137 research outputs found

    Optimal design of the band structure for beam lattice metamaterials

    Get PDF
    Sonic or acoustic metamaterials may offer a mechanically robust and highly customizable solution to open large band gaps in the low-frequency dispersion spectrum of beam lattice materials. Achieving the largest possible stop bandwidth at the lowest possible center frequency may be a challenging multi-objective optimization issue. The paper presents a first effort of analysis, systematization and synthesis of some recent multi-disciplinary studies focused on the optimal spectral design of beam lattice materials and metamaterials. The design parameter vector is a finite set including all the microstructural properties characterizing the periodic material and the local resonators. Numerical algorithms are employed as leading methodology for solving various instances of the optimization problem. Methodological alternatives, based on perturbation methods and computational modeling, are also illustrated. Some optimal results concerning the dispersion spectrum of hexachiral, tetrachiral and anti-tetrachiral materials and metamaterials are summarized. The concluding remarks are accompanied by preliminary ideas to overcome some operational issues in solving the optimization problem

    Computation methods for the eigenvalue analysis of large structures by component synthesis

    Get PDF
    Imperial Users onl

    Optimal design of auxetic hexachiral metamaterials with local resonators

    Get PDF
    A parametric beam lattice model is formulated to analyse the propagation properties of elastic in-plane waves in an auxetic material based on a hexachiral topology of the periodic cell, equipped with inertial local resonators. The Floquet-Bloch boundary conditions are imposed on a reduced order linear model in the only dynamically active degrees-offreedom. Since the resonators can be designed to open and shift band gaps, an optimal design, focused on the largest possible gap in the low-frequency range, is achieved by solving a maximization problem in the bounded space of the significant geometrical and mechanical parameters. A local optimized solution, for a the lowest pair of consecutive dispersion curves, is found by employing the globally convergent version of the Method of Moving asymptotes, combined with Monte Carlo and quasi-Monte Carlo multi-start techniques

    Free and forced propagation of Bloch waves in viscoelastic beam lattices

    Get PDF
    Beam lattice materials can be characterized by a periodic microstructure realizing a geometrically regular pattern of elementary cells. Within this framework, governing the free and forced wave propagation by means of spectral design techniques and/or energy dissipation mechanisms is a major issue of theoretical interest with applications in aerospace, chemical, naval, biomedical engineering. The first part of the Thesis addresses the free propagation of Bloch waves in non-dissipative microstructured cellular materials. Focus is on the alternative formulations suited to describe the wave propagation in the bidimensional infinite material domain, according to the classic canons of linear solid or structural mechanics. Adopting the centrosymmetric tetrachiral cell as prototypical periodic topology, the frequency dispersion spectrum is obtained by applying the Floquet-Bloch theory. The dispersion spectrum resulting from a synthetic Lagrangian beam lattice formulation is compared with its counterpart derived from different continuous models (high-fidelity first-order heterogeneous and equivalent homogenized micropolar continua). Asymptotic perturbation-based approximations and numerical spectral solutions are compared and cross-validated. Adopting the low-frequency band gaps of the dispersion spectrum as functional targets, parametric analyses are carried out to highlight the descriptive limits of the synthetic models and to explore the enlarged parameter space described by high-fidelity models. The microstructural design or tuning of the mechanical properties of the cellular microstructure is employed to successfully verify the wave filtering functionality of the tetrachiral material. Alternatively, band gaps in the material spectrum can be opened at target center frequencies by using metamaterials with inertial resonators. Based on these motivations, in the second part of the Thesis, a general dynamic formulation is presented for determining the dispersion properties of viscoelastic metamaterials, equipped with local dissipative resonators. The linear mechanism of local resonance is realized by tuning periodic auxiliary masses, viscoelastically coupled with the beam lattice microstructure. As peculiar aspect, the viscoelastic coupling is derived by a mechanical formulation based on the Boltzmann superposition integral, whose kernel is approximated by a Prony series. Consequently, the free propagation of damped Bloch waves is governed by a linear homogeneous system of integro-differential equations of motion. Therefore, differential equations of motion with frequency-dependent coefficients are obtained by applying the bilateral Laplace transform. The corresponding complex-valued branches characterizing the dispersion spectrum are determined and parametrically analyzed. Particularly, the spectra corresponding to Taylor series approximations of the equation coefficients are investigated. The standard dynamic equations with linear viscous damping are recovered at the first order approximation. Increasing approximation orders determine non-negligible spectral effects, including the occurrence of pure damping spectral branches. Finally, the forced response to harmonic single frequency external forces in the frequency and the time domains is investigated. The response in the time domain is obtained by applying the inverse bilateral Laplace transform. The metamaterial responses to non-resonant, resonant and quasi-resonant external forces are compared and discussed from a qualitative and quantitative viewpoint

    Author index to volumes 301–400

    Get PDF
    corecore