robots in a partially observable environment with limited communications

[15]. The Graph-Based Direct Cross-Entropy method extends the Direct Cross-

Entropy Method to generate better control policies more quickly than the Macro-

Action Decentralized POMDP Heuristic Search algorithm [127].

Macro-actions are temporally extended actions that can require different

amounts of time to execute, analogous to durative-actions [124]. Macro-Action

Decentralized POMDPs solve larger problems by planning at a higher abstraction

level. Macro-Action Decentralized POMDPs have solved a decentralized asyn-

chronous real-world multiple robot box pushing problem, without explicit com-

58

munication [13]. Macro-Action Decentralized POMDPs can be solved faster with

Expectation-Maximization [98] and dynamic programming [15]. The Decentral-

ized Partially Observable Semi MDP model [126], constructed upon Macro-Action

Decentralized POMDPs, allows an abstract problem representation and extends

the solutions to larger continuous-state problems.

Promising results for real-world multiple robot systems exist [128], but they are

limited to a small number of research groups and have been difficult to replicate.

Coalition formation is an extension to task allocation [159]. Coalition formation

provides a principled approach towards leveraging the varying levels of coupling

encountered in heterogeneous multiple robot planning to improve planning scala-

bility and solve real-world problems without ignoring a broader set of model and

algorithm features.

2.3 Coalition Formation for Scalable Multiple Robot Planning

Planning for multiple agents is largely intractable, but assigning tasks to the most

appropriate agent coalitions is accomplished with reasonable scalability. The coali-

tion formation problem is NP-hard [159], but domain-independent planning is

EXPSPACE-complete [72]. The planning process can require orders of magnitude

longer than the corresponding coalition formation problems; thus, the overhead

created by coalition formation is minimal. The developments that led to integrat-

ing coalition formation and planning to achieve computationally feasible solutions

for planning and allocating tasks in complex, large scale, and heterogeneous mul-

59

tiple robot systems are presented.

2.3.1 Definitions

Coalition formation is a generalization of task allocation where coalitions, as op-

posed to individual agents, are assigned tasks. Agents are grouped into coalitions,

and each coalition is assigned a task, according to the capabilities offered by the

coalitions and the capabilities required by the tasks. The coalition formation prob-

lem takes a set of n agents, Φ = {φ1, . . . , φn}, modeled as an agent capability

vector set CΦ, a set of m tasks, V = {v1, . . . , vm}, modeled as a task capabil-

ity vector set CV , and yields a solution that is a mapping of tasks to coalitions,

Coalitionformation : V → Φv | Φv ⊆ Φ, yielding a set of m coalition-task pairs

P = {p1, p2, . . . , pm} | pi = 〈Φi, vi〉 | ∀i ∈ [1,m]. Agent and task capability vector

sets represent resources, services, or a hybrid of both resources and services, as

defined in Chapters 2.3.1.1, 2.3.1.2, and 2.3.1.3, respectively.

2.3.1.1 The Resource Model

Resource-oriented coalition formation problems model agents and tasks as vectors

of real values that represent numerical features, such as distance sensor range,

camera field of view, or battery autonomy. A resource is a nonnegative real number

rj, and the resources the agents possess are represented as a vector Resφ, Resφ =

{rφ1 , r
φ
2 , . . . , r

φ
k}, where each vector entry rφj determines how much of resource j

60

agent φ offers and k is the number of resources modeled. The agent resource vector

set ResΦ associates a resource vector with each of the n agents and is represented

by ResΦ = {Res1, Res2, . . . , Resn}.

Tasks are defined as a vector of necessary resources Resv, Resv =

{rv1 , rv2 , . . . , rvk}, where each vector entry rvj specifies the amount of resource j re-

quired to complete task v. The task resource vector set ResV associates a resource

vector with each of the m tasks, and is defined as ResV = {Res1, Res2, . . . , Resm}.

A coalition Φv ⊆ Φ is a subset of agents capable of executing a task v, if(∑
φ∈Φv

rφj
)
≥ rvj | ∀j ∈ {1, 2, . . . , k}, meaning that the sum of resources j offered

by each agent φ in coalition Φv is greater than or equal to the amount of resource

j required by task v for all k resource types. More compactly:
(∑

φ∈Φv
Resφ

)
≥

Resv.

2.3.1.2 The Service Model

Service-oriented coalition formation problems model agents and tasks as vectors

of Boolean values that represent actions, such as obstacle avoidance, identifying

targets, or manipulating certain types of objects. A service is defined as a Boolean

value sj, and the services the agents offer are represented as a vector Serφ, Serφ =

{sφ1 , s
φ
2 , . . . , s

φ
k}, where each vector entry sφj determines if agent φ offers service

j, and k is the number of services modeled. The agent service vector set SerΦ

associates a service vector with each of the n agents and is represented by SerΦ =

{Ser1, Ser2, . . . , Sern}.

61

Tasks are defined as a vector of necessary services Serv, Serv = {sv1, sv2, . . . , svk},

where each vector entry svj specifies the number of agents offering service j required

to complete task v. The task service vector set SerV associates a service vector

with each of the m tasks, and is defined as SerV = {Ser1, Ser2, . . . , Serm}.

A coalition Φv ⊆ Φ is a subset of agents capable of executing a task v if(∑
φ∈Φv

sφj
)
≥ svj | ∀j ∈ {1, 2, . . . , k}, meaning that the number of agents of-

fering service j in coalition Φv is greater than or equal to the number of agents

offering service j required by task v for all k service types. More compactly:(∑
φ∈Φv

Serφ
)
≥ Serv

2.3.1.3 The Capability Model

The capability model is an abstract problem formulation that is more general

and incorporates both the resource and service models. A capability cj is a non-

negative real number, or Boolean value that represents a resource or a service.

The capabilities the agents offer are represented as a vector of capabilities Cφ,

Cφ = {cφ1 , c
φ
2 , . . . , c

φ
k}, where each vector entry cφj represents a capability j offered

by agent φ (i.e., cφj determines if agent φ offers service j or how much of resource

j agent φ offers). k represents the number of capabilities modeled. The agent

capability vector set CΦ associates a capability vector with each of the n agents

and is represented by CΦ = {C1, C2, . . . , Cn}.

Tasks are defined as a vector of necessary capabilities Cv, Cv = {cv1, cv2, . . . , cvk},

where each vector entry cvj specifies a capability j required by task v (i.e., cvj

62

specifies the number of agents offering service j required to complete task v or

the amount of resource j required by task v). The task capability vector set CV

associates a capability vector with each of the m tasks and is defined as CV =

{C1, C2, . . . , Cm}.

A coalition Φv ⊆ Φ is a subset of agents capable of executing a task v if(∑
φ∈Φv

cφj
)
≥ cvj | ∀j ∈ {1, 2, . . . , k}, meaning that the number of agents of-

fering service j in coalition Φv is greater than or equal to the number of agents

offering service j required by task v for all k service types, or that the sum of

resources j offered by each agent φ in coalition Φv is greater than or equal to the

amount of resources j required by task v for all k resource types. More compactly:(∑
φ∈Φv

Cφ
)
≥ Cv.

2.3.2 Coalition Formation Algorithms for Multiple Robot Systems

Coalition formation algorithms for software agents, such as Shehory and Kraus’

[159], cannot be directly applied to multiple robot systems, due to the physical lim-

itations on resources sharing and communication. Vig and Adams [185] modified

Shehory and Kraus’ algorithm to adapt it to physical robot systems [187, 188]. Al-

gorithms that incorporate greedy, optimization, and market-based approaches have

since been developed. Distributed hierarchical multiagent structures [2], graph-

based agent communication models [180], market-based algorithms [139, 147, 156,

160], and multiagent social networks [74, 169, 190] distribute the processing burden

across the multiple robots, but have high message passing requirements. Central-

63

ized algorithms have a single point of failure, but do not require significant message

passing. Centralized mixed integer linear program formulations [89, 148] and hy-

brid factor approximation algorithms [155] offer quality guarantees, but have poor

scalability to larger problems. Centralized stochastic and biologically-inspired op-

timization algorithms, including particle swarm optimization [196, 203], ant colony

optimization [140], evolutionary [153], and socially inspired algorithms [80] have

no quality gurantees, but scale to larger problems.

Given such a diverse pool of multiple robot coalition formation algorithms,

each having its own benefits and deficiencies, a single algorithm cannot generalize

to different problems and domains [149]. The intelligent Coalition Formation for

Humans and Robots (i-CiFHaR) [150] system was developed to dynamically reason

over mission requirements and decide autonomously which algorithm from a library

of multiple robot coalition formation algorithms to apply in order to best address

the mission requirements and render the most appropriate coalition [151, 152].

2.3.3 Planning and Coalition Formation

Coalition formation and automated planning have no common literature. While

the coalition formation domains include agents and tasks, planning domains in-

clude states and actions. Dukeman [61] defined a model for unifying both fields and

presented approaches that address the combinatorial complexity in planning for

heterogeneous multiagent systems. The Hybrid Mission Planning with Coalition

Formation model is a mix of the coalition formation capability model, presented

64

in Chapter 2.3.1, and the temporal planning with continuous fluents model. The

model allows using existing single-agent planners to solve multiagent planning

problems that current multiagent planners do not have the necessary expressive-

ness to solve, such as that required by durative actions.

2.3.3.1 Hybrid Mission Planning with Coalition Formation

The Hybrid Mission Planning with Coalition Formation (HMPCF) [62] model

is represented as a tuple 〈S, I, A,Φ, V,M,C〉, where S = {s1, s2, . . .} is the

state space, I ⊆ S is the initial state, A = {a1, a2, . . .} is the action space,

Φ = {φ1, . . . , φn} is the set of n robots, the grand coalition, V = {v1, . . . , vm}

is the set of m tasks, M : Φ → AΦ | AΦ ⊆ A is the robot-action mapping

function, and C is the tuple 〈CΦ, CV 〉, where CΦ = {C1, C2, . . . , Cn} is the robot

capability vector set and CV = {C1, C2, . . . , Cm} is the task requirement capa-

bility vector set. The conjunction of all task conditions defines the goal states

G ⊆ S | G = {s1, s2, . . . , } | s `
∧
v∈V

v | ∀s ∈ G. A solution to a HMPCF problem

is a plan, π, consisting of a set of scheduled actions assigned to each robot φ ∈ Φ.

HMPCF uses existing coalition formation and planning algorithms to solve large

multiple robot planning problems that incorporate temporal constraints and con-

tinuous numerical fluents in a more tractable, albeit centralized manner. The Mul-

tiagent Capabilities and Planning Domain Definition Language extends PDDL to

describe Hybrid Mission Planning with Coalition Formation problems [61]. Duke-

man [61] presents two methods for solving Hybrid Mission Planning with Coalition

65

Formation problems, Planning Alone and Coalition Formation then Planning.

2.3.3.2 Planning Alone

Planning Alone, a baseline planning method, groups all robots and tasks into a

fully centralized planning problem. Planning Alone synthesizes a goal set G as the

conjunction of all task requirements and invokes a domain-independent planner.

The external planner receives the grand coalition’s combined action space and

attempts to satisfy all task constraints embedded in the goal state set. Planning

Alone generates high-quality plans, but scales poorly as the number of robots or

the domain complexity increase [62]. The combinatorial complexity of centralized

planning limits the problems that can be solved.

2.3.3.3 Coalition Formation then Planning

Coalition Formation then Planning (CFP) is a hybrid method that leverages coali-

tion formation to minimize the planning combinatorial complexity and the overall

computational cost. The robot and task capability vector sets and coalition for-

mation algorithms are used to generate the coalitions and assign tasks, invoking

planning algorithms for each coalition-task pair, as presented in Figure 2.5 (a).

The Extract Coalition Formation Model process derives robot and task capability

vectors from the problem description [62]. Coalition formation generates coalition-

task pairs and the Coalition-Task Problem Synthesis process uses the coalition-task

66

pairs and the problem description to generate separate planning problems for each

coalition-task pair. The Coalition-Task Planning Problems are solved separately

by external planners, such as the Continuous Linear Planner (COLIN) [49] or the

Temporal Fast Downward Planner (TFD) [73]. The planner produces a plan for

each coalition-task pair, and the resulting plans are merged in order to prevent

conflicts and generate a global plan [52].

Uncoupled tasks are resolved using parallel plan synthesis, as described in

Chapter 2.2, and shown in Figure 2.5 (a). The Coalition-Task Problem Synthesis

process assumes that tasks begin at the same initial state; thus, generating the task

planning problem for one coalition does not require evaluating the plans generated

for the tasks of other coalitions, and task plans can be synthesized simultaneously.

Note on Figure 2.5 (a) that the Coalition-Task Problem Synthesis process is out-

side the planning loop and does not require input from the Coalition-Task Plans.

Loosely and tightly coupled tasks require serial plan synthesis, as described in

Chapter 2.2. Robot coalitions take turns when planning, as shown in Figure 2.5

(b). The task planning problem’s goals are concatenated with the goals of the

next task planning problem in order to guarantee that the following task plan will

not undo the goals achieved by the prior task plan. The Coalition-Task Problem

Synthesis process incorporates the final state achieved by the latest coalition-task

plan to generate the following coalition-task problem.

Multiple robot planning is largely an intractable problem, but assigning tasks

to the most appropriate robot coalitions scales significantly better. The plan syn-

thesis time can be orders of magnitude longer than the corresponding coalition

67

Planning Loop

Domain

Planning

Problem

Extract Coalition
Formation Model

Coalition-Task
Problem Synthesis

Coalition
Formation

Model

Coalition
Formation

Coalition-Task
Assignments

Global Plan

Coalition-Task
Planning
Problems

Plan Merging

Coalition-Task
Plans

a) Coalition Formation then Planning

for uncoupled tasks.
b) Coalition Formation then Planning

for loosely and tightly coupled tasks.

Planning Loop

Domain

Planning

Problem

Extract Coalition
Formation Model

Coalition-Task
Problem Synthesis

Coalition
Formation

Model

Coalition
Formation

Coalition-Task
Assignments

Global Plan

Plan Merging

Coalition-Task
Planning
Problems

Coalition-Task
Plans

Coalition-Task
Last State

Figure 2.5: Coalition Formation then Planning for (a) uncoupled and for (b)
coupled tasks. Rounded filled shapes represent processes and rectangles represent
data [62].

68

formation problems; thus, the overhead created by coalition formation is minimal.

The problem complexity is reduced by generating multiple small-action-set plans.

The reduced search branching factor permits derivation of plans for significantly

larger problems [62]. The Coalition Formation then Planning framework is ag-

nostic to the coalition formation algorithm adopted and uses external algorithms

[151].

Coalition formation can scale planning to larger numbers of robots and more

complex tasks, but results in poor quality plans, that have longer makespan than

centralized planning (i.e., Planning Alone) [62]. The model of capabilities used by

coalition formation does not reveal whether tasks are tightly coupled, limiting co-

operation between coalitions allocated to different tasks and results in lower quality

plans that require more actions and time to complete. Coalition formation does

not guarantee a coalition will be able to accomplish assigned tasks. A coalition not

capable of executing its assigned task is called nonexecutable and planning will fail

because the actions of the allocated agents are not sufficient. Plan quality can be

improved by partitioning the planning problem along coalition and task coupling

lines [36]. The most tightly coupled coalition-tasks pairs are fused, whereas the

most loosely coupled remain separate. When two coupled coalition-task planning

problems are solved separately, the planner considers each tasks’ goals individu-

ally, and produces potentially redundant action sequences [179]. However, when

two coupled coalition-tasks are fused, the actions for one task can contribute to

achieving states necessary to achieve another task and can generate higher quality

plans. Planning uncoupled coalition-task planning problems together does not im-

69

prove plan quality, and often increases planning complexity. Task Fusion leverages

coupling to improve coalition formation and planning.

2.3.3.4 Task Fusion

Coalition formation was enhanced with Task Fusion in order to account for tightly

coupled tasks and generate higher quality plans at a lower computational cost

[62]. After coalition formation, tightly coupled coalition-task pairs are fused into

larger coalition-task pairs. The fused coalition-tasks plans can be synthesized faster

and result in shorter makespan with fewer actions. Fusing allows the planner to

address the tasks’ mutual dependencies and facilitates cooperation between the

fused coalitions. The result of Task Fusion over coalition-task pairs pi = 〈Φi, vi〉

and pj = 〈Φj, vj〉 is a fused coalition-task pair pf , pf = 〈Φf , vf〉 = F (pi, pj), where

F is a mapping of pairs of coalition-task pairs F : pi × pj → pf | pi, pj ∈ Pm, Φf

is the union of robots φ ⊆ Φi and φ ⊆ Φj, Φf = Φi ∪ Φj, and vf = vi ∧ vj is the

conjunction of task requirements from vi and vj.

Task Fusion is the fusion of tasks and the assigned coalitions. Both coalitions

and tasks are fused. Tasks are fused by concatenating the goals of the original

tasks. Coalitions are fused by combining or taking the union of the members of

the original coalitions. A coalition-task pair consists of a task and a coalition.

Fusing a coalition results in a new coalition where the members of the original

coalitions are combined. Fusing tasks results in a new task, where the goals of the

original tasks are concatenated. Members from both coalitions will be considered

70

during plan generation, as the goals of both tasks must be satisfied by the resulting

plan.

Coalition-task coupling is estimated by a heuristic that maps two coalition-task

pairs pi and pj, to a coupling estimate, H(pi, pj) : pi × pj → [0, 1], where H(pi, pj)

= 0 indicates that pi and pj are uncoupled and H(pi, pj) = 1 indicates that pi

and pj are tightly coupled. The Task Fusion algorithm stops when the ratio of

fused coalitions, relative to the original number of coalitions, m, becomes greater

than a user-defined threshold fmax, the fusion ratio, as presented in Algorithm 2.1.

No coalition is fused when fmax = 0, and all coalitions are fused when fmax = 1.

A zero fusion ratio, fmax = 0, is equivalent to the baseline Coalition Formation

then Planning (i.e., no Task Fusion). Fusing all coalitions using fmax = 1 does

not produce the grand coalition, because the algorithm is restricted to pair wise

coalition fusion only, in order to avoid the combinatorial complexity of evaluating

all possible coalition-task subsets. Fusing all coalitions can only produce the grand

coalition when there are only two initial coalitions.

The previously developed heuristics estimate coalition-task coupling based

on the coalition formation model of capabilities [62]. The Coalition Similar-

ity (CS) heuristic,
|Φi∩Φj |
|Φi∪Φj | , operates on coalition-task pairs that share common

robots. Coalition-task pairs that have no common robots score 0 and coalition-

task pairs that share all robots score 1. The Coalition Assistance (CA) heuristic,∑k
r=1

c
Φi∪Φj
r

max(c
vi
r ,c

vj
r)

, estimates the ratio of coalition capabilities over task requirement

capabilities after fusion, and prioritizes coalition-task pairs that share the same

task requirement capabilities. These heuristics do not consider planning-related

71

Data: Pm = {p1, p2, . . . , pm}, a set of m coalition-task pairs;
H(pi, pj) : pi × pj → [0, 1];
Result: A set of o coalition-task pairs Po = {p1, p2, . . . , po}.

1 Initialize empty set Po = {∅};
2 Populate list l with all

(
m
2

)
pairs of coalition-task pairs 〈pi, pj〉, pi, pj ∈ Pm;

3 foreach pair 〈pi, pj〉 in list l do
4 Compute the heuristic value hij = H(pi, pj);
5 Sort list l relative to the heuristic value hij;
6 foreach pair 〈pi, pj〉 in list l do
7 Remove pair 〈pi, pj〉 from list l;
8 Remove all pairs containing pi or pj from list l and from set Pm;
9 Fuse pair 〈pi, pj〉 into coalition-task pair pf = F (pi, pj);

10 Insert coalition-task pair pf into set Po;
11 if 2 · ‖Po‖ > m · fmax then
12 break;

13 Return Po = Pm ∪ Po;
Algorithm 2.1: The Task Fusion Algorithm.

information, such as robots handling the same logical objects, or sharing the same

physical location. Ignoring planning-related information limits the heuristic’s ac-

curacy, which can produce plans that take longer to execute and require a larger

number of actions. Chapter 4 introduces a new family of Task Fusion heuristics

that improve plan quality and cost.

2.3.4 Plan Merging

Serial plan synthesis, described in Chapter 2.2.1, addresses tightly coupled domains

[179]; however, merging the independently generated plans can be a complex prob-

lem. Conflicts arise when one plan’s actions can prevent the execution of another

plan’s actions. Most planners assume serial plan execution in order to simplify

72

the merging process and prevent conflicts between plans. Plans are executed se-

rially, in the same order as they were synthesized; however, tasks cannot execute

in parallel, resulting in long plan execution durations. Plan merging algorithms

allow parallel task execution and can shorten the plan execution duration [52].

The Coalition Formation then Planning framework [62] employs a greedy merging

algorithm that can result in long plan execution. The effectiveness of the Coalition

Formation then Planning framework can be enhanced by employing more efficient

plan merging algorithms.

The Multiagent Plan Coordination Problem (MPCP) formulation assumes a

set of agents derived plans independently to achieve their individual goals [52].

Agents can undermine each other when executing their plans and must coordinate

to produce conflict-free plans that guarantee all agents achieve their individual

goals. The solution to an MPCP is composed entirely of actions drawn from the

original agents’ plans; no actions are added. A plan π can be defined by a tuple

〈A,≺T ,≺C〉, where A = {a1, a2, . . .} is a set of actions, ≺T= {≺1, . . .} and

≺C= {≺c1, . . .} are sets of temporal and causal orders on actions A, respectively.

Actions are defined by the tuple 〈pre(·), eff(·)〉, where pre(a) defines a set of

preconditions that must hold during action a’s execution, and eff(a) defines the

set of effects caused by action a’s execution. A temporal order, ≺, is a binary

relation ai ≺ aj, with ai, aj ∈ A, and establishes that action aj cannot be executed

before action ai’s execution is completed. A causal order, ≺c, is an extended

temporal order that defines a ternary relation ai ≺c aj, with ai, aj ∈ A, and c

is a condition belonging to action ai’s effects (c ∈ eff(ai)) and to action aj’s

73

preconditions (c ∈ pre(aj)). Causal orders help identify plan conflicts, but do not

impact the plan execution, and are reduced to regular temporal orders after the

merging process completes.

Plan merging results in two types of conflicts [52]. Open preconditions occur

when a precondition c of an action a is not satisfied by the existence of a causal

order a0 ≺c a, indicating that an action a0 establishes condition c to satisfy action

a’s precondition. An open precondition κo is denoted by the tuple 〈a, c〉, where

a is an action and c is a precondition of action a, (c ∈ pre(a)). Causal conflicts

occur when a causal order ai ≺c aj is threatened by the effects of an action a. The

causal order ≺c is threatened if there exists an action a whose effects establish the

negative condition ¬c, (¬c ∈ eff(a)), and neither of the temporal orders a ≺ ai

and aj ≺ a exist. A causal conflict implies that action a’s effects can deny condition

c and prevent action aj to execute. A causal conflict κc is denoted by the tuple

〈a,≺c〉, where a is an action and ≺c is a causal order.

Open preconditions and causal conflicts are addressed by inserting causal and

temporal orders, respectively. An open precondition of action a and condition c

can be resolved by adding a causal order a0 ≺c a, such that condition c exists in

the effects of action a0 (c ∈ eff(a0)) [52]. The solution forces action a0 to establish

the condition c for action a. A causal conflict of action a and causal order ai ≺c aj

is resolved by adding temporal orders a ≺ ai or aj ≺ a and execute action a before

action ai, or after action aj [52].

MPCP is NP-Complete and a tractable optimal algorithm is infeasible [52].

The Multiagent Plan Coordination by Plan Modification Algorithm (PMA) solves

74

MPCP problems and minimizes the resulting number of actions [52]. The PMA

allows a set of actions to replace a single redundant action collectively, resulting in

merged plans with fewer actions, but cannot scale to large numbers of agents and

tightly coupled tasks.

2.3.5 Summary

The existing planning algorithms incorporate various features deemed necessary

for real-world planning, but no single algorithm incorporates all the necessary

features. The hybrid approaches, such as the Coalition Formation then Planning

framework, improve the algorithm’s ability to scale. However, these methods do

not support uncertain action durations, fail to minimize the makespan, or cannot

scale to large numbers of agents and tightly coupled tasks.

75

Chapter 3: Outline

The Coalition Formation then Planning framework relies on two key coordination

processes, highlighted in Figure 3.1 by the dashed red outline. The two key pro-

cesses, coalition formation and plan merging, allow agents to coordinate before

and after the distributed planning process, respectively. However, these two pro-

cesses suffer from limitations that hinder the framework’s ability to scale and solve

complex problems.

Coordination before planning, the first process highlighted in Figure 3.1, is

reliant on the coalition formation models, which ignore planning-related knowledge,

producing lower quality plans that take longer to execute and require a larger

number of actions. New Task Fusion Heuristics (Chapter 4) incorporate planning-

related knowledge in order to enhance coordination before planning and allow the

Coalition Formation then Planning framework to produce higher quality plans.

Existing methods for coordination after planning, the second process high-

lighted in Figure 3.1, either fail to minimize makespan, or do not scale to large

numbers of robots and tightly coupled tasks. New plan merging algorithms (Chap-

ter 5) incorporate new conflict resolution models in order to enhance coordination

after planning and allow the Coalition Formation then Planning framework to

minimize the resulting makespan with formal quality guarantees, while scaling to

a larger number of robots and tasks.

76

Planning Loop

Domain

Planning

Problem

Extract Coalition
Formation Model

Coalition-Task
Problem Synthesis

Coalition
Formation

Model

Coalition
Formation

Coalition-Task
Assignments

Global Plan

Plan Merging

Coalition-Task
Planning
Problems

Coalition-Task
Plans

Coalition-Task
Last State

Figure 3.1: Coalition Formation then Planning Overview, where the key coordina-
tion processes are highlighted in dashed red, from Figure 2.5.

The original Coalition Formation then Planning framework incorporated dura-

tive actions in order to model temporal constraints and more accurately represent

real-world domains; however, it did not address dynamic situations in which uncer-

77

tain action durations are required. Addressing this issue requires the incorporation

of planners and planning description languages that accommodate uncertain action

durations. Existing planning description languages cannot accommodate the needs

of this research; thus, a new planning description language, capable to represent

both the coalition formation models and the planning models, while supporting

uncertain action durations, is needed.

3.1 Multiagent Actions Concurrency and Time Uncertainty Planning

Language

The original Coalition Formation then Planning [62] framework was developed for

deterministic planning models. Dukeman [61] extended PDDL to incorporate a

coalition formation model into deterministic temporal planning and introduced the

Multiagent Capabilities and Planning Domain Definition Language (MACPDDL).

MACPDDL supports durative actions, but does not support uncertain action du-

rations. Incorporating models with uncertain durations requires a new probabilis-

tic problem description language that includes a coalition formation model. This

dissertation introduces a new planning language, the Multiagent Actions Con-

currency and Time Uncertainty Planning Language (MAPL) that incorporates a

coalition formation model into stochastic temporal planning. MAPL, presented

in Extended Backus-Naur Form in Appendix A, extends the Actions Concurrency

and Time Uncertainty Planning Language (APL) [24]. Both APL and MAPL fea-

ture a relational C-Style syntax that is more readable than PDDL’s parenthesized

78

Lisp-style syntax [105]. APL’s “Problem” section was extended to include

i. A list of agents, independent from the list of non-agent objects;

ii. Tasks, to explicitly subdivide the goal requirements into task requirements;

iii. Agent capabilities, to declare the capabilities of each agent; and

iv. Task capabilities, to declare the capabilities required by each task.

The extensions permit integrating a full model of capabilities for coalition forma-

tion, and allow for deriving separate planning problems for each task and robot

coalition. Deriving separate planning problems for each task is a necessary step

of the Coalition Formation then Planning framework, in order to generate plans

for each task separately and reduce computational complexity. Dukeman’s [61]

First Response Domain models problems where human-robot teams cooperate to

rescue victims, collect hazardous objects, clear gas leaks, and clear blocked roads

after a natural disaster, as described in Chapter 3.2.3. MACPDDL is restricted

to deterministic domains and does not support uncertain action durations. The

action durations are deterministic; thus, the rescue domain was simplified when

represented using MACPDDL. Driving between locations was assumed to be a

deterministic function of distance and the robot’s velocity, as presented on line 4

of Listing 3.1.

79

Listing 3.1: A subset of the Rescue Domain in MACPDDL.

