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ABSTRACT 

Beam lattice materials can be characterized by a periodic microstructure realizing a geometrically 

regular pattern of elementary cells. Within this framework, governing the free and forced wave 

propagation by means of spectral design techniques and/or energy dissipation mechanisms is a major 

issue of theoretical interest with applications in aerospace, chemical, naval, biomedical engineering. 

The first part of the Thesis addresses the free propagation of Bloch waves in non-dissipative 

microstructured cellular materials. Focus is on the alternative formulations suited to describe the 

wave propagation in the bidimensional infinite material domain, according to the classic canons of 

linear solid or structural mechanics. Adopting the centrosymmetric tetrachiral cell as prototypical 

periodic topology, the frequency dispersion spectrum is obtained by applying the Floquet-Bloch 

theory. The dispersion spectrum resulting from a synthetic Lagrangian beam lattice formulation is 

compared with its counterpart derived from different continuous models (high-fidelity first-order 

heterogeneous and equivalent homogenized micropolar continua). Asymptotic perturbation-based 

approximations and numerical spectral solutions are compared and cross-validated. Adopting the 

low-frequency band gaps of the dispersion spectrum as functional targets, parametric analyses are 

carried out to highlight the descriptive limits of the synthetic models and to explore the enlarged 

parameter space described by high-fidelity models. The microstructural design or tuning of the 

mechanical properties of the cellular microstructure is employed to successfully verify the wave 

filtering functionality of the tetrachiral material. 

Alternatively, band gaps in the material spectrum can be opened at target center frequencies by 

using metamaterials with inertial resonators. Based on these motivations, in the second part of the 

Thesis, a general dynamic formulation is presented for determining the dispersion properties of 

viscoelastic metamaterials, equipped with local dissipative resonators. The linear mechanism of local 

resonance is realized by tuning periodic auxiliary masses, viscoelastically coupled with the beam 

lattice microstructure. As peculiar aspect, the viscoelastic coupling is derived by a mechanical 

formulation based on the Boltzmann superposition integral, whose kernel is approximated by a 

Prony series. Consequently, the free propagation of damped Bloch waves is governed by a linear 

homogeneous system of integro-differential equations of motion. Therefore, differential equations of 

motion with frequency-dependent coefficients are obtained by applying the bilateral Laplace 

transform. The corresponding complex-valued branches characterizing the dispersion spectrum are 

determined and parametrically analyzed. Particularly, the spectra corresponding to Taylor series 

approximations of the equation coefficients are investigated. The standard dynamic equations with 

linear viscous damping are recovered at the first order approximation. Increasing approximation 

orders determine non-negligible spectral effects, including the occurrence of pure damping spectral 

branches. Finally, the forced response to harmonic single frequency external forces in the frequency 

and the time domains is investigated.  The response in the time domain is obtained by applying the 

inverse bilateral Laplace transform. The metamaterial responses to non-resonant, resonant and quasi-

resonant external forces are compared and discussed from a qualitative and quantitative viewpoint. 
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CHAPTER 1  

1. INTRODUCTION 

Microstructured material and metamaterial science is a challenging frontier of theoretical and applied 

research that is currently attracting growing interest by the scientific community of solid and structural 

mechanicians (Fleck et al., 2010; Meza et al., 2015; Schaedler and Carter, 2016; Kadic et al., 2019). 

Specifically, the conceptualization and development of novel materials, characterized by smart or 

unconventional functionalities, are continuously propelled by the recent extraordinary developments in 

the technological fields of super-computing, micro-engineering and high-precision manufacturing (Lee et 

al., 2012; Rashed et al., 2016; Sha et al., 2018). As valuable result of this successful research trend, a new 

generation of architected composites is deeply transforming and rapidly remodeling the traditional 

paradigms of rational design in a variety of technical multidisciplinary applications across all the classical 

and advanced branches of mechanics, including – among the others – extreme mechanics, 

nanomechanics, mechatronics, acoustics, thermomechanics, biomechanics (Zheng et al., 2014; Overvelde 

et al., 2017; De Bellis et al., 2019; Wu et al., 2019; Zadpoor, 2019). In general, the microstructured 

materials are heterogeneous at nano/micro scale in which different constituents (or phases) are 

distinguished (Figure 1.1).  

Basing on the geometry and mechanical properties of the microstructure, the materials can be classified 

in periodic and non-periodic microstructured materials. Periodic materials are characterized by a 

repetitive microstructure realizing a regular pattern of elementary cells. Regular masonry and laminated 

composites are some examples of periodic materials having a rigid phase with dominant volumetric 

fraction and a soft phase with a vanishing volume fraction. Other very common periodic microstructured 

materials are characterized by an ordered microstructure that can be composed by ligaments, as in the 

case of re-entrant honeycomb structures (Figure 1.2a), or by composite assemblies of rigid elements 

(cylindrical rings or disks), connected with light and flexible ligaments. The periodic materials made by 

cylinders connected with tangential ligaments can be characterized by chiral or anti-chiral topologies 

(Figure 1.2b,c) (Prall and Lakes, 1997; Alderson et al., 2010; Lorato et al., 2010; Cicala et al., 2012; Liu 

 

  
 

Figure 1.1 Picture and sketches of microstructured materials. 

 



2 CHAPTER 1  

 

et al., 2012; Chen et al., 2013; Gatt et al., 2013). The materials with a chiral configuration display a 

rotational symmetry, while the materials with an anti-chiral configuration display reflective and rotational 

symmetry (Abramovitch et al., 2010). Another interesting periodic display are realized by 2D sheets with 

predefined crease patterns (origami materials) or by introducing arrays of cuts into thin sheets of the 

material (kirigami materials) (Scarpa et al., 2013; Wei et al., 2013; Cheung  et al., 2014; Lv et al., 2014; 

Shyu at al., 2015; Carta et al., 2016; Chen et al., 2016; Neville et al., 2016). Non-periodic materials are 

not characterized by a repetitive microstructure. Among the non-periodic microstructured materials there 

are the foams characterized by a microstructure with open cells consisting of an interconnected network 

of ligaments that form along the edges of randomly packed cells that evolve during the foaming process 

(Figure 1.3) (Gibson et al., 1982, Ashby et al., 2000; Kraynik et al., 2004; Gong and Kyriakides, 2006; 

Jang et al., 2008). 

The work of this Thesis is focused on the theoretical study, development and application of periodic 

microstructured materials. These materials are studied by adopting crystal lattice models (Brillouin, 1946; 

Magid, 1964) or beam lattice models (Langley, 1994; Mead, 1996). For both models, the material can be 

studied by considering the unit cell, which is repeated periodically in different directions. The 

configuration of each periodic cell is described by a finite number of Lagrangian coordinates. In the 

crystal lattice model, the reciprocal interactions between pairs of point masses (atoms) are purely 

Figure 1.2 Periodic materials: (a) reentrant honeycomb, (b), hexachiral and (c) anti-tetrachiral topologies (Lepidi 

and Bacigalupo, 2017). 

 

 

 

Figure 1.3 (a) Scanning electron micrograph of a first stage microcellular foam, (b) Computed tomography image of 

a polyester urethane foam (Jang et al., 2008). 

 

(a) (b) 
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attractive and repulsive. In the beam lattice model, instead, axial-bending elastic potentials are defined to 

describe the elastic coupling between close pairs of orientable massive points (nodes). The periodic 

material can be also modeled by high-fidelity first-order heterogeneous continuum (Dobrzynski et al., 

1984; Dowling, 1992; Kushwaha et al., 1993; Phani et al., 2006; Spadoni et al., 2009; Liu et al., 2011; 

Zhu et al. 2016) or equivalent local and non-local homogeneous continua obtained with different 

homogenization techniques (Smyshlyaev, 2009; Craster et al., 2010; Lombardo and Askes, 2012; 

Bacigalupo and Gambarotta, 2014a; Bacigalupo and De Bellis, 2015; Rosi and Auffray, 2016; Reda et al., 

2016; Kamotski and Smyshlyaev, 2019; Piccardo et al., 2019). Non-local homogeneous continua can be 

distinguished in micromorphic (Mindlin, 1963) and multipolar continua (Green and Naghdi, 1964). 

The periodicity in the constituent material phases, or in the internal geometry of the microstructured 

materials governs their static and dynamic response. In this regards, the microstructured periodic 

materials are attractive for the unusual properties that they can exhibit as ultralightness and ultrastiffness 

(Zheng et al., 2014; Berger et al., 2017), auxeticity (Malischewsky et al., 2012; Dirrenberger et al., 2013; 

Cabras and Brun, 2014; Ren et al., 2018, Auricchio et al., 2019), negative refraction index (Li and Chan, 

2004; Brunet et al., 2015) and exotic performance as energy focusing or harvesting, controllable wave 

guiding, obstacle cloaking, acoustic filtering (Khelif et al., 2004; Bigoni et al., 2008, 2013; Craster and 

Guenneau, 2012; Chen et al., 2014; Colquitt et al., 2014; Misseroni et al., 2016; Bacigalupo and Lepidi, 

2018; Vadalà et al., 2018). 

The location of the ultralight materials on the stiffness versus density chart is shown in Figure 1.4. The 

stretch-dominated microlattices, characterized by ultralightness and ultrastiffness, populate the upper left 

of the chart (Gibson and Ashby, 1999) and have stiffness to weight ratios that do not degrade when 

density decreases by several orders of magnitude. 

Materials with exotic properties are also the auxetic materials characterized by a negative Poisson’s 

ratio. They elongate along  directions perpendicular  to the tensile loading direction (Figure 1.5). The term 

 
Figure 1.4 An Ashby chart plotting compressive stiffness versus density for ultralight, ultrastiff mechanical 

materials (Zheng et al., 2014). 
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Figure 1.5 A rubber sheet, a random cellular material and an auxetic metamaterial are shown before (blue) and after 

(grey) the application of a longitudinal stretch (Bertoldi et al., 2017). 

 

auxetic is firstly introduced in 1991 (Evans, 1991), but already a decade earlier a material with negative 

Poisson's ratio was fabricated in the form of 2D silicone rubber or aluminum honeycombs deforming by 

flexure of the ribs (Gibson et al., 1982). In the following years, various types of artificial fabricated 

auxetic materials are proposed and fabricated with advanced manufacturing techniques. Among these, 

there are the chiral and anti-chiral honeycomb materials where the auxetic behavior is activated by 

rolling-up deformation mechanisms. The superior properties of auxetic materials make them interesting 

also for potential applications as intelligent filters, sensors and protection devices.  