1 (: durat ive−ac t i on Drive

2 : executor (? r − Robot)

3 : parameters (? o r i g − Locat ion ? dest − Locat ion)

4 : durat ion (= ? durat ion (/ (Distance ? o r i g ? dest) (RobotVelocity ? r)))

5 : cond i t i on

6 (and

7 (at s t a r t (PosRobot ? r ? o r i g))

8 (at s t a r t (Road ? o r i g ? dest))

9)

10 : e f f e c t

11 (and

12 (at end (PosRobot ? r ? dest))

13)

14)

The MAPL language supports uncertain action durations. Driving between lo-

cations is modeled as a probabilistic Gaussian function of distance and the robot’s

velocity, as presented on line 3 of Listing 3.2. A compiler, decompiler, and transla-

tor MAPL suite was implemented using the Earley algorithm [93], which can parse

context-free grammars.

Listing 3.2: A subset of the Rescue Domain in MAPL.

1 ac t i on Drive (Robot r , Locat ion or ig , Locat ion des t) {

2 durat ion :

3 normal (Distance (or ig , des t) / RobotVelocity (r)) DriveStd () ;

4 c o n d i t i o n s :

5 @start : PosRobot (r) = o r i g ;

6 @start : Road(or ig , des t) ;

7 e f f e c t s :

8 @end : PosRobot (r) = dest ;

9 }

80

MACPDDL was used to support the Task Fusion experiments (Chapter 4) and

MAPL was used to represent all domains used in the plan merging and conflict

resolution experiments (Chapters 5 and 6), which incorporate uncertain action

durations.

3.2 Experimental Domains

Benchmark problem domains are common in the automated planning literature for

empirical algorithm evaluation and comparison. Three domains, the Blocks World

Domain [78], the Logistics Domain [179], and the First Response Domain [62],

were extended for this dissertation in order to model complex real world aspects

more accurately. Two major types of extensions were made. The first set of major

extensions introduced durative actions and continuous fluents, in order to model

action durations and quantifiable aspects of the real world. The second set of

major extensions introduced action duration uncertainty, in order to model the

more dynamic and uncertain aspects of the real world.

3.2.1 Blocks World Domain

The Blocks World Domain is a common benchmark in the automated planning

literature [78]. The original Blocks World Domain consists of one robot arm that

manipulates and stacks piles of blocks. Problems consist of unstacking blocks

onto an infinite size table, and re-stacking them into a goal piling configuration.

81

The original domain does not account for action durations and the blocks are

homogeneous. Two major extensions were made to the Blocks World Domain in

order to more accurately model complex real world aspects.

The Dukeman and Adams’s Blocks World Domain extension [62], used for

Task Fusion experiments (Chapter 4), introduced multiple robot arms, modeled

a variety of end-effectors, and incorporated temporal constraints. A finite sized

table holds stacks of blocks that require specific end-effectors. The start and goal

states are represented via specific block stacks and block orders within the stacks.

Each arm has a subset of available end effectors and each block requires a specific

type of end effector. Blocks can be either single- or double-weight. Single-weight

blocks can be manipulated by a single arm, while double-weight blocks require

two arms. Each goal state stack generates a separate task, but the component

blocks of different goal stacks can originate from a common stack, causing tight

coupling between tasks. Each arm and end effector require different amounts of

time to grasp, manipulate, and release blocks; thus, introducing durative actions.

The time to stack and unstack blocks is also dependent on the end effector and

the block’s initial and final position positions, modeled with continuous fluents.

The second Blocks World Domain extension, developed for this dissertation,

introduces action duration uncertainty, and was used for the experiments of Chap-

ter 5. Each block type requires a stochastic amount of time to be manipulated,

defined by a Gaussian distribution. This second extension builds upon the first

extension and includes all of its features.

82

3.2.2 The Logistics Domain

The Logistics Domain [179], a benchmark multiagent domain, requires different

truck types when delivering trailers to their destinations. Trailers must be ex-

changed between truck types before reaching their destinations, which requires

coordination, as truck types are limited to subsets of a road system. Specific truck

types cannot travel outside of their assigned districts, and different truck types

must coordinate in order to deliver trailers across districts. The trailers’ initial

and goal locations are selected randomly and each trailer delivery is a separate

task. Coupling exists within each task, as trucks need to coordinate actions in

order to deliver a trailer. There is loose coupling between tasks, as each trailer de-

livery is independent. However, plans for separate tasks can become coupled when

sharing the same trucks. Task plans that share common trucks have increased

coupling, since each shared truck cannot execute all task actions simultaneously.

Transport actions require the trucks to be positioned at specific locations in order

to attach, detach, and transport trailers.

The Logistics Domain was extended for this dissertation in order to introduce

durative actions, continuous distances, and model the travel time between loca-

tions, as a probabilistic function of distance. The extended domain was used for

the experiments of Chapter 5. Durative actions are critical, as the travel time

between locations varies significantly and impacts makespan.

83

3.2.3 First Response Domain

This First Response Domain [62] models disaster response problems that require

coordinating heterogeneous human-robot teams. Human-robot teams cooperate to

rescue victims, collect hazardous objects, clear gas leaks, and clear blocked roads

after a natural disaster. Prescription drugs inside pharmacies and weapons at pawn

shops must be secured to prevent looting and ensure civilian safety. Victim rescue

tasks require a human to triage the victim. The resulting triage level determines

how the victim is taken to a hospital, either guided an aerial robot or transported

by a ground robot. The pawn shop cleanup tasks require a police officer to locate,

clear, secure, and load the weapons into the police robot for transport to the police

base. The pharmacy cleanup tasks require personnel to locate, clear, and secure

all prescription drugs, including loading the drugs into a robot for transport to a

hospital. The number of robots, victims, pawn shops, pharmacies, road blocks, gas

leaks, and waypoints was drawn from a uniform distribution. Plans are generated

for both robots and humans. Traveling across the environment and performing

each task requires significantly different amounts of time, making continuous and

temporal constraints critical to a plan’s successful execution. Similar to the Lo-

gistics Domain, there is loose coupling between tasks. However, plans for separate

tasks can become coupled when sharing the same robots, and the coupling between

two tasks becomes stronger when there is overlap between the locations the robots

must traverse, due to the shared effects of cleared blocked roads.

Two major extensions were made to the First Response Domain for this disser-

84

tation in order to permit more complex, but realistic problems. The first extension

introduces additional numerical fluents that more accurately model the complex-

ities of the domain, and was used for the Task Fusion experiments (Chapter 4).

The robot batteries drain as a function of robot activity over time. As well, the

robot load is a numerical fluent; thus, allowing robots to carry a varying number

of objects, dependent on the individual robot load capacity.

The second extension introduces action duration uncertainty that model the

travel time between locations, as a probabilistic Gaussian function of distance and

the individual robot velocities, and was used for the plan merging experiments

(Chapter 5). Further, the triaging of victims and the pawn shop and pharmacy

cleanup tasks require using a shared aerial support service, which introduces tighter

coupling between tasks.

The First Response Domain was reduced to victim rescue and hazardous mate-

rial removal tasks for the multiple robot experiments of Chapter 6, as the limited

number of robots and the limited robots’ capabilities prevented the use of the full

domain. Three types of robots cooperate to achieve these tasks: rescuer, ambu-

lance, and hazard collector. Action duration uncertainty, the continuous model

of distances, and the individual robot velocities remained. The rescuer robots,

together with the ambulance and hazard collector robots, are responsible for the

respective victim rescue and hazardous material removal tasks. The victim rescue

tasks require robots to “load” victims for transport to a rescue base. The haz-

ardous materials collection tasks require robots to clean up and collect hazardous

materials, which requires “loading”, transporting, and “unloading” hazards into a

85

safe container.

The rescuer robot is responsible for inspecting and clearing each area in order

to ensure the area is safe for of the ambulance and hazard collection robots. Victim

rescue tasks require a rescuer robot to “load” a victim onto an ambulance robot

that transports the victim to a rescue base and “unloads” the victim at that

location. Hazardous materials collection tasks require a rescuer robot to “load”

hazardous materials onto a hazard collector robot that transports the hazardous

materials to a safe container near the rescue base and “unloads” the hazardous

materials onto a safe container.

86

Chapter 4: Plan Distance Heuristics for Task Fusion in Distributed

Temporal Planning

The Coalition Formation then Planning framework employs coalition formation

and Task Fusion algorithms in order to coordinates robots’ actions before planning.

The existing Task Fusion heuristics are ineffective and result in limited quality

plans that take longer to execute and require a larger number of actions.

Heuristics for Task Fusion can become more accurate and achieve better plan-

ning results by incorporating an estimation of plan distance. Plan distance metrics

were developed to quantify solution diversity in plan synthesis and can estimate

the level of similarity between two plans [167]. Nguyen et al. [116] formulate a

distance function between two plans πi and πj, that maps to a real-valued distance

metric δ(πi, πj) : πi × πj → [0, 1]. The action plan distance metric is defined by

1 − |A(πi)∩A(πj)|
|A(πi)∪A(πj)| , where A(π) is the set of actions in plan π [116]. The opposite of

plan distance, plan similarity, can be approximated by 1− δ(πi, πj), changing the

action plan distance metric to
|A(πi)∩A(πj)|
|A(πi)∪A(πj)| . The similarity between plans can be

a proxy for estimating the level of coupling between two coalition-task planning

problems. Problems that produce similar plans can be considered more tightly

coupled.

Plan distance heuristics can use the plan’s logical objects, in addition to the

plan’s actions. Logical object instances are extracted from the plan actions’ ar-

87

gument lists in order to reveal problem details that otherwise are ignored when

only actions are considered. The overlap of actions and logical objects between

two plans indicates the plans’ level of similarity and coupling. Higher overlap of

actions and logical objects indicates that the robots interact with common objects

and navigate through common locations, which are represented as logical objects.

The use of action sets makes Nguyen et al.’s heuristic unaware of repeated action

instances. Lists allow and account for repeated actions, revealing nuances that are

otherwise omitted. This dissertation introduces a family of plan distance heuris-

tics that use lists of plan’s actions and logical objects to estimate coupling and

generate better planning results with Task Fusion.

The introduced plan distance heuristics consider the overlap of actions and

logical object occurrences between two plans in order to estimate coupling [101].

The Object heuristic (O), the Action heuristic (A), and the Action-Object heuristic

(AO), are based on overlaps in the action, object, and both action and object oc-

currences, respectively. The time at which each action is scheduled to occur is used

to extend each heuristic into three temporal variants: the Object-Temporal heu-

ristic (OT), the Action-Temporal heuristic (AT), and the Action-Object-Temporal

heuristic (AOT).

A plan π consists of a list of actions, where each action entry contains a

start time τ , robots Φ = {φ1, . . .}, and planning-model first-order logic objects

O = {o1, . . .}. Plan distance heuristics compile a list of logical object and action

occurrences, extracted from each plan action entry. Each action-object occurrence,

tagged with the associated action start time, τ , populates the action-object list,

88

L = {〈l1, τ1〉, . . .}. The similarities between plans πi and πj result in an estimate

for the utility of fusing coalition-task pairs pi and pj. Let πi and πj represent the

plans for coalition-task pairs pi and pj, respectively. A plan distance heuristic is

a function H(πi, πj) : πi × πj → [0, 1] that maps to a utility value. Plan distance

heuristics require synthesizing plans π for all m coalition-task pairs p, but can

leverage the details from plans that are unavailable via the capabilities or coalition

structures from the coalition formation model. The heuristics are agnostic to the

origin of the plans adopted and leverage existing planners.

4.1 Object, Action, and Action-Object Heuristics

The Object (O), Action (A), and Action-Object (AO) heuristics represent the level

of overlap between the logical object and action occurrences in plans πi and πj for

coalition-task pairs pi and pj, respectively: H(pi, pj) = 1
|Li|·|Lj | ·

∑
li∈Li

∑
lj∈Lj

(li =

lj), where |Li| and |Lj| are list sizes for action-object lists Li and Lj, respectively.

The list elements l represent objects for the Object heuristic, actions for the Action

heuristic, and both objects and actions for the Action-Object heuristic. All pairs

of entries from both action-object lists are compared. Each heuristic variant pop-

ulates the plan lists, Li and Lj. The Object heuristic populates lists with logical

object occurrences; the Action heuristic populates lists with action occurrences;

and the Action-Object heuristic populates lists with both action and logical ob-

ject occurrences. The normalizing fraction ensures that the heuristic values are

between [0, 1], where 1 indicates maximal task coupling.

89

A simple first response example is provided. Assume two coalition-task pairs,

pA and pB, have plans πA and πB, respectively. The move (wx, wy) action moves a

robot from a location wx to a location wy, whereas the triage (v, w) action triages

a victim v in location w. The respective plan actions are {move (w0, w1), triage

(v1, w1)} and {move (w0, w1), move (w1, w2), triage (v2, w2)}. The Action lists

are LA = {move, triage} and LB = {move, move, triage}, resulting in three

matches and producing an Action heuristic value of H (pA, pB) = 0.500, due to

the normalization factor (|LA| = 2, |LB| = 3, and |LA| · |LB| = 6). The Object

lists are LA = {w0, w1, v1, w1} and LB = {w0, w1, w1, w2, v2, w2}, resulting

in five matches and producing an Object heuristic value of H (pA, pB) = 0.208,

due to the normalization factor (|LA| = 4, |LB| = 6, and |LA| · |LB| = 24). The

Action-Object lists are LA = {move, triage, w0, w1, v1, w1} and LB = {move,

move, triage, w0, w1, w1, w2, v2, w2}, resulting in six matches and producing

an Action-Object heuristic value of H (pA, pB) = 0.111, due to the normalization

factor (|LA| = 6, |LB| = 9, and |LA| · |LB| = 54). Lists allow repeated entries and

account for higher coupling, as demonstrated by the repeated use of the action

move by plan πB.

4.2 Object-Temporal, Action-Temporal, and Action-Object-

Temporal Heuristics

The Object-Temporal (OT), Action-Temporal (AT), and Action-Object-Temporal

(AOT) heuristics integrate temporal dependencies in order to account for action

90

and object interactions at different times throughout the plan. Each heuristic

variant populates the plan lists, Li and Lj, with object occurrences, action oc-

currences, or both, as was the case in Chapter 4.1. The temporal heuristics

weight each matching list entry with a decaying exponential weighting factor. The

weighting ranks pairs that interact with the same objects at similar times higher

than pairs that interact with the same objects at different times. The weight-

ing factor is a function of the time difference between each matching list entry:

H(pi, pj) = 1
|Li|·|Lj | ·

∑
li∈Li

∑
lj∈Lj

(li = lj) · e−|τi−τj |, where τi and τj are temporal

timestamps for list entries li and lj, respectively. If ∆τ = |τi − τj| = 0, (i.e., the

object matching occurs at the same time), the weighting factor is 1. If ∆τ →∞,

(i.e., the object matching occurs at different times), the weighting factor is 0.

Drawing from the example in Chapter 4.1, assume the action triage (v1, w1)

was scheduled to execute in plan πA at time τi = 10 minutes, whereas the action

triage (v2, w2) was scheduled to execute in plan πB at time τj = 12 minutes. The

time difference between the two actions is |τi − τj| = 2 minutes and the temporal

weighting factor is e−|τi−τj | = e−2 = 0.607, causing a 39.3% reduction in the action

match contribution.

Generating full plans to estimate coalition-task coupling can be prohibitively

costly, and defeat the purpose of Task Fusion; however, relaxed plans can replace

full plans for coalition-task coupling estimation. A relaxation of the problem model,

such as to ignore actions’ negative effects, can significantly reduce the computa-

tional complexity [83]. Relaxed plans offer a rough approximation of the actual

plans and are used to inform forward search [83], reachability analysis [31], and

91

distance metrics [50]. Relaxed plans can provide an estimate of the actions and

the involved logical objects required by the full plan, yet require significantly less

computation.

The heuristics use plan distance to estimate coupling and inform coalition

formation. Relaxed plans allow evaluating efficiently the planning elements of

coalition-task pairs before planning. Coupling across coalition-task pairs is esti-

mated by the relaxed plans’ actions and logical objects, and the most coupled

coalition-task pairs are fused.

4.3 Empirical Evaluation

The heuristics were evaluated for two different domains chosen to model the com-

plexity of planning for multiple heterogeneous robot systems. Continuous fluents

and temporal constraints allow modeling the numerical and temporal constraints

necessary for each domain. Heterogeneous multiple robot planning problems with

continuous fluents and temporal constraints are yet unavailable in existing standard

planning problem benchmarks. Heterogeneous robot systems contain robots with

subsets of the capabilities necessary to accomplish each task, and require robots

to cooperate. Complex problems with heterogeneous robot capabilities generate

tightly coupled tasks. Ten coalitions of robots and ten missions were randomly gen-

erated and combined to form 100 problems per domain. Each coalition generated

ten problems, one for each mission, and each mission generated ten problems, one

for each coalition. The resulting plans were evaluated based on the plan outcome,

92

makespan, number of actions, processing time, and memory usage.

4.3.1 Domains

4.3.1.1 Blocks World Domain

The first Blocks World Domain extension, which introduces numerical fluents,

multiple robot arms, and multiple block types, described in Chapter 3.2.1, was

used with four types of end effectors: friction, suction, magnetic, and encompass.

Ten coalitions with a minimum of four robot arms and a maximum of eight robot

arms were generated, as shown in Table 4.1. Ten missions with a minimum of

eleven tasks and a maximum of 24 tasks were generated, as presented in Table 4.2.

Table 4.1: Coalition Composition for the Blocks World Domain [62].
Grand coalition

1 2 3 4 5 6 7 8 9 10
Robot arms 6 8 5 5 4 8 7 7 7 8
Friction end effector 2 3 2 4 2 5 5 5 6 6
Suction end effector 3 7 3 2 2 6 3 5 6 7
Encompass end effector 4 7 4 4 2 8 4 4 4 3
Magnetic end effector 4 3 2 2 3 5 7 2 6 7
Total end effectors 13 20 11 12 9 24 19 16 22 23

4.3.1.2 First Response Domain

The first First Response Domain extension, which introduced additional numerical

fluents, described in Chapter 3.2.3, was used. Ten coalitions with a minimum of

93

Table 4.2: Tasks per mission for the Blocks World Domain [62].
Mission

1 2 3 4 5 6 7 8 9 10
Position Friction Block 7 2 8 9 2 5 7 5 0 3
Position Suction Block 6 6 3 4 5 2 5 6 2 2
Position Encompass Block 1 3 5 8 4 5 3 6 6 3
Position Magnetic Block 4 0 3 3 0 3 2 5 8 4
Total Tasks 18 11 19 24 11 15 17 22 16 12

15 robots and a maximum of 21 robots were generated, with each coalition having

a minimum of 1 robot and a maximum of 6 robots per robot type, as shown in

Table 4.3. Ten missions with a minimum of 13 tasks and a maximum of 24 tasks

were generated, with each mission having a minimum of 1 task and a maximum of

15 tasks per task type, as presented in Table 4.4.

Table 4.3: Coalition Composition for the First Response Domain.
Coalition

1 2 3 4 5 6 7 8 9 10

Human

Rescuer 2 4 2 2 3 4 2 2 3 3
Police 2 1 1 1 2 1 2 1 1 2
Firefighter 1 2 1 1 2 2 1 1 2 2
Total Humans 5 7 4 4 7 7 5 4 6 7

Robot

Rescuer 6 6 5 4 6 6 4 6 5 5
Police 1 1 2 1 2 1 1 2 2 1
Firefighter 4 5 3 5 3 4 3 5 5 4
Quadrotor 1 2 2 1 2 1 2 1 1 2
Total Robots 12 14 12 11 13 12 10 14 13 12

Total Agents 17 21 16 15 20 19 15 18 19 19

94

Table 4.4: Tasks per mission for the First Response Domain.
Mission

1 2 3 4 5 6 7 8 9 10
Clear gas leaks 1 2 2 1 2 1 2 1 1 2
Clear road blocks 4 5 3 4 5 4 4 3 4 5
Rescue victims 12 12 5 15 5 10 5 15 14 12
Clear pawn shops 2 1 2 2 1 2 2 1 1 1
Clear pharmacies 1 2 1 2 2 1 1 2 2 2
Total Tasks 20 22 13 24 15 18 14 22 22 22

4.3.2 Experimental Design

The experiment’s independent variables are the specific planning methods: Plan-

ning Alone (PA), Coalition Formation then Planning (CFP), and Coalition For-

mation then Planning with Task Fusion, using the plan distance heuristics: Object

(O), Action (A), Action-Object (AO), Object-Temporal (OT), Action-Temporal

(AT), and Action-Object-Temporal (AOT), and the baseline heuristics: Coalition

Assistance (CA) and Coalition Similarity (CS). The planning outcomes are: Suc-

cess, a valid plan is produced; Nonexecutable, no plan can be derived for the task

given the coalition’s composition and allocated tasks; Time Fail, the time limit

is exceeded; and Memory Fail, the memory limit is exceeded. The fusion ratio,

fmax, limits the number of fused coalition-task pairs and can impact the effective-

ness of Task Fusion. Fusion ratio values were chosen to uniformly cover the valid

[0, 1] range, fmax = {0.25, 0.50, 0.75, 1.00}. Each experiment’s planning time was

capped at one hour and memory usage was limited to 120 GB. These processing

time and memory limits emulate the demands for real-world systems that require

timely solutions on computers with limited memory.

95

The dependent variables are the planning outcome, makespan, number of ac-

tions, processing time, and memory usage. Makespan represents plan length, mea-

sured in seconds [142]. The number of actions is the total number of actions

required by the plan to accomplish a task [142]. The processing time, measured

in minutes, is the time required to solve a problem, which includes the coalition

formation, processing heuristics, planning for all tasks, and merging each task plan

into a final plan. The memory usage is the limit on memory allocated, in GB. The

makespan and the number of actions metrics indicate plan quality. Higher quality

plans have lower makespan and fewer of actions; thus, higher quality plans achieve

their goals faster and require fewer actions. Plans with lower processing time and

memory usage require fewer computing resources.

The TFD [73] and COLIN [49] planners support temporal constraints and con-

tinuous fluents, and were adopted for the Blocks World Domain experiment. A

dynamic programming coalition formation algorithm was used [154]. COLIN [49]

is the only continuous planner that accommodates the time-varying continuous flu-

ents required for the First Response Domain. Robot Allocation through Coalitions

using Heterogeneous Non-Cooperative Agents (RACHNA) [187], a market-based

coalition formation algorithm, was used for the First Response Domain exper-

iment. The relaxed plans were generated by a relaxed COLIN planner, which

removes actions’ delete effects [49].

The experiments were performed on an Intel Xeon CPU E5-1630 v4 @ 3.70

GHz × 8 workstation with 128 GB memory, running Ubuntu 14.04.5 LTS with

the 4.4.0-89-generic Linux kernel. Third party coalition formation and planning

96

systems were compiled using the gcc/g++ compiler version 5.4.0.

Plan distance heuristics aim to estimate coupling and provide higher qual-

ity plans requiring fewer computational resources. The first hypothesis (H1) is

that the effectiveness of Task Fusion is affected by the heuristics used. The sec-

ond hypothesis (H2) is that the object oriented plan distance heuristics: Object,

Action-Object, Object-Temporal, and Action-Object-Temporal, will outperform

the baselines: the Coalition Assistance and Coalition Similarity heuristics, CFP,

and Planning Alone. The third and fourth hypothesis are that the object oriented

plan distance heuristics will result in better quality plans (H3) and will require

lower computational cost than the baseline approaches (H4).

4.4 Results

The results are presented by problem domain and planner. Method quality and

cost are represented for multiple metrics. High quality methods minimize the plans’

makespan and number of actions, while low cost methods minimize processing time

and memory usage. The concepts of Pareto Dominance and Pareto Strength [205]

were adopted for comparing methods across these metrics. Method t1 dominates

method t2 if all of t1’s metrics’ means are better than t2’s. Specifically, t1’s quality

dominates t2’s quality if both t1’s mean makespan and mean number of actions are

better than the mean makespan and mean number of actions for t2. The Pareto

Strength of a method ti is determined by the number n of methods t1, t2, · · · , tn

that ti dominates. Methods with higher Pareto Strength dominate many other

methods.

97

4.4.1 The Blocks World Domain with TFD

The Blocks World Domain with TFD planning was characterized by a positive

relationship between the evaluated metrics and the Task Fusion ratio fmax. Most

heuristics offered increasingly better success rates, plan quality, and computational

cost for larger fmax values. The improved performance saturates at high fmax

values, with virtually equivalent results being obtained for fmax = 0.75 and 1.00

across the heuristics.

The Coalition Assistance heuristic (fmax = 0.75 and 1.00) had the best plan-

ning success rates (42% and 41%, respectively) followed by Planning Alone (40%),

and the Object heuristic (fmax = 0.75 and 1.00, both 39%), as shown in Ta-

ble 4.5. Planning Alone had the highest rate of time failures (60%), followed by

the Coalition Similarity (fmax = 0.75 and 1.00, both 53%) and Coalition Assis-

tance (fmax = 0.75 and 1.00, both 52%) heuristics. CFP produced the highest

rate of nonexecutable coalitions (34%). No method exceeded the 120 GB memory

limit.

Planning Alone (PA), the Object (O) and Coalition Assistance (CA) heuristics

produced the highest success rates, as shown in Figure 4.1 (a). The Object heu-

ristic produced the second highest success rates for fmax = 0.25 and 0.50, whereas

the Coalition Assistance heuristic produced the highest success rates for fmax =

0.75 and 1.00. The Coalition Assistance heuristic, however, resulted in mediocre

makespan, number of actions, and memory usage results for all fmax values, as pre-

sented in Figure 4.1 (b), (c), and (e), respectively. Planning Alone resulted in the

98

Table 4.5: Blocks World with TFD planning results by method, fmax, and per-
centage for successfully generating a plan, nonexecutable coalition, and no plan
generated due to time failure or memory failure.

Method fmax Success Nonexecutable Time Fail

Object

0.25 38 26 36
0.50 33 29 38
0.75 39 16 45
1.00 39 16 45

Action

0.25 29 29 42
0.50 32 25 43
0.75 37 13 50
1.00 37 13 50

Action-Object

0.25 32 29 39
0.50 28 28 44
0.75 34 15 51
1.00 34 15 51

Object-Temporal

0.25 35 28 37
0.50 31 28 41
0.75 36 17 47
1.00 36 17 47

Action-Temporal

0.25 23 32 45
0.50 31 23 46
0.75 36 15 49
1.00 35 16 49

Action-Object-Temporal

0.25 28 32 40
0.50 30 25 45
0.75 36 14 50
1.00 35 15 50

Coalition Similarity

0.25 23 33 44
0.50 20 31 49
0.75 27 20 53
1.00 27 20 53

Coalition Assistance

0.25 36 22 42
0.50 28 23 49
0.75 42 6 52
1.00 41 7 52

CFP N/A 24 34 42
Planning Alone N/A 40 0 60

best makespan (Figure 4.1 b), but among the worst number of actions (Figure 4.1

c), processing time (Figure 4.1 d), and the worst memory usage (Figure 4.1 e).

99

The Action-Object (AO) heuristic produced the second best makespan and the

best number of actions for fmax = 0.50-1.00, as presented in Figure 4.1 (b) and (c),

respectively. The Action-Object-Temporal (AOT) heuristic produced the second

best number of actions for fmax = 0.50-1.00 (Figure 4.1 c) and resulted in the best

processing time and memory usage across all fmax values, as shown in Figure 4.1

(d) and (e), respectively. The Coalition Similarity (CS) heuristic resulted in the

second worst success rates and makespan for fmax = 0.75 and 1.00 (Figure 4.1 a

and b), and third worst memory usage for all fmax values (Figure 4.1 e). CFP

produced among the worst success rates, makespan, number of actions, memory

usage, and among the worst processing time.

The Pareto Strength quality, which minimizes plans’ makespan and number of

actions, was evaluated across all methods. The Action-Object heuristic (fmax =

1.00 and 0.75) produced the best and second best plan quality (Pareto Strengths 32

and 31, respectively), followed by the Action-Object-Temporal heuristic (fmax =

1.00 and 0.75), which had the third and fourth best quality (Pareto Strengths

30 and 29, respectively). The Action (fmax = 0.25), Object (fmax = 0.25), and

Coalition Similarity (fmax = 0.50) heuristics produced the lowest quality (Pareto

Strength 0). The Pareto Strength cost minimizes processing time and memory

usage. The Action-Object-Temporal heuristic (fmax = 0.75 and 1.00) resulted in

the two lowest costs (Pareto Strengths 33 and 32). Planning Alone (PA), CFP,

and the Coalition Similarity heuristic (fmax = 0.50) had the highest cost (Pareto

Strength 0). The complete Blocksworld with TFD Pareto Analysis results for

quality and cost are presented in Appendix Chapter B.1.