In general, in the dynamical field, the microstructured materials can be distinguished in phononic 

crystals (Yang et al., 2004; Khelif et al., 2006; Lu et al., 2009) and acoustic metamaterials (Cummer et 

al., 2016; Ma and Sheng, 2016) (Figure 1.6). In the phononic crystal the internal microstructure interacts 

with the wave propagation depending on its size. Scattering from the internal microstructure can be 

observed when their sizes are comparable with the wavelength of the propagating wave. This 

phenomenon is usually called Bragg scattering (Brillouin, 1946) and it is associated to the possible 

presence of stop bands (band gaps) o pass bands in the dispersion spectrum that represents the relations 

between the wavevector and the frequency. 

The acoustic metamaterials are characterized by the introducing of local resonant elements, 

mechanically coupled to the microstructure. The metamaterial exhibits a band gap at a wavelength below 

the regime corresponding to band gap generation based on spatial periodicity, which leads to Bragg 

scattering. The concept of metamaterials was introduced for the first time with the electromagnetic 

materials and then it is spreaded in thermal, mechanical and acoustic fields. The term metamaterial was 

coined by using the prefix meta, which can be translated from the Greek as beyond, to indicate artificials 

structures, typically periodic, that exhibit unusual properties that are not found in any known natural 

material. The first acoustic metamaterial is realized by 3D array of lead spheres coated with a layer of 

silicone rubber stacked in a cubic arrangement within an epoxy matrix (Figure 1.7) (Liu et al., 2000). 

Upon excitation with acoustic waves, the material exhibits negative elastic constants and a band gap at 

certain frequency ranges around the frequency associated to the local resonator. The possibility to open 
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band gaps in the low-frequency range by using the local resonance gave a new major thrust in acoustic 

materials research. Among the new metamaterials studied there are materials with the very soft inclusion 

(Wang et al., 2004; Hsu and Wu, 2007), hollow cylinders or spheres (Sainidou et al., 2006), split hollow 

rings or spheres (Guenneau et al., 2007), beams or plates with suspended masses (Hong-Gang, 2006; Yu 

et al., 2006; Haslinger et al., 2017), plates or surfaces with pillars (Pennec, 2008; Wu, 2008; Oudich, 

2010; Khelif, 2010).  

The dispersion spectrum of the periodic material can be determined by solving the problem related to 

low-dimensional discrete models or to continuous models and by applying the Floquet-Bloch theory 

(Floquet, 1883; Bloch, 1929; Brillouin, 1946).   

Analytical approximate solutions of the direct and inverse dispersion problem for low-dimensional 

discrete models can be determinated by using the asymptotic techniques (Pierre et al., 1996; Romeo and 

Luongo, 2002; Bacigalupo and Lepidi, 2016; Lepidi and Bacigalupo, 2018). The direct problem consists 

in determining the dispersion functions of the material, known the parameters that characterize the 

microstructure. In reverse, the inverse problem consists in determining which parameters realize an 

unknown periodic material characterized by a desired dispersion spectrum.  

An approximation of the dispersion functions of the discrete model can be obtained through the 

formulation of an equivalent continuum model based on a continualization approach for discrete models 

(Reda et al., 2016, 2017; Bacigalupo and Gambarotta, 2016, 2017a, 2019; Bacigalupo et al., 2019a). 

The microstructured materials with tuned parameters are attractive for several applications including 

the filtering of the wave propagation obtained designing the microstructural parameters of the material to 

open band gaps in the dispersion spectrum at target-center frequencies. Tuning the oscillator frequency 

with the desired center-frequency in the low-frequency range and achieving the largest possible 

bandwidth is a challenging multi-objective optimization issue (Wang et al., 2015, 2016; Bacigalupo et al., 

2016, 2017, 2019b). The optimal solution must be sought for in a properly bounded multi-dimensional 

space of the mechanical parameters describing the periodic microstructure and the resonators. 

Starting from this scientific background, the possible advanced applications of the periodic 

microstructured materials in aerospace, chemical, naval, biomedical engineering as wave guides, obstacle 

cloaks, low-frequency noise filters, energy harvesters motivated the study conducted in this Thesis. The 

research activity is focused on the metamaterials containing inertial viscoelastic resonators. The 

.  

Figure 1.6 Discrete models of a monodimensional (a) phononic crystal (b) acoustic metamaterial (DePauw et al., 

2018). 
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development of this research field is motivated by some open investigation issues. First, a general 

improvement in the elastodynamic description of the linear and non-linear dissipation mechanisms 

occurring in infinite periodic phononic systems has been recognized as the theoretical key point for the 

future advances in the energetically consistent modelization and spectral design of acoustic metamaterials 

(Hussein et al., 2014). Second, a completely new class of mechanical meta-behaviours has been 

postulated to be developable in the next few years, by exploiting the virtuous contrast and synergy among 

constituent ingredient materials featured by strongly dissimilar elastic, plastic and viscous properties 

(Bertoldi et al., 2017). 

The study of dissipation mechanisms is interesting to understand how the inevitable presence of 

damping in periodic materials influences their behavior. The first studies on damped periodic materials 

are focused on the analisys of a monocoupled periodic chain with a complex stiffness (Mead, 1973) and 

on damped laminates (Mukherjee and Lee, 1975), for which the dispersion relations for various levels of 

damping are obtained by using the finite difference method. The dispersion spectrum for a damped 

material is characterized by complex-valued wavevector or frequency with imaginary parts representing 

spatial or temporal wave attenuation, respectively (Lakes, 2009; Achenbach, 2012). The complex-valued 

dispersion spectrum is obtained with two different approaches. The first approach allows to evaluate 

frequencies of real-valued harmonic waves and complex-valued wavevectors (Mead, 1973; Romeo and 

Luongo, 2003; Luongo and Romeo, 2005; Merheb et al., 2008; Zhao and Wei, 2009; Gei, 2010; 

Moiseyenko and Laude, 2011; Farzbod and Leamy, 2011; Andreassen and Jensen, 2013; Krushynska et 

al., 2016; Morini and Gei, 2018).  The second approach deals with the dispersion spectrum with complex-

valued frequencies and real-valued wavevector (Mukherjee and Lee, 1975; Hussein, 2009; Phani and 

Hussein, 2013; Drugan, 2017). These works about the phononic crystal highlight that the viscoelasticity 

causes a shifting band gaps along the frequency axis and a variation of the band gap amplitude. 

In the metamaterials, the studies are focused on the interaction between the resonance and the 

dissipative effects with the possibility of tuning the damping to achieve the band gap amplitude (Mead 

and Markuš, 1983; Smith et al., 1986; Thompson, 2008; Manimala and Sun, 2014). By comparing the 

acoustic metamaterials and the phononic crystals with the same material damping properties, the 

metamaterials exhibit higher levels of dissipation of the wave propagation. This phenomenon is called 

metadamping (Hussein and Frazier, 2013). 

 
 

Figure 1.7 (A) Cross section of a coated lead sphere that forms the basic structure unit (B) 

sonic crystal (Liu et al., 2000). 
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Based on this background in this field, the principal objectives of the research activity are: 

 Evaluating the effects of variations in geometric and mechanical parameters of the non-

dissipative beam lattice material on the dispersion spectrum to verify, for a suited parameter 

combination, the potential of the material as phononic filter in passively controlling the forced 

wave propagation. 

 Studying the dispersion properties (frequencies and waveforms) of a metamaterial with 

viscoelastic resonators and analyzing the spectral effects of the viscoelastic constitutive 

parameters. The original aspect is the viscoelastic coupling derived by a physical-mathematical 

construct based on the Boltzmann superposition integral, whose kernel is approximated by a 

Prony series (Ferry, 1980; Lakes, 2009; Christensen, 2012). Consequently, the Bloch wave 

propagation is governed by a linear homogeneous system of integral-differential equations of 

motion. This integral description of the viscoelastic metamaterial dissipation enriches the 

classic formulations of viscous damping, sometimes following the rheological Rayleigh or 

Maxwell models. 

 Evaluating the forced response of a metamaterial with viscoelastic resonators to harmonic 

single frequency external forces for the cases of non-resonant, resonant and quasi-resonant 

external forces (Mead, 1996; Movchan and Slepyan, 2014). 

 

The Thesis is organized as follows. In chapter 2, the study of the dispersion properties of the 

microstructured materials is introduced. In particular, monodimensional crystal lattices, where the 

reciprocal interactions between the atoms are purely attractive and repulsive, are studied with focus on the 

effects that the presence of a viscoelastic device causes on the dispersive properties of the material.  

In chapter 3, the dispersion spectra of 2D elastic beam lattice are determined by solving the dispersion 

problem related to low-dimensional discrete model and two alternative continuous models (high-fidelity 

first-order heterogeneous and equivalent homogenized micropolar continuum). Parametric analyses 

concerning the effects of variations in the enlarged space of geometric and mechanical parameters on the 

dispersion spectra are carried out. A satisfying tuning of the micromechanical properties is employed to 

verify the filtering functionality of the material in the forced wave propagation. At last, a parametric 

optimization for the search of full and partial band gaps with the largest amplitude and lower center 

frequency is carried out.  

In chapter 4, a discrete linear model of the periodic beam lattice microstructure, visco-elastically 

coupled with local resonators, is formulated. Therefore, the dynamic problem concerning the wave 

propagation of damped waves is stated according to the Floquet-Bloch theory. First, the complex 

dispersion spectrum characterizing the free dynamics is determined and the effects of different 

approximations of the coupling relaxation functions are parametrically analysed, with reference to the 

exact dispersion curves. Second, the forced response to harmonic single frequency external sources is 

investigated in the frequency and time domain for the fundamental cases of non-resonant, resonant and 

quasi-resonant external forces. 

Finally, in chapter 5 the conclusions are reported and possible developments are outlined.    
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CHAPTER 2  

2. CRYSTAL LATTICE 

A crystal or crystalline solid is a periodic material whose constituents are organized in a geometric lattice 

of material points or bodies that can be infinitely extended in all directions. By virtue of the periodicity, 

the mechanical behavior of a crystal lattice can be fully described by a suited physical-mathematical 

model of the elementary cell, which repeats itself in different directions.  

Historically the first study of a crystal lattice that is extended in one direction, that is, one-dimensional 

lattice, is attributed to Newton’s work done to derive a formula of the velocity of sound in a medium. The 

medium studied by Newton consists in a lattice of equal masses equispaced along the direction of sound 

propagation and attracted by the neighbor masses with an elastic force. Later, the same model was studied 

by Cauchy, who first obtained the wavelength-dependent velocity of propagation. At the end of the 

nineteenth century, Kelvin, studying a monodimensional lattice of equidistant point masses – previously 

treated by Baden-Powell – deduced that the frequency varies according to the wavenumber, defined as the 

inverse of the wavelength. The results just mentioned constitute the starting point for the development of 

the work conducted by Brillouin on the propagation of waves in crystal lattices (Brillouin, 1946). 