100

The Action-Object-Temporal heuristic is the best solution to the Blocks World

Domain with TFD, as it resulted in among the best makespan and number of

actions; and the best processing time, and memory usage. The Action-Object

heuristic is the second best, as it resulted in the best quality, but mediocre pro-

cessing time and memory usage. CFP is the worst solution, resulting in the worst

metrics.

101

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

a) Success (%)

20

30

40

S
u
cc
es
s
(%

)

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

b) Makespan

35

40

45

50

M
a
k
es
p
a
n
(s
)

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

c) Number of Actions

65

70

75

N
u
m
b
er

o
f
A
ct
io
n
s

O

A

AO

CS

CFP

OT

AT

AOT

CA

PA

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

d) Processing Time

5

10

P
ro
ce
ss
in
g
T
im

e
(m

)

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

e) Memory Usage

2

4

6

8

M
em

o
ry

U
sa
g
e
(G

B
)

Figure 4.1: Blocks World with TFD (a) success, (b) makespan, (c) number of
actions, (d) processing time, and (e) memory usage by fusion ratio (fmax). Samples
were connected to facilitate visualization.

102

4.4.2 The Blocks World Domain with COLIN

The object oriented plan distance heuristics also offered the best solution to the

Blocks World Domain with the COLIN planner. The top five success rates were

achieved by the plan distance heuristics, whereas only two of the top five best

success rates were plan distance heuristics when using TFD. The Object heuristic

presented better results with increasing fmax values.

The Object heuristic (fmax = 0.75 and 1.00) had the best success rate (both

55%), as presented in Table 4.6. The Object (fmax = 0.25, 53%) and Object-

Temporal (fmax = 0.75 and 1.00, both 52%) heuristics were second and the third

best, respectively. Planning Alone had zero nonexecutable coalitions, but had the

worst success (28%), time failure (42%), and memory failure (30%) rates. CFP

produced the most nonexecutable coalitions (34%).

The Object (O) heuristic resulted in the highest success rates across all fmax

values, as presented in Figure 4.2 (a), whereas Planning Alone (PA) produced

the worst. PA produced the best makespan (Figure 4.2 b), but among the worst

number of actions (Figure 4.2 c). The Object heuristic produced the second best

makespan, the best number of actions, and the second best processing time and

memory usage for fmax = 0.50 through 1.00, as shown in Figure 4.2 (b-e). The

Coalition Similarity (CS) heuristic generated the lowest cost (Figure 4.2 d and e),

but also produced among the worst success rates and the worst makespan, across

all fmax values (Figure 4.2 a-c).

All heuristics produced their maximum success rates for the highest fmax values,

103

Table 4.6: Blocks World with COLIN planning results.
Method fmax Success Nonexecutable Time Fail Mem Fail

Object

0.25 53 21 10 16
0.50 48 16 13 23
0.75 55 10 17 18
1.00 55 10 17 18

Action

0.25 38 29 17 16
0.50 41 22 13 24
0.75 47 15 22 16
1.00 47 15 22 16

Action-Object

0.25 49 23 12 16
0.50 46 19 13 22
0.75 50 13 21 16
1.00 50 13 20 17

Object-Temporal

0.25 48 24 14 14
0.50 47 16 14 23
0.75 52 11 20 17
1.00 52 11 19 18

Action-Temporal

0.25 43 22 18 17
0.50 43 16 17 24
0.75 45 10 29 16
1.00 45 10 29 16

Action-Object-Temporal

0.25 46 25 13 16
0.50 45 19 11 25
0.75 47 12 23 18
1.00 47 12 22 19

Coalition Similarity

0.25 37 27 17 19
0.50 38 21 17 24
0.75 43 16 22 19
1.00 43 16 22 19

Coalition Assistance

0.25 44 27 17 12
0.50 39 25 20 16
0.75 50 15 22 13
1.00 49 15 23 13

CFP N/A 38 34 12 16
Planning Alone N/A 28 0 42 30

0.75 and 1.00, as presented in Figure 4.2 (a), and resulted in monotonically better

makespan for larger fmax values, as presented in Figure 4.2 (b), meaning that

greater fmax values resulted in higher success rates for all fmax values evaluated.

104

The Object heuristic produced monotonically better makespan, number of actions,

processing time, and memory usage for greater fmax values, as presented in Figures

4.2 (b-e). The Object heuristic is the best solution to the Blocks World Domain

with COLIN, as it resulted in the best quality and second lowest cost across fmax =

0.50, 0.75, and 1.00.

The Object heuristic (fmax = 0.75 and 1.00) produced the best and sec-

ond best plan quality (both Pareto Strength 30). The Action-Object heuristic

(fmax = 0.75 and 1.00) produced the third and fourth best plan quality results

(both Pareto Strength 28), followed by the Object (fmax = 0.50) and Object-

Temporal (fmax = 0.75 and 1.00) heuristics (all Pareto Strength 24). The Coali-

tion Similarity heuristic (fmax = 0.25) produced the lowest plan quality (Pareto

Strength 0), while the Coalition Similarity heuristic (fmax = 0.50) was slightly

better (Pareto Strength 1). The Coalition Similarity heuristic produced the three

lowest cost results (Pareto Strengths 33, 31, and 30), with the best result being for

the lowest fmax value. Planning Alone and the Action heuristic (fmax = 0.50) pro-

duced the worst cost results (both Pareto Strength 0). The complete Blocksworld

with COLIN Pareto Analysis results for quality and cost are presented in Appendix

Chapter B.2.

The Object heuristic is the best solution to the Blocks World Domain with

COLIN, as it resulted in the best overall quality and second lowest cost results

across fmax = 0.50, 0.75, and 1.00. The Object heuristic offered the best success

rate and the best plan quality at the fourth lowest cost. The Action heuristic

offered the worst solution, with the worst cost, and among the worst success rates.

105

The Coalition Similarity heuristic had the lowest cost across all fmax values, but

produced the worst quality plans with among the lowest success rates. Planning

Alone had the best makespan, but resulted in the worst success rate and required

the highest cost.

106

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

a) Success (%)

30

40

50

S
u
cc
es
s
(%

)

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

b) Makespan

50

55

60

M
a
k
es
p
a
n
(s
)

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

c) Number of Actions

65

70

75

N
u
m
b
er

o
f
A
ct
io
n
s

O

A

AO

CS

CFP

OT

AT

AOT

CA

PA

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

d) Processing Time

2.5

5.0

7.5

10.0

P
ro
ce
ss
in
g
T
im

e
(m

)

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

e) Memory Usage

10

20

M
em

o
ry

U
sa
g
e
(G

B
)

Figure 4.2: Blocks World with COLIN (a) success, (b) makespan, (c) number of
actions, (d) processing time, and (e) memory usage by fusion ratio (fmax). Samples
were connected to facilitate visualization.

107

4.4.3 The First Response Domain

The more complex First Response Domain presented noisier results, compared to

the Blocks World Domain. Planning Alone exceeded the processing time limit for

all problems, resulting in no plans. The plan distance heuristics produced bet-

ter results for intermediary fmax values, whereas the baseline heuristics, Coalition

Similarity and Coalition Assistance, performed better for lower fmax values. Mono-

tonically worsening success, makespan, number of actions, and memory usage were

observed for larger fmax values for most baseline methods, while most plan distance

heuristics presented convex curves.

The Coalition Similarity heuristic (fmax = 0.25) produced the best planning

success rate (73%), as shown in Table 4.7. The Coalition Similarity (fmax = 0.50)

and Action-Object-Temporal (fmax = 0.25) heuristics were the second best (both

66%), followed closely by the Object-Temporal heuristic (fmax = 0.50, 65%). The

Object heuristic (fmax = 0.25) produced the highest rate of nonexecutable coali-

tions (35%), the Coalition Assistance heuristic (fmax = 1.00) produced the highest

rate of time failures (56%), and the Object heuristic (fmax = 0.75) produced the

most memory failures (10%).

Many methods performed best for the intermediary fmax values, 0.50 and 0.75,

in the First Response Domain, whereas most methods generated best results for

the boundary fmax values, 0.25 and 1.00, in the Blocks World Domain. The Ob-

ject (O) and Object-Temporal (OT) heuristics produced their best success rates

for fmax = 0.50, as shown in Figure 4.3 (a), and produced their best makespan,

108

Table 4.7: First Response planning results.
Method fmax Success Nonexecutable Time Fail Mem Fail

Object

0.25 56 35 8 1
0.50 61 25 10 4
0.75 33 24 33 10
1.00 44 10 45 1

Action

0.25 51 20 29 0
0.50 33 20 42 5
0.75 29 20 51 0
1.00 33 12 52 3

Action-Object

0.25 57 30 10 3
0.50 59 20 21 0
0.75 42 20 34 4
1.00 59 10 29 2

Object-Temporal

0.25 59 24 13 4
0.50 65 22 12 1
0.75 43 28 23 6
1.00 43 10 47 0

Action-Temporal

0.25 58 30 9 3
0.50 57 22 19 2
0.75 44 20 36 0
1.00 39 10 51 0

Action-Object-Temporal

0.25 66 20 11 3
0.50 62 23 13 2
0.75 48 17 35 0
1.00 34 11 55 0

Coalition Similarity

0.25 73 20 4 3
0.50 66 16 16 2
0.75 44 26 28 2
1.00 47 18 32 3

Coalition Assistance

0.25 46 23 31 0
0.50 41 18 40 1
0.75 31 15 54 0
1.00 31 13 56 0

CFP N/A 62 32 5 1

number of actions, processing time, and memory usage for fmax = 0.75, as indi-

cated in Figures 4.3 (b-e), respectively. The Action-Object (AO) heuristic pro-

duced its best success rate, processing time, and memory usage for fmax = 0.50,

as shown in Figures 4.3 (a), (d), and (e), respectively, and produced its best

109

makespan and number of actions for fmax = 0.75, as shown in Figures 4.3 (b)

and (c), respectively. The success rates produced by the Action-Temporal (AT),

Action-Object-Temporal (AOT), and Coalition Assistance (CA) heuristics mono-

tonically decreased for greater fmax values, as presented in Figure 4.3 (a). The

Action-Object-Temporal (AOT) heuristics produced monotonically lower (better)

makespan and fewer actions for larger fmax values, as shown in Figure 4.3 (b and c,

respectively). The Action-Temporal (AT) and Coalition Similarity (CS) heuristics

produced monotonically worse processing times and memory usage for greater fmax

values, as indicated in Figure 4.3 (d and e, respectively). CFP resulted in among

the best success rates, the best processing time and memory usage, but among the

worst makespan and number of actions.

The Object heuristic (fmax = 0.75) produced the overall best plan quality

(Pareto Strength 32), dominating all methods. The Object-Temporal heuristic

(fmax = 0.75) had the second best plan quality (Pareto Strength 30), followed

by the Action-Object (fmax = 0.75), Action-Object-Temporal (fmax = 1.00) and

Object-Temporal (fmax = 1.00) heuristics (all Pareto Strength 28). The Coalition

Similarity (fmax = 0.50 and 1.00), Coalition Assistance (fmax = 1.00), and Action-

Temporal (fmax = 0.75) heuristics had the lowest plan quality (all Pareto Strength

0). CFP produced the lowest cost (Pareto Strength 32), dominating all other

methods. The Coalition Similarity heuristic (fmax = 0.25) had the second lowest

cost (Pareto Strength 31), followed by the Object heuristic (fmax = 0.75, Pareto

Strength 30). The complete First Response Pareto Analysis results for quality and

cost are presented in Appendix Chapter B.3.

110

The Object (O) heuristic with fmax = 0.75 was the best solution to the First

Response Domain, which provided among the lowest success rates, but the best

makespan, number of actions, and processing time. The action oriented plan dis-

tance heuristics, Action and Action-Temporal, offered mediocre results and did

not provide the best solution to any of the domains and planners evaluated. The

Coalition Assistance heuristic with fmax = 0.75 was the worst solution, with the

second lowest success rate, and among the quality and cost results.

111

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

a) Success (%)

40

60

S
u
cc
es
s
(%

)

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

b) Makespan

60

80

M
a
k
es
p
a
n
(s
)

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

c) Number of Actions

125

150

175

200

N
u
m
b
er

o
f
A
ct
io
n
s

O

A

AO

CS

CFP

OT

AT

AOT

CA

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

d) Processing Time

5

10

P
ro
ce
ss
in
g
T
im

e
(m

)

0.25 0.50 0.75 1.00

Fusion Ratio (fmax)

e) Memory Usage

0.0

2.5

5.0

7.5

M
em

o
ry

U
sa
g
e
(G

B
)

Figure 4.3: First Response (a) success, (b) makespan, (c) number of actions, (d)
processing time, and (e) memory usage by fusion ratio (fmax). Samples were
connected to facilitate visualization.

112

4.5 Discussion

The proposed heuristics significantly outperform the baseline methods in the re-

sulting plans’ quality and offers a better trade-off between quality and processing

cost. While other existing methods make constraining assumptions, such as requir-

ing serial plan execution, or requiring a specific planning algorithm, the framework

is demonstrated to outperform baselines on both planning algorithms used.

The First Response Domain has an underlying routing problem, in that robots

must travel across locations in order to perform their location-dependent tasks,

such as navigating to a victim before triaging said victim. The randomly dis-

tributed victim locations result in a wide variety of complex routing problems,

which is a possible cause for the larger variance across the various metrics when

compared to the Blocks World Domain. Faster routes involving multiple short

hops generate more actions than slower routes with fewer long hops. The number

of possible alternative routes across the locations’ graph connecting the multiple

points of interest is larger. Allocating different tasks to different robots can result

in plans with a wider variety of makespans and number of actions, due to the fact

that the allocated robots perform different paths to achieve their tasks, depending

on the robots’ initial locations. The distances traveled by robot arms are more

uniform in the Blocks World Domain, as there are only two block sizes.

The hypothesis H1 stated that the effectiveness of Task Fusion is affected by the

heuristics used, which was supported across all experiments. The heuristics had

a profound impact on the Task Fusion effectiveness, with the choice of heuristic

113

resulting in success rates ranging from the lowest to the highest. The fusion ratio,

fmax, also impacted Task Fusion by limiting the number of fused coalition-task

pairs. The lower fmax values attenuated the negative impacts of the bad heuris-

tics, whereas the higher values enhanced the effectiveness of the good heuristics.

The best-performing heuristics had a positive relationship with increasing fmax.

The Action-Object-Temporal heuristic performed generally better for larger fmax

values, whereas the Coalition Similarity heuristic performed the worst.

Hypothesis H2 stated that the object oriented plan distance heuristics, Ob-

ject, Action-Object, Object-Temporal, and Action-Object-Temporal, outperform

the baselines: Coalition Assistance and Coalition Similarity heuristics, CFP, and

Planning Alone, which was supported. The best solution for each domain and

planner was produced by object oriented plan distance heuristics, which account

for logical objects common across the task plans to identify and fuse tightly cou-

pled tasks. Task Fusion increases coalition size, which increases the search space;

thus, increasing the computational costs. However, when two tightly coupled tasks

are fused, the actions accomplishing one task often contribute to achieving states

necessary to achieve the other task.

The third hypothesis, H3, was supported, as the Object and Action-Object

heuristics offered the best quality plans across the evaluated domains and plan-

ners. The relaxed plan logical objects provide an accurate estimate of the utility

of fusing coalition-task pairs. Detecting and fusing tightly coupled coalition-task

pairs facilitates planning for tasks that require explicit cooperation between robots.

Robots explicitly cooperate and accomplish tasks faster when tightly coupled tasks

114

are fused. The Coalition Assistance and Coalition Similarity heuristics fuse tasks

based on coalition formation capabilities and fail to account for task planning ele-

ments, such as plan actions and logical objects. Tightly coupled tasks are planned

separately and the outcomes of one task increase the planning complexity for other

tasks, resulting in worse plan quality.

The final hypothesis, H4, was not supported, as no method dominated costs

across all experiments. The object oriented plan distance heuristics resulted in

lower costs compared to the baseline methods for the Blocks World Domain with

TFD, but were superseded by the Coalition Similarity heuristic for the same do-

main with COLIN. Further, the Coalition Similarity heuristics’ low cost results are

associated with the worst plan quality. The object oriented plan distance heuris-

tics resulted in better costs compared to the Coalition Assistance heuristic for all

domains and planners, which provides some support for hypothesis H4.

The dissertation extended and applied distance heuristics δ(πi, πj) as Task Fu-

sion heuristics H(πi, πj), related by the formula H = 1 − δ. The existing action

oriented plan distance heuristic [116] was extended to include plans’ logical ob-

jects and used lists instead of sets to account for repeated instances. Plans often

include repeated instances of actions and logical objects (i.e., the same block is

handled multiple times to achieve a task in the Blocks World Domain, or the same

location is visited to rescue victims in the First Response Domain). Accounting

for the repeated instances of actions and logical objects allows more accurate cou-

pling estimation. Tightly coupled tasks require robots to handle the same blocks

and transition through the same locations more often, increasing the likelihood for

115

dependencies and conflicts. The object oriented plan distance heuristics outper-

formed the action oriented plan distance heuristics across most evaluated metrics,

domains, and planners. Using lists of logical objects represents a potential contri-

bution to diverse planning, which needs to be evaluated as future work.

The heuristics contribute to a more informed task allocation. Coalition for-

mation models operate on robot and task capabilities, but lack planning domain

information. The plan distance heuristics use relaxed plans in order to intro-

duce planning domain information into the task allocation process. The added

planning domain information supports more accurately estimating the value of

fusing coalition-task pairs and results in improved task allocation. The heuristics

also contribute to estimating coupling between planning problems. Determining

the exact problem coupling by computing the treewidth of the agent interaction

graph is an NP-hard problem [18]. The heuristics offer an approximate alternative,

which is polynomial on the number of actions and objects in the problem’s plan:

O(|Li| · |Lj|), where |Li| and |Lj| are list sizes for action-object lists Li and Lj,

respectively.

4.6 Conclusion

The plan distance heuristics were introduced to provide a better balance between

plan quality and the required processing resources, when planning for multiple

heterogeneous robots in complex real-world time-sensitive domains. The heuristics

estimate plan distance as a proxy for estimating coalition-tasks coupling. The level

of coupling determines which coalition-tasks pairs to fuse, after robots are grouped

116

into coalitions and allocated tasks. Fusing coupled tasks improves plan quality

by increasing cooperation between robots, while separating loosely coupled tasks

reduces plan synthesis cost. The heuristics use lists of logical object instances,

extracted from the plans’ action description arguments, to reveal nuances ignored

by existing Task Fusion heuristics.

The plan distance heuristics combine aspects of problem coupling and plan

distance estimation to improve task allocation. The heuristics generally outperform

baselines in both plan quality and computational costs. The cases in which the

heuristics do not perform strictly better still offer a better balance between plan

quality and computational cost. As a result, larger planning problems, which

involve more tasks, robots, and logical objects, can be solved.

The Task Fusion heuristics faciliated better coordination before planning, while

using planners that support temporal constraints and continuous fluents. However,

better coordination after planning is necessary to further improve plan quality,

minmize makespan, and scale to large numbers of agents and tightly coupled tasks.

117

Chapter 5: Scalable Temporal Plan Merging

Coordination before planning facilitates decoupling tasks; however, complex real-

world domains prevent complete task decoupling and can result in tightly coupled

tasks, causing conflicts between individual plans. Tightly coupled tasks require

plan merging methods to mitigate conflicts that arise when the actions of one plan

modify the environment and prevent another plans’ actions from succeeding [52].

Previous plan merging algorithms, such as the PMA, described in Chapter 2.3.4,

fail to scale and solve complex problems for a growing number of robots and tightly

coupled tasks. The Solution Test Algorithm (STA) [52], Algorithm 5.1, is a com-

ponent of the PMA and was reformulated for this dissertation as an independent

merging algorithm.

The STA solves plan conflicts iteratively and adds temporal and causal orders

to derive a conflict-free plan. Each conflict resolved generates a new plan, which is

added to a priority search queue for further refinement, and the first conflict-free

plan encountered is returned.

The STA uses the most-constrained conflicts first heuristic [136] and orders

the priority queue using the number of conflict solutions [52]. Cyclical plans are

discarded and a null (empty) plan is derived when the conflicts encountered cannot

be resolved. Serial plan synthesis guarantees that the conflicts between plans can

be resolved, and prevents the derivation of a null plan. STA requires supporting

algorithms to identify and resolve conflicts. STA invokes conflict identification

118

Data: A (conflicted) plan π, consisted of a list of m multiagent plans, Π
= 〈π1, . . . , πm〉;

Result: A conflict-free plan π or null;
1 Add multiagent plan π to the queue;
2 while the queue is not empty do
3 Pop plan π from the queue;
4 if plan π is not cyclical then
5 Identify conflicts K = {κ1, . . .} in plan π;
6 if there are conflicts in plan π then
7 foreach conflict κ ∈ K do
8 Identify solutions S = {s1, . . .} to conflict κ;
9 foreach solution s ∈ S do

10 Apply solution s to produce plan s(π) = πs;
11 Compute priority f(πs) = |S|, the number of solutions to

conflict κ;
12 Enqueue plan πs with priority f(πs);

13 else return conflict-free plan π ;

14 return null;
Algorithm 5.1: The Solution Test Algorithm, a component of PMA [52],
extracted and reformulated as a standalone plan merging algorithm.

algorithms (line 5) to identify open preconditions and causal conflicts. STA later

invokes conflict resolution algorithms (line 8) to identify solutions for each conflict.

The worst case time complexity is O((|K| · |S|)n), where |K| is the number of

conflicts identified per iteration, |S| is the number of solutions to each conflict,

and n is number of successive conflicts resolved in the resulting conflict-free plan

π. The number of conflicts and solutions identified is dependent on the conflict

models employed by the conflict identification and resolution algorithms, which

are formalized in Chapter 5.1. The STA scales better than the PMA, but does

not minimize makespan [52]. Reductions in makespan can make the difference

between mission success or failure. The resulting plan’s makespan determines the

119

time taken to accomplish a plan’s goals, a key factor in real-world problems.

The Temporal Optimal Conflict Resolution Algorithm (TCRA∗), developed for

this dissertation, optimally minimizes makespan, but early trials did not scale to

a large number of tasks in complex problems [102]. The success rates were signifi-

cantly impaired and most experiments failed due to the high computational costs.

The conflict identification and resolution algorithms adopted were the limiting fac-

tor and severely impacted performance. New algorithms, complexity analysis, and

experiments, show that STA and TCRA∗ can scale to large problems using the ad-

equate conflict resolution models. The results show that the original algorithms’

performance was hindered by the previous conflict identification algorithms. The

new algorithms allow STA and TCRA∗ to scale and solve problems with an in-

creasing number of agents and tasks.

5.1 Conflict Identification and Resolution

The conflict identification and resolution algorithms have a profound impact on

the overall plan merging’s computational cost. Search algorithms perform conflict

identification and resolution many times when merging plans. The computational

cost of identifying conflicts and solutions depends on the underlying assumptions

made about conflicts. Such underlying assumptions are formalized and two in-

dividual conflict models are presented. The models and algorithms that identify

conflicts and conflict solutions are summarized in Table 5.1. The assumptions nec-

essary to identify open preconditions are formalized, followed by a presentation of

the Open Precondition Identification Algorithm.

120

Table 5.1: Conflict Identification and Resolution Overview.
Open Preconditions Causal Conflicts

Identify Conflicts Chapter 5.1.1, Algorithm 5.2 Chapter 5.1.3, Algorithm 5.4
Identify Solutions Chapter 5.1.2, Algorithm 5.3 Chapter 5.1.4, Algorithm 5.5

5.1.1 Open Precondition Identification

Open precondition identification, performed by Algorithm 5.2, requires evaluating

each plan action precondition. Each action, a ∈ A (line 2), and each action pre-

condition, c ∈ pre(a) (line 3), is evaluated. Action preconditions not satisfied by

a causal order (line 4) generate an open precondition (line 5).

Data: A plan π = 〈A,≺T ,≺C〉;
Result: The set of open preconditions Ko = {κo1, . . .} in plan π;

1 Initialize an empty set of open preconditions Ko = {};
2 foreach action a ∈ A do
3 foreach condition c ∈ pre(a) do
4 if a0 ≺c a /∈ ≺C then
5 Add open precondition κo = 〈a, c〉 to the set Ko;

6 return the set of open preconditions Ko;
Algorithm 5.2: Open Precondition Identification.

The worst case time complexity is O(|A| · maxa∈A |pre(a)|), where |A| is the

number of plan actions and maxa∈A |pre(a)| is the maximum number of precondi-

tions per action.

5.1.2 Open Precondition Resolution

The Open Precondition Resolution Algorithm, Algorithm 5.3, evaluates all viable

solutions and produces an independent new plan for each solution. The algorithm’s

121

inputs are a plan π and an open precondition κo = 〈a, c〉, which consists of an action

a and a condition c.

Data: A plan π = 〈A,≺T ,≺C〉 and an open precondition κo = 〈a, c〉;
Result: A set of plans Π = {π1, . . .} that implement all solutions to κo;

1 Initialize an empty set of plans Π = {};
2 foreach action ai ∈ A do
3 if condition c ∈ eff(ai) then
4 Add a causal order ai ≺c a to ≺C , generating plan πi;
5 Add plan πi to the set Π;

6 return the set of plans Π;
Algorithm 5.3: The Open Precondition Resolution Algorithm.

A causal order ai ≺c a (line 4) is introduced for each action ai (line 2), if

action ai produces condition c, c ∈ eff(ai) (line 3). Each introduced causal order

produces a new solution plan πi, as presented in Algorithm 5.3 lines 4 and 5.

Algorithm 5.3’s worst case time complexity is O(|A|), where |A| is the number

of plan actions. Causal conflicts require more intricate models and assumptions

than open preconditions. Two distinct models that identify causal conflicts are

presented.

5.1.3 Causal Conflict Identification

Causal Conflict Identification requires defining ordered away actions. Causal con-

flicts occur when a causal order’s actions, ai and aj, are threatened by the effects

of another action a. A threatening action, a, is ordered away from the threatened

actions, ai and aj, if there are temporal orders ensuring that action a is executed

before action ai or after action aj. Two causal conflict models, direct and transitive,

122

exist to determine if an action is ordered away.

The transitive model accounts for temporal order transitivity, while the direct

model does not. Transitivity implies that if action ai ≺ aj and aj ≺ ak, then ai

≺ ak. The transitive model requires transitive ordering between actions a and

ai, a≺. . .≺ai, or between actions aj and a, aj≺. . .≺a. Multiple temporal orders

can be introduced to satisfy the transitive model ordering criteria, as there can be

many temporal orders between actions a and ai that satisfy a≺. . .≺ai. The direct

model is more strict and requires a direct temporal order between actions a and

ai, a ≺ ai ∈ ≺T , or between actions aj and a, aj ≺ a ∈ ≺T .

The Boolean function orderedAway(a, ai, aj) encapsulates each model’s as-

sumptions in order to indicate whether action a is ordered away from actions ai

and aj. The transitive model orderedAway(·) function is orderedAway(a, ai, aj)

= a≺. . .≺ai ∨ aj≺. . .≺a and accounts for the transitive orders between the threat-

ening and the threatened actions. For example, a ≺ ai, a ≺ ax ≺ ai, and a ≺ ax

≺ ay ≺ ai, all satisfy orderedAway(·).

The direct model orderedAway(·) function is orderedAway(a, ai, aj) = a ≺ ai

∈ ≺T ∨ aj ≺ a ∈ ≺T and requires the set of temporal orders, ≺T , to include

orders directly between the threatening and the threatened actions. For example,

a ≺ ai satisfies orderedAway(·), but a ≺ ax ≺ ai and a ≺ ax ≺ ay ≺ ai do not.

The differences between the two models result in a different number of identified

conflicts.

A causal conflict is identified between an action a and a causal order ai ≺c aj

if two criteria are met: Action a negates condition c, ¬c ∈ eff(a), and action

123

a is not ordered away from the causal order’s actions ai and aj. The Causal

Conflict Identification Algorithm, Algorithm 5.4, evaluates each causal order ai ≺c

aj (line 2) and each action a of plan π (line 3). Actions a that negate condition

c, ¬c ∈ eff(a), and are not ordered away from the causal order’s actions (line 4)

generate a causal conflict (line 5).

Data: A plan π = 〈A,≺T ,≺C〉;
Result: The set of causal conflicts Kc = {κc1, . . .} in plan π;

1 Initialize an empty set of causal conflicts Kc = {};
2 foreach causal order ai ≺c aj ∈ ≺C do
3 foreach action a ∈ A, do
4 if ¬c ∈ eff(a) and ¬ orderedAway(a, ai, aj) then
5 Add causal conflict κc = 〈a, ai ≺c aj〉 to the set Kc;

6 return the set of causal conflicts Kc;
Algorithm 5.4: The Causal Conflict Identification Algorithm.

Algorithm 5.4’s worst case time complexity is O(| ≺C | · |A| ·

O(orderedAway(·))), where | ≺C | is number of causal orders and |A| is the num-

ber of plan actions. The orderedAway(·) function’s worst case time complexity is

dependent on the conflict model.

The transitive model orderedAway(·) function’s worst case time complexity is

O(|A| · | ≺T |), where |A| is the number of actions and | ≺T | is the number of

temporal orders, as a reachability search is necessary to determine if two actions

are ordered transitively [161]. Thus, the overall causal conflict identification (Al-

gorithm 5.4) worst case time complexity is O(| ≺C | · |A|2 · | ≺T |) using the

transitive model. The direct model orderedAway(·) function’s worst case time

complexity is constant and the overall causal conflict identification’s worst case

124

time complexity is O(| ≺C | · |A|). The two causal conflict models also impact the

number of identified solutions for each conflict.

5.1.4 Causal Conflict Resolution

Causal conflict solutions introduce two sets of temporal orders to order action a

away from actions ai and aj. The first set orders action a before action ai. The

direct model introduces the temporal order a ≺ ai, whereas the transitive model

introduces all the temporal orders that satisfy a≺. . .≺ai. The second set of tempo-

ral orders place action a after action aj. The direct model introduces the temporal

order aj ≺ a, whereas the transitive model introduces all the temporal orders that

satisfy aj≺. . .≺a. The functions prefix(a, ai) and posfix(a, aj) encapsulate the

described model assumptions in order to generate the actions that compose each

set of temporal orders.

The Causal Conflict Resolution Algorithm, Algorithm 5.5, introduces the two

sets of temporal orders and generates independent solution plans. Each action

ak produced by the function prefix(a, ai) (line 2) introduces a temporal order

a ≺ ak and generates a new solution plan (line 3). Each action ak produced by the

function posfix(a, aj) (line 5) introduces a temporal order ak ≺ a and generates a

new solution plan (line 6).

The transitive model prefix(a, ai) function produces action ai and all the ac-

tions ordered before action ai that are not ordered before action a, {ai, ak}, ∀ ak

∈ {ak ≺ ai} − {ak ≺ a}. The temporal orders are introduced between action a

and the actions that precede action ai, {ak ≺ ai}, causing action a to be ordered

125

Data: A plan π = 〈A,≺T ,≺C〉 and a causal conflict κc = 〈a, ai ≺c aj〉;
Result: A set of plans Π = {πi, πj} that implement all solutions to κc;

1 Initialize an empty set of plans Π = {};
2 foreach action ak ∈ prefix(a, ai) do
3 Add a temporal order a ≺ ak to ≺T , generating plan πk;
4 Add plan πk to the set Π;

5 foreach action ak ∈ posfix(a, aj) do
6 Add a temporal order ak ≺ a to ≺T , generating plan πk;
7 Add plan πk to the set Π;

8 return the set of plans Π;
Algorithm 5.5: The Causal Conflict Resolution Algorithm.

away from actions ai and aj. Cyclic ordering is prevented by excluding actions

that precede action a, {ak ≺ a}.

The transitive model posfix(a, aj) function produces action aj and all the ac-

tions ordered after action aj that are not ordered after action a, {aj, ak}, ∀ ak ∈

{aj ≺ ak} − {a ≺ ak}. The temporal orders introduced between action a and

the actions that succeed action aj, {aj ≺ ak}, resolve the causal conflict due to

the transitive property. The exclusion of actions ak that succeed the threatening

action a, {a ≺ ak}, prevents the introduction of cycles. The resulting direct model

algorithm’s worst case time complexity is given by O(|A|), where |A| is the number

of actions of the input plan π.

The direct model prefix(·) and posfix(·) functions produce actions ai and aj,

respectively. The worst case time complexity is constant for both functions, and

the resulting conflict resolution algorithm’s worst case time complexity is constant

(O(1)).

126

5.1.5 Conflict Models and the Overall Plan Merging Computational

Cost

The conflict identification and resolution algorithms’ worst case time complexities,

presented in Chapters 5.1.1-5.1.4, are summarized in Table 5.2. The direct model’s

causal conflict worst case time complexity is better than the transitive model’s,

both for conflict identification and resolution. However, the impact of each model

on the overall plan merging computational cost is dependent on an additional fac-

tor. The number of conflicts identified, |K|, and the number of solutions to each

conflict, |S|, impact the plan merging worst case time complexity. The causal con-

flict models identify different numbers of conflicts and solutions. The direct model

identifies more conflicts than the transitive model, as fewer threatening actions are

considered to be ordered away. The direct model identifies fewer solutions for each

conflict, when compared to the transitive model.

Table 5.2: Conflict Identification and Resolution Worst Case Time Complexity per
Conflict Model.

Conflict Model Identification Resolution
Open Precondition N/A O(|A| · maxa∈A |pre(a)|) O(|A|)

Causal Conflict
Transitive Model O(| ≺C | · |A|2 · | ≺T |) O(|A|)

Direct Model O(| ≺C | · |A|) O(1)

The balance between the number of conflicts and solutions identified varies per

conflict model and problem domain. The overall plan merging computational cost

is an emergent property that results from the complex interactions between the

conflict models and the merging algorithms’ computational cost. An empirical

evaluation, presented in Chapters 5.3 and 5.4, compared each method across ran-

127

domly generated problems. The overall plan merging computational cost can also

be reduced by applying a transitive closure, which discards redundant plans.

5.1.6 Transitive Closure

Plan merging algorithms, such as STA (Algorithm 5.1), search the space of plans,

while identifying plans’ conflicts and conflict solutions. Each conflict solution gen-

erates a new plan, which is added to the algorithms’ search queue. Many plans

are transitively equivalent and can be discarded, reducing the search space, and

minimizing the overall computational cost. The transitive closure [96] can be ap-

plied before plans are enqueued in order to discard redundant plans, as transitively

equivalent plans result in the same plan after closure.

The transitive closure introduces temporal orders ≺ between all transitively

connected plan actions. Plan actions ai and aj are transitively connected if there

is a path between action ai and aj, ai ≺ . . . ≺ aj [20]. The transitive closure can

be performed with O(|A| · | ≺T |) worst case computational complexity, where |A|

is the number of actions and | ≺T | is the number of temporal orders [92].

The empirical evaluation, presented in Chapters 5.3 and 5.4, compares the

effects of the transitive closure on the resulting plans. Chapter 5.2 introduces the

Temporal Optimal Conflict Resolution Algorithm (TCRA∗) [102], which merges

multiagent plans while minimizing the resulting makespan with quality guarantees.

128

5.2 Temporal Plan Coordination

Accounting for durative actions, while merging loosely and tightly coupled multi-

ple robot plans, is necessary to minimize makespan. The Multiagent Plan Coor-

dination Problem (MPCP) is extended to incorporate durative actions and min-

imize makespan. The Temporal MPCP (TMPCP) is a tuple 〈I,G, πI〉, where

I = {i1, . . .} is the set of initial conditions, G = {g1, . . .} is the set of goal

conditions, and πI is the initial plan, which consists of a list Π = 〈π1, . . . , πm〉

of m multiple robot plans. TMPCP plans’ actions are defined by the tuple

〈pre(·), eff(·), dur(·)〉, where pre(a) is a set of preconditions that must hold during

action a’s execution, eff(a) is the set of effects caused by action a’s execution, and

dur(a) is action a’s execution duration, the amount of time necessary to execute

the action. A solution to a TMPCP is a conflict-free plan, π, that satisfies all goal

conditions in G when executed from the set of initial conditions, I. All the actions

of a solution plan π are drawn from the multiple robot plans, Π. No actions are

added or removed.

A plan’s path is a series of actions chained by temporal orders, P = 〈 a1, . . .

〉. A path’s length, l(P), is the sum of the action durations, l(P) =
∑

a∈P dur(a).

The makespan, m(π), is the length of π’s longest path, m(π) = maxP∈π l(P), that

represents the time necessary to execute all of plan π’s actions. An optimal solution

plan, π∗, results in a makespan m(π∗) less than, or equal to the makespan of any

conflict-free plan π generated after solving n successive conflicts in the initial plan,

m(π∗) ≤ m(π) ∀ π ∈ sn(πI).

129

A Logistics example involves an autonomous semi-tractor-trailer truck (a), a

human driven truck (m), and two delivery tasks. Current autonomous semi-trucks

are restricted to interstate highways and are not permitted in urban traffic [158].

The trailers are transferred to human driven trucks before entering cities. Trailers

1 and 2 must be transported from a factory, via a highway, to an urban warehouse.

Trucks can only transport one trailer at a time and exchange trailers at a transfer

hub outside the city. Plans are generated individually for each delivery task, as

shown in Figure 5.1. The plan for task 1 results in truck a bringing trailer 1 from

the factory to the hub in 3 hours (1a, 3h), followed by truck m moving trailer 1 to

the warehouse (1m, 1h). The plan for task 2 involves truck m returning to the hub

(2mi , 1h), while truck a transports trailer 2 (2a, 3h), followed by truck m moving

trailer 2 to the warehouse (2mii , 1h). The plans can be merged to accomplish both

tasks.

Input
Task Plans Serial STA TCRA*

3h

3h

3h

3h3h

3h

3h

3h

1h

1h

1h
1h

1h

1h

1h

1h

1h 1h

1h

1h

Figure 5.1: Illustrative Logistics problem and results for Serial, STA, and TCRA∗.
Task 1 actions shaded.

The Serial Algorithm, Algorithm 5.6, a TMPCP Solution, introduces temporal

orders in order to serialize the multiple robot plan execution. The Serial Algorithm

assumes the multiple robot plans were synthesized serially, and can be merged into

130

a conflict-free plan when executed serially. The worst case computational time

complexity is O(m · |Am|2), where m is the number of multiple robot plans in the

multiple robot plan list, Π, and |Am| is the maximum number of actions in each

multiple robot plan. The Serial Algorithm strictly orders plan π2’s actions after

plan π1’s, as shown in Figure 5.1, resulting in a 8 hour makespan.

A second solution for TMPCP is the STA (Algorithm 5.1), which does not

necessarily minimize the resulting plans’ makespan, making it suboptimal. STA

results in truck a serially fetching both trailers to the hub, followed by truck m

serially delivering both trailers, resulting in a 9 hour makespan.

Data: A (conflicted) plan π, consisted of a list of m multiple robot plans,
Π = 〈π1, . . . , πm〉;

Result: A conflict-free plan π;
1 foreach plan πk in plan list Π do
2 foreach action ai in plan πk do
3 foreach action aj in plan πk+1, where plan πk+1 succeeds plan πk

in the multiple robot plan list Π do
4 Add temporal order ai ≺ aj to plan π;

5 return the resulting plan π;
Algorithm 5.6: The Serial algorithm.

The Temporal Optimal Conflict Resolution Algorithm (TCRA∗) employs an

A∗ search to guarantee completeness and minimize makespan, as presented in

Algorithm 5.7. TCRA∗ is similar to STA, in that both algorithms search the space

of plans in order to solve conflicts iteratively and result in a conflict-free plan.

STA and TCRA∗ have worst case computational time complexity O((|K| · |S|)n),

where |K| is the number of conflicts identified per iteration, |S| is the number of

solutions to each conflict, and n is number of successive conflicts resolved in the

131

resulting conflict-free plan π.

Data: A (conflicted) plan π, consisted of a list of m multiple robot plans,
Π = 〈π1, . . . , πm〉;

Result: A conflict-free plan π or null;
1 Add input plan π to the queue;
2 while the queue is not empty do
3 Pop plan π from the queue;
4 if plan π is not cyclical then
5 Identify conflicts K = {κ1, . . .} in plan π;
6 if there are conflicts in plan π then
7 foreach conflict κ ∈ K do
8 Identify solutions S = {s1, . . .} to conflict κ;
9 foreach solution s ∈ S do

10 Apply solution s to produce plan s(π) = πs;
11 Compute f(πs) = m(πs) + ε · h(πs);
12 Enqueue plan πs with priority f(πs);

13 else return conflict-free plan π ;

14 return null;
Algorithm 5.7: The Temporal Optimal Conflict Resolution Algorithm
(TCRA∗).

TCRA∗ performs a uniform-cost search and employs an admissible heuristic to

minimize makespan and guarantee optimality. Plan π’s priority, f(π), is defined by

the plan’s makespan, m(π), and the admissible search heuristic, h(π). The heuristic

can be multiplied by a relaxation scalar ε > 1 in order to generate approximate

results and produce plans faster. The TCRA∗ algorithm is reduced to a uniform

cost search when ε = 0. The TCRA∗ search space can be minimized by performing

the transitive closure before plans are enqueued, in the same way as STA. TCRA∗

parallelizes both trucks’ actions, as shown in Figure 5.1, resulting in a 7 hour

makespan.

132

TCRA∗’s admissible heuristic estimates the costs of a given plan π in order

to guide the TCRA∗ search. A plan π has a set of conflicts K = {κ1, . . .}. All

conflicts K must be addressed, so the cost of π is at least as high as the cost of

the most costly conflict; therefore, f(π) = max(K) = max(f(κ1), . . .) is an

underestimate. Each conflict κ ∈ K has a set of solutions S = {s1, . . .}. The cost

of conflict κ can be as low as the cost of the least costly solution; thus, the cost

of κ is underestimated by f(κ) = min(S) = min(f(s1), . . .). Each solution s

generates a new plan, πs, whose cost is greater than or equal to its makespan, f(πs)

≥ m(πs). The makespan m(πs) is an underestimate of the cost of s, f(s) = m(πs).

The estimate cost f(π) = max(min(m(πs1), . . .), . . .), is an underestimate,

and the heuristic h(π) = f(π) - m(π) is admissible.

TCRA∗’s optimality is supported by the additive property of conflict resolution,

which adds, but does not remove temporal orders. TCRA∗’s priority queue expands

a plan π∗ before a plan π, if m(π∗) ≤m(π). Successive conflict resolution iterations

can increase, but cannot decrease π’s makespan. Thus, π’s makespan and the

makespan of all successors of π will have a makespan greater than or equal to

the makespan of π∗. The makespan of the resulting plan, π∗, is better than the

makespan of any other satisficing plan; thus, TCRA∗ is optimal with respect to

the resulting plan’s makespan. The optimality proof follows.

Lemma 1 establishes that adding a temporal order generates a new plan with

greater than or equal makespan.

Lemma 1. Let π denote a plan and let ≺ denote a temporal order added to π,
producing a new plan π1. Then m(π) ≤ m(π1).

Proof. Let π’s longest path be P . Add a temporal order ≺ to π, forming a new

133

path P1 in the resulting plan, π1.
If l(P1) > l(P), then π1’s longest path is P1 and

m(π1) = l(P1)

> l(P)

> m(π).

If l(P1) ≤ l(P), then π1’s longest path is P and

m(π1) = l(P)

= m(π)

Solving an open precondition adds a temporal order, generating a new plan

with greater than or equal makespan.

Lemma 2. Let κo denote an open precondition of plan π. Let s denote a solution
to κo that adds a temporal order ≺ to plan π, producing a new plan s(π) = π1.
Then m(π) ≤ m(π1).

Proof. The proof follows from Lemma 1.

Solving a causal conflict adds a causal order, which is an extended temporal

order, and generates a new plan with greater than or equal makespan.

Lemma 3. Let κc denote a causal conflict of plan π. Let s denote a solution to
κc that adds a causal order ≺c to plan π, producing a new plan s(π) = π1. Then
m(π) ≤ m(π1).

Proof. A causal order ≺c is an extended temporal order; thus, the proof follows
from Lemma 1.

Solving a conflict generates a new plan with greater than or equal makespan.

Lemma 4. Let κ denote a conflict of plan π. Let s denote a solution to κ,
producing a new plan s(π) = π1. Then m(π) ≤ m(π1).

Proof. The proof follows from Lemmas 2 and 3.

134

Successive conflict resolution iterations to a plan π generate a plan sn(π) = πn

with greater than or equal makespan.

Lemma 5. Let plan π have a series of conflicts κ1, κ2, . . ., κn, resolved by a series
of solutions s1, s2, . . ., sn, which generates a series of plans π1, π2, . . ., πn. Then
m(π) ≤ m(πn).

Proof. Plan πi+1, produced by applying solution si+1 to conflict κi+1 in plan πi,
has makespan m(πi+1) , m(πi) ≤ m(πi+1), from Lemma 4. Then m(π) ≤ . . . ≤
m(πi) ≤ m(πi+1) ≤ . . . ≤ m(πn).

A plan returned by TCRA∗ has makespan less than or equal to the makespan

of any plan generated by successive conflict resolution iterations applied to the

initial plan, πI .

Theorem 1. Let π∗ denote the first plan returned by TCRA∗. Let π denote a plan
generated by successive conflict resolution iterations applied to the initial plan, π
∈ sn(πI). Then m(π∗) ≤ m(π).

Proof. Let π denote a plan in TCRA∗’s priority queue, the product of a series
of conflict resolution iterations applied to the initial plan, πI . Let πn denote a
plan generated by n successive conflict resolutions applied to plan π, then m(π) ≤
m(πn), from Lemma 5. Plan π∗ is returned before plan π; thus

m(π∗) ≤ m(π)

≤ m(πn).

TCRA∗’s search queue is ordered according to makespan. The lowest makespan

plan is expanded first. Other plans in the queue will produce plans with higher

makespan, as successive conflict resolutions cannot reduce makespan. The lowest

makespan plan is returned.

The original empirical trials for TCRA∗ [102] used the direct causal conflict

model and did not use the transitive closure, both introduced in Chapter 5.1.

135

The dissertation experiment in which STA and TCRA∗ are compared using both

the direct and the transitive causal conflict models, with and without transitive

closure, is presented. The original empirical trials, using the direct causal conflict

model, in addition to the new results, are presented.

5.3 Methodology

The plan merging algorithms, STA, Serial, and TCRA∗, Algorithms 5.1, 5.6, and

5.7, respectively, were evaluated using the direct and transitive causal conflict

models, with and without transitive closure, across three domains. Each TMPCP

problem was extracted from randomly generated planning problems that each con-

sists of a randomly generated group of robots, an initial state, and a goal state

composed of randomly generated tasks. Each task has an individual set of re-

quirements, and all tasks’ requirements must be met in order to solve the planning

problem. Tasks were allocated to robots according to the robots’ capabilities and

the tasks’ requirements using a coalition formation algorithm [186]. Each task was

individually solved using the Coalition Formation then Planning framework [62],

and an external planner. Each task solution resulted in a task plan. A merg-

ing problem must merge all the task plans in order to solve the original planning

problem.

The Actions Concurrency and Time Uncertainty Planner (ActuPlan) [24],

adopted as the external planner, supports concurrent durative actions with un-

certain action durations. Similar planners exist [39, 103], but ActuPlan is the only

planner to support a high-level problem description language and offer a publicly

136

available implementation. The uncertain action durations were determinized [197]

by adopting the distribution’s mean as the action duration.

The uncertain action durations’ extensions of each domain described in Chap-

ter 3.2 were used. The extended Logistics Domain, described in Chapter 3.2.2,

was used with two districts and truck types, requiring up to two trucks per task.

The second Blocks World Domain extension, described in Chapter 3.2.1, was used

with two types of end effectors: suction and magnetic. The second First Response

Domain extension, described in Chapter 3.2.3, was used.

Each planning problem consisted of 1-10 tasks and up to 10 robots. The Logis-

tics Domain and the Blocks World Domain had 2-10 robots. The First Response

Domain had 5-10 robots, as the domain’s tasks require a broader range of robot-

specific capabilities. One hundred problems were generated for each task-robot

combination.

Each experiment was allocated one CPU core on an Intel Xeon 5115 Linux

server. The plan processing time was limited to 1 hour, and the maximum allo-

cated memory was 256 GB. These processing time and memory limits emulate the

demands for real-world systems that require timely solutions on computers with

limited memory. All algorithms were implemented in Python 2.7. All the Logis-

tics and First Response Domain problems were successfully generated. All Blocks

World Domain problems with 1-3 tasks were successfully generated. The ratio of

Blocks World Domain problems successfully generated with 4-10 tasks was 99%,

82%, 67%, 43%, 15%, 8%, and 1%, respectively, as the ActuPlan planner failed

to generate plans within the time and memory limits for an increasing number of

137

tasks.

5.4 Results

The independent variables are the Serial, STA, and TCRA∗ merging algorithms,

the direct and transitive causal conflict models, and the presence and absence of

the transitive closure. The TCRA∗ algorithm’s relaxation parameter, described in

Chapter 5.2, defines the weight of the search heuristic that balances optimality and

greediness. The TCRA∗ algorithm was evaluated for relaxation values ε = {0, 1,

10, 100}. Optimal makespan is guaranteed when ε ≤ 1, but lower computational

cost can be achieved when ε > 1.

The dependent variables are the success rates and makespan. The success

rates are the ratio of problems solved within the 1 hour processing time limit, as

no failure occurred due to exceeding the maximum allocated memory. Aggregated

makespan results are presented across problems solved by all algorithms, in order to

avoid problem-specific biases. Thus, instances where algorithms failed all problems

are omitted. Aggregates are presented with the standard error of the mean [189].

The transitive closure is referred to as closure for brevity. The full results for the

Logistics, Blocksworld, and First Response Domains are presented in Appendices

C.1, C.2, and C.3, respectivelly.

138

5.4.1 The Logistics Domain

The Serial Algorithm solved all problems for all numbers of robots and tasks suc-

cessfully. STA’s best success rates were achieved when using the direct model with

closure, for all numbers of robots and tasks, as shown for two and four robots in

Figures 5.2 and 5.3, respectively. Since success rates are not aggregated, there are

no error bars. The worst STA success rates resulted from STA using the transitive

model with closure, for all numbers of robots and tasks. The STA success rates

were higher when the number of robots increased, for all numbers of tasks. All

STA instances solved all ten robot problems for all numbers of tasks.

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

25

50

75

100

Su
cc
es
s
(%

)

Direct Model with Closure

Direct Model without Closure

Transitive Model with Closure

Transitive Model without Closure

Figure 5.2: Logistics STA success (%) per number of tasks for two robots.

All TCRA∗ instances’ success rates were better for ε = 1 than ε = 0, across all

numbers of robots and tasks. The differences between TCRA∗’s success rates for

ε = 1 and ε > 1 were not noticeably different, across all numbers of robots and

tasks; therefore, only the ε ≤ 1 results are provided.

139

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

25

50

75

100
Su

cc
es
s
(%

)

Direct Model with Closure

Direct Model without Closure

Transitive Model with Closure

Transitive Model without Closure

Figure 5.3: Logistics STA success (%) per number of tasks for four robots.

TCRA∗’s (ε = 1) best success rates were achieved when using the direct model

with closure, as shown for two and four robots in Figures 5.4 and 5.5, respectively.

TCRA∗’s (ε = 1) worst success rates were achieved when using the direct model

without closure, for all numbers of robots and tasks. A similar pattern was found

for ε = 0, but the success rates were lower overall, for all numbers of robots and

tasks. Ten robot problems resulted in TCRA∗’s best success rates for all TCRA∗

instances and all numbers of tasks.

The Serial Algorithm resulted in the worst makespan for all numbers of robots

and tasks. All TCRA∗ instances resulted in the best makespan for all numbers

of robots and tasks, for all conflict models, with and without closure, and for all

ε values, as presented for two and ten robots in Figures 5.6 and 5.7, respectively.

STA using the direct model with, and without, closure also achieved the best

makespan, for all numbers of robots and tasks. STA using the transitive model

140

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

25

50

75

100
Su

cc
es
s
(%

)

Direct Model with Closure

Direct Model without Closure

Transitive Model with Closure

Transitive Model without Closure

Figure 5.4: Logistics TCRA∗ (ε = 1) success (%) per number of tasks for two
robots.

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

25

50

75

100

Su
cc
es
s
(%

)

Direct Model with Closure

Direct Model without Closure

Transitive Model with Closure

Transitive Model without Closure

Figure 5.5: Logistics TCRA∗ (ε = 1) success (%) per number of tasks for four
robots.

with, and without, closure resulted in slightly worse makespan, for all numbers of

robots and tasks. Results for two robots and ten tasks are missing because STA

using the transitive model without closure failed to solve all of those problems.

141

The Serial Algorithm makespan was higher overall when the number of robots

increased, for all numbers of tasks, and was the highest for ten robots.

1 2 3 4 5 6 7 8 9
Number of Tasks

0

25

50

75

100

125

150

175

M
ak
es
pa

n
(m

in
)

STA (Direct Model, With and Without Closure) and TCRA * (All Instances)

STA (Transitive Model, With and Without Closure)

Serial

Figure 5.6: Logistics TCRA∗ (all ε values), STA, and Serial makespan (min) for
two robots. The maximum makespan was 175 min. TCRA∗ (all ε values) and STA
using the direct model with and without closure resulted in the same makespan.

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0
25
50
75

100
125
150
175
200
225

M
ak
es
pa

n
(m

in
)

STA (Direct Model, With and Without Closure) and TCRA * (All Instances)

STA (Transitive Model, With and Without Closure)

Serial

Figure 5.7: Logistics TCRA∗ (all ε values), STA, and Serial makespan (min) for
ten robots. The maximum makespan was 225 min.

STA using the direct model with closure was the best solution to the Logistics

142

Domain, as most problems were solved and the best makespan was achieved, for all

numbers of robots and tasks. However, there are no quality guarantees, and STA

can result in worse makespan. The second best method was STA with the direct

model without closure, which achieved the best makespan with a worse success

rate, for all numbers of robots and tasks. The third best method was TCRA∗ (ε ≥

1) using the direct model with closure, that achieved the best makespan, but at a

lower success rate, for all numbers of robots and tasks. TCRA∗ (ε = 0) using the

direct model without the transitive closure was the worst solution to the Logistics

Domain, for all numbers of robots and tasks, as the best makespan was achieved,

but with the worst success rates, for all numbers of robots and tasks.

5.4.2 The Blocks World Domain

The Serial Algorithm solved all problems for all numbers of robots and tasks suc-

cessfully. STA and TCRA∗ (all ε values) using the direct model without closure

did not solve all ten robots problems, as shown in Figure 5.8. All other STA and

TCRA∗ instances solved all problems for two to nine tasks, for all ε values. The

differences between TCRA∗’s success rates for ε = 1 and ε > 1 were not noticeably

different, across all numbers of robots and tasks; therefore the presented results

use ε ≤ 1.

The Serial Algorithm resulted in the worst makespan for all numbers of robots

and tasks. All TCRA∗ instances resulted in the best makespan for all numbers of

robots and tasks, for all conflict models, with and without closure, and for all ε

values, as presented for ten robots in Figure 5.9. STA using the direct model with,

143

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

25

50

75

100
Su

cc
es
s
(%

)

STA TCRA * (ε=0) TCRA * (ε=1)

Figure 5.8: Blocks World STA and TCRA∗ using the direct model without closure
success (%) for ten robots.

and without, closure also achieved the best makespan, for all numbers of robots

and tasks. STA using the transitive model with, and without, closure resulted

in slightly worse makespan, for all numbers of robots and tasks. Results for ten

tasks are missing because STA using the transitive model without closure failed to

solve all ten task problems. A similar pattern was found for fewer robots, for all

numbers of tasks.

Most STA and TCRA∗ instances provided the best solution to the Blocks World

Domain, solving all problems, and resulting in the best makespan for all numbers

of robots and tasks. TCRA∗ (ε = 0) using the direct model without closure was

the worst solution, with the worst success rates for all numbers of robots and tasks.

STA using the transitive model with, and without closure, were the second and

third worst solutions, respectively, with an intermediary makespan for all robots

and tasks.

144

1 2 3 4 5 6 7 8 9
Number of Tasks

0

25

50

75

100

125

150
M
ak
es
pa

n
(m

in
)

STA (Direct Model, With and Without Closure) and TCRA * (All Instances)

STA (Transitive Model, With and Without Closure)

Serial

Figure 5.9: Blocks World TCRA∗ (all ε values), STA, and Serial makespan (min)
for ten robots. The maximum makespan was 150 min.

5.4.3 The First Response Domain

The Serial Algorithm solved all problems for all numbers of robots and tasks suc-

cessfully. STA’s best success rates were achieved when using the direct model with

closure, as shown for ten robots in Figure 5.10. The worst ten robot STA success

rates resulted from STA using the direct model without closure for one to seven

tasks and STA using the transitive model with closure for eight to ten tasks. Fewer

robots resulted in lower success rates overall, for all numbers of tasks.