In this chapter, the one-dimensional (or monodimensional) lattice materials are analyzed, by properly  

distinguishing between lattices with monoatomic cell and lattices with biatomic cell, including the mass-

in-mass lattice where an auxiliary atom is introduced inside the other and plays the role of internal local 

resonator (Huang et al., 2009). Furthermore, the attention is focused on the effects that the presence of a 

viscoelastic coupling causes on the dispersive properties of the material.  

 

2.1. Undamped monoatomic lattice material 

The monodimensional monoatomic lattice material is characterized by an infinite chain of equidistant 

atoms that exchange linear elastic forces with the adjacent atoms. A discrete model (Figure 2.1) is 

formulated to describe the linear elastodynamic behavior of the monoatomic elementary cell where the 

atom is modeled as a point body with mass m  and the linear interaction with the atoms of the adjacent 

cells is simulated by linear elastic spring with stiffness mk . Furthermore, the lattice is ideally supposed to 

be perfectly non-dissipative. The configuration of the i-th mass is described by the time-dependent 

horizontal displacement ( )iu t . The free dynamics of the elementary cell is governed by an ordinary 

differential equation of motion 

1 12 0,i m i m i m imu k u k u k u                                                         (2.1) 

where the dots indicate the differentiation with respect to the time t . 

Given the periodicity of the material, the displacements of two adjacent cells are related by the 

Floquet-Bloch conditions (Brillouin, 1946) 
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1 ,ka

i iu u e     
1 ,ka

i iu u e                                                        (2.2) 

where a  is the distance between the point masses and k  is the wavenumber.  

The propagation of harmonic waves is studied by applying the bilateral Laplace transform 

[ ] ( ) ste dt
 


 L  to the equations (2.1) 

2 ˆ ˆ ˆ ˆ2 0,ka ka

i m i m i m ims u k u k u e k u e                                                 (2.3) 

where s  is the Laplace variable and ˆ
iu  is the bilateral Laplace transform of the displacement iu  that 

converges according to Paley and Wiener, 1934, and Van der Pol, 1955. By excluding the trivial solution 

( ˆ 0iu  ) and dividing eq. (2.3) by m  the equation is 

2 2 2 22 0,ka ka

m m ms e e                                                          (2.4) 

in which 2 /m mk m   is the square of the circular frequency of the harmonic oscillator of mass m  and 

stiffness mk . 

Two different approaches can be followed in order to estimate the relations between the Laplace 

variable and the wavenumber (Hussein et al., 2014). The first technique, called inverse method, consists 

in imposing the real wavenumber and solving the equation in terms of the complex-valued variable s . A 

second technique, known as the direct method, leads to the dispersion relations by imposing the real 

variable s  and solving for complex wavenumber. By using the inverse method, the solutions of eq. (2.4), 

expressed in exponential and trigonometric form, are 

 2 2 2( 2 ) 2(cos( ) 1),ka ka

m ms e e ka                                                (2.5) 

that can be rewritten by introducing the non-dimensional variables 
0/s s s , where 

0 ms  , and k ka   

2(cos( ) 1).s k                                                                (2.6) 

The values of the variable s  obtained by the relations (2.6) are purely imaginary for each real value of 

the wavenumber k , except for 0k   where 0s  . Furthermore, the dispersion curves are symmetric 

about 0k   and periodic with period 2  (Figure 2.2). Consequently the characteristics of harmonic 

waves in terms of the relations between their wavenumber and the Laplace variable are described in the 

period  ,k    , called First Brillouin zone, defined by the reciprocal lattice that represents the Fourier 

transform of the lattice (Brillouin, 1946). Given the symmetry of the dispersion spectrum, the dispersion 

 
Figure 2.1 Undamped monoatomic lattice material. 

m m m

ui-1 ui ui+1

a

kmkm

Monoatomic

undamped cell

https://en.wikipedia.org/wiki/Fourier_transform
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properties of the lattice can be fully described only considering [0, ]k  , defined Irreducible Brillouin 

zone.  

For each value of the wavenumber k  the imaginary value of s  is computed and the displacement of 

the i-th mass ( )kx st

iu ue   , where u  is the amplitude of the wave, is obtained. The displacement can be 

defined in non-dimensional form 0/i iu u l  where 0l  is a characteristic length. Chosen the value of the 

wavenumber k  equal to 2, from which it is obtained through the relations (2.6) 1.68294s   and 

1.68294s    (points P1 and P2 in Figure 2.2), the displacement iu  is achieved (Figure 2.3). The wave 

characterized by a positive value of Im( )s  (points P1) is a forward propagating wave while the wave 

characterized by a negative value of Im( )s  (points P2) is a backward propagating wave (Figure 2.3). In 

this regard, defined the complex velocity as /cv s k  (Carcione, 2007), it can be evaluated the speed at 

which the phase of the wave propagates in space, called phase velocity, through the relation (Figure 2.4a)  

Im( )
Im( ) .ph c

s
v v

k
                                                             (2.7) 

 
Figure 2.2 Dispersion curves of undamped monoatomic lattice material. 

 

 

Figure 2.3 Displacement of the i-th mass of the undamped monoatomic lattice material ( 2k  ). 
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By evaluating the values of the phase velocity corresponding to the wavenumber and variable s  

associated to the points P1 and P2 of the diagram, it is obtained 0.841471phv   for the point P1 and 

0.841471phv    for the point P2.  

The relation (2.6) between the wavenumber and the variable s  is not linear and consequently the phase 

velocity does not coincide with the group velocity, which is the velocity with which the overall shape of 

the waves’ amplitudes propagates through space, defined as  

.g

ds
v

dk
                                                                  (2.8) 

Deriving with respect to k  the relation (2.6), the group velocity is sin( ) / 2 2cos( )gv k k   . Given 

the symmetry about 0k   of the dispersion diagram, the phase and group velocity are evaluated in the 

interval [0, ]k   (Figure 2.4). The values of the phase velocity and the group velocity are equal for 

0k  , but they are different for the other values of k . In particular, for k   the group velocity is equal 

to zero while the phase velocity is 0.63662phv    (Figure 2.4).  

 

2.2. Damped monoatomic lattice material 

The model of the monodimensional lattice material can be enriched by removing the hypotheses of non-

dissipative lattice. The linear interaction between the atoms of the adjacent cells and the dissipation are 

simulated by a viscoelastic device characterized by a stiffness mk  and a translational relaxation function 

( )dk t  (Figure 2.5). The free damped vibrations of the discrete model are governed by integral-differential 

equation of motion 

1 1 1 12 ( ) ( ) ( ) ( ) 0,

t t

i m i m i m i d i i d i i

d d
mu k u k u k u k t u u d k t u u d

d d
   

 
   

 

               (2.9) 

where dots indicate differentiation with respect to time t . 

 
Figure 2.4 (a) Phase velocity, (b) Group velocity in the undamped monoatomic lattice material. 
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The integral formulation of the viscoelasticity is based on the idea of Boltzmann to assume that the 

material has memory of the events that have affected it and that, therefore, the mechanical response is a 

function of the previous history. This theory was revived at the beginning of the twentieth century by 

Volterra and deepened by Benvenuti (Volterra, 1913). 

The translational relaxation function ( )dk t  can be modeled by using the Prony series. To simplify the 

model, only the first exponential term of the series (Maxwell model) is considered 

1( ) U( ),r

t

t

d dk t e k t


                                                             (2.10) 

where 
rt  is the relaxation time, 1dk  is the relaxation function at 0t   and U( )t  is the unit step function. 

It is worth noting that the function (2.10) is a causal function. The relaxation function expressed by the 

relation (2.10) has a decreasing trend over time (Figure 2.6). 

By applying the Floquet-Bloch conditions (2.2) and the bilateral Laplace transform to equation (2.9), 

by remembering the causality of the function (2.10) (Paley and Wiener, 1934; Van der Pol, 1955) 

2 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ( ) ( ) 0,
1 1

ka ika ka kad r d r
i m i m i m i i i i i

r r

k t k t
ms u k u k u e k u e u u e u u e

st st

          
 

            (2.11) 

 

 
Figure 2.6 Relaxation function ( 1 5MPadk  , 100msrt  ).  
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Figure 2.5 Damped monoatomic lattice material. 

km
m m m

ui-1 ui ui+1

a

kd

Monoatomic

damped cell

km

kd



14 CHAPTER 2 

 

 

Figure 2.7 Damped monoatomic lattice material with springs and dashpots. 

where the bilateral Laplace transform 
1[ ] / (1 )st

d d d r rk k e dt k t st
 


  L  can be approximated with its 

first order Taylor polynomials centered at 0s   

2

1 ( ),d d rk k t s O s                                                            (2.12) 

It is worth noting that, considering the first order Taylor polynomial, the viscoelastic terms are linear in 

the Laplace variable, recovering the classical viscous damping originated by velocity-proportional 

dissipation. This behavior is modeled with a spring connected in parallel to a dashpot as in the Figure 2.7. 

By replacing the (2.12) in the (2.11) the equation becames 

2

1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ( ) ( ) 0.ka ka ka ka

i m i m i m i d r i i d r i ims u k u k u e k u e k t s u u e k t s u u e                          (2.13) 

Excluding the trivial solution ( ˆ 0iu  ) and dividing the equation (2.13) by m  

2 2 2 22 (1 ) (1 ) 0,ka ka ka ka

m m m d ds e e s e s e                                         (2.14) 

where 1 /d d rk t m   in the following sections is called the damping parameter. 

By introducing the non-dimensional variable 0/s s s  and damping parameter 0d d s  , where 
0s  is 

a real-valued circular  frequency that can be arranged equal to 
m , and the non-dimensional wavenumber  

 

 

Figure 2.8 Dispersion curves of damped monoatomic lattice material ( 0.5d  ).  
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Figure 2.9 Displacement of the i-th mass of the damped monoatomic lattice material ( 2k  ). 

 

k ka , the complex-valued dispersion relations in exponential and trigonometric form are obtained 

(Figure 2.8) 

2 2

2

1
(2 ) (2 ) 4(2 )

2

1
cos( ) 8 2 8cos( ) 2 cos( ),

2

k k k k k k

d d

d d d d

s e e e e e e

k k k

      

   

             
  

       

                    (2.15) 

where the imaginary part of the variable s  is the wave frequency and the ratio Re( ) / Abs( )dz s s   is 

the damping ratio (Hussein et al., 2014), where Re( )s is a negative value. 

Chosen the wavenumber k  equal to 2, from which 0.708073 1.52674s     and 

0.708073 1.52674s     (points P1 and P2 in Figure 2.8) are obtained through the dispersion relations 

(2.15), the displacement iu  is computed (Figure 2.9). With respect to the undamped lattice, an attenuation 

of the displacement is observed. This dissipation of the wave can be related to the damping ratio that is 

zero in the undamped lattice.   