All TCRA∗ instances’ success rates were better for ε = 1 than ε = 0, across all

numbers of robots and tasks. The differences between TCRA∗’s success rates for

ε = 1 and ε > 1 were not noticeably different, across all numbers of robots and

tasks; therefore, only the ε ≤ 1 results are provided.

TCRA∗’s (ε = 1) best success rates were achieved when using the direct model

with closure, for all numbers of robots and tasks, as shown for ten robots in

145

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

25

50

75

100
Su

cc
es
s
(%

)

Direct Model with Closure

Direct Model without Closure

Transitive Model with Closure

Transitive Model without Closure

Figure 5.10: First Response STA success (%) per number of tasks for ten robots.

Figure 5.11. TCRA∗’s (ε = 1) worst success rates were achieved when using the

direct model without closure, for all numbers of robots and tasks. A similar pattern

was found for ε = 0, but the success rates were lower, for all numbers of robots

and tasks.

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

25

50

75

100

Su
cc
es
s
(%

)

Direct Model with Closure

Direct Model without Closure

Transitive Model with Closure

Transitive Model without Closure

Figure 5.11: First Response TCRA∗ (ε = 1) success (%) per number of tasks for
ten robots.

146

The Serial Algorithm resulted in the worst makespan for all numbers of robots

and tasks. All TCRA∗ instances resulted in the best makespan for all numbers of

robots and tasks, for all conflict models, with and without closure, and for all ε

values, as presented for ten robots in Figure 5.12. STA using the direct model with,

and without, closure also achieved the best makespan, for all numbers of robots

and tasks. STA using the transitive model with, and without, closure resulted in

slightly worse makespan, for all numbers of robots and tasks. Fewer robots resulted

in lower success rates overall, for all numbers of tasks.

1 2 3 4 5 6 7 8 9 10
Number of Tasks

100

200

300

400

500

600

700

800

M
ak
es
pa

n
(m

in
)

STA (Direct Model, With and Without Closure) and TCRA * (All Instances)

STA (Transitive Model, With and Without Closure)

Serial

Figure 5.12: First Response TCRA∗ (all ε values), STA, and Serial makespan (min)
for ten robots. The maximum makespan was 800 min.

STA using the direct model with closure was the best solution to the First

Response Domain, as most problems were solved with the best makespan, for all

numbers of robots and tasks. However, there are no quality guarantees, and STA

can result in worse makespan. The second best solution was TCRA∗ (ε = 1) using

the direct model with closure, which achieved the best makespan and with a worse

147

success rate, for all numbers of robots and tasks. TCRA∗ (ε = 0) using the direct

model without the transitive closure was the worst solution, for all numbers of

robots and tasks, as the best makespan was achieved, but with the worst success

rates, for all numbers of robots and tasks.

5.4.4 Overall Results Across All Domains

The Serial Algorithm solved all problems across all domains for all numbers of

robots and tasks, but always had the worst makespan. The makespan delta be-

tween the Serial and other algorithms grew with the number of tasks and robots,

across all domains for all numbers of robots. TCRA∗’s quality guarantees ensured

the best makespan for all conflict models, with and without closure, across all

domains, for all numbers of robots and tasks, and for all ε values. STA does not

offer quality guarantees, and STA failed to achieve the best makespan using the

transitive causal conflict model, with and without closure, across all domains, for

all numbers of robots and tasks.

All TCRA∗ (ε = 0) instances resulted in the worst success rates, for all conflict

models, with and without closure, across all domains, for all numbers of robots

and tasks. Higher TCRA∗ ε values were better overall, but ε > 1 did not produce

noticeably different results, for all conflict models, with and without closure, across

all domains, for all numbers of robots and tasks. TCRA∗’s and STA’s success rates

fell as the number of tasks increased, for all conflict models, with and without

closure, across all domains, for all numbers of robots, and for all TCRA∗ ε values.

More tasks resulted in more actions to merge and more conflicts to resolve, which

148

increased the computational complexity.

The direct model with closure produced the best results for both STA and

TCRA∗ across all domains, for all numbers of robots and tasks, and for all TCRA∗

ε values. The direct model without closure performed the worst for both STA and

TCRA∗, across all domains, for all numbers of robots and tasks, and for all TCRA∗

ε values. The transitive model resulted in worse STA results, with and without

closure, across all domains, for all numbers of robots and tasks. The transitive

model improved TCRA∗’s metrics, relative to the direct model without closure,

across all domains, for all numbers of robots and tasks.

5.5 Discussion

The Serial Algorithm offers the best success rates, but does not minimize the

resulting makespan, and fails to make effective use of additional robots. The serial

plan execution causes a growing number of robots to wait and remain idle, as more

robots and tasks are allocated, which results in longer makespans as the number

of tasks increases. However, the Serial Algorithm is the best choice for a single

robot, when the opportunity to parallelize action execution is limited, or when the

makespan does not need to be minimized.

STA and TCRA∗’s algorithmic complexity, presented in Chapter 5.2, is not a

direct function of the number of tasks or the number of robots involved, but rather

a function of the coupling between individual tasks and the overall problem model

complexity. STA and TCRA∗ depend on the conflict identification and resolution

models, in addition to the transitive closure. Thus, the STA and TCRA∗’s com-

149

putational complexity, with respect to the number of robots and tasks, cannot be

concisely formulated, and was evaluated empirically, through experiments.

STA and TCRA∗ account for action dependencies between task plans, which

resulted in increased computational complexity and lower success rates. However,

both the algorithms can leverage more robots to parallelize more action executions

and reduce the resulting makespan. This added complexity translates into lower

makespan and faster plan execution, as fewer robots are idle and more tasks execute

simultaneously. The benefits are more pronounced as tasks and robots are added,

and more actions can be parallelized.

TCRA∗ accounts for durative actions in order to minimize makespan and guar-

antees the minimum makespan when using ε ≤ 1. TCRA∗’s optimality guarantee

defines lower bounds on solution quality and provides a conceptual benchmark.

Knowing the lowest possible makespan helps quantify the quality of suboptimal

solutions, such as those produced by STA and the Serial Algorithm.

Early TCRA∗ experiments used the direct model without transitive closure,

and failed to scale with a growing number of tasks [102]. The transitive model im-

proved TCRA∗’s ability to scale and solve a problems with a larger number robots

and tasks. The transitive model identified more solutions for each causal conflict,

but most solutions resulted in longer makespan and were pruned by TCRA∗’s pri-

ority search queue, reducing the overall TCRA∗ branching factor. The transitive

model conflict and solution identification algorithms have higher computational

complexity than the direct model’s; however, the net result across all domains was

a higher success rate. The transitive causal conflict model impacted STA nega-

150

tively. The various solutions identified by the transitive model cause STA to waste

computational resources, as STA does not prune solutions based on makespan.

The transitive closure introduces temporal orders that minimize the number

of conflicts identified and benefited both TCRA∗ and STA. The transitive closure

reduces the branching factor and does not increase the number of causal conflict

solutions. Additional computational cost is necessary to perform the transitive

closure, but the net results were better than the transitive model on all metrics for

both TCRA∗ and STA.

The growing number of robots in the Logistics and First Response Domain

reduced task coupling, benefiting STA and TCRA∗. The high ratio of tasks per

robot resulted in multiple tasks being allocated to each robot and created a tighter

coupling between each task. Dependencies between task plans increased, causing

more conflicts, and increasing the plan merging search space. The number of tasks

allocated to each robot decreased as more robots were added. The additional robots

reduced the coupling between tasks and the computational cost. Coupling between

tasks was independent of the number of robots in the Blocks World Domain, as

the stacking of blocks caused tight task coupling. The addition of robots reduced

the number of tasks allocated to each robot, but did not reduce the number of

blocks that were involved in multiple tasks. Tasks sharing the same blocks were

tightly coupled, given the dependencies that exist when actions move a common

block. As a result, STA and TCRA∗ did not benefit from the addition of robots.

The new conflict identification and resolution models and algorithms improved

the overall plan merging performance. TCRA∗ and STA were able to scale to a

151

larger number of tasks and robots while generating high quality plans. TCRA∗’s

plan quality, represented by the resulting makespans, was not compromised and

its computational cost was reduced, across all domains. This contribution allows

multiple robot systems to synthesize plans and coordinate to resolve conflicts in a

distributed manner, while guaranteeing the fastest plan execution duration. The

plan merging and conflict resolution algorithms provide further ability to scale and

solve larger, more complex task allocation and coordination problems.

5.6 Conclusion

A new family of plan coordination and conflict resolution algorithms, that scale to

a large number of tasks and robots for complex problems, was introduced to merge

independently generated plans and minimize the resulting makespan. Complex-

ity analysis and experiments demonstrated that inadequate conflict models can

severely impair the merging algorithms’ ability to scale and solve problems with a

growing number of tasks. The resulting plan quality and the computational cost

was substantially improved by using the appropriate causal conflict models and

merging algorithms.

TCRA∗ was introduced to merge independently generated plans and minimize

the resulting makespan, while accounting for durative actions. TCRA∗’s admissible

heuristic prunes the search space and minimizes makespan optimally. A proof

of optimality was provided and the algorithm was empirically evaluated across

three multiple robot domains against two algorithms, the Serial Algorithm, and

STA. STA was extracted from the PMA and used as a stand-alone algorithm that

152

does not minimize makespan. The conflict identification and resolution algorithms

introduced allowed STA and TCRA∗ to scale and solve larger problems with more

robots and tasks.

The Task Fusion heuristics improved coordination before planning, while the

new plan merging and conflict resolution algorithms facilitated better coordina-

tion after planning and allowed the Coalition Formation then Planning frame-

work to support uncertain action durations and minimize the resulting makespan.

However, the simulated experiments fail to capture the complexity of real-world

multiple robot systems and all of the associated unknowns.

153

Chapter 6: Multiple Robot System and Evaluation

Parallel plan execution on heterogeneous multiple robot systems requires the ability

to scale and solve problems with an increasing number of robots and tasks. Re-

strictions to task allocation and plan coordination limited the scalability of existing

methods, such as the Coalition Formation then Planning framework, presented in

Chapter 2. The Coalition Formation then Planning framework limitations were

mitigated by this dissertation’s contributions to task allocation (Chapter 4) and

plan merging (Chapter 5). Simulated experiments demonstrated that the Coali-

tion Formation then Planning framework can scale when solving complex problems

(Chapters 4 and 5). This Chapter demonstrates the capabilities of the Coalition

Formation then Planning framework when deployed on physical robots solving

real-world problems.

The multiple robot coordination system allows physically distributed mobile

robots to deliberate independently, while coordinating at a high level of abstrac-

tion. The system facilitates real-world robot experiments, consisting of multiple

trials, in order to evaluate the algorithms presented in Chapter 5. The system

architecture is described, followed by experiments comparing the performance of

the various merging algorithms.

154

6.1 Multiple Robot System Architecture

The multiple robot system’s architecture is domain independent. The domain

models and parameters are specified using the human-readable MAPL language,

which is specified in Appendix A. The initial world state and the problem’s goals

are also specified using the MAPL language. The available robots’ capabilities

and initial states are gathered before planning in order to generate a planning

problem, which is solved using the Coalition Formation then Planning framework.

The robots receive the solution plan, follow the solution plan, and coordinate using

their internal Robot Execution System.

6.1.1 The Robot Execution System

The Robot Execution System controls each robot’s behavior at a high level during

plan execution. Each robot executes an independent and distributed instance

of the execution system, which is composed of multiple processes, called nodes.

Nodes have individual responsibilities, and multiple nodes execute on each robot.

The nodes communicate to one another, internal to a specific robot, using the

Robot Operating System (ROS) [138]. ROS allows nodes to execute independently

and permits integration with robust robot localization and navigation packages,

such as the Adaptive Monte-Carlo Localization package [135]. Two nodes, the

Communication Node and the Plan Execution Node, compose the Robot Execution

System, as presented in Figure 6.1.

Robots use the Communication Node to request information from other robots,

155

Plan

Execution

ROS Localization, Navigation, etc

Communication

ROS

TCPRobot

Knowledge

Database

ROS

Figure 6.1: The Robot Execution System.

as ROS does not support multiple robots natively. The Communication Node uses

the Transmission Control Protocol (TCP) [42] to exchange messages with other

robots. A knowledge database includes all the information relevant for plan execu-

tion, including the global plan, and information communicated by other robots. A

robot can query another robot, which in turn reads its internal knowledge database

and sends a reply. Robots can also send specific information to other robots with-

out being prompted. Robots are allowed a high level of autonomy during plan

execution and the communication between robots is limited to disseminating plans

and announcing action completions.

The Plan Execution Node commands a robot’s actions. The Plan Execution

Node interfaces with the Communication Node to obtain information about other

robots, as shown in Figure 6.1, and standard ROS nodes for robot localization,

navigation, etc. Plan execution begins as soon as a plan is received.

The Plan Execution Node implements the Plan Execution Algorithm, Algo-

rithm 6.1, in order to coordinate plan execution. The pending action set, Apending,

represents the actions that remain to be executed, and is initialized with all the

plan actions (line 1). The set of plan actions involving the robot, Ar, are iden-

156

tified (line 2). The set intersection between the pending actions and the robot

actions, Apending ∩ Ar, represents the actions involving the robot that remain to

be executed (i.e., the robot pending actions).

Data: A multiagent plan π;
1 Initialize the pending action set Apending with all the actions in plan π;
2 Identify the robots’ actions, Ar, in plan π;
3 while Apending ∩ Ar is not empty do
4 foreach action a ∈ Apending ∩ Ar do
5 if action a does not have predecessors in Apending then
6 Execute action a;
7 Remove action a from Apending;
8 Announce that action a is completed;

9 Update the pending action set Apending;
Algorithm 6.1: The Plan Execution Algorithm.

While there are robot pending actions (line 3), each pending action is evaluated

(line 4). Actions that have no pending predecessors (line 5) are executed (line 6)

and removed from the pending action set Apending (line 7). When the action is

completed, it is announced (line 8) to all robots whose actions are successors of

the completed action. The pending action set, Apending, is updated by accounting

for the action completion announcements issued by other robots (line 9). The

predecessors of an action a are the actions a0 that are ordered before action a,

a0 ≺ a. The successors of an action a are the actions a0 that are ordered after

action a, a ≺ a0. The Plan Execution Algorithm allows parallel action execution

as multiple robots execute their plan actions independently. The algorithm does

not require a global coordination mechanism, as the robots execute their actions

according to each action’s individual predecessors.

157

6.1.2 The Safety Policy

Pioneer P3-DX robots, fitted with spinning laser range finders, were used for the ex-

periments. Limited sensor accuracy can hinder the robots’ ability to perceive other

robots’ positions while executing the plan. Collisions can occur when traversing

narrow hallways, doorways, and navigating around obstacles; thus, a safety policy

was developed in order to minimize collisions. Robots communicate their intent

while moving between locations. The policy prevents multiple robots from moving

across the same paths, improving safety.

The safety policy establishes a communication mechanism that prevents robots

from moving simultaneously in collision-prone routes. A robot announces its origin

and destination before moving and checks for other robots’ announcements. Upon

verifying that no other robot has claimed the same origin or destination, the robot

proceeds to its destination and issues an arrival announcement. Upon detecting a

conflict, the robot waits on other robots’ arrival announcements before proceeding.

The safety policy can increase the plan execution duration significantly, as more

robots are forced to wait before moving between locations. The impacts of the

policy on the overall safety and the plan execution duration are evaluated in the

provided experiments (Chapter 6.2).

6.2 Experimental Methodology

The Coalition Formation then Planning framework limitations were mitigated by

this dissertation’s contributions to task allocation (Chapter 4) and plan merging

158

(Chapter 5). The experimental methodology was designed to evaluate the Coalition

Formation then Planning framework, the plan merging algorithms (Chapter 5),

and the effectiveness of the safety policy using a simulated real-world mission

and multiple robots with specific capabilities. The experiments were performed

in an indoor environment that offers a combination of large open spaces, narrow

hallways, doorways, and an office space with three separate, but variable sized

rooms.

A metric map of the environment was created using a Rao-Blackwellized parti-

cle filter simultaneous localization and mapping package [77]. The map was created

in real-time by a single robot traversing the environment, while collecting range

sensor and wheel odometry data. The map was partitioned into six separate areas

using a Voronoi graph-based segmentation [30], as presented in Figure 6.2, resulting

in a topological map of the environment that allows for high-level planning.

The reduced First Response Domain, described in Chapter 3.2.3, was used

for the experiments. Each robot was assigned a rescuer, ambulance, or hazard

collector role, which did not change, as shown in Figure 6.3. The robots are

unable to physically load and unload the simulated victims or hazardous material

objects, but they waited (5 seconds) and vocalized the completion of these and all

tasks. The Festival speech synthesis system was used to vocalize the completion

of each plan action [177].

The six robots, including two rescuers, two ambulances, and two hazard col-

lectors, began each plan execution from the rescue base. Two victim rescue tasks

and two hazard collection tasks were solved. The coalition formation algorithm

159

0 5 10 15 20 25 30

X (m)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Y

 (
m

)

1

2

3

4

5
6

Figure 6.2: The metric map of the environment, segmented into six areas. Colors
represent each area’s navigable space. Black represents walls and white obstacles.

allocated each ambulance to each victim rescue task and each hazard collector to

each hazard collection task. Rescuers were allocated two tasks each, as all tasks

require a rescuer. The rescue base is located in Area 1, as presented in Figure 6.2.

Victims are located in Areas 2 and 5. Hazards are located in Areas 3 and 6. An

example plan, synthesized using the coalition and planning framework and the

TCRA∗ merging algorithm, is shown in Figure 6.4. Ellipses represent actions and

arrows represent the temporal orders. Actions are colored according to their tasks,

shown in the legend.

Coupling between tasks arises from two primary sources. Locations are shared

between tasks and multiple tasks are allocated to each rescuer, which generates

160

Hazard Collector Ambulance Rescuer

Figure 6.3: The rescue base. Each robot has a logo indicating their assigned roles.

dependencies and coupling. Shared locations between tasks and the multiple allo-

cation of tasks to each rescuer generate dependencies and coupling. Robots must

travel across common areas and the rescuer robots must clear each area before the

arrival of the ambulance and hazard collection robots. Areas cleared while accom-

plishing one task are considered clear for the remainder of the trial. Thus, shared

cleared areas generate temporal dependencies between task actions. Actions from

multiple tasks become ordered after a clearing action. Note that both Victim Res-

cue Tasks have shared temporal orders, as shown in Figure 6.4. The “Rescuer 2:

Clear Area” action (Victim Rescue Task 2), the second action from the top, is

ordered before the action “Ambulance 1: Move to Area 2” (Victim Rescue Task

1). Ambulance 1 moves to Area 2 on its way to Area 5, as Area 2 is the closest

161

Hazard Collection 1

Collector 2: Unload Hazard 2

Collector 1: Unload Hazard 1

Rescuer 1: Move to Area 6

Rescuer 1: Clear Area

Collector 1: Move to Area 5

Rescuer 1: Load Hazard 1 on Collector 1

Collector 1: Move to Area 6

Collector 1: Move to Area 1

Ambulance 1: Move to Area 1

Ambulance 1: Unload Victim 1

Ambulance 1: Move to Area 5

Rescuer 1: Load Victim 1 on Ambulance 1

Rescuer 1: Clear Area

Ambulance 1: Move to Area 2

Ambulance 2: Move to Area 1

Ambulance 2: Unload Victim 2

Rescuer 2: Load Victim 2 on Ambulance 2

Rescuer 2: Move to Area 3

Rescuer 2: Clear Area

Ambulance 2: Move to Area 2

Collector 2: Move to Area 2

Collector 2: Move to Area 1

Collector 2: Move to Area 3

Rescuer 2: Clear Area

Rescuer 2: Load Hazard 2 on Collector 2

Rescuer 1: Move to Area 5

Rescuer 2: Move to Area 2

Victim Rescue 1

Victim Rescue 2

Hazard Collection 2

Tasks

Figure 6.4: An example First Response plan synthesized by the Coalition Forma-
tion then Planning framework using the TCRA∗ plan merging algorithm.

cleared area to Area 5.

The multiple tasks allocated per rescuer also generate dependencies and cou-

pling between tasks. Actions of an individual rescuer robot generate temporal

orders between the rescuer’s actions across its tasks. Rescuer 1 must finish loading

Victim 1 on Ambulance 1, which is an action belonging to the Victim Rescue Task

1, before moving to Area 6, an action that belongs to the Hazard Collection Task

1, as presented in Figure 6.4. Action “Rescuer 1: Load Victim 1 on Ambulance

162

1” (Victim Rescue Task 1) is ordered before action “Rescuer 1: Move to Area 6”

(Hazard Collection Task 1).

The coupling between tasks requires algorithms that systematically address

conflicts while merging task plans, as presented in Chapter 5. Conflicts arise be-

tween plans’ actions, as the effects of one action can make other actions infeasible.

Plan merging algorithms are also responsible for minimizing the total plan exe-

cution duration, or makespan, while addressing plans’ conflicts. The Serial, STA,

and TCRA∗ (ε = 1) merging algorithms, presented in Chapter 5, were evaluated

in the experiments.

The robots were timed while executing their plans. The plan execution out-

comes are: Success, all robots have completed their tasks and returned to the base

successfully; and Failure, robots failed to finish within a one hour time limit or

collided with one another and the experiment is terminated to prevent physical

damage. All failures were due to collisions, as all trials finished with success or

collision before the time limit expired. The rate of success and the makespan are

the dependent variables.

The plan merging algorithm used to merge the various task plans, together

with the safety policy, are the independent variables. The Serial, STA, and TCRA∗

merging algorithms were evaluated with the direct and transitive conflict models,

with and without the transitive closure and the safety policy.

Tasks were allocated to robots according to the robots’ capabilities and the

tasks’ requirements using a dynamic programming coalition formation algorithm

[186]. Each task was individually solved using the Coalition Formation then Plan-

163

ning framework [62], and the Actions Concurrency and Time Uncertainty Planner

(ActuPlan) [24]. ActuPlan was selected because it supports concurrent durative

actions with uncertain action durations. Plans were generated once and executed

multiple times. The simulated experiments were performed using the ActuPlan

simulator [24], a high-level plan simulator.

Each plan merging algorithm instance synthesized a plan, producing a total of

nine plans: (1) The TCRA∗ using the direct model without transitive closure; (2)

The TCRA∗ using the direct model with transitive closure; (3) The TCRA∗ using

the transitive model without transitive closure; (4) The TCRA∗ using the transi-

tive model with transitive closure; (5) The STA using the direct model without

transitive closure; (6) The STA using the direct model with transitive closure; (7)

The STA using the transitive model without transitive closure; (8) The STA using

the transitive model with transitive closure; and (9) The Serial Algorithm. Plans

1-6 were identical, as all TCRA∗ instances and the direct model STA resulted in

the same plan. Plans 1-6 will be referred to as the TCRA∗ plan, even though the

direct model STA also resulted in the same plan.

The TCRA∗ plan (Plans 1-6), the STA using the transitive model without tran-

sitive closure (Plan 7), the STA using the transitive model with transitive closure

(Plan 8), and the Serial Algorithm Plan (Plan 9) were used in the simulated and

the multiple robot experiments. The simulated experiment consisted of a thou-

sand trials per plan, totaling four thousand trials. The multiple robot experiment

consisted of twenty trials per plan, totaling eighty trials. Half of the multiple robot

trials (ten trials per plan) used the safety policy.

164

The Kruskal–Wallis one-way analysis of variance and the pairwise Wilcoxon

rank-sum tests were conducted in order to determine if there were statistically

significant differences between the algorithm results [189].

6.3 Results

The TCRA∗ plan, which was identical for all TCRA∗ instances and for STA us-

ing the direct model, with and without closure, had the overall best makespan

irrespective of the evaluation occurring in simulation or with the multiple robot

system, and whether the multiple robot system used the safety policy or not, as

shown in Tables 6.1, 6.2, 6.3, and Figure 6.5. STA using the transitive model with-

out transitive closure resulted in the second best makespan and the STA using the

transitive model with transitive closure resulted in the third best, for both the

simulated and the multiple robot results, with and without the safety policy. The

Serial plan was the worst overall.

The multiple robot system experiments demonstrated that the Coalition For-

mation then Planning framework and the plan merging algorithms behave similarly

to the simulated environments. Physical aspects of the real-world system, such as

the mobile robot dynamics, localization, path planning, and collision avoidance,

are not modeled by the simulated experiments. Those aspects, during the multiple

robot system experiments, resulted in an overall slower plan execution, with con-

sistently longer makespans. However, these physical aspects did not impact the

relative performance of the individual plan merging algorithms, as the same algo-

rithms that performed best in simulation also performed best with the multiple

165

robot system.

Table 6.1: Simulated Makespan Descriptive Statistics.
Trans. Std.

Alg. Model Clos. Mean Dev. Median Min Max

TCRA∗
Direct

No

10m25s 01m17s 10m25s 06m11s 14m38s

Yes

Transitive
No
Yes

STA
Direct

No
Yes

Transitive
No 12m27s 01m23s 12m27s 08m00s 17m16s
Yes 14m09s 01m39s 14m04s 09m28s 19m39s

Serial N/A N/A 20m31s 01m57s 20m25s 14m48s 25m45s

Table 6.2: Multiple Robot Makespan Descriptive Statistics Without the Safety
Policy.

Trans. Std.
Alg. Model Clos. Mean Dev. Median Min Max

TCRA∗
Direct

No

12m46s 00m51s 12m49s 11m36s 14m15s

Yes

Transitive
No
Yes

STA
Direct

No
Yes

Transitive
No 15m56s 00m28s 16m01s 15m09s 16m41s
Yes 18m26s 01m02s 18m10s 17m32s 20m42s

Serial N/A N/A 25m40s 01m22s 26m00s 23m35s 27m57s

The Kruskal–Wallis test found a statistically significant difference between the

makespans for the simulated results (p < 0.001). The Wilcoxon rank-sum tests

determined that the TCRA∗ plan had a significantly shorter makespan when com-

pared to each of the other plans (Z = 644185.0, p < 0.001). The STA using

166

Table 6.3: Multiple Robot Makespan Descriptive Statistics Using the Safety Policy.
Trans. Std.

Alg. Model Clos. Mean Dev. Median Min Max

TCRA∗
Direct

No

14m40s 01m32s 14m27s 12m30s 16m53s

Yes

Transitive
No
Yes

STA
Direct

No
Yes

Transitive
No 17m02s 01m30s 16m45s 15m25s 20m13s
Yes 19m18s 01m45s 18m56s 17m50s 22m44s

Serial N/A N/A 25m49s 01m34s 25m55s 23m16s 28m03s

Plan 1
TCRA∗ (All Instances)
and STA (Direct Model)

Plan 2
STA (Transitive Model,

No Closure)

Plan 3
STA (Transitive Model,
Transitive Closure)

Plan 4
Serial

0

5

10

15

20

25

M
ak
es
pa
n
(m

in
)

Simulated
Real-World (Safety Policy Off)
Real-World (Safety Policy On)

Figure 6.5: Simulated and Real-world Mean Makespan (min) Results.

the transitive model without transitive closure plan had a significantly shorter

makespan when compared to the STA using the transitive model with transitive

closure plan, as determined by the Wilcoxon rank-sum test (Z = 1285111.0, p

< 0.001). The Wilcoxon rank-sum tests also determined that the STA using the

transitive model with transitive closure plan had a significantly shorter makespan

167

when compared to the Serial Algorithm plan (Z = 1493373.0, p < 0.001).

A statistically significant difference was found by the Kruskal–Wallis test be-

tween the makespans for the multiple robot results without the safety policy (p <

0.001). The TCRA∗ plan had a significantly shorter makespan when compared to

the STA using the transitive model without transitive closure plan, as determined

by the Wilcoxon rank-sum test (Z = 55.0, p < 0.001). The Wilcoxon rank-sum

tests determined that the STA using the transitive model without transitive clo-

sure plan had a significantly shorter makespan when compared to the STA using

the transitive model with transitive closure plan (Z = 155.0, p < 0.001). The

STA using the transitive model with transitive closure plan had a significantly

shorter makespan when compared to the Serial Algorithm plan, as determined by

the Wilcoxon rank-sum test (Z = 155.0, p < 0.001).

The makespans for the multiple robot results using the safety policy were also

found to be significantly different by the Kruskal–Wallis test (p < 0.001). The

Wilcoxon rank-sum tests determined that the TCRA∗ plan had a significantly

shorter makespan when compared to all of the other plans (Z = 69.0, p = 0.007).

The STA using the transitive model without transitive closure plan had a signif-

icantly shorter makespan when compared to the STA using the transitive model

with transitive closure plan, as determined by the Wilcoxon rank-sum test (Z =

67.0, p = 0.004). The Wilcoxon rank-sum tests also determined that the STA

using the transitive model with transitive closure plan had a significantly shorter

makespan when compared to the Serial Algorithm plan (Z = 155.0, p < 0.001).

Not surprisingly, the safety policy resulted in higher success overall, as shown

168

in Table 6.4. Success was generally higher for plans with longer makespan. Longer

makespans result from a more serialized action execution, which minimizes the

chances of collisions between robots. Shorter makespans result from a highly par-

allelized plan action execution. Robots execute more actions concurrently; thus,

more robots move simultaneously, more collisions occur, and more trials result in

failure.

Table 6.4: Number of Multiple Robot Plan Execution Successful Trials.
Safety Policy

Plan Off On
TCRA∗ (All Instances) and STA (Direct Model) 5/10 9/10
STA (Transitive Model, No Closure) 6/10 8/10
STA (Transitive Model, Transitive Closure) 8/10 10/10
Serial 7/10 10/10

All the plans resulted in longer average makespans using the safety policy The

differences were more pronounced for the plans that had better makespans, such

as TCRA∗’s. The safety policy forces robots to wait, serializing their actions. The

worst plans, such as Serial’s, are largely serialized already, and the safety policy’s

impact is lessened.

6.4 Discussion

TCRA∗ minimizes makespan directly and parallelizes action execution, resulting

in the best makespans among the simulated and multiple robot results. STA

searches for any conflict-free plan, does not minimize makespan, and can result

in arbitrarily long makespans. STA’s makespan results were influenced by the

169

conflict models and the transitive closure. The direct model STA resulted in the

same makespan as TCRA∗, whereas the transitive model was significantly worse.

The Serial Algorithm serialized all tasks’ actions naively and resulted in the worst

simulated and multiple robot makespans. The multiple robot experimental results

support the simulated results, and the same patterns were observed across both

the multiple robot and the simulated results.

The experiments have proven the viability of the Coalition Formation then

Planning framework to solve multiple robot tasks using heterogeneous multiple

robot systems. The experimental system supported controlled repeated trials that

compared robot coordination algorithms. The results show noticeable differences

across the evaluated merging algorithms. The robots’ success and the overall plan

execution duration (i.e., makespan) significantly varied per merging algorithm.

The most aggressive algorithms highly parallelized plans’ actions, which increased

the chances of collisions, as the robots had limited sensing abilities. The safety

policy allowed the robots to reliably and repeatably execute their tasks, and allowed

some plans to succeed on all experiments.

TCRA∗ offers the best plan execution duration, but exposes the robots to

higher risks and results in more collisions. STA and the Serial Algorithm result

in longer plan execution, but fewer collisions. The safety trade-off is largely due

to the limited robot sensors. The inaccurate low cost laser range finders made the

robot’s perception of each other unreliable. The sensor’s accuracy degraded with

distance, in addition to the low update rate of 10 Hz cause difficulties detecting

other robots. The localization algorithms also often diverge as the robot moves,

170

leading to collisions with other robots. More accurate laser range finders can

mitigate collisions and failures.

The multiple robot results align with the simulated results, as the multiple

robot makespans were consistently longer than their simulated counterparts. Im-

perfect robot sensors, mapping, localization, and navigation resulted in delayed

action execution. Robots often need to perform localization recovery behaviors

in order to localize themselves before moving. Robot traffic also incurs delays,

as robots often stop and slow down to avoid collisions. None of these factors are

modeled by the ActuPlan simulator; thus, the simulated experiments underesti-

mate multiple robot makespans.

6.5 Conclusion

A multiple robot coordination system was introduced to evaluate the Coalition For-

mation then Planning framework. The system supported experimentation with a

large number of trials, despite limitations in the robots’ sensors, mapping, local-

ization, and navigation accuracy. The simulated and multiple robot experiments

evaluated different plan merging algorithms, described in Chapter 5. The multi-

ple robot results were consistent with the simulated results. All instances of the

TCRA∗ algorithm maximized simultaneous action execution and resulted in the

shortest plan execution duration. STA and the Serial Algorithm resulted in longer

plan execution duration, but fewer collisions.

171

Chapter 7: Conclusions

The fast-paced development of sensing, processing, and actuation devices at in-

creasingly lower costs is resulting in robots with a growing variety of capabilities.

Robots have proven potential to assist in response to major disasters, performing

tasks, such as search and rescue and hazardous materials disposal, but currently

highly trained operators make most decisions, while the robot decision making is

limited to low level actions [4]. Exploiting the potential of autonomous robots will

require scalable domain-independent task allocation and automated planning ca-

pable of modeling complex problems that incorporate heterogeneous robots. Real-

world problems require concurrent actions (e.g., simultaneously triaging multiple

victims), durative actions (e.g., travel times), uncertain action durations (e.g., un-

expected travel delays), and a number of other features that increase the problem

complexity. Dynamic and uncertain environments require domain-independent

task allocation and planning approaches, in order to be applied to a variety of

time-sensitive domains.

This dissertation contributes to task allocation and plan coordination. The

domain-independent Coalition Formation then Planning framework improved scal-

ability to a large number of robots, while supporting concurrent durative actions,

by factoring the plan synthesis process [62]. Planning for tasks separately reduces

the overall computational complexity, but limits cooperation between robots, low-

ering plan quality, and requiring more time to execute. This dissertation’s contri-

172

butions mitigated the limitations of the Coalition Formation then Planning frame-

work by improving task allocation, incorporating uncertain action durations, and

improving the framework’s ability to scale to a larger number of robots and tasks

across domains.

7.1 Contributions

The first primary contribution is a significant improvement to task allocation while

planning for multiple heterogeneous robot problems. A new family of coordina-

tion heuristics employed plan similarity concepts to fuse tasks and robot coalitions

in order to improve the resulting plan quality and reduce the computational cost

when allocating tasks. As a result, larger problems can be solved faster, requiring

fewer computational resources for a larger number of tasks and robots. This con-

tribution allows robots to devise plans autonomously and solve complex problems

while minimizing the plan execution duration. The reductions in plan execution

durations can make the difference between mission success or mission failure, espe-

cially in complex real-world time-sensitive domains. Real-world deployments now

can solve plans faster and more quickly react to dynamic situations.

The second primary contribution is the TCRA∗ algorithm that allows robots

to coordinate plans generated independently, while accounting for uncertain ac-

tion durations. TCRA∗ is the first plan merging approach to account for action

durations and minimize makespan optimally, the total time required to execute

the plan. TCRA∗ is guaranteed to minimize makespan optimality and establishes

a benchmark for minimizing makespan. Minimizing makespan is critical for real-

173

world domains, where different actions require different completion times. This

contribution is relevant to first response, where indefinite processing time and

memory are not available and life saving actions must be taken, as a reduction

in makespan can offset the added computation time. The contribution is also im-

portant when plans can be generated in advance, but the plan execution is time

critical. An example of such a domain is extraplanetary robot missions [21], where

the robots’ operation is limited to planetary daytime cycles due to solar power

limitation and the plans can be generated overnight.

The third primary contribution introduced new conflict models and a family of

conflict resolution algorithms that allow robots to solve conflicts more effectively

while coordinating individual plans. The algorithms increased the number of tasks

and robots supported, while synthesizing complex plans for multiple heterogeneous

robots. This contribution demonstrated how previously overlooked assumptions

about conflict resolution models can impair how the robots’ ability to solve more

complex problems with an increasing number of tasks and robots.

A secondary contribution extended the Coalition Formation then Planning

framework in order to support uncertain action durations and introduced the

MAPL language. The MAPL software suite compiles and decompiles domain de-

scriptions, problems, and plans. The compiler generates semantic models, which

are necessary to the Coalition Formation then Planning framework. MAPL is the

first planning language to support coalition formation models with uncertain action

durations. The human-readable language allows specifying the robot capabilities,

the planning domain model, task goals, and task requirements. The full language

174

specification, developed as part of this dissertation, is presented in Appendix A.

Another secondary contribution introduced the first real-world multiple robot

system to deploy the Coalition Formation then Planning framework. The system

was capable of reliably executing complex plans, and experiments compared the

new plan coordination and conflict resolution algorithms.

The proliferation of multiple robot systems will increase the demand for plan-

ning and decision-making systems capable of scaling to a growing number of tasks

and robots. Heterogeneous systems and the diversifying portfolio of robot capa-

bilities will require supporting increasing domain complexity and independence in

order to adapt to dynamic and uncertain domains and environments. This dis-

sertation contributed new domain-independent approaches that can be used for a

range of real-world environments and domains; thus, moving the field closer to the

ability to truly deploy robots for complex real-world missions, and solve larger,

more complex task allocation and coordination problems.

7.2 Future Work

Real-world missions contain multiple sources of uncertainty, including uncertain

action outcomes and uncertain action durations. The plan merging algorithms

introduced in Chapter 5 support durative actions and uncertain action durations,

allowing the Coalition Formation then Planning framework to operate under tem-

poral uncertainty, but do not address uncertain action outcomes. Future research

needs to extend the plan merging algorithms to support uncertain action out-

comes, which require accommodating contingencies for all known action outcomes.

175

Solutions for uncertain action outcomes can be a decision tree or a finite-state

controller, as presented in Chapter 2. Existing methods cannot scale to a large

number of robots due to the exponential growth in the action outcomes. Each

solution type imposes specific challenges on plan merging that will require new

algorithms.

The Task Fusion algorithm considers only pairwise (binary) coalition fusion

in order to avoid the complexity of evaluating all possible coalition combinations.

Investigating algorithm alternatives, or extensions to support n-ary fusions consti-

tutes future Task Fusion research. Additionally, algorithms are needed that can

merge and generate relaxed plans for all
(
m
2

)
pairs of coalition-task pairs, from the

original set of m coalition-task pairs. New heuristics can compare the resulting

plan quality and computational cost to the original coalition-task relaxed plans;

however, several issues limit this approach. The first drawback is that a combina-

torial number of relaxed plans will be generated, which does not scale linearly with

the number of robots, and can jeopardize overall scalability. Potential approaches

to overcome this issue include heuristics that can selectively prune unpromising

pairs. The second limitation is that greedily minimizing each coalition-task pair’s

makespan and number of actions does not guarantee minimizing the resulting

global plan’s makespan or number of actions. Potential approaches to overcome

this issue include merging the relaxed plans minimizing the global makespan di-

rectly. However, the cost of merging all relaxed plans can significantly increase

the overall computational cost. Lastly, the processing time and the memory usage

necessary to generate relaxed plans does not necessarily correlate to the compu-

176

tational cost required to generate full plans, limiting the relaxed plan heuristics

accuracy. Entirely new heuristics can result in more effective Task Fusion.

The plan merging computational cost can be improved by leveraging domain

knowledge, such as task ordering [159]. Coalition formation algorithms take task

ordering constraints into account in order to allocate tasks [159]. Future research

can leverage the coalition formation ordering restrictions in order to improve plan

merging. Imposing task ordering constraints can reduce the plan merging search

space and the overall computational complexity. A hybrid algorithm that combines

TCRA∗ and the Serial Algorithm can selectively serialize tasks before resolving

conflicts. Fewer conflicts will remain after the serialization, which will reduce

the computational cost. Coalition formation algorithms also support online task

discovery [148, 188]. Tasks are taken into account dynamically, as they arrive.

Future work can extend plan merging algorithms to support discovery and merge

new plans as they arrive. The effectiveness of the existing plan merging algorithms

can be impacted by online task discovery, and new algorithms can be developed,

such as iterative versions of TCRA∗.

177

Bibliography

[1] Matthew Crosby, Michael Rovatsos, and Ronald P. A. Petrick. “Automated
agent decomposition for classical planning.” International Conference on
Automated Planning and Scheduling. 2013, pp. 46–54.

[2] Sherief Abdallah and Victor Lesser. “Organization-based cooperative coali-
tion formation.” IEEE/WIC/ACM International Conference on Intelligent
Agent Technology. 2004, pp. 162–168.

[3] Veena G. Adlakha and Vidyadhar Kulkarni. “A classified bibliography of
research on stochastic PERT networks: 1966-1987.” INFOR: Information
Systems and Operational Research 27.3 (1989), pp. 272–296.

[4] Ron Alterovitz, Sven Koenig, and Maxim Likhachev. “Robot planning in
the real world: Research challenges and opportunities.” AI Magazine 37.2
(2016), pp. 76–84.

[5] Christopher Amato, Alan Carlin, and Shlomo Zilberstein. “Bounded Dy-
namic Programming for Decentralized POMDPs.” Workshop at the Inter-
national Conference on Autonomous Agents and Multi-Agent Systems. 2007.

[6] Christopher Amato, Daniel S. Bernstein, and Shlomo Zilberstein. “Optimiz-
ing Memory-bounded Controllers for Decentralized POMDPs.” Conference
on Uncertainty in Artificial Intelligence. 2007, pp. 1–8.

[7] Chistopher Amato, Jilles S. Dibangoye, and Shlomo Zilberstein. “Incre-
mental Policy Generation for Finite-Horizon DEC-POMDPs.” International
Conference on Automated Planning and Scheduling. 2009, pp. 2–9.

[8] Christopher Amato and Shlomo Zilberstein. “Achieving Goals in Decen-
tralized POMDPs.” International Conference on Autonomous Agents and
Multiagent Systems. 2009, pp. 593–600.

[9] Christopher Amato, Daniel S. Bernstein, and Shlomo Zilberstein. “Op-
timizing fixed-size stochastic controllers for POMDPs and decentralized
POMDPs.” Autonomous Agents and Multi-Agent Systems 21.3 (2010),
pp. 293–320.

178

[10] Christopher Amato, Blai Bonet, and Shlomo Zilberstein. “Finite-State
Controllers Based on Mealy Machines for Centralized and Decentralized
POMDPs.” AAAI Conference on Artificial Intelligence. 2010, pp. 1052–
1058.

[11] Christopher Amato, Girish Chowdhary, Alborz Geramifard, N. Kemal Ure,
and Mykel J. Kochenderfer. “Decentralized control of partially observable
Markov decision processes.” IEEE Conference on Decision and Control.
2013, pp. 2398–2405.

[12] Christopher Amato, George D. Konidaris, and Leslie P. Kaelbling. “Plan-
ning with macro-actions in decentralized POMDPs.” International Confer-
ence on Autonomous Agents and Multiagent Systems. 2014, pp. 1273–1280.

[13] Christopher Amato, George Konidaris, Gabriel Cruz, Christopher A.
Maynor, Jonathan P. How, and Leslie P. Kaelbling. “Planning for decen-
tralized control of multiple robots under uncertainty.” IEEE International
Conference on Robotics and Automation. 2015, pp. 1241–1248.

[14] Christopher Amato. “Cooperative decision making.” Decision Making Un-
der Uncertainty: Theory and Application. Ed. by Mykel J. Kochenderfer.
2015, pp. 159–187.

[15] Christopher Amato, George Konidaris, Ariel Anders, Gabriel Cruz,
Jonathan P. How, and Leslie P. Kaelbling. “Policy search for multi-robot co-
ordination under uncertainty.” International Journal of Robotics Research
35.14 (2016), pp. 1760–1778.

[16] Raghav Aras, Alain Dutech, and Francois Charpillet. “Mixed integer linear
programming for exact finite-horizon planning in decentralized POMDPs.”
International Conference on Automated Planning and Scheduling. 2007,
pp. 18–25.

[17] Manuel Arias Calleja, Francisco J. Diez Vegas, and Miguel A. Palacios
Alonso. ProbModelXML: A format for encoding probabilistic graphical mod-
els. Tech. rep. 2012, pp. 15–67.

[18] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. “Complexity
of Finding Embeddings in a k-Tree.” SIAM Journal on Algebraic Discrete
Methods 8.2 (1987), pp. 277–284.

[19] Michael Athans. “The role and use of the stochastic linear-quadratic-
Gaussian problem in control system design.” IEEE Transactions on Au-
tomatic Control 16.6 (1971), pp. 529–552.

179

[20] Christer Backstrom. “Computational Aspects of Reordering Plans.” Journal
of Artificial Intelligence Research 9 (1998), pp. 99–137.

[21] Max Bajracharya, Mark W. Maimone, and Daniel M. Helmick. “Autonomy
for Mars Rovers: Past, Present, and Future.” IEEE Computer 41.12 (2008),
pp. 44–50.

[22] Eric Beaudry, Froduald Kabanza, and Francois Michaud. “Planning for
concurrent action executions under action duration uncertainty using dy-
namically generated Bayesian networks.” International Conference on Au-
tomated Planning and Scheduling. 2010, pp. 10–17.

[23] Eric Beaudry, Froduald Kabanza, and Francois Michaud. “Planning with
Concurrency under Resources and Time Uncertainty.” European Conference
on Artificial Intelligence. 2010, pp. 217–222.

[24] Eric Beaudry, Froduald Kabanza, and Francois Michaud. “Using a Classical
Forward Search to Solve Temporal Planning Problems under Uncertainty.”
Workshops at the AAAI Conference on Artificial Intelligence. 2012, pp. 2–
8.

[25] Daniel S. Bernstein, Eric A. Hansen, and Shlomo Zilberstein. “Bounded Pol-
icy Iteration for Decentralized POMDPs.” International Joint Conference
on Artificial Intelligence. 2005, pp. 1287–1292.

[26] Daniel S. Bernstein, Christopher Amato, Eric A. Hansen, and Shlomo Zil-
berstein. “Policy iteration for decentralized control of Markov decision pro-
cesses.” Journal of Artificial Intelligence Research 34.1 (2009), pp. 89–132.

[27] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-dynamic programming.
1st. Nashua, New Hampshire, 1996, pp. 560–564.

[28] Avrim L. Blum and Merrick L. Furst. “Fast planning through planning
graph analysis.” Artificial Intelligence 90.1-2 (1997), pp. 281–300.

[29] Blai Bonet and Hector Geffner. “Labeled RTDP: Improving the conver-
gence of real-time dynamic programming.” International Conference on
Automated Planning and Scheduling. 2003, pp. 12–21.

[30] Richard Bormann, Florian Jordan, Wenzhe Li, Joshua Hampp, and Martin
Hägele. “Room segmentation: Survey, implementation, and analysis.” Inter-
national Conference on Robotics and Automation. Ed. by Danica Kragic,
Antonio Bicchi, and Alessandro De Luca. 2016, pp. 1019–1026.

180

[31] Daniel Borrajo. “Multi-agent planning by plan reuse.” International Con-
ference on Autonomous Agents and Multi-Agent Systems. 2013, pp. 1141–
1142.

[32] Felix Bose, Jakub Piotrowski, and Bernd Scholz-Reiter. “Autonomously
controlled storage management in vehicle logistics - applications of RFID
and mobile computing systems.” International Journal of RF Technologies:
Research and Applications 1.1 (2009), pp. 57–76.

[33] Abdeslam Boularias and Brahim Chaib Draa. “Exact Dynamic Program-
ming for Decentralized POMDPs with Lossless Policy Compression.” Inter-
national Conference on Automated Planning and Scheduling. 2008, pp. 20–
27.

[34] Craig Boutilier and Ronen I. Brafman. “Partial-Order Planning with Con-
current Interacting Actions.” Journal of Artificial Intelligence Research 14
(2001), pp. 105–136.

[35] Craig Boutilier, Raymond Reiter, and Bob Price. “Symbolic Dynamic Pro-
gramming for First-Order MDPs.” International Joint Conference on Arti-
ficial Intelligence. 2001, pp. 690–700.

[36] Ronen I. Brafman and Carmel Domshlak. “On the complexity of planning
for agent teams and its implications for single agent planning.” Artificial
Intelligence 198 (2013), pp. 52–71.

[37] John Bresina, Richard Dearden, Nicolas Meuleau, Sailesh Ramakrishnan,
David Smith, and Rich Washington. “Planning Under Continuous Time and
Resource Uncertainty: A Challenge for AI.” Conference on Uncertainty in
Artificial Intelligence. 2002, pp. 77–84.

[38] Daniel Bryce, Sicun Gao, David J. Musliner, and Robert P. Goldman.
“SMT-based nonlinear PDDL+ planning.” AAAI Conference on Artificial
Intelligence. 2015, pp. 3247–3253.

[39] Olivier Buffet and Douglas Aberdeen. “The factored policy-gradient plan-
ner.” Artificial Intelligence 173.5-6 (2009), pp. 722–747.

[40] Pieter Buzing, Adriaan Mors, Jeroen Valk, and Cees Witteveen. “Coor-
dinating Self-interested Planning Agents.” Autonomous Agents and Multi-
Agent Systems 12.2 (2006), pp. 199–218.

[41] Alan Carlin and Shlomo Zilberstein. “Value-Based Observation Compres-
sion for DEC-POMDPs.” International Conference on Autonomous Agents
and Multiagent Systems. 2008, pp. 501–508.

181

[42] Vinton G. Cerf and Robert E. Kahn. “A protocol for packet network in-
tercommunication.” IEEE Transactions on Computing 22 (1974), pp. 637–
648.

[43] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. “Strong Temporal
Planning with Uncontrollable Durations: A State-Space Approach.” AAAI
Conference on Artificial Intelligence. 2015, pp. 3254–3260.

[44] Alessandro Cimatti, Minh B. Do, Andrea Micheli, Marco Roveri, and David
E. Smith. “Strong temporal planning with uncontrollable durations.” Arti-
ficial Intelligence 256 (2018), pp. 1–34.

[45] Madison Clark-Turner and Christopher Amato. “COG-DICE: An Algo-
rithm for Solving Continuous-Observation Dec-POMDPs.” International
Joint Conference on Artificial Intelligence. 2017, pp. 4573–4579.

[46] Amanda J. Coles, Andrew I. Coles, Maria Fox, and Derek Long. “Forward-
chaining partial-order planning.” International Conference on Automated
Planning and Scheduling. 2010, pp. 42–49.

[47] Amanda J. Coles, Andrew I. Coles, Maria Fox, and Derek Long. “POPF2: A
forward-chaining partial order planner.” The International Planning Com-
petition. 2011, pp. 65–70.

[48] Amanda J. Coles, Andrew I. Coles, Angel Garcia-Olaya, Sergio Jimenez,
Carlos Linares Lopez, Scott Sanner, and Sungwook Yoon. “A survey of the
seventh International Planning Competition.” AI Magazine 33.1 (2012),
pp. 83–88.

[49] Amanda J. Coles, Andrew I. Coles, Maria Fox, and Derek Long. “COLIN:
Planning with continuous linear numeric change.” Journal of Artificial In-
telligence Research 44 (2012), pp. 1–96.

[50] Alexandra Coman and Hector Munoz-Avila. “Generating Diverse Plans Us-
ing Quantitative and Qualitative Plan Distance Metrics.” AAAI Conference
on Artificial Intelligence. 2011, pp. 946–951.

[51] Jeffrey S. Cox and Edmund H. Durfee. “An efficient algorithm for multia-
gent plan coordination.” International Conference on Autonomous Agents
and Multi-Agent Systems. 2005, pp. 828–835.

[52] Jeffrey S. Cox and Edmund H. Durfee. “Efficient and distributable methods
for solving the multiagent plan coordination problem.” Multiagent and Grid
Systems 5.4 (2009), pp. 373–408.

182

[53] Matthew Crosby, Ronald P. A. Petrick, Francesco Rovida, and Volker
Krueger. “Integrating Mission and Task Planning in an Industrial
Robotics Framework.” International Conference on Automated Planning
and Scheduling. 2017, pp. 471–479.

[54] William Cushing, Subbarao Kambhampati, Mausam, and Daniel S. Weld.
“When is temporal planning really temporal?” International Joint Confer-
ence on Artifical Intelligence. 2007, pp. 1852–1859.

[55] Jilles S. Dibangoye, Abdel-Illah Mouaddib, and Brahim Chai Draa. “Point-
Based Incremental Pruning Heuristic for Solving Finite-Horizon DEC-
POMDPs.” International Conference on Autonomous Agents and Multi-
agent Systems. 2009, pp. 569–576.

[56] Jilles S. Dibangoye, Christopher Amato, Olivier Buffet, and Francois
Charpillet. “Optimally solving Dec-POMDPs as continuous-state MDPs.”
International Joint Conference on Artificial Intelligence. 2013, pp. 90–96.

[57] Jilles S. Dibangoye, Christopher Amato, Olivier Buffet, and Francois
Charpillet. Optimally solving Dec-POMDPs as continuous-state MDPs:
Theory and algorithms. Tech. rep. 2014.

[58] Jilles S. Dibangoye, Olivier Buffet, and Francois Charpillet. “Error-Bounded
Approximations for Infinite-Horizon Discounted Decentralized POMDPs.”
Machine Learning and Knowledge Discovery in Databases. Ed. by Toon
Calders, Floriana Esposito, Eyke Hullermeier, and Rosa Meo. 2014, pp. 338–
353.

[59] Jilles S. Dibangoye, Christopher Amato, Olivier Buffet, and Francois
Charpillet. “Optimally solving Dec-POMDPs as continuous-state MDPs.”
Journal of Artificial Intelligence Research 55 (2016), pp. 443–497.

[60] Yannis Dimopoulos, Muhammad A. Hashmi, and Pavlos Moraitis. “mu-
SATPLAN: Multi-agent planning as satisfiability.” Knowledge-Based Sys-
tems 29 (2012), pp. 54–62.

[61] Anton Dukeman. “Hybrid mission planning with coalition formation.” PhD
dissertation. Vanderbilt University, 2017.

[62] Anton Dukeman and Julie A. Adams. “Hybrid mission planning with coali-
tion formation.” Journal of Autonomous Agents and Multi-Agent Systems
31.6 (2017), pp. 1424–1466.

183

[63] Edmund H. Durfee and Shlomo Zilberstein. “Multiagent planning, control,
and execution.” Multiagent systems. Ed. by Gerhard Weiss. 2013, pp. 485–
545.

[64] Filip Dvorak, Arthur Bit-Monnot, Felix Ingrand, and Malik Ghallab. “A
Flexible ANML Actor and Planner in Robotics.” Workshops at the Inter-
national Conference on Automated Planning and Scheduling. 2014.

[65] Baris Eker and H. Levent Akin. “Using evolution strategies to solve DEC-
POMDP problems.” Soft Computing - A Fusion of Foundations, Method-
ologies and Applications 14.1 (2010), pp. 35–47.

[66] Baris Eker, Ergin Ozkucur, Cetin Mericli, Tekin Mericli, and H. Levent
Akin. “A finite horizon DEC-POMDP approach to multi-robot task learn-
ing.” International Conference on Application of Information and Commu-
nication Technologies. 2011, pp. 1–5.

[67] Baris Eker. “Evolutionary Algorithms for Solving Dec-POMDP Problems.”
PhD dissertation. Bogazici University, 2012.

[68] Baris Eker and H. Levent Akin. “Solving decentralized POMDP problems
using genetic algorithms.” Autonomous Agents and Multi-Agent Systems
27.1 (2013), pp. 161–196.

[69] Rosemary Emery-Montemerlo, Geoff Gordon, Jeff Schneider, and Sebastian
Thrun. “Approximate Solutions for Partially Observable Stochastic Games
with Common Payoffs.” International Conference on Autonomous Agents
and Multiagent Systems. 2004, pp. 136–143.

[70] Eithan Ephrati and Jeffrey S. Rosenschein. “Divide and conquer in multi-
agent planning.” AAAI Conference on Artificial Intelligence. 1994, pp. 375–
380.

[71] Michael A. Erdmann and Matthew T. Mason. “Exploration of sensor-
less manipulation.” IEEE Journal of Robotics and Automation 4 (1988),
pp. 369–379.

[72] Kutluhan Erol, Dana S. Nau, and V.S. Subrahmanian. “On the complexity
of domain-independent planning.” National Conference on Artificial Intel-
ligence. 1992, pp. 381–386.

184

[73] Patrick Eyerich, Robert Mattmuller, and Gabriele Roger. “Using the
context-enhanced additive heuristic for temporal and numeric planning.”
Towards Service Robots for Everyday Environments. Ed. by Erwin Prassler,
Rainer Bischoff, Wolfram Burgard, Robert Haschke, Martin Hagele, Gisbert
Lawitzky, Bernhard Nebel, Paul Ploger, Ulrich Reiser, and Marius Zollner.
2012, pp. 49–64.

[74] Matthew E. Gaston and Marie desJardins. “Agent-organized networks for
dynamic team formation.” International Conference on Autonomous Agents
and Multiagent Systems. 2005, pp. 230–237.

[75] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning:
Theory and Practice. Amsterdam, Netherlands, 2004.

[76] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated planning and
acting. New York, New York, 2016.

[77] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. “Improved Tech-
niques for Grid Mapping With Rao-Blackwellized Particle Filters.” IEEE
Transactions on Robotics 23.1 (2007), pp. 34–46.