By evaluating, through the relation (2.7), the phase velocity corresponding to the values of 

wavenumber and variable s  associated to the points P1 and P2 of the diagram, it is obtained 

0.763368phv   for the point P1 (forward propagating wave) and 0.763368phv    for the point P2  

(backward propagating wave). The dispersion relations (2.15) are not linear functions of s  and 

consequently the phase velocity does not coincide with the group velocity defined as  

,g

s
v

k





                                                               (2.16) 

that applied to equations (2.15) gives 
2

2

4sin( ) sin( )
sin( )

2 8 2 8cos( ) 2 cos( )

d
g d

d d

k k
v k

k k




 

 
  

   
. 

Given the symmetry about 0k   of the dispersion diagram, the phase and group velocities are evaluated 

in  the  interval [0, ]k   (Figure 2.10).  Except 0k  ,  the  values  of  the  phase  velocity and the group 
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Figure 2.10 (a) Phase velocity, (b) Group velocity in the damped monoatomic lattice material. 

 

velocity are different and, in particular, for k   the group velocity is equal to zero while the phase 

velocity is 0.551329phv    (Figure 2.10). The variations of the real and imaginary parts of s  are related 

to the non-dimensional parameters 2 2 2

0m m s   and 0/d d s  , where 0s  is a circular frequency that can 

be arranged equal to a fraction of the circular frequency 
m . Fixing the values of 2

m  and the 

wavenumber k  (Figure 2.11), by increasing the value of d , the wave frequency decreases. By imposing 

Im( ) 0s  , the relation is obtained 
* 22 1 cos( )d m k    between the damping parameter with the 

wavenumber and the circular frequency and which allows to achieve the value 
*

d  for which s  is real. 

For 
*

d d   the system is under damped and s  is a complex-valued. For 
*

d d   the system is critically 

damped and s  is real-valued. Also for 
*

d d   the variable s  is real and the system is overdamped. This 

behavior can be observed in the dispersion diagram for fixed values of the circular frequency and the 

damping parameter (Figure 2.12).  
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Figure 2.11 Imaginary and real part of the variable s  a) 2k   b) 
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Chosen the k -value equal to 2 in which Im( ) 0s   (point P3 in Figure 2.11), the phase velocity is equal 

to zero. In this case, the wave is stationary because its amplitude does not move in space, but it is damped 

in time (Figure 2.13). 

 

2.3. Undamped biatomic lattice material 

The monodimensional biatomic lattice material is characterized by an infinite chain of equidistant atoms 

that exchange linear elastic forces with the adjacent atoms having different mass. The linear 

elastodynamic behavior of the biatomic elementary cell is described by a discrete model where two atoms 

are modeled as a point bodies with masses 1m  and 2m  and the linear interaction with the atoms of the 

adjacent cells is simulated by linear elastic spring with stiffness mk  (Figure 2.14). Furthermore, the 

 

Figure 2.12 Dispersion curves of damped monoatomic lattice material (
2 1m  , 1.5d  ).  

 

 

Figure 2.13 Displacement of the i-th mass of the damped monoatomic lattice material ( 2 1m  , 1.5d  , 2k  ). 

-3

-2

-1

0

-6

-5

-4

0-π -π/2 π/2 π

Re( )s

k

0.5

1.0

-1.0

-0.5

0.0

0

Im( )s

k
-π -π/2 π/2 π

3P
3P

0.5

1.0

1.5

-1.5

-1.0

-0.5

0.0

4.0 6.0 8.0 10.02.0

iu

x

0t 
0.05t 

0.1t 



18 CHAPTER 2 

lattice is ideally supposed to be perfectly non-dissipative. The configuration of the elementary cell is 

described by the time-dependent horizontal displacements ( )iu t  and 1( )iu t  of the point bodies with 

masses 1m  and 2m , respectively. The free undamped dynamics of the elementary cell is governed by 

ordinary differential equations of motion 

1 1 1

2 1 1 2

2 0

2 0.

i m i m i m i

i m i m i m i

m u k u k u k u

m u k u k u k u

 

  

   


   
                                                (2.15) 

Given the periodicity of the system, the displacements of the masses of i-th cell are related with the 

displacements of the adjacent cell with the Floquet-Bloch conditions 

2 ,ka

i iu u e      
1 1 ,ka

i iu u e                                                   (2.16) 

To study the propagation of harmonic waves in monodimensional lattice material, the bilateral Laplace 

transform and the Floquet-Bloch conditions (2.16) are applied to the equations (2.15) 

2

1 1

2

2 1

ˆ ˆ( 2 ) (1 ) 0

ˆ ˆ( 2 ) (1 ) 0.

ka

m i m i

ka

m i m i

m s k u k e u

m s k u k e u











    


   

                                                (2.17) 

Dividing the first and the second equation (2.17) by 1m  and 2m , respectively, the equations (2.17) is 

rewritten in the matrix form as 

2 2 2

1 1

2 2 2
12 2

ˆ 02 (1 )
,

ˆ 0(1 ) 2

ka
im m

ka
im m

us e

ue s





 

 





       
    

      
                                       (2.18) 

where 2 2

1 1 2 2/ , /m m m mk m k m    are the square of the circular frequencies of the harmonic oscillators 

with mass 1m  and 2m , respectively, and stiffness mk . 

By introducing the non-dimensional parameter 
2 1 1 2/ /m m m m    , the wavenumber k ka  and 

the variable 
0/ ,s s s  where 

0s  is a real-valued circular frequency that can be arranged equal to 
1m , the 

dispersion relations are found by solving the eigenvalues problem associated to (2.18). By equating to 

zero the characteristic polynomial, the equation to be solved is  

 
4 2 2 2 2 2 22 2 2 0.k ks s s e e                                                   (2.19) 

 

 

Figure 2.14 Undamped biatomic lattice material. 
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Figure 2.15 Dispersion curves of undamped biatomic lattice material ( 2  ). 

 

The relations between the variable s  and the wavenumber k  in trigonometric form are (Figure 2.15) 

2

1,2

2

3,4

1 (cos sin )

1 (cos sin ) ,

s k k b

s k k b

 

 

     

     

                                                (2.20) 

where 
4 2 2(1 2 cos )(cos sin )b k k k      . 

In the dispersion spectrum (Figure 2.15) for Im( ) [1.414,2.828]s   there are no corresponding real-

valued wavenumber and the harmonic waves do not propagate. The range of Im( )s  where this 

phenomenon occurs is called stop band, or band gap (red band in the Figure 2.16). For the other values of 

the  wave  frequency  in  which   there  is  corrisponding  real-valued   wavenumber  the  harmonic  waves  

 

 

Figure 2.16 (a) Band gap in the dispersion diagram of undamped biatomic lattice material ( 2  ), (b) Band gap 

amplitude. 
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propagate and the ranges of Im( )s  are called pass band (green band in the Figure 2.16). The band gap 

amplitude 
3 1

0 0
min maxbg

k k
s s

    
    is conditioned by the parameter   (Figure 2.16). When 1   the masses 

1m  and 2m  are equal and the amplitude is zero. By increasing   the band gap amplitude increases 

linearly. Fixing the value of the wavenumber k  equal to 2, to which the values 2.94914s   and 

1.14131s   (points P1 and P2 in Figure 2.15) with Im( ) 0s   correspond, the displacement iu  of i-th 

mass is computed (Figure 2.17). The forward propagating waves are characterized by two different 

speeds of propagation (Figure 2.18). In this regard, the phase velocity, defined by the relation (2.7), 

associated to the higher-frequency dispersion curve tends to infinity for 0k   and decreases by 

increasing the wavenumber (Figure 2.18). Different is the trend of the phase velocity associated to the 

lower-frequency dispersion curve that is 0.632454phv   for 0k   and slowly decreases by increasing the 

wavenumber (Hussein, 2009). By evaluating the phase velocity associated to the points P1 and P2, the 

values are 1.47457phv   and 0.570656phv  , respectively, and this confirms the different speed of 

propagation of the waves.  

The group velocity can be obtained deriving the relations (2.20) with respect to k   

2 2

1,2

2 2

3,4

( sin (cos sin )) / 2 ( 1 (cos sin )

( sin (cos sin )) / 2 ( 1 (cos sin ) ,

g

g

v k k k b k k b

v k k k b k k b

   

   

      

      

                   (2.21) 

where 
4 2 2(1 2 cos )(cos sin )b k k k      . 

Given the symmetry about 0k   of the dispersion diagram the group velocity, like the phase velocity, are 

evaluated in the Irreducible Brillouin zone and for positive wave frequency (Figure 2.18). The group 

velocity associated to the lower-frequency dispersion curve for 0k   is Im( ) 0.632451gv   and decreases 

by increasing the wavenumber assuming 0gv   at k  . Different is the trend of the group velocity gv  

associated to the higher-frequency dispersion curve that is equal to zero for 0k   and k   and assumes 

a maximum value in the interval [ / 2,3 / 4]k   . 

 

 

Figure 2.17 Displacement of the i-th mass of the undamped biatomic lattice material ( 2k  ).  

0.5

1.0

1.5

-1.5

-1.0

-0.5

0.0

4.0 6.0 8.0 10.02.0

x

0t 
0.10t 

0.25t 

0.5

1.0

1.5

-1.5

-1.0

-0.5

0.0

iu iu 0t 
0.10t 

0.25t 

0.0 4.0 6.0 8.0 10.02.0

x
0.0



CRYSTAL LATTICE    21 

 

 

Figure 2.18 (a) Phase velocity, (b) Group velocity in the undamped biatomic lattice material. 

 

2.4. Damped biatomic lattice material 

The model of the biatomic lattice material can be enriched by adding a viscoelastic device, characterized 

by a translational relaxation function dk  and a stiffness mk  that simulates the linear interaction between 

tha atoms of the adjacent cells (Figure 2.19). The free damped vibrations of the discrete model are 

governed by integral-differential equations of motion  

1 1 1 1 1

2 1 1 2 1 1 2
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t t
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d d
m u k u k u k u k t u u d k t u u d

d d

d d
m u k u k u k u k t u u d k t u u d

d d

   
 

   
 

   

 

     

 


         





         



 

 

      (2.22) 

where the Boltzmann’s integral formulation is used for the viscoelastic terms.  

By using the Prony series (2.10) for the translational relaxation function and by applying the Floquet-

Bloch conditions (2.16) and the bilateral Laplace transform to the equations (2.22) it can be obtained 

 

 

Figure 2.19 Damped biatomic lattice material. 
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2 1 1
1 1 1

2 1 1
2 1

ˆ ˆ ˆ2 2 (1 ) (1 ) 0
1 1

ˆ ˆ ˆ2 2 (1 ) (1 ) 0,
1 1

ka kad r d r
m i m i i

r r

ka kad r d r
m i m i i

r r

k t s k t s
m s k u k e u e u

st st

k t s k t s
m s k u k e u e u

st st

 

 

 

 



 
       

  

 

          

                     (2.23) 

where the bilateral Laplace transform can be approximated with its first order Taylor polynomials 

centered at 0s   (2.12), modeled by a viscoelastic device constituted by a spring connected in parallel to 

a dashpot (Figure 2.20). 

By dividing the first and the second equation (2.23) by 1m  and 2m , respectively, the equations can be 

written in matrix form as 

2 2 2

1 1 1 1

2 2 2
12 2 2 2

ˆ 02 2 (1 ) (1 )
,

ˆ 0(1 ) (1 ) 2 2

ka ka
id m m d

ka ka
im d d m

us s e s e

ue s e s s

 

 

   

   

 



          
    

         
                (2.24) 

where 1 1 1/d d rk t m  , 2 1 2/d d rk t m   in the following sections are called damping parameters. 

By introducing the non-dimensional variable 
0/s s s , the non-dimensional wavenumber k ka  and 

non-dimensional parameters 
2 1/m m   , 1 1 0d d s   and 2 2 0d d s  , where 

0s  is a real-valued 

circular frequency that can be arranged equal to 
m , the complex-valued dispersion relations are obtained 

by equating to zero the characteristic polynomial 

 4 3 2

3 2 1 0 0,s b s b s b s b                                                     (2.25) 

where the coefficients 3 2 1 0, , ,b b b b  are 

2

3 1 2 2 1 2 1 2

2 2

1 1 2 1 2

2 2

0

2 2 , 2 2 2 cos

2 2 2 cos 2 cos

2 2 cos .

d d d d d d

d d d d

b b k

b k k

b k

      

     

 

     

   

 

                      (2.26) 

The solutions of the equation (2.25) are (Figure 2.21) 

2 23 3
1,2 3,4

1 1
4 2 , 4 2 ,

4 2 4 2

b bC C
s Q Q p s Q Q p

Q Q
                             (2.27) 

 

 

Figure 2.20 Damped biatomic lattice material with springs and dashpots. 
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Figure 2.21 Dispersion curves of damped biatomic lattice material ( 1.5  , 
1 0.5d  , 

2 2.25d  ). 
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Figure 2.22 Displacement of the i-th mass of the damped biatomic lattice material ( 2k  ). 
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Figure 2.23 (a) Phase velocity, (b) Group velocity in the damped biatomic lattice material. 

 

Chosen the value of the wavenumber equal to 2, from the dispersion relation the values of the variable 

s  are obtained ( 1.32423 1.88237s     corresponding to point P1 and 0.300773 1.05481s      

corresponding to point P2 in Figure 2.21), and the displacement iu  of i-th mass is achieved (Figure 2.22). 

A difference between the dissipation of the displacement associated to the points P1 and P2 is observed 

and this is in relation with the different value of the damping ratio in the points. Furthermore, also the 

velocity of propagation are different and effectively the phase velocity, defined by the relation (2.7), 

associated to the points P1 and P2, assumes the values 0.941187phv   and 0.527405phv  , respectively.  

The group velocity can be obtained differentiating with respect to k  the relations (2.27) 
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                                     (2.29) 

where the derivative with respect k  is expressed with the Lagrange’s notation as ' /f df dk , where f  

is a generic k -dependent function.  

Given the symmetry about 0k   of the dispersion diagram the phase velocity and the group velocity 

are evaluated in the Irreducible Brillouin zone and for positive wave frequency (Figure 2.23) and their 

trends are qualitatively the same as observed for undamped biatomic lattice. 
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2.5. Undamped biatomic lattice metamaterial  

An alternative of a monodimensional biatomic lattice is represented by the mass-in-mass lattice where a 

circular inclusion (secondary atom) is introduced inside each ring (principal atom) of the infinite chain. 

In the small-amplitude range of oscillations, the circular inclusions play the role of inertial resonators, if  

their linear frequencies are properly tuned with certain wave frequencies of the ring. From the mechanical   

viewpoint, the free dynamics of this metamaterial can be described by a low-dimensional discrete model 

(Figure 2.24). The massive and stiff ring is modeled as a rigid body with translational mass 1m  and the 

unique degree of freedom of the principal atom can be related to the displacement ( )iu t  of the 

configurational node located at the ring centroid. The internal inclusion is modeled as a point body with 

mass 2m  which configuration is described by the displacement ( )iv t . The linear interaction with the 

principal atoms of the adjacent cells is simulated by linear elastic spring with stiffness 1mk . The linear 

interaction between the principal atom and the secondary atom is simulated by linear elastic spring with 

stiffness 2mk . Furthermore, the lattice is ideally supposed to be perfectly non-dissipative. The free 

undamped dynamics of the elementary cell is governed by an ordinary differential equations of motion   

1 1 1 1 1 1 2

2 2

2 ( ) 0

( ) 0.

i m i m i m i m i i

i m i i

m u k u k u k u k u v

m v k v u

      


  
                                   (2.30) 

Given the periodicity of the system, the displacements of two adjacent cells are related by the Floquet-

Bloch conditions  

1

ka

i iu u e       1 .ka

i iu u e                                                  (2.31) 

By applying the Floquet-Bloch conditions (2.31) and the bilateral Laplace transform to the equations 

(2.30) it can be obtained 

2

1

2

2

ˆ ˆ ˆ ˆ ˆ2 ( ) 0

ˆ ˆ( ) 0,

ka ka

i m i m i m i m i

m i m i

m s u k u k e e u k u k v

m s k v k u

       


  

                               (2.32) 

where it is assumed 1 2m m mk k k  .   

Dividing the first and the second equation (2.32) by 1m  and 2m , respectively, the equations (2.32) are 

rewritten in the matrix form as 

2 2 2 2

1 1 1

2 2 2

2 2

ˆ 0(2 )
,

ˆ 0

ka ka
im m m

im m

us e e

vs

   

 

         
    

     
                            (2.33) 

where 2 2

1 1 2 2/ , /m m m mk m k m    are the square of the circular frequencies of the harmonic oscillators 

with mass 1m  and 2m , respectively, and stiffness mk . 

By introducing the non-dimensional parameter 
2 1/m m   , the wavenumber k ka  and the variable 

0/ ,s s s  where 
0s  is a real-valued circular frequency that can be arranged equal to 

1,m  the dispersion 

relations are found by solving the eigenvalues problem associated to (2.33). By equating to zero the 

characteristic polynomial, the equation to be solved is  

4 2 2 2 2 2 2 2 2 2 23 2 0,k k k ks s s e s e s e e                                       (2.34) 
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Figure 2.24 Undamped biatomic lattice metamaterial. 

 

The relations between the variable s  and the wavenumber k  in trigonometric form are (Figure 2.25) 
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                                           (2.35) 

where 
23 2cosb k    . 

Two band gaps can be observed in the dispersion diagram and their amplitude are conditioned by the 

parameter   (Figure 2.26). When the ratio   increases the band amplitude decrease for 0 1   and it 

increases for 1 10   but it doesn’t vanish. Futhermore, the center frequency of the band gap is in the 

vicinity of resonat frequency of the internal inclusion and it is not related to the wavelength. This allows 

to state that can be produce a band gap at arbitrarily low-frequencies/long wavelengths. 

Fixing the value of the wavenumber k  equal to 2, to which the positive values 2.43267s   and 

1.38361s   (points P1 and P2 in Figure 2.25) obtained through the dispersion relations (2.35) 

correspond, the displacement iu  of i-th mass is achieved (Figure 2.27). Different velocities of 

propagation  associated  to  the  points P1 and P2  are observed and, effectively, the phase velocity, defined  

 

 

Figure 2.25 Dispersion curves of undamped biatomic lattice metamaterial ( 2  ). 
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Figure 2.26 (a) Band gap in the dispersion diagram of undamped biatomic lattice metamaterial ( 2  ), (b) Band 

gap amplitude. 

 

by the relation (2.7), associated to the points P1 and P2, assumes the values 1.21634phv   and 

0.681807,phv   respectively. 

The group velocity can be obtained deriving with respect to k  the relations (2.35) 
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                                                 (2.36) 

where 23 2cosb k     and 
2 2 24(2 2 cos )c b k    . 

 

 

Figure 2.27 Displacement of the i-th mass of the undamped biatomic lattice metamaterial ( 2k  ). 
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Figure 2.28 (a) Phase velocity, (b) Group velocity in the undamped biatomic lattice metamaterial. 

 

Given the symmetry about 0k   of the dispersion diagram the phase velocity and the group velocity 

are evaluated in the Irreducible Brillouin zone and for positive wave frequency (Figure 2.28) and their 

trends are qualitatively the same observed for undamped biatomic lattice. 

 

2.6. Damped biatomic lattice metamaterial  

The model of the biatomic lattice material can be enriched by adding a viscoelastic device, characterized 

by a translational relaxation function dk  and a stiffness mk  that simulates the linear interaction between 

tha atoms of the adjacent cells (Figure 2.29). The free damped vibrations of the discrete model are 

governed by integral-differential equation of motion  
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                 (2.37) 

where the Boltzmann’s integral formulation is used for the viscoelastic terms.  

By using the Prony series for the translational relaxation function (2.10) and applying the Floquet-

Bloch conditions (2.31) and the bilateral Laplace transform to the equations (2.37) it can be obtained 
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where it is assumed 1 2m m mk k k  . The bilateral Laplace transform 
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Figure 2.29 Damped biatomic lattice metamaterial. 

 

viscoelastic device constituted by a spring connected in parallel to a dashpot as in the Figure 2.30. 

By dividing the first and the second equation (2.38) by 1m  and 2m , respectively, the equations can be 

written in matrix form as 
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                 (2.39) 

where 1 1 1/d d rk t m  , 2 1 2/d d rk t m   in the following sections are called damping parameters. 

By introducing the non-dimensional variable 
0/s s s , the non-dimensional wavenumber k ka  and 

non-dimensional parameters 
2 1/m m   , 1 1 0d d s   and 2 2 0d d s  , where 0s  is a real-valued 

circular frequency that can be arranged equal to 
m , the complex-valued dispersion relations are obtained 

by equating to zero the characteristic polynomial  

 4 3 2

3 2 1 0 0,s b s b s b s b                                                     (2.40) 

where the coefficients 3 2 1 0, , ,b b b b  are 
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                                                     (2.41) 

The solutions of the equation (2.40) are expressed by the relations (2.27) by substituting the coefficients 

(2.41) (Figure 2.31). 