[78] Naresh Gupta and Dana S. Nau. “On the complexity of blocks-world plan-
ning.” Artificial Intelligence 56.2-3 (1992), pp. 223–254.

[79] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. “Dynamic
Programming for Partially Observable Stochastic Games.” National Con-
ference on Artificial Intelligence. 2004, pp. 709–715.

[80] Musad A. Haque and Magnus Egerstedt. “Coalition formation in multi-
agent systems based on bottlenose dolphin alliances.” American Control
Conference. 2009, pp. 3280–3285.

[81] Malte Helmert. “The fast downward planning system.” Journal of Artificial
Intelligence Research 26 (2006), pp. 191–246.

[82] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. “SPUDD:
Stochastic planning using decision diagrams.” Conference on Uncertainty
in Artificial Intelligence. 1999, pp. 279–288.

[83] Jorg Hoffmann. “FF: The fast-forward planning system.” AI magazine 22.3
(2001), pp. 57–62.

[84] Leslie P. Kaelbling, Michael L. Littman, and Anthony R. Cassandra. “Plan-
ning and acting in partially observable stochastic domains.” Artificial In-
telligence 101.1-2 (1998), pp. 99–134.

185

[85] Subbarao Kambhampati, Mark Cutkosky, Marty Tenenbaum, and Soo H.
Lee. “Combining specialized reasoners and general purpose planners: a case
study.” AAAI Conference on Artificial Intelligence. 1991, pp. 199–205.

[86] Henry A. Kautz and Bart Selman. “Planning as satisfiability.” AAAI Con-
ference on Artificial Intelligence. 1992, pp. 359–363.

[87] Thomas Keller and Patrick Eyerich. “PROST: Probabilistic planning based
on UCT.” International Conference on Automated Planning and Scheduling.
2012, pp. 119–127.

[88] Levente Kocsis and Csaba Szepesvari. “Bandit based Monte-Carlo plan-
ning.” European Conference on Machine Learning. 2006, pp. 282–203.

[89] Mary Koes, Illah Nourbakhsh, and Katia Sycara. “Heterogeneous multi-
robot coordination with spatial and temporal constraints.” National Con-
ference on Artificial Intelligence. 2005, pp. 1292–1297.

[90] Akshat Kumar and Shlomo Zilberstein. “Point-Based Backup for Decentral-
ized POMDPs: Complexity and New Algorithms.” International Conference
on Autonomous Agents and Multiagent Systems. 2010, pp. 1315–1322.

[91] Akshat Kumar and Shlomo Zilberstein. “Anytime Planning for Decentral-
ized POMDPs using Expectation Maximization.” Conference on Uncer-
tainty in Artificial Intelligence. 2010, pp. 294–301.

[92] Jan van Leeuwen, ed. Handbook of Theoretical Computer Science, Volume
A: Algorithms and Complexity. Cambridge, Massachusetts, 1990.

[93] Joop M. I. M. Leo. “A general context-free parsing algorithm running in
linear time on every LR(k) grammar without using lookahead.” Theoretical
Computer Science 82.1 (1991), pp. 165–176.

[94] Hector Levesque, Fiora Pirri, and Ray Reiter. “Foundations for the situa-
tion calculus.” Linkoping Electronic Articles in Computer and Information
Science 18 (1998), p. 18.

[95] Frank L. Lewis, Draguna L. Vrabie, and Vassilis L. Syrmos. Optimal Con-
trol. Hoboken, New Jersey, 2012.

[96] Leonid Libkin. Elements of Finite Model Theory. Berlin, Germany, 2004.

[97] Iain Little, Douglas Aberdeen, and Sylvie Thiebaux. “Prottle: a probabilis-
tic temporal planner.” National Conference on Artificial Intelligence. 2005,
pp. 1181–1186.

186

[98] Miao Liu, Christopher Amato, Emily P. Anesta, J. Daniel Griffith, and
Jonathan P. How. “Learning for Decentralized Control of Multiagent Sys-
tems in Large, Partially-observable Stochastic Environments.” AAAI Con-
ference on Artificial Intelligence. 2016, pp. 2523–2529.

[99] Derek Long and Maria Fox. “The 3rd International Planning Competition:
Results and Analysis.” Journal of Artificial Intelligence Research 20 (2003),
pp. 1–59.

[100] Donald G. Malcolm, J. H. Roseboom, C. E. Clark, and Willard Fazar. “Ap-
plication of a technique for research and development program evaluation.”
Operations Research 7.5 (1959), pp. 646–669.

[101] Gilberto Marcon dos Santos and Julie A. Adams. “Task Fusion Heuristics
for Coalition Formation and Planning.” International Conference on Au-
tonomous Agents and Multiagent Systems. 2018, pp. 2198–2200.

[102] Gilberto Marcon dos Santos and Julie A. Adams. “Optimal Temporal Plan
Merging.” International Conference on Autonomous Agents and Multiagent
Systems. 2020, pp. 851–859.

[103] Mausam and Daniel S. Weld. “Planning with Durative Actions in Stochastic
Domains.” Journal of Artificial Intelligence Research 31 (2008), pp. 33–82.

[104] Mausam and Andrey Kolobov. Planning with Markov Decision Processes:
An AI Perspective. Williston, Vermont, 2012.

[105] Drew McDermott, Malik Ghallab, and Adele C. Howe. PDDL-the planning
domain definition language. Tech. rep. 1998.

[106] Joao V. de Sousa Messias, Matthijs T. J. Spaan, and Pedro Lima. “GSMDPs
for Multi-Robot Sequential Decision-Making.” AAAI Conference on Artifi-
cial Intelligence. 2013, pp. 1408–1414.

[107] Joao V. de Sousa Messias. “Decision-Making under Uncertainty for Real
Robot Teams.” PhD dissertation. Instituto Superior Tecnico, 2014.

[108] Andrea Micheli, Minh B. Do, and David E. Smith. “Compiling Away Un-
certainty in Strong Temporal Planning with Uncontrollable Durations.” In-
ternational Joint Conference on Artificial Intelligence. 2015, pp. 1631–1637.

[109] Adriaan ter Mors, Jeroen Valk, and Cees Witteveen. “Task coordination and
decomposition in multi-actor planning systems.” Workshop on Software-
Agents in Information Systems and Industrial Applications. 2006, pp. 83–
94.

187

[110] Kiriakos S. Mountakis, Tomas Klos, and Cees Witteveen. “Stochastic task
networks: Trading performance for stability.” International Conference on
the Integration of Constraint Programming, Artificial Intelligence, and Op-
erations Research. 2017, pp. 302–311.

[111] Lenka Mudrova, Bruno Lacerda, and Nick Hawes. “Partial order temporal
plan merging for mobile robot tasks.” European Conference on Artificial
Intelligence. 2016, pp. 1537–1545.

[112] Christian J. Muise, Sheila A. McIlraith, and Christopher Beck. “Improved
Non-Deterministic Planning by Exploiting State Relevance.” International
Conference on Automated Planning and Scheduling. 2012, pp. 172–180.

[113] Christian J. Muise, Vaishak Belle, and Sheila A. McIlraith. “Computing
Contingent Plans via Fully Observable Non-deterministic Planning.” AAAI
Conference on Artificial Intelligence. 2014, pp. 2322–2329.

[114] Christian J. Muise, Paolo Felli, Tim Miller, Adrian R. Pearce, and Liz So-
nenberg. “Leveraging FOND Planning Technology to Solve Multi-Agent
Planning Problems.” Workshops at the International Conference on Auto-
mated Planning and Scheduling. 2015, pp. 83–90.

[115] Ranjit Nair, Milind Tambe, Makoto Yokoo, David V. Pynadath, and Stacy
Marsella. “Taming decentralized POMDPs: Towards efficient policy compu-
tation for multiagent settings.” International Joint Conference on Artificial
Intelligence. 2003, pp. 705–711.

[116] Tuan A. Nguyen, Minh Do, Alfonso E. Gerevini, Ivan Serina, Biplav Sri-
vastava, and Subbarao Kambhampati. “Generating diverse plans to handle
unknown and partially known user preferences.” Artificial Intelligence 190
(2012), pp. 1–31.

[117] Frans A. Oliehoek, Julian F. P. Kooij, and Nikos Vlassis. “The cross-entropy
method for policy search in decentralized POMDPs.” Informatica 32 (2008),
pp. 341–357.

[118] Frans A. Oliehoek, Matthijs T. J. Spaan, and Nikos Vlassis. “Optimal and
approximate Q-value functions for decentralized POMDPs.” Journal of Ar-
tificial Intelligence Research 32 (2008), pp. 289–353.

[119] Frans A. Oliehoek, Matthijs T. J. Spaan, Shimon Whiteson, and Nikos Vlas-
sis. “Exploiting locality of interaction in factored Dec-POMDPs.” Interna-
tional Conference on Autonomous Agents and Multiagent Systems. Vol. 1.
2008, pp. 517–524.

188

[120] Frans A. Oliehoek, Shimon Whiteson, and Matthijs T. J. Spaan. “Lossless
clustering of histories in decentralized POMDPs.” International Conference
on Autonomous Agents and Multiagent Systems. Vol. 1. 2009, pp. 577–584.

[121] Frans A. Oliehoek, Matthijs T. J. Spaan, Jilles S. Dibangoye, and Christo-
pher Amato. “Heuristic Search for Identical Payoff Bayesian Games.” Inter-
national Conference on Autonomous Agents and Multiagent Systems. 2010,
pp. 1115–1122.

[122] Frans A. Oliehoek. “Decentralized POMDPS.” Reinforcement Learning 12
(2012), pp. 471–503.

[123] Frans A. Oliehoek, Matthijs T. J. Spaan, Christopher Amato, and Shi-
mon Whiteson. “Incremental clustering and expansion for faster optimal
planning in Dec-POMDPs.” Journal of Artificial Intelligence Research 46
(2013), pp. 449–509.

[124] Frans A. Oliehoek and Christopher Amato. A concise introduction to de-
centralized POMDPs. Berlin, Germany, 2016.

[125] Frans A. Oliehoek, Matthijs T. J. Spaan, Bas Terwijn, Erwin Walraven,
Joao V. de Sousa Messias, Philipp Robbel, Abdeslam Boularias, Xuanjie
Liu, Julian Kooij, Tiago Veiga, Francisco Melo, Timon Kanters, and Philipp
Beau. The MADP Toolbox. 2017.

[126] Shayegan Omidshafiei, Ali-akbar Agha mohammadi, Christopher Amato,
and Jonathan P. How. “Decentralized control of Partially Observable
Markov Decision Processes using belief space macro-actions.” IEEE Inter-
national Conference on Robotics and Automation. 2015, pp. 5962–5969.

[127] Shayegan Omidshafiei, Ali-akbar Agha mohammadi, Christopher Amato,
Shih-Yuan Liu, Jonathan P. How, and John Vian. “Graph-based Cross En-
tropy method for solving multi-robot decentralized POMDPs.” IEEE In-
ternational Conference on Robotics and Automation. 2016, pp. 5395–5402.

[128] Shayegan Omidshafiei, Ali-Akbar Agha-Mohammadi, Christopher Amato,
Shih-Yuan Liu, Jonathan P. How, and John Vian. “Decentralized control
of multi-robot partially observable Markov decision processes using be-
lief space macro-actions.” International Journal of Robotics Research 36.2
(2017), pp. 231–258.

[129] Joni K. Pajarinen and Jaakko Peltonen. “Periodic Finite State Controllers
for Efficient POMDP and DEC-POMDP Planning.” Advances in Neural
Information Processing Systems 24 (2011), pp. 2636–2644.

189

[130] Joni K. Pajarinen and Jaakko Peltonen. “Efficient Planning for Factored
Infinite-horizon DEC-POMDPs.” International Joint Conference on Artifi-
cial Intelligence. 2011, pp. 325–331.

[131] Joni K. Pajarinen and Jaakko Peltonen. “Expectation Maximization for
Average Reward Decentralized POMDPs.” Machine Learning and Knowl-
edge Discovery in Databases. Ed. by Hendrik Blockeel, Kristian Kersting,
Siegfried Nijssen, and Filip Zelezny. Vol. 8188. Lecture Notes in Computer
Science. 2013, pp. 129–144.

[132] Edwin P. D. Pednault. “ADL: Exploring the Middle Ground Between
STRIPS and the Situation Calculus.” International Conference on Prin-
ciples of Knowledge Representation and Reasoning. 1989, pp. 324–332.

[133] Scott Penberthy and Daniel S. Weld. “Temporal planning with continuous
change.” National Conference on Artificial Intelligence. 1994, pp. 1010–
1015.

[134] Tiago Pereira, Nerea Luis, Antonio Moreira, Daniel Borrajo, Manuela
Veloso, and Susana Fernandez. “Heterogeneous multi-agent planning us-
ing actuation maps.” IEEE International Conference on Autonomous Robot
Systems and Competitions. 2018, pp. 219–224.

[135] Patrick Pfaff, Wolfram Burgard, and Dieter Fox. “Robust Monte-Carlo Lo-
calization Using Adaptive Likelihood Models.” European Robotics Sympo-
sium. Ed. by Henrik I. Christensen. Vol. 22. Springer Tracts in Advanced
Robotics. 2006, pp. 181–194.

[136] Martha E. Pollack, David Joslin, and Massimo Paolucci. “Flaw Selection
Strategies For Partial-Order Planning.” Journal of Artificial Intelligence
Research 6 (1997), pp. 223–262.

[137] Pascal Poupart. “Exploiting structure to efficiently solve large scale
POMDPs.” PhD dissertation. University of Toronto, 2005.

[138] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. “ROS: An open-source
robot operating system.” Workshops at the IEEE International Conference
on Robotics and Automation. 2009.

[139] Talal Rahwan and Nicholas R. Jennings. “An improved dynamic program-
ming algorithm for coalition structure generation.” International Confer-
ence on Autonomous Agents and Multiagent Systems. 2008, pp. 1417–1420.

190

[140] Zhigang Ren, Zuren Feng, and Xiaonian Wang. “An efficient ant colony op-
timization approach to agent coalition formation problem.” World Congress
on Intelligent Control and Automation. 2008, pp. 7879–7882.

[141] Khashayar Rohanimanesh and Sridhar Mahadevan. “Decision-theoretic
planning with concurrent temporally extended actions.” Conference on Un-
certainty in Artificial Intelligence. 2001, pp. 472–479.

[142] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach
(3rd Edition). Upper Saddle River, New Jersey, 2009.

[143] Scott Sanner and Craig Boutilier. “Practical solution techniques for first-
order MDPs.” Artificial Intelligence 173.5-6 (2009), pp. 748–788.

[144] Scott Sanner. Relational dynamic influence diagram language: Language
description. Tech. rep. 2010, p. 32.

[145] Scott Sanner and Kristian Kersting. “Symbolic Dynamic Programming for
First-order POMDPs.” AAAI Conference on Artificial Intelligence. 2010,
pp. 1140–1146.

[146] Scott Sanner, Karina V. Delgado, and Leliane N. de Barros. “Symbolic
dynamic programming for discrete and continuous state MDPs.” Conference
on Uncertainty in Artificial Intelligence. 2011, pp. 643–652.

[147] Sanem Sariel-Talay, Tucker R. Balch, and Nadia Erdogan. “A Generic
Framework for Distributed Multirobot Cooperation.” Journal of Intelligent
& Robotic Systems 63.2 (2011), pp. 323–358.

[148] Sarvapali D. Ramchurn, Maria Polukarov, Alessandro Farinelli, Cuong
Truong, and Nicholas R. Jennings. “Coalition formation with spatial and
temporal constraints.” International Conference on Autonomous Agents
and Multiagent Systems. 2010, pp. 1181–1188.

[149] Sayan D. Sen and Julie A. Adams. “A decision network based framework for
multiagent coalition formation.” International Conference on Autonomous
Agents and Multi-Agent Systems. 2013, pp. 55–62.

[150] Sayan D. Sen and Julie A. Adams. “Real-time optimal selection of mul-
tirobot coalition formation algorithms using conceptual clustering.” AAAI
Conference on Artificial Intelligence. 2015, pp. 29–35.

[151] Sayan D. Sen and Julie A. Adams. “An influence diagram based multi-
criteria decision making framework for multirobot coalition formation.” Au-
tonomous Agents and Multi-Agent Systems 29.6 (2015), pp. 1061–1090.

191

[152] Sayan D. Sen. “An Intelligent and Unified Framework for Multiple Robot
and Human Coalition Formation.” PhD dissertation. Vanderbilt University,
2015.

[153] Travis C. Service and Julie A. Adams. Theory and algorithms for coalition
formation among heterogeneous agents. Tech. rep. 2009.

[154] Travis C. Service and Julie A. Adams. “Coalition formation for task allo-
cation: Theory and algorithms.” Autonomous Agents and Multi-Agent Sys-
tems 22.2 (2011), pp. 225–248.

[155] Travis C. Service and Julie A. Adams. “Constant factor approximation algo-
rithms for coalition structure generation.” Autonomous Agents and Multi-
Agent Systems 23.1 (2011), pp. 1–17.

[156] Travis C. Service and Julie A. Adams. “A simultaneous descending auction
for task allocation.” IEEE International Conference on Systems, Man and
Cybernetics. 2014, pp. 379–384.

[157] Sven Seuken and Shlomo Zilberstein. “Formal models and algorithms for
decentralized decision making under uncertainty.” Autonomous Agents and
Multi-Agent Systems 17.2 (2008), pp. 190–250.

[158] Mohsen Shahandasht, Binaya Pudasaini, and Sean Logan McCauley. Au-
tonomous Vehicles and Freight Transportation Analysis. Tech. rep. 2019.

[159] Onn Shehory and Sarit Kraus. “Methods for task allocation via agent coali-
tion formation.” Artificial Intelligence 101.1-2 (1998), pp. 165–200.

[160] Pedro M. Shiroma and Mario F. M. Campos. “CoMutaR: A framework
for multi-robot coordination and task allocation.” IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2009, pp. 4817–4824.

[161] Steven S. Skiena. The Algorithm Design Manual. 2nd ed. London, United
Kingdom, 2008.

[162] David E. Smith and Daniel S. Weld. “Temporal planning with mutual ex-
clusion reasoning.” International Journal of Computer Applications. 1999,
pp. 326–337.

[163] David E. Smith and William Cushing. “The ANML language.” The Inter-
national Conference on Automated Planning and Scheduling Workshop on
Knowledge Engineering for Planning and Scheduling. 2008.

192

[164] Adhiraj Somani, Nan Ye, David Hsu, and Wee S. Lee. “DESPOT: Online
POMDP planning with regularization.” Advances in Neural Information
Processing Systems 26 (2013), pp. 1–9.

[165] Matthijs T. J. Spaan, Frans A. Oliehoek, and Christopher Amato. “Scaling
up optimal heuristic search in Dec-POMDPs via incremental expansion.”
International Joint Conference on Artificial Intelligence. Vol. 22. 3. 2011,
pp. 2027–2032.

[166] Sarath Sreedharan, Yu Zhang, and Subbarao Kambhampati. “A first multi-
agent planner for required cooperation.” Competition of Distributed and
Multi-Agent Planners. 2015, pp. 17–20.

[167] Biplav Srivastava, Subbarao Kambhampati, Tuan A. Nguyen, Minh B. Do,
Alfonso Gerevini, and Ivan Serina. “Domain Independent Approaches for
Finding Diverse Plans.” International Joint Conference on Artificial Intel-
ligence. 2007, pp. 2016–2022.

[168] Marcel Steinmetz, Jorg Hoffmann, and Olivier Buffet. “Goal Probability
Analysis in Probabilistic Planning: Exploring and Enhancing the State of
the Art.” Journal of Artificial Intelligence Research 57 (2016), pp. 229–271.

[169] P. B. Sujit, Joel M. George, and Randal W. Beard. “Multiple UAV coalition
formation.” American Control Conference. 2008, pp. 2010–2015.

[170] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An in-
troduction. Cambridge, Massachusetts, 1998.

[171] Richard S. Sutton, Doina Precup, and Satinder Singh. “Between MDPs
and semi-MDPs: A framework for temporal abstraction in reinforcement
learning.” Artificial Intelligence 112.1-2 (1999), pp. 181–211.

[172] Sven Seuken and Shlomo Zilberstein. “Memory-Bounded Dynamic Pro-
gramming for DEC-POMDPs.” International Joint Conference on Artificial
Intelligence. 2007, pp. 2009–2015.

[173] Sven Seuken and Shlomo Zilberstein. “Improved Memory-Bounded Dy-
namic Programming for Decentralized POMDPs.” Conference on Uncer-
tainty in Artificial Intelligence. 2007, pp. 344–351.

193

[174] Daniel Szer and Francois Charpillet. “An Optimal Best-First Search Al-
gorithm for Solving Infinite Horizon DEC-POMDPs.” Machine Learning:
European Conference on Machine Learning. Ed. by Joao Gama, Rui Cama-
cho, Pavel Brazdil, Alipio Mario Jorge, and Luis Torgo. Vol. 3720. Lecture
Notes in Computer Science. Berlin, Heidelberg, 2005. Chap. 38, pp. 389–
399.

[175] Daniel Szer, Francois Charpillet, and Shlomo Zilberstein. “MAA*: A Heu-
ristic Search Algorithm for Solving Decentralized POMDPs.” Conference
on Uncertainty in Artificial Intelligence. 2005, pp. 576–583.

[176] Daniel Szer and Francois Charpillet. “Point-Based Dynamic Programming
for DEC-POMDPs.” National Conference on Artificial Intelligence. 2006,
pp. 1233–1238.

[177] Paul Taylor, Alan W. Black, and Richard Caley. “The architecture of the
Festival speech synthesis system.” The International Speech Communication
Association Speech Synthesis Workshop. 1998, pp. 147–152.

[178] Alejandro Torreno, Eva Onaindia, and Oscar Sapena. “FMAP: Dis-
tributed cooperative multi-agent planning.” Applied Intelligence 41.2
(2014), pp. 606–626.

[179] Alejandro Torreno, Eva Onaindia, Antonin Komenda, and Michal Stolba.
“Cooperative multi-agent planning.” ACM Computing Surveys 50.6 (2017),
pp. 1–32. eprint: 1711.09057.

[180] Predrag T. Tosic and Gul A. Agha. “Maximal Clique Based Distributed
Coalition Formation for Task Allocation in Large-Scale Multi-agent Sys-
tems.” Massively Multi-Agent Systems I. Ed. by Toru Ishida, Les Gasser,
and Hideyuki Nakashima. Vol. 3446. Lecture Notes in Computer Science.
2005, pp. 104–120.

[181] Mauro Vallati, Luk Chrpa, Marek Grzes, T. L. McCluskey, Mark Roberts,
and Scott Sanner. “The 2014 International Planning Competition: Progress
and trends.” AI Magazine 36.3 (2015), pp. 90–98.

[182] Pradeep Varakantham, Janusz Marecki, Yuichi Yabu, Milind Tambe, and
Makoto Yokoo. “Letting Loose a SPIDER on a Network of POMDPs:
Generating Quality Guaranteed Policies.” International Conference on Au-
tonomous Agents and Multiagent Systems. 2007.

1711.09057

194

[183] Thierry Vidal and Malik Ghallab. “Dealing with Uncertain Durations In
Temporal Constraint Networks dedicated to Planning.” European Confer-
ence on Artificial Intelligence. 1996, pp. 48–54.

[184] Vincent Vidal. “YAHSP3 and YAHSP3-MT in the International Planning
Competition.” The International Planning Competition. 2014, pp. 64–65.

[185] Lovekesh Vig and Julie A. Adams. “Issues in multi-robot coalition forma-
tion.” International Workshop on Multi-Robot Systems. Ed. by Lynne E.
Parker, Frank E. Schneider, and Alan C. Schultz. 2005, pp. 15–26.

[186] Lovekesh Vig and Julie A. Adams. “Multi-robot coalition formation.” IEEE
Transactions on Robotics 22.4 (2006), pp. 637–649.

[187] Lovekesh Vig and Julie A. Adams. “Market-based multi-robot coalition
formation.” Distributed Autonomous Robotic Systems 7. Ed. by Maria Gini
and Richard Voyles. 2006, pp. 227–236.

[188] Lovekesh Vig and Julie A. Adams. “Coalition formation: From software
agents to robots.” Journal of Intelligent and Robotic Systems. 1 (2007),
pp. 85–118.

[189] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye.
Probability & Statistics for Engineers and Scientists. 8th ed. Upper Saddle
River, New Jersey, 2007.

[190] Mathijs de Weerdt, Yingqian Zhang, and Tomas Klos. “Distributed task
allocation in social networks.” International Conference on Autonomous
Agents and Multiagent Systems. 2007, pp. 488–495.

[191] Mathijs de Weerdt and Brad Clement. “Introduction to planning in multi-
agent systems.” Multiagent and Grid Systems 5.4 (2009), pp. 345–355.

[192] David E. Wilkins and Karen L. Myers. “A multiagent planning architec-
ture.” International Conference on Artificial Intelligence Planning Systems.
1998, pp. 154–162.

[193] Patrick H. Winston. Artificial Intelligence. Boston, Massachusetts, 1995.

[194] Feng Wu, Shlomo Zilberstein, and Xiaoping Chen. “Point-Based Policy
Generation for Decentralized POMDPs.” International Conference on Au-
tonomous Agents and Multiagent Systems. 2010, pp. 1307–1314.

[195] Feng Wu, Shlomo Zilberstein, and Nicholas R. Jennings. “Monte-Carlo Ex-
pectation Maximization for Decentralized POMDPs.” International Joint
Conference on Artificial Intelligence. 2013, pp. 397–403.

195

[196] Jinyou Xu and Wenli Li. “Solution of Overlapping Coalition Formation
Based on Discrete Particle Swarm Optimization.” International Conference
on Wireless Communications, Networking and Mobile Computing. 2008,
pp. 1–4.

[197] Sungwook Yoon, Alan Fern, Robert Givan, and Subbarao Kambhampati.
“Probabilistic planning via determinization in hindsight.” AAAI Conference
on Artificial Intelligence. 2008, pp. 1010–1016.

[198] Sungwook Yoon, Wheeler Ruml, J. Benton, and Minh B. Do. “Improving de-
terminization in hindsight for online probabilistic planning.” International
Conference on Automated Planning and Scheduling. 2010, pp. 209–216.

[199] Hakan L. S. Younes and Michael L. Littman. PPDDL1.0: An extension to
PDDL for expressing planning domains with probabilistic effects. Tech. rep.
2004.

[200] Hakan L. S. Younes and Reid G. Simmons. “Policy generation for
continuous-time stochastic domains with concurrency.” International Con-
ference on Automated Planning and Scheduling. 2004, pp. 325–333.

[201] Hakan L. S. Younes and Reid G. Simmons. “Solving generalized semi-
Markov decision processes using continuous phase-type distributions.” In-
ternational Conference on Artifical Intelligence. 2004, pp. 742–747.

[202] Zahra Zamani, Scott Sanner, and Cheng Fang. “Symbolic Dynamic Pro-
gramming for Continuous State and Action MDPs.” AAAI Conference on
Artificial Intelligence. 2012, pp. 1839–1845.

[203] Yu Zhang and Lynne E. Parker. “IQ-ASyMTRe: Synthesizing coalition for-
mation and execution for tightly-coupled multirobot tasks.” IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. 2010, pp. 5595–
5602.

[204] Yu Zhang, Sarath Sreedharan, and Subbarao Kambhampati. “Capability
models and their applications in planning.” International Conference on
Autonomous Agents and Multiagent Systems. 2015, pp. 1151–1159.

[205] Eckart Zitzler and Lothar Thiele. “Multiobjective evolutionary algorithms:
a comparative case study and the strength Pareto approach.” IEEE Trans-
actions on Evolutionary Computation 3.4 (1999), pp. 257–271.

196

APPENDICES

197

Appendix A: The MAPL Language

The MAPL language grammar is presented in Listing A.1.