 

Figure 2.30 Damped biatomic lattice metamaterial with springs and dashpots. 
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Figure 2.31 Dispersion curves and eigenvectors of damped biatomic lattice metamaterial and selected samples of the 

self-normalized waveforms φ in the unitary circle of the Lagrangian coordinate space ( 2  , 1 0.5d  , 2 2).d    

 

Solved the eigenvalues problem, fixeing the k -value and by achieving the values of the variable s  

from the dispersion spectrum, it is possible obtain the associated eigenvector. For 0k  , the 

eigencomponents û  and v̂  are real-valued. In particular, fixing a mass-othonormalization for the 

eigenvectors, for 0s   (point P4 in the Figure 2.31) the eigencomponents are positive and identical (no 

local wave dynamics of the resonator), while for 1.25 1.854s     (point P3 in the Figure 2.31) the 

eigencomponent û  is positive and the eigencomponent v̂  is negative (local wave dynamics of the 

resonator). For 0k  , the dispersion curve with same-sign eigencomponents is called acoustic curve (the 

centroid of all the cell masses moves as in sound propagation) and the curve with opposite-sign 

eigencomponents is called optical curve. The eigenvectors are complex for different values of the 

wavenumber k  as it can be observed for the values associated to the points P1 and P2 ( 2,k 

1.18307 2.00734s     for the point P1 and 0.0669253 1.44307s     for the point P2 in Figure 2.31). 

 

 

Figure 2.32 Displacement of the i-th mass of the damped biatomic lattice metamaterial ( 2k  ). 
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Figure 2.33 (a) Phase velocity, (b) Group velocity in the damped biatomic lattice metamaterial. 

 

Chosen the value of the wavenumber k  equal to 2, from the dispersion spectrum the values of the 

variable s  is obtained and the displacement iu  of i-th mass is achieved (Figure 2.32). A difference 

between the dissipation of the displacement associated to the points  P1  and  P2   is observed and this is in 

relation with the different value of the damping ratio in the points. Furthermore, also the velocity of 

propagation is different and effectively the phase velocity, defined by the relation (2.7), associated to the 

points P1 and P2, assumes the values 1.00362phv   and 0.721533phv  , respectively. 

The group velocity can be obtained with the (2.29) where the coefficients 3 2 1 0, , ,b b b b  are expressed by 

the relations (2.41). Given the symmetry about 0k   of the dispersion diagram the phase velocity and the 

group velocity are evaluated in the Irreducible Brillouin zone and for positive wave frequency (Figure 

2.33) and their trends are qualitatively the same observed for undamped biatomic lattice. 
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CHAPTER 3  

3. ELASTIC BEAM LATTICE 

Beam lattice materials are characterized by a periodic microstructure realizing a geometrically 

regular pattern of elementary cells. Unlike the crystal lattices, in which the reciprocal interactions 

between pairs of atoms are purely attractive and repulsive, in the beam lattices the elastic coupling 

between close pairs of atomic nodes can be described through the definition of axial-bending interactions. 

The current research interest is focused on the assessment and customization of the dispersion 

properties associated to the propagation of Bloch waves across the material, either in its original periodic 

microstructured form or in equivalent homogenized forms. In this respect, the periodic materials with a 

chiral or anti-chiral microstructure of the elementary cell, consisting of stiff disks or rings, 

tangentially connected by a variable number of flexible ligaments (Figure 3.1), are particularly 

attractive for their potential as acoustic waveguides or phononic filters. In the current literature 

dealing with this material class, the pass and stop bands characterizing the band spectrum have been 

determined by solving the dispersion problem related to low-dimensional discrete models, high-

fidelity micromechanical formulations accounting for the material heterogeneity at the microscale 

and, finally, equivalent local and non-local homogenized continua. 

 

 
Figure 3.1 Anti-chiral and chiral microstructured materials (Wu et al., 2019). 
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The leading idea is that, within certain physically admissible ranges, the geometric and 

mechanical parameters can be intended as freely tunable variables for properly customizing the 

acoustic dispersion properties of the material. Common customization criteria are the presence of 

selected harmonics in the band structure at a certain wavenumber, the opening or shifting of 

maximum-amplitude band gaps in the lowest possible frequency range. 

Asymptotic perturbation-based techniques may allow the multiparametric approximation of the 

direct and inverse dispersion problem for low-dimensional discrete models. Consequently, the 

conditions for the existence of pass and stop bands, as well as the design of their centerfrequency 

and amplitude can be determined in a suited analytical – although approximate – form. Although 

powerful for the availability of valuable analytical solutions, the perturbation-based optimization 

analyses may highlight how low-dimensional discrete models possess a low-dimensional parameter 

space, insufficient for the search of a satisfying solution for inverse spectral problems.  

This chapter is devoted to exploring the dispersion properties of the tetrachiral material in the 

larger parameter space obtainable by removing some of the simplifying mechanical assumption 

limiting the simpler discrete model. Two alternative continuous models (high-fidelity first-order 

heterogeneous and equivalent homogenized micropolar continuum) are derived in parallel to the 

Lagrangian beam lattice formulation (Section 3.1). The frequency dispersion spectra resulting from 

all the models are compared to each other and cross-validated (Sections 3.2). The qualitative and 

qualitative agreement between asymptotic perturbation-based approximations and numerical spectral 

solutions is discussed (Paragraph 3.2.1). Parametric analyses concerning the effects of variations in 

the enlarged space of geometric and mechanical parameters on the acoustic and optical surfaces are 

carried out (Section 3.3). Consequently, a tuning of the micromechanical properties is employed to 

verify the filtering functionality of the material in the forced wave propagation under harmonic 

boundary excitation (Paragraph 3.3.1, 3.3.2). Finally, a parametric optimization for the search of full 

and partial band gaps with the largest amplitude and lower center frequency is carried out (Section 3.4).  

 

3.1. Tetrachiral material 

 3.1.1.Beam lattice model 

The class of chiral and antichiral cellular materials is characterized by a periodic tessellation of the 

bidimensional plane. The elementary cell is strongly characterized by a microstructure composed by stiff 

circular rings connected by flexible straight ligaments, arranged according to different planar geometries 

including the trichiral, hexachiral, tetrachiral, anti-trichiral, antitetrachiral topologies. Among the others, 

the tetrachiral material is featured by a monoatomic centrosymmetric cell in which the central stiff and 

massive ring (or disk) is connected to four tangent flexible and light ligaments (Figure 3.2a). The periodic 

square cell has side length .H  Each ring is mechanically modeled as a rigid annular body with mass rM , 

rotational inertia rJ , mean radius R  and transversal width rt , (Figure 3.2b). Each ligament is modeled as 
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Figure 3.2 Tetrachiral metamaterial (a) repetitive planar pattern, (b) periodic cell, (c) beam lattice model. 

 

a linear unshearable beam, with material density b , transversal width bt  and natural length 

cosbL H  , where the chirality angle arcsin(2 / )R H   is the ligament inclination angle with 

respect to the ideal line connecting the centers of adjacent rings. A linear elastic material, with Young’s 

modulus bE  is assumed for all beams.  

The rigid body configuration is fully described by three planar active degrees-of-freedom, collected in 

the generalized displacement vector 1a q q  (Figure 3.2c), referred to the internal node located at the ring 

barycenter. Due to the geometric periodicity, the cell boundary crosses the midspan of all the four 

ligaments. Consequently four external nodes are located at the midpoint of all the cell sides, each one 

possessing three planar passive degrees-of-freedom collected in the displacement vector 2 5( ,..., )p q q q .  

Assuming the ligaments rigidly connected to the ring, a discrete beam lattice model can be formulated. 

The free undamped vibrations of the discrete model are governed by a linear equation, defined in the full 

configuration vector ( , )a pq q q  

,a aa ap a

p pa pp p p

        
        

         

q K K q 0M O

q K K q fO O


                                         (3.1) 

where dot indicates differentiation with respect to time and O  stands for different-size empty matrices. 

Adopting a lumped mass description, the non-null mass submatrix M  is diagonal. The symmetric 

submatrices aaK  and ppK  describe the stiffness of the active and passive nodes, respectively. The 

rectangular submatrix T
ap paK K  account for the elastic coupling among the active and passive nodes. 

The non-null coefficients iiM  ( 1,2,3)i   of the mass submatrix M  in the equation (3.1) are 

11 22 rM M M          33 rM J                                                    (3.2) 

The non-null coefficients aa
ijK  ( , 1,2,3)i j   and pp

hsK  ( , 1,...,12)h s   of the symmetric submatrices 

aaK  and ppK  in the equation (3.1) are 
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                                           4 4 2 2 3 5
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where  1/22 21 4 /d R H  . 

The coefficients ap
ijK  ( 1,2,3; 1,...,12)i j   of the rectangular submatrix T

ap paK K  in the equation 

(3.1) are 
4 4 2 2 3 5

11 17 25 211 2 ( 16 )ap ap ap ap
b b bK K K K E t d H R t d H                                    (3.4) 
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                                          3 1 1
33 36 39 312

1

3
ap ap ap ap

b bK K K K E t d H     .  

The vector pf  collects the reactive forces exerted by the adjacent cells on the passive nodes. The 

passive displacement and force vectors can be ordered and partitioned as ( , )p p p
 q q q , ( , )p p p

 f f f  to 

separate the variables ( , )p p
 q f , related to the left/bottom sides of the cell boundary (composed by the 

external nodes 2, 3 shown in Figure 3.2c), from the variables ( , )p p
 q f  related to the right/top sides 

(composed by the external nodes 4, 5). According to this decomposition, the dynamic (upper) part of the 

equation (3.1) can be written 

,a aa a ap p ap p
      Mq K q K q K q 0                                                   (3.5) 

whereas the quasi-static (lower) part can be written 

# .pa pp pp p p
a

pa pp pp p p

   

   

       
                     

K K K q f
q

K K K q f



                                                (3.6) 

According to the Floquet-Bloch theory for bidimensional discrete model, the quasi-periodic conditions 

governing the propagation of planar wave can be imposed on the passive displacement/forces at the cell 

boundary, requiring 

p k p
 q L q ,       ,p k p

  f L f                                                      (3.7) 

where kL  is a square transfer matrix that can be expressed in the diagonal block form 

 1 2diag ,k H k H
k e e L I I ,                                                       (3.8) 

where I  is the 3-by-3 identity matrix, while 1k  and 2k  are the two components of the wavevector

1 2( , )k kk , that is, the wavenumbers of the horizontally and vertically propagating waves, respectively.  

The conditions (3.7) can be introduced in the quasi-static equation (3.6) to reduce the number of 

independent passive displacements. Therefore, the linear quasi-static laws 

 p k pa k pa a
   q R K L K q ,          p pa pp pa k k pa k pa a

       f K K K L R K L K q                 (3.9) 

govern the relations between the passive displacements or forces and the active degrees-of-freedom. The 

auxiliary block diagonal matrix  # 1

k k pp k k pp pp k pp

     R L K L L K K L K  is determined by the 

inversion of the non-singular sum between brackets. 

Forcing the quasi-static relations (3.9) into the equation (3.5), the wave propagation through the 

material is fully governed in the configuration space of the active displacements by the equation of 

motion 

,a a Mq Kq 0                                                            (3.10) 

where the k -dependent Hermitian matrix    aa ap k ap k pa k pa
      K K K L K R K L K . 
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Denoting   the unknown circular frequency, the oscillatory solution exp( )a a t q   can be 

imposed. Therefore, eliminating the dependence on time, the in-plane wave propagation is governed by 

the linear eigenproblem 

  a K M 0                                                           (3.11) 

in the unknown eigenvalues 2   and eigenvectors a . The eigensolution is composed by three 

eigenpairs, each made of a real-valued eigenvalue h  and a complex-valued eigenvector h ( 1,2,3).h 

The eigenproblem (3.11) can be reformulated in the standard form 

  ,a Η I 0φ                                                           (3.12) 

where the matrix 1T H Q KQ  and the auxiliary eigenvector a aQφ ψ  are obtained by decomposing the 

mass matrix in the form TM Q Q . The beam lattice model will be also referred to as coarse model in the 

following.  
 

 3.1.2. Microscopic first order continuum model 

As alternative to the beam lattice model, the ring and the ligaments can be modeled at the microscopic 

scale in the framework of solid mechanics. Both the ring and the ligament bodies are modeled as first 

order continuum subject to Cauchy stresses induced by body forces ( )b x . A planar stress state is 

considered. Each material point is characterized by the displacement field ( , )tu x  and the partial 

differential equation governing the dynamic balance of a material point is 

( ) ( ) ( ) ( , ),t  σ x b x x u x                                                     (3.13) 

where ( ) x  is the mass density, ( , )tu x  is the acceleration of the material point. The stress tensor ( )σ x  

can be related to the strain tensor ( )ε x  through the constitutive equation for linear elastic materials is 

( ) ( ) ( ),mσ x x ε x                                                            (3.14) 

where 1
2( ) sym ( , ) [ ( , ) ( , )]Tt t t    ε x u x u x u x  and ( )m x  is the fourth order elasticity tensor. 

Consistently with the beam lattice model, a locally isotropic material is assumed. By employing the 

constitutive equation (3.14), the dynamic equation (3.13) becomes 

( ( )sym ( , )) ( ) ( ) ( , ),m t t   x u x b x x u x                                         (3.15) 

where the x dependence of the elastic tensor and the mass density accounts for the material 

heterogeneities. 

Transforming the equation (3.15) by applying the Fourier transform with respect to the time variable t , 

that is ˆ[ ( , t)] ( , t)exp( ) ( )t dt
   u x u x u x , the governing equation in the transformed space 

(Christoffel equation) is 

2ˆ ˆ( ( )sym ( )) ( ) ( ) ,m    x u x x u x 0                                          (3.16) 
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which is identical to the equation of motion (3.15) if a time harmonic dependence ˆ( , ) ( )exp( )t t  u x u x  

is assumed. According to the Floquet-Bloch theory for a bidimensional continuous model, the quasi-

periodic conditions    

ˆ ˆ ˆ ˆ,              ,H He e          k ku u σ n σ n                                         (3.17) 

where k  is the wavevector and n  is the outward normal unit vector ( n  and n  are defined, analogously 

to beam lattice model, on the right/top and on the left/bottom edges, respectively). The Floquet–Bloch 

problem arising from the equation (3.16) and the boundary conditions (3.17) is solved numerically via a 

Finite Element model (COMSOL Multiphysics). Bidimensional triangular elements (with quadratic 

Lagrangian interpolation functions) are adopted to discretize the domain. The MUltifrontal Massively 

Parallel sparse direct Solver (MUMPS), based on the LU decomposition method, is used. A proper mesh 

refinement has been required to satisfy convergence criteria focused on the highest frequency branches of 

interest in the dispersion spectrum. The microscopic first order continuum model will be also referred to 

as fine model in the following. 
 

 3.1.3. Homogenized micropolar continuum model 

The continuous displacement fields of a micropolar continuum model (Bacigalupo and Gambarotta, 2016, 

2017a, 2017b) are ( , )tv x  and ( , )t x  that represent, respectively, the macro-displacement and the 

micropolar rotation of the reference cell located at x  at the time t . The partial differential equations of 

motion are 

 3

                                     

: ,               , 1,2jh j h j h





  

     

T v

m e e T


                              (3.18) 

where   is the mass density of the equivalent homogeneous continuum,   is the density of rotational 

inertia, T  is the asymmetric macro-stress tensor, m  is the couple-stress vector of the equivalent 

continuum and 3 jh  is the Levi Civita symbol. 

By introducing the curvature χ  and the micropolar asymmetric strain tensor ( )  Γ v W , 

where v  is the displacement gradient and the macro-rotation micropolar tensor W  is defined as

3jh j h jh j hw     W e e e e , the constitutive relations of micropolar elastic continuum are 

,

s s

T
s s

 

 

T Γ χ

m Γ E χ

 


                                                            (3.19) 

where s , s  and sE  are, respectively, the fourth, third and second order elasticity tensors of the 

equivalent homogeneous continuum. By employing the constitutive equations (3.19), the equations of 

motion become 

 3

( )                        

( ) : ( ) ,            , 1,2

s s

T
s s jh j h s s j h





   

       

Γ χ v

Γ E χ e e Γ χ




 
  

                     (3.20) 
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In case of centrosymmetric lattices, the third order elasticity tensor s  is identically null and the 

equations (3.20) can be written in the index form 

 
   

, 3 ,

, 3 , 3,

                                  

,                , , , , , 1,2

ijhk h k hk ij

ij j jh jhrs r s rsi

E v v

E E v i j h k r s

 

  

   

   




                 (3.21) 

where the elastic constants ijhkE  and ijE  can be obtained through a high frequency dynamic 

homogenization similar to that proposed in (Reda et al., 2017).  

By applying to the equation (3.20) the Fourier transform with respect to the time variable t  or by 

considering the harmonic motion ˆ exp[ ( )]t  v v k x  and ˆexp[ ( )]t    k x , the governing 

equation in the transformed space (Christoffel equation) is 

ˆ( , ) ,Hom  C k V 0                                                           (3.22) 

where ˆˆ ˆ[ , ]T V v  is the polarization vector collecting v̂  and ̂ . In case of centrosymmetric lattices, the 

equation (3.22) can be written in the index form 

 
 

2
3

2
3 3

ˆˆ ˆi  0                                       

ˆ ˆ ˆˆi  0,              , , , , , 1,2

ijhk j k h hk j i

ij i j jh jhrs s r rs

E k k v k v

E k k E k v i j h k r s

 

   

   

     
               (3.23) 

The second order expansion of the matrix of the micropolar model ( , )Hom C k  in the wavevector k  

can be demonstrated to correspond to an approximation of the corresponding one from the discrete system 

( , )Lag C k  (Bacigalupo and Gambarotta, 2016, 2017a, 2017b) 

 3
( , ) ( , ) O ,Lag cell HomA   C k C k k                                        (3.24) 

where, considering the eigenvalue problem of the beam lattice model (3.11), the matrix of the discrete 

system is ( , )Lag   C k K M  and cellA  is the area of the periodic cell. The homogenized micropolar 

continuum model will be also referred to as homogenized model in the following. 

These problems can be also studied through dynamic variational-asymptotic and non-local asymptotic 

homogenization, high contrast asymptotic homogenization and high frequency homogenization 

techniques (Smyshlyaev and Cherednichenko, 2000; Babych et al., 2008; Smyshlyaev, 2009; Craster at 

al., 2010; Amosov et al., 2013; Bacigalupo and Gambarotta 2014b; De Bellis et al., 2019; Del Toro et al., 

2019). 
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3.2. Wave propagation 

3.2.1. Dispersion spectrum 

The k -dependent solution of the eigenproblem (3.11) gives the dispersion relations ( )h k  

characterizing the coarse model (h=1…3). Alternatively, k -dependent solution of the Christoffel 

equation (3.16) coupled with the conditions (3.14) gives the dispersion relations ( )h k  characterizing 

the fine model ( h ). The dispersion surfaces are obtained letting the wavevector k  vary in the entire 

first Brillouin zone, corresponding to the square domain [ / , / ] [ / , / ]H H H H H      D . The 

dispersion functions ( )h   can be defined by introducing a curvilinear abscissa   spanning the closed 

boundary 1
HB  of the triangular subdomain 1

HB . The corresponding curves obtained under variation of 

the abscissa   over the entire range [0,(2 2 ) / ]H   characterize the dispersion spectrum of one or 

the other models. The numerical solution for the fine model has been based on a sufficiently fine 

discretization of the finite element model, selected after a proper convergence analysis. Moreover, the 

triangular boundary 1
HB  has been divided in one hundred equidistant  -points to obtain a sufficient 

resolution in the dispersion curves. Furthermore, the exact solution of the eigenproblem (3.11) has been 

approximated with the solution of the Christoffel equation (3.22) related to the homogenized model. In 

particular, it can be demonstrated that the dispersion curves of the homogenized model coincide with 

those of the coarse model, if a second-order Taylor k -expansion (centered in k 0 ) of the K matrix is 

performed (Bacigalupo and Gambarotta, 2017a). 

Introducing the non-dimensional wavevector 1 2( , )k kk    where 1 1k k H  and 2 2 ,k k H  a comparison 

between the dispersion spectra of the fine and coarse models (Figure 3.3) and between the fine and 

homogenized models (Figure 3.4a) is shown. The comparison is carried out in non-dimensional form by 

introducing the dispersion functions ( )h   relating the non-dimensional variables 

c

 



,    ,H                                                           (3.25) 

where 2 2 1Ω ( )c b rE H   is a reference frequency that can be set to be unitary without loss of generality. 

The independent variable   varies in the range [0,2 2 ]   and represents the curvilinear abscissa 

spanning the boundary 1B  of the triangular subdomain 1B  of the non-dimensional domain 

[ , ] [ , ]      D  of the first Brillouin zone. 