Listing A.1: The MAPL Grammar.
1 // Token Regex
2 number : /[0−9]+(\ . [0−9]+) ?/
3 id : / [a−zA−Z] [a−zA−Z0−9]∗/
4 when : /@(s t a r t | end | o v e r a l l) /
5 comparison : /(<=|>=|<|>|==)/
6 num ef f ec t : /(i n c r e a s e | dec rea se |=) /
7 COMMENT : ‘// ’ / (.) +\n/
8
9 // S ta r t i ng node

10 ? s t a r t : main
11
12 main : s e c t i o n+
13 s e c t i o n : ‘ domain ’ ‘{ ’ types wor lddef s t a t e d e f a c t i o n d e f s ‘} ’

−> domain
14 | ‘ Problem ’ ‘{ ’ agents o b j e c t s agent cap wor ld s ta te i n i t i a l s t a t e

g o a l s t a t e task cap ‘} ’ −> problem
15 | ‘ Plan ’ ‘{ ’ p l a n e n t r i e s ∗ ‘} ’

−> plan
16
17
18 // ===
19 // Domain
20 // ===
21
22
23 // Main s e c t i o n s
24 types : ‘ types ’ c u r l l i s t
25 wor lddef : ‘ world ’ r e l a t i o n s d e f s
26 s t a t e d e f : ‘ s ta te ’ r e l a t i o n s d e f s
27 r e l a t i o n s d e f s : ‘{ ’ r e l a t i o n s d e f ∗ ‘} ’
28 a c t i o n d e f s : a c t i o n d e f ∗
29
30 // Re lat ion types
31 r e l a t i o n s d e f : ‘ p red i ca te ’ id p a r e n l i s t ‘ ; ’ −> p r e d i c a t e d e f
32 | ‘ numeric ’ id p a r e n l i s t ‘ ; ’ −> numericdef
33 | ‘ funct ion ’ id id p a r e n l i s t ‘ ; ’ −> f u n c t i o n d e f
34
35 a c t i o n d e f : ‘ act ion ’ id d u a l p a r e n l i s t ‘{ ’ durat ion ? co s t ? c o n d i t i o n s

e f f e c t s ‘} ’
36
37 // L i s t s
38 i d l i s t : (id (‘ , ’ id) ∗) ?
39 d u a l i d l i s t : (id id (‘ , ’ id id) ∗) ?
40 p a r e n l i s t : ‘ (’ i d l i s t ‘) ’
41 c u r l l i s t : ‘{ ’ i d l i s t ‘} ’

198

42 d u a l p a r e n l i s t : ‘ (’ d u a l i d l i s t ‘) ’
43
44 // Action body
45 durat ion : ‘ durat ion ’ ‘ : ’ d i s t r i b u t i o n ‘ ; ’
46 co s t : ‘ cost ’ ‘ : ’ d i s t r i b u t i o n ‘ ; ’
47 c o n d i t i o n s : ‘ cond i t i ons ’ ‘ : ’ c ond i t i on ∗
48 e f f e c t s : ‘ e f f e c t s ’ ‘ : ’ e f f e c t ∗
49
50
51 // Pr o b ab i l i t y d i s t r i b u t i o n s
52 d i s t r i b u t i o n : ‘ constant ’ exp −> d i s t r i b u t i o n c o n s t a n t
53 | ‘ uniform ’ exp exp −> d i s t r i b u t i o n u n i f o r m
54 | ‘ normal ’ exp exp −> d i s t r i b u t i o n n o r m a l
55 | ‘ exponent ia l ’ exp −> d i s t r i b u t i o n e x p o n e n t i a l
56
57 // Numerical e x p r e s s i o n s
58 exp : id p a r e n l i s t −> exp numeric
59 | exp ‘∗ ’ exp −> mul
60 | exp ‘/ ’ exp −> div
61 | exp ‘+ ’ exp −> add
62 | exp ‘− ’ exp −> sub
63 | ‘ (’ exp ‘) ’ −> l i s t s t r i p
64 | number −> l i s t s t r i p
65
66 // Temporal c o n d i t i o n s
67 cond i t i on : when ‘ : ’ (pred cond | func cond | num cond | v a r s d i f f) ‘ ; ’
68 e f f e c t : when ‘ : ’ (pred cond | func cond | n u m e r i c e f f e c t s) ‘ ; ’
69
70 // Condit ions
71 pred cond : id p a r e n l i s t −> pred cond pos
72 | ‘ ! ’ id p a r e n l i s t −> pred cond neg
73
74 func cond : id p a r e n l i s t ‘= ’ (id | ‘ undef ined ’) −> func cond pos
75 | ‘ ! ’ id p a r e n l i s t ‘= ’ (id | ‘ undef ined ’) −> func cond neg
76
77 num cond : id p a r e n l i s t comparison exp
78
79 v a r s d i f f : id ‘ != ’ id
80
81 n u m e r i c e f f e c t s : id p a r e n l i s t num ef f ec t exp
82
83
84
85
86
87 // ===
88 // Problem
89 // ===
90
91
92 // Object l i s t
93 o b j e c t s : ‘ Objects ’ ‘{ ’ t y p e l i s t ∗ ‘} ’
94 agents : ‘ Agents ’ ‘{ ’ t y p e l i s t ∗ ‘} ’
95 t y p e l i s t : id i d l i s t ‘ ; ’
96
97 wor ld s ta t e : ‘ WorldState ’ r e l a t i o n s
98 i n i t i a l s t a t e : ‘ I n i t i a l S t a t e ’ r e l a t i o n s

199

99 g o a l s t a t e : ‘ Goal ’ ‘{ ’ task+ ‘} ’
100 task : id r e l a t i o n s ‘ ; ’
101 r e l a t i o n s : ‘{ ’ r e l a t i o n ∗ ‘} ’
102
103 r e l a t i o n : id p a r e n l i s t ‘ ; ’ −> p r e d i c a t e s
104 | id p a r e n l i s t ‘= ’ number ‘ ; ’ −> numerics
105 | id p a r e n l i s t (‘= ’ | ‘== ’) (‘ undef ined ’ | id) ‘ ; ’ −> f u n c t i o n s
106
107 agent cap : ‘ AgentCapab i l i t i e s ’ ‘{ ’ group cap ∗ ‘} ’
108 task cap : ‘ TaskCapab i l i t i e s ’ ‘{ ’ group cap ∗ ‘} ’
109 group cap : ‘ (’ i d l i s t ‘) ’ ‘{ ’ c a p a b i l i t y d i c t ‘} ’ ‘ ; ’
110
111
112 c a p a b i l i t y d i c t : c a p a b i l i t y i n s t ∗
113 c a p a b i l i t y i n s t : id ‘ : ’ number ‘ , ’
114
115
116
117 // ===
118 // Plan
119 // ===
120
121
122 p l a n e n t r i e s : id ‘ : ’ p l a n a c t i o n ‘ ; ’ −> p l a n a c t i o n s
123 | id ‘< ’ id ‘ ; ’ −> orde r ing
124
125 p l a n a c t i o n : id p a r e n l i s t

200

Appendix B: Extended Task Fusion Results

This Appendix provides the extended Pareto Strength Task Fusion results for the

Blocks World and First Response Domains.

B.1 The Blocks World Domain with TFD

Tool fmax Quality Pareto Strength
Best AO 1.00 32
Second Best AO 0.75 31
Third Best AOT 1.00 30
Fourth Best AOT 0.75 29
Worst CS 0.50 0
Worst A 0.25 0
Worst O 0.25 0

34 36 38 40 42 44 46 48 50 52
Makespan (s)

62

64

66

68

70

72

74

76

78

80

N
um

be
r

of
A

ct
io

ns

Figure B.1: Quality Pareto Strength for Blocks World with TFD.

201

Tool fmax Cost Pareto Strength
Best AOT 0.75 33
Second Best AOT 1.00 32
Third Best OT 0.75 30
Worst CS 0.50 0
Worst CFP N/A 0
Worst PA N/A 0

2 4 6 8 10 12 14
Processing Time (m)

1

2

3

4

5

6

7

8

M
em

or
y

U
sa

ge
(G

B
)

Figure B.2: Cost Pareto Strength for Blocks World with TFD.

202

B.2 The Blocks World Domain with COLIN

Tool fmax Quality Pareto Strength
Best O 0.75 30
Best O 1.00 30
Second Best AO 1.00 28
Second Best AO 0.75 28
Third Best O 0.50 24
Third Best OT 1.00 24
Third Best OT 0.75 24
Worst CS 0.25 0

46 48 50 52 54 56 58 60 62 64
Makespan (s)

64

66

68

70

72

74

76

78

N
um

be
r

of
A

ct
io

ns

Figure B.3: Quality Pareto Strength for Blocks World with COLIN.

203

Tool fmax Cost Pareto Strength
Best CS 0.25 33
Second Best CS 0.75 31
Third Best CS 0.50 30
Third Best CS 1.00 30
Fourth Best O 0.75 27
Fourth Best O 1.00 27
Worst A 0.50 0
Worst PA N/A 0

2 4 6 8 10 12
Processing Time (m)

0

5

10

15

20

25

30

M
em

or
y

U
sa

ge
(G

B
)

Figure B.4: Cost Pareto Strength for Blocks World with COLIN.

204

B.3 The First Response Domain

Tool fmax Quality Pareto Strength
Best O 0.75 32
Second Best OT 0.75 30
Third Best AOT 1.00 28
Third Best OT 1.00 28
Third Best AO 0.75 28
Worst CS 1.00 0
Worst CS 0.50 0
Worst AT 0.75 0
Worst CA 1.00 0

55 60 65 70 75 80 85 90 95
Makespan (s)

120

130

140

150

160

170

180

190

200

210

N
um

be
r

of
A

ct
io

ns

Figure B.5: Quality Pareto Strength for First Response.

205

Tool fmax Cost Pareto Strength
Best CFP N/A 32
Second Best CS 0.25 31
Third Best O 0.75 30
Worst O 1.00 0

0 2 4 6 8 10 12 14
Processing Time (m)

0

1

2

3

4

5

6

7

8

M
em

or
y

U
sa

ge
(G

B
)

Figure B.6: Cost Pareto Strength for First Response.

206

Appendix C: Extended Plan Merging Results

This appendix provides the complete set of success rate and makespan results for

the plan merging and conflict resolution experiments, across the Logistics, Blocks

World, and First Response Domains.

C.1 The Logistics Domain

All the Logistics Domain problems were successfully generated, for all tasks; how-

ever, the number of experimental samples for the aggregated makespan results di-

minished as the number of tasks increased, because of the diminishing plan merging

success rates, as explained in Chapter 5.3. Therefore, the makespan results be-

come noisier as the number of tasks grows, and are sometimes missing, due to the

missing successful samples, for the highest number of tasks.

207

0

50

100

4
R
ob

ot
s

Su
cc

es
s
(%

)

b)

0

50

100

6
R
ob

ot
s

Su
cc

es
s
(%

)

c)

0

50

100

8
R
ob

ot
s

Su
cc

es
s
(%

)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R

ob
ot

s
Su

cc
es

s
(%

)

e)

Serial Algorithm

0

50

100

2
R
ob

ot
s

Su
cc

es
s
(%

)

a)

Figure C.1: Logistics Domain Serial success (%).

208

0

50

100

4
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

6
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

2
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.2: Logistics Domain STA success (%).

209

0

50

100

4
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

6
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

2
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.3: Logistics Domain TCRA∗ (ε = 0) success (%).

210

0

50

100

4
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

6
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

2
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.4: Logistics Domain TCRA∗ (ε = 1) success (%).

211

0

50

100

4
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

6
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

2
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.5: Logistics Domain TCRA∗ (ε = 10) success (%).

212

0

50

100

4
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

6
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

2
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.6: Logistics Domain TCRA∗ (ε = 100) success (%).

213

0

100

200

300

4
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

b)

0

100

200

300

6
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

c)

0

100

200

300

8
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

100

200

300

10
 R
ob

ot
s

M
ak
es
pa

n
(m

in
)

e)

Serial Algorithm

0

100

200

300

2
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

a)

Figure C.7: Logistics Domain Serial makespan (min). The maximum makespan
was 300 min for all numbers of robots.

214

0

40

80

120

4
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

40

80

120

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

0

25

50

75

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

15

30

45

60

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

80

160

240

2
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.8: Logistics Domain STA makespan (min). The maximum makespan was
240, 120, 120, 75, and 60 min for 2, 4, 6, 8, and 10 robots, respectivelly.

215

0

25

50

75

4
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

20

40

60

80

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

15

30

45

60

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

15

30

45

60

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

25

50

75

2
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.9: Logistics Domain TCRA∗ (ε = 0) makespan (min). The maximum
makespan was 75, 75, 80, 60, and 60 min for 2, 4, 6, 8, and 10 robots, respectivelly.

216

0

40

80

120

4
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

30

60

90

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

20

40

60

80

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

15

30

45

60

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

40

80

120

2
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.10: Logistics Domain TCRA∗ (ε = 1) makespan (min). The maximum
makespan was 120, 120, 90, 80, and 60 min for 2, 4, 6, 8, and 10 robots, respec-
tivelly.

217

0

40

80

120

4
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

25

50

75

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

15

30

45

60

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

15

30

45

60

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

150

2
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.11: Logistics Domain TCRA∗ (ε = 10) makespan (min). The maximum
makespan was 150, 120, 75, 60, and 60 min for 2, 4, 6, 8, and 10 robots, respec-
tivelly.

218

0

40

80

120

4
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

30

60

90

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

20

40

60

80

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

15

30

45

60

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

150

2
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.12: Logistics Domain TCRA∗ (ε = 100) makespan (min). The maxi-
mum makespan was 150, 120, 90, 80, and 60 min for 2, 4, 6, 8, and 10 robots,
respectivelly.

219

C.2 The Blocksworld Domain

The number of experimental samples for the aggregated makespan results dimin-

ished as the number of tasks increased, because the ratio of Blocks World Domain

problems successfully generated with 4-10 tasks was 99%, 82%, 67%, 43%, 15%,

8%, and 1%, respectively, as explained in Chapter 5.3. Therefore, the makespan

results become noisier as the number of tasks grows, and are missing due to the

missing successful samples, for the highest number of tasks.

220

0

50

100

3
R
ob

ot
s

Su
cc

es
s
(%

)

b)

0

50

100

4
R
ob

ot
s

Su
cc

es
s
(%

)

c)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

5
R
ob

ot
s

Su
cc

es
s
(%

)

d)

Serial Algorithm

0

50

100

2
R
ob

ot
s

Su
cc

es
s
(%

)

a)

Figure C.13: Blocksworld Domain Serial success (%) for 1-5 robots.

221

0

50

100

7
R
ob

ot
s

Su
cc

es
s
(%

)

b)

0

50

100

8
R
ob

ot
s

Su
cc

es
s
(%

)

c)

0

50

100

9
R
ob

ot
s

Su
cc

es
s
(%

)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R

ob
ot

s
Su

cc
es

s
(%

)

e)

Serial Algorithm

0

50

100

6
R
ob

ot
s

Su
cc

es
s
(%

)

a)

Figure C.14: Blocksworld Domain Serial success (%) for 6-10 robots.

222

0

50

100

3
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

4
R
ob
ot
s

Su
cc
es
s
(%

)

c)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

5
R
ob
ot
s

Su
cc
es
s
(%

)

d)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

2
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.15: Blocksworld Domain STA success (%) for 1-5 robots.

223

0

50

100

7
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

9
R
ob
ot
s

Su
cc
es
s
(%

)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

6
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.16: Blocksworld Domain STA success (%) for 6-10 robots.

224

0

50

100

3
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

4
R
ob
ot
s

Su
cc
es
s
(%

)

c)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

5
R
ob
ot
s

Su
cc
es
s
(%

)

d)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

2
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.17: Blocksworld Domain TCRA∗ (ε = 0) success (%) for 1-5 robots.

225

0

50

100

7
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

9
R
ob
ot
s

Su
cc
es
s
(%

)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

6
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.18: Blocksworld Domain TCRA∗ (ε = 0) success (%) for 6-10 robots.

226

0

50

100

3
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

4
R
ob
ot
s

Su
cc
es
s
(%

)

c)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

5
R
ob
ot
s

Su
cc
es
s
(%

)

d)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

2
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.19: Blocksworld Domain TCRA∗ (ε = 1) success (%) for 1-5 robots.

227

0

50

100

7
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

9
R
ob
ot
s

Su
cc
es
s
(%

)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

6
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.20: Blocksworld Domain TCRA∗ (ε = 1) success (%) for 6-10 robots.

228

0

50

100

3
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

4
R
ob
ot
s

Su
cc
es
s
(%

)

c)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

5
R
ob
ot
s

Su
cc
es
s
(%

)

d)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

2
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.21: Blocksworld Domain TCRA∗ (ε = 10) success (%) for 1-5 robots.

229

0

50

100

7
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

9
R
ob
ot
s

Su
cc
es
s
(%

)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

6
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.22: Blocksworld Domain TCRA∗ (ε = 10) success (%) for 6-10 robots.

230

0

50

100

3
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

4
R
ob
ot
s

Su
cc
es
s
(%

)

c)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

5
R
ob
ot
s

Su
cc
es
s
(%

)

d)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

2
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.23: Blocksworld Domain TCRA∗ (ε = 100) success (%) for 1-5 robots.

231

0

50

100

7
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

9
R
ob
ot
s

Su
cc
es
s
(%

)

d)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

6
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.24: Blocksworld Domain TCRA∗ (ε = 100) success (%) for 6-10 robots.

232

0

60

120

180

3
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

b)

0

60

120

180

4
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

c)

1 2 3 4 5 6 7 8 9
Number of Tasks

0

60

120

180

5
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

d)

Serial Algorithm

0

60

120

180

2
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

a)

Figure C.25: Blocksworld Domain Serial makespan (min) for 1-5 robots. The
maximum makespan was 150 min for all numbers of robots.

233

0

60

120

180

7
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

b)

0

60

120

180

8
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

c)

0

60

120

180

9
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

d)

1 2 3 4 5 6 7 8 9
Number of Tasks

0

60

120

180

10
 R
ob

ot
s

M
ak
es
pa

n
(m

in
)

e)

Serial Algorithm

0

60

120

180

6
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

a)

Figure C.26: Blocksworld Domain Serial makespan (min) for 6-10 robots. The
maximum makespan was 150 min for all numbers of robots.

234

0

50

100

150

3
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

50

100

150

4
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

1 2 3 4 5 6 7 8 9
Number of Tasks

0

40

80

120

5
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

60

120

2
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.27: Blocksworld Domain STA makespan (min) for 1-5 robots. The maxi-
mum makespan was 120, 120, 150, and 90 min for 2, 3, 4, and 5 robots, respectivelly.

235

0

40

80

120

7
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

50

100

150

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

0

40

80

120

9
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

1 2 3 4 5 6 7 8 9
Number of Tasks

0

40

80

120

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

150

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.28: Blocksworld Domain STA makespan (min) for 6-10 robots. The
maximum makespan was 150, 90, 150, 90, and 90 min for 6, 7, 8, 9, and 10 robots,
respectivelly.

236

0

40

80

120

3
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

50

100

150

4
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

1 2 3 4 5 6 7 8 9
Number of Tasks

0

40

80

120

5
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

60

120

2
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.29: Blocksworld Domain TCRA∗ (ε = 0) makespan (min) for 1-5 robots.
The maximum makespan was 120, 120, 150, and 120 min for 2, 3, 4, and 5 robots,
respectivelly.

237

0

40

80

120

7
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

40

80

120

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

0

40

80

120

9
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

1 2 3 4 5 6 7 8 9
Number of Tasks

0

30

60

90

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

40

80

120

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.30: Blocksworld Domain TCRA∗ (ε = 0) makespan (min) for 6-10 robots.
The maximum makespan was 120, 120, 120, 120, and 90 min for 6, 7, 8, 9, and 10
robots, respectivelly.

238

0

40

80

120

3
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

50

100

150

4
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

1 2 3 4 5 6 7 8 9
Number of Tasks

0

40

80

120

5
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

60

120

2
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.31: Blocksworld Domain TCRA∗ (ε = 1) makespan (min) for 1-5 robots.
The maximum makespan was 120, 120, 150, and 120 min for 2, 3, 4, and 5 robots,
respectivelly.

239

0

40

80

120

7
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

40

80

120

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

0

40

80

120

9
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

1 2 3 4 5 6 7 8 9
Number of Tasks

0

30

60

90

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

40

80

120

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.32: Blocksworld Domain TCRA∗ (ε = 1) makespan (min) for 6-10 robots.
The maximum makespan was 120, 120, 120, 120, and 90 min for 6, 7, 8, 9, and 10
robots, respectivelly.

240

0

40

80

120

3
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

50

100

150

4
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

1 2 3 4 5 6 7 8 9
Number of Tasks

0

40

80

120

5
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

60

120

2
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.33: Blocksworld Domain TCRA∗ (ε = 10) makespan (min) for 1-5 robots.
The maximum makespan was 120, 120, 150, and 120 min for 2, 3, 4, and 5 robots,
respectivelly.

241

0

40

80

120

7
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

40

80

120

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

0

40

80

120

9
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

1 2 3 4 5 6 7 8 9
Number of Tasks

0

30

60

90

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

150

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.34: Blocksworld Domain TCRA∗ (ε = 10) makespan (min) for 6-10
robots. The maximum makespan was 150, 120, 120, 120, and 90 min for 6, 7,
8, 9, and 10 robots, respectivelly.

242

0

40

80

120

3
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

50

100

150

4
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

1 2 3 4 5 6 7 8 9
Number of Tasks

0

40

80

120

5
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

60

120

2
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.35: Blocksworld Domain TCRA∗ (ε = 100) makespan (min) for 1-5
robots. The maximum makespan was 120, 120, 150, and 120 min for 2, 3, 4,
and 5 robots, respectivelly.

243

0

40

80

120

7
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

40

80

120

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

0

40

80

120

9
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

1 2 3 4 5 6 7 8 9
Number of Tasks

0

30

60

90

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

150

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.36: Blocksworld Domain TCRA∗ (ε = 100) makespan (min) for 6-10
robots. The maximum makespan was 150, 120, 120, 120, and 90 min for 6, 7, 8,
9, and 10 robots, respectivelly.

244

C.3 The First Response Domain

All the First Response Domain problems were successfully generated, for all tasks;

however, the number of experimental samples for the aggregated makespan re-

sults diminished as the number of tasks increased, because of the diminishing plan

merging success rates, as explained in Chapter 5.3. Therefore, the makespan re-

sults become noisier as the number of tasks grows, and are missing, due to the

missing successful samples, for the highest number of tasks.

245

0

50

100

6
R
ob

ot
s

Su
cc

es
s
(%

)

b)

0

50

100

7
R
ob

ot
s

Su
cc

es
s
(%

)

c)

0

50

100

8
R
ob

ot
s

Su
cc

es
s
(%

)

d)

0

50

100

9
R
ob

ot
s

Su
cc

es
s
(%

)

e)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R

ob
ot

s
Su

cc
es

s
(%

)

f)

Serial Algorithm

0

50

100

5
R
ob

ot
s

Su
cc

es
s
(%

)

a)

Figure C.37: First Response Domain Serial success (%).

246

0

50

100

6
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

7
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

d)

0

50

100

9
R
ob
ot
s

Su
cc
es
s
(%

)

e)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

f)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

5
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.38: First Response Domain STA success (%).

247

0

50

100

6
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

7
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

d)

0

50

100

9
R
ob
ot
s

Su
cc
es
s
(%

)

e)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

f)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

5
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.39: First Response Domain TCRA∗ (ε = 0) success (%).

248

0

50

100

6
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

7
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

d)

0

50

100

9
R
ob
ot
s

Su
cc
es
s
(%

)

e)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

f)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

5
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.40: First Response Domain TCRA∗ (ε = 1) success (%).

249

0

50

100

6
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

7
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

d)

0

50

100

9
R
ob
ot
s

Su
cc
es
s
(%

)

e)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

f)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

5
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.41: First Response Domain TCRA∗ (ε = 10) success (%).

250

0

50

100

6
R
ob

ot
s

Su
cc
es
s
(%

)

b)

0

50

100

7
R
ob
ot
s

Su
cc
es
s
(%

)

c)

0

50

100

8
R
ob
ot
s

Su
cc
es
s
(%

)

d)

0

50

100

9
R
ob
ot
s

Su
cc
es
s
(%

)

e)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

50

100

10
 R
ob
ot
s

Su
cc
es
s
(%

)

f)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

50

100

5
R
ob
ot
s

Su
cc
es
s
(%

)

a)

Figure C.42: First Response Domain TCRA∗ (ε = 100) success (%).

251

0

600

1200

1800

6
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

b)

0

500

1000

1500

7
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

c)

0

600

1200

1800

8
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

d)

0

500

1000

1500

9
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

e)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

600

1200

1800

10
 R
ob

ot
s

M
ak
es
pa

n
(m

in
)

f)

Serial Algorithm

0

400

800

1200

5
R
ob

ot
s

M
ak
es
pa

n
(m

in
)

a)

Figure C.43: First Response Domain Serial makespan (min). The maximum ma-
kespan was 1200, 1800, 1500, 1800, 1500, and 1800 min for 5, 6, 7, 8, 9, and 10
robots, respectivelly.

252

0

200

400

600

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

200

400

600

7
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

0

200

400

600

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

0

200

400

600

9
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

200

400

600

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

f)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

150

300

450

5
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.44: First Response Domain STA makespan (min). The maximum ma-
kespan was 450, 600, 600, 600, 600, and 600 min for 5, 6, 7, 8, 9, and 10 robots,
respectivelly.

253

50

100

150

200

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

125

150

175

200

7
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

135

150

165

180

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

120

150

180

210

9
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

1 2 3 4 5 6 7
Number of Tasks

125

150

175

200

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

f)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

80

160

240

5
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.45: First Response Domain TCRA∗ (ε = 0) makespan (min). The max-
imum makespan was 240, 200, 200, 180, 210, and 200 min for 5, 6, 7, 8, 9, and 10
robots, respectivelly.

254

100

200

300

400

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

100

200

300

400

7
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

0

150

300

450

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

100

200

300

400

9
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

100

200

300

400

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

f)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

80

160

240

320

5
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.46: First Response Domain TCRA∗ (ε = 1) makespan (min). The max-
imum makespan was 320, 400, 400, 450, 400, and 400 min for 5, 6, 7, 8, 9, and 10
robots, respectivelly.

255

0

150

300

450

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

150

300

450

7
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

0

150

300

450

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

0

150

300

450

9
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

150

300

450

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

f)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

80

160

240

320

5
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.47: First Response Domain TCRA∗ (ε = 10) makespan (min). The
maximum makespan was 320, 450, 450, 450, 450, and 450 min for 5, 6, 7, 8, 9, and
10 robots, respectivelly.

256

0

150

300

450

6
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

b)

0

150

300

450

7
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

c)

0

150

300

450

8
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

d)

0

150

300

450

9
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

e)

1 2 3 4 5 6 7 8 9 10
Number of Tasks

0

150

300

450

10
 R
ob
ot
s

M
ak
es
pa
n

(m
in
)

f)

Direct Model with Closure
Direct Model without Closure

Transitive Model with Closure
Transitive Model without Closure

0

100

200

300

5
R
ob
ot
s

M
ak
es
pa
n

(m
in
)

a)

Figure C.48: First Response Domain TCRA∗ (ε = 100) makespan (min). The
maximum makespan was 300, 450, 450, 450, 450, and 450 min for 5, 6, 7, 8, 9, and
10 robots, respectivelly.

	Introduction
	Background
	Planning Models
	Planning Model Features
	Concurrent Planning Models
	Planning Languages

	Planning Algorithms
	Planning Algorithm Features
	Deterministic Centralized Planning Algorithms
	Deterministic Decentralized and Hybrid Planning Algorithms
	Fully Observable Probabilistic Planning Algorithms
	Decentralized Partially Observable Markovian Algorithms

	Coalition Formation for Scalable Multiple Robot Planning
	Definitions
	Coalition Formation Algorithms for Multiple Robot Systems
	Planning and Coalition Formation
	Plan Merging
	Summary

	Outline
	Multiagent Actions Concurrency and Time Uncertainty Planning Language
	Experimental Domains
	Blocks World Domain
	The Logistics Domain
	First Response Domain

	Plan Distance Heuristics for Task Fusion in Distributed Temporal Planning
	Object, Action, and Action-Object Heuristics
	Object-Temporal, Action-Temporal, and Action-Object-Temporal Heuristics
	Empirical Evaluation
	Domains
	Experimental Design

	Results
	The Blocks World Domain with TFD
	The Blocks World Domain with COLIN
	The First Response Domain

	Discussion
	Conclusion

	Scalable Temporal Plan Merging
	Conflict Identification and Resolution
	Open Precondition Identification
	Open Precondition Resolution
	Causal Conflict Identification
	Causal Conflict Resolution
	Conflict Models and the Overall Plan Merging Computational Cost
	Transitive Closure

	Temporal Plan Coordination
	Methodology
	Results
	The Logistics Domain
	The Blocks World Domain
	The First Response Domain
	Overall Results Across All Domains

	Discussion
	Conclusion

	Multiple Robot System and Evaluation
	Multiple Robot System Architecture
	The Robot Execution System
	The Safety Policy

	Experimental Methodology
	Results
	Discussion
	Conclusion

	Conclusions
	Contributions
	Future Work

	Appendices
	The MAPL Language
	Extended Task Fusion Results
	Extended Plan Merging Results