The good matching covers all the boundary 1B  in the comparison between the coarse and the fine 

models for different values of the non-dimensional parameter /bt H , accounting for the ligament 

slenderness (Figure 3.3). In particular, a good agreement is obtained in the gray region around the red 

dispersion curve with the highest-frequency, corresponding to different effective lengths of the ligaments 

e bL L  in the beam lattice model. The gray region is the envelope of the dispersion curves obtained for 

the multiplier   varying in the range  0.78,0.85  for the Figure 3.3a and in the range  0.88,0.95  for the 

Figure 3.3b. Differently, the homogenized model is found to well-approximate the dispersion spectrum of 

the fine model along the boundary of a subdomain of the triangular 1B  zone (Figure 3.4a). 
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Figure 3.3 Comparison between the dispersion spectra characterizing the coarse (Discrete) and the fine (Solid) 

model of the tetrachiral material (with / 5r bt t  ) for different values of the ligament slenderness /bt H : 

 (a) / 1 / 5R H  , (b) / 1 / 10R H  . 
 

 
Figure 3.4 Dispersion spectra for the tetrachiral material ( / 1 / 30bt H  , / 5r bt t  , / 1 / 5R H  ): (a) Comparison 

among the coarse (Discrete), fine (Solid) and homogenized models, (b) Comparison between the fine (Solid) model 
and the exact and asymptotically approximate solutions for the coarse (Discrete) model.  

 
 

3.2.2. Perturbation solution 

Within the framework of beam lattice models, the step-by-step construction of the dispersion surfaces 

( )h k   rapidly can demand excessive computational resources as  the model dimension increases and the 
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1
HB -discretization becomes finer. Therefore, perturbation methods can represent an efficient alternative 

to the numerical solution of the eigenproblem governing the wave dispersion. Each eigenvalue 
2( ) ( )h h  k k  satisfying the eigenproblem (3.12) can be regarded as one of the zeroes (with multiplicity 

hm ) of the characteristic function ( , ) det( ( ) )Q   k H k I  in the domain of positive real  -values. 

Therefore, fixing the set *p  of the microstructural parameters describing the periodic cell, each dispersion 

surface can be determined by individually following a certain zero of the characteristic function, under 

variation of the wavevector k  in the square Brillouin domain. 

Within this mathematical context, perturbation techniques furnish analytical – although asymptotically 

approximate – expressions of the dispersion functions. Naturally, the availability of explicit functions 

( )h k  may reduce the algorithmic effort required by numerical continuation traditionally applied to the 

solutions of the characteristic equation ( , ) 0Q  k . A perturbation technique starts with the selection of 

a reference (unperturbed) wavevector *k  in the 1
HB -domain. The corresponding reference eigenvalues 

*  of the matrix * *( )H H k  are assumed to be exactly (analytically or numerically) known. Even if not 

mandatory, a convenient selection of the reference wavevector *k  could be preferable to enhance the 

effectiveness and the validity of the asymptotic approximation (Lepidi, 2013; Luongo and Ferretti, 2015; 

Bacigalupo and Lepidi, 2016). For instance, the typical choice * k 0  often allows the analytical 

assessment of all the reference eigenvalues *  satisfying the characteristic equation *( , ) 0Q  k . In the 

most general case, perturbation techniques can readily treat multi-variable perturbations. Indeed, small-

amplitude two-parameter perturbations *'  k k k  can be considered to span all the directions of the 

bidimensional 1
HB -domain in the neighborhood of *k  (since 1   represents an auxiliary non-

dimensional parameter regulating the perturbation smallness).  

Exploring the monodimensional boundary 1B , spanned by the non-dimensional abscissa  , may be 

sufficient. Consequently, the unperturbed reference point in the boundary 1B  can be identified by the 

particular abscissa * , and the * -neighborhood can be explored by the local coordinate *z    . Thus 

– within the limits of the boundary 1B  – the change-of-variable * z    allows to express the non-

dimensional characteristic function in the form ( , )F z , where the z -variable acts as single perturbation 

parameter (under the assumption 1z  ) and 2   is the non-dimensional eigenvalue.  

Under the assumption of sufficient regularity of the dispersion functions, each exact eigenvalue can 

tentatively be approximated by a series function ( )z  of integer z -powers 

* ( ) ( ) * 2 ( ) ( )( ) ... ...,n n n n

n

z z z z z                                             (3.26) 

where the coefficient ( )n  (multiplied by the factorial n!) are known as the eigensensitivities (with respect 

to the perturbation z ) of the eigenvalues, and can also be regarded as the unknown n-th z -derivative 

(evaluated at 0z  ) of the exact but implicit eigenvalue function ( , ) 0F z  . 

Once the series ( )z  has been established, the characteristic function becomes a composite single-

variable function ( ) ( ( ), )G z F z z , which admits the Taylor expansion in z -powers 
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( ) ( )
* ( ) * 2 ( )( ) ... ...,

! 2 !

n n
n n

n

G G G
G z G z G Gz z z

n n
       

                            (3.27) 

where * *( ,0)G F   is certainly null, as far as *  is known through the relation * * 2/ c     where *  

belongs to the *H -eigenspectrum by hypothesis. The generic higher-order coefficient ( )nG  can be 

recognized as the n-th z -derivative (evaluated at 0z  ) of the function ( )G z . In general, these 

derivatives require the recursive application of the chain rule for the differentiation of single-variable 

composite functions.  

Each series coefficient ( )nG  is a complete n-degree polynomial of all the unknown coefficients of the 

eigenvalue expansion (3.22) up to ( )n . The ( )nG -coefficients multiplying the lowest z -powers are   
1 (1,0) (0,1):      z G F F                                                                   (3.28) 

2 (1,0) 2 (2,0) (1,1) (0,2):      2 ( ) 2 ,z G F F F F                                  (3.29) 

where the synthetic notation ( , ) ( , )h k h k
zF F z     has been adopted for the partial derivatives of the 

characteristic function ( , )F z , and evaluation at ( *, 0z   ) is understood. A recursive form of the 

generic n-th coefficient, multiplying the nz -power, can be found in (Bacigalupo and Lepidi, 2016; 

Lepidi and Bacigalupo, 2018). 

The characteristic equation ( ) ( ( ), ) 0G z F z z   is asymptotically satisfied by zeroing each nz -order 

coefficient ( )nG . Thus, a chain of n ordered equations (perturbation equations) is generated, where the 

eigensensitivities ( )n  are the unknowns to be determined. Starting with the zeroth-order solution, given 

by the known eigenvalues *  (generating solution), each perturbation equation of the chain involves a 

single unknown, that is, one of the higher-order coefficients. Depending on the algebraic multiplicity *m  

of the generic *  -eigenvalue, two fundamental cases occur  

 Simple eigenvalue: if *  is a simple root (algebraic multiplicity * 1m  ) for the equation
*(0) ( ,0) 0G F   , then the coefficient (1,0) 0F  . Hence, the 1z - order equation (3.27) is 

linear in the unknown  , the 2z - order equation (3.28) is linear in the unknown  , and so on. 

Therefore, the cascade solutions (null if the numerator vanishes) for the lowest order equations 

are 
(0,1)

1
(1,0)

:      
F

z
F

                                                                           (3.30) 

2 (2,0) (1,1) (0,2)
2

(1,0)

( ) 2
:      ,

2

F F F
z

F

   
 

                                      (3.31) 

and, by extension, the 
nz - order equation allows the determination of the n-th coefficient ( )n . 

A recursive form of the n-th coefficient ( )n  can be found in (Bacigalupo and Lepidi, 2016; 

Lepidi and Bacigalupo, 2018). 

 Double (semi-simple) eigenvalue: if *  is a double root (algebraic and geometric multiplicity
* 2m  ) for the equation *(0) ( ,0) 0G F   , then the coefficient (1,0) 0F  , but (2,0) 0F  . 

Since *  must be non-defective (semi-simple), it can be proved that (0,1) 0F  . Consequently, 
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the 1z -order equation (3.27) is trivially satisfied, but leaves   undetermined. Such an 

indetermination is cleared by the 2z - order equation (3.28), which is a quadratic in the  -

unknown only, since the null multiplier (1,0)F  affects the other unknown  . Thus, the lowest 

order equations give 
1 :        is undeterminedz                                                             (3.32) 

(1,1) (1,1) 2 (2,0) (0,2)
2

(2,0)

( )
:      ,

F F F F
z

F


 
                                (3.33) 

where the pair   splits the double root *  in two distinct eigenvalues * 2( )z O z   . If the radical 

vanishes, in consequence of the particular sub-case (1,1) 2 (2,0) (0,2)( )F F F , the splitting of the double root 

is postponed to higher-orders. In the general case, the higher unknowns ( )n  are determined by linear  
1nz  -order equations, solved for one or the other of the  -values.  

When the perturbation technique is applied to approximate the band structure of the tetrachiral 

material, the three vertices 1B  (corresponding to * 0   or * * (0,0)H k k ), 2B  (corresponding to 
*   or * * ( ,0)H  k k ) and 3B  (corresponding to * 2   or * * ( , )H   k k ) of the triangular 

boundary 1B   have been employed as reference points to start the perturbation analysis. The fourth-

order asymptotic approximation of the dispersion curves are represented by the black circles in Figure 

3.4. The comparison with the exact solutions obtained from the discrete model (red lines) and the solid 

model (red dots) shows a fine agreement over large extents of the boundary 1B , centered at the three 

reference points. Coherently with the intrinsic nature of the perturbation solutions, the approximation 

accuracy tends to decay with the distance from the reference point. However, a satisfying accuracy can be 

observed to persist up to z -values close or even greater than unity (the gray zones), that is, beyond the 

limits of the smallness assumption ( 1z  ). 
 

Table 3.1 Fixed and free parametric values in the cases of the parametric analysis. 

 /bt H  /r bt t  /R H  /i r   /b r   1 2/b bE E  

Reference 
Case 

[1/100, 1/10] [1,3] [1/10, 1/3] 0 0 1 

Case 1 1/20 3 1/3 [1, 100] 0 1 

Case 2 1/20 3 1/3 0 [1/10, 30] 1 

Case 3 1/20 3 1/3 [1, 100] [1/10, 30] 1 

Case 4 1/20 3 1/3 [1/10, 30] 0 [1, 30] 

Case 5 1/20 3 1/3 [1,10] [1, 10] [1, 30] 
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Figure 3.5 Reference Case. Dispersion spectrum with the parameters (a) / 1 / 3R H  , / 3r bt t   and /bt H   

variable, (b) / 1 / 3R H  , / 1r bt t   and / 1 /100bt H  . 

 

3.3. Parametric analysis 

The parametric analyses are run to evaluate the effects of the variations in the mechanical and 

geometric parameters on the acoustic and optic surfaces of the Floquet-Bloch spectrum. Given the good 

agreement obtained by the comparison of the dispersion spectrum of the different models, the analyses 

are  performed using  the  finite  element  solution  of  the fine Cauchy model that is easier to handle and 

suited to deal with a greater variety of cases. The tetrachiral material selected as reference for the 

parametric analysis is characterized by empty ring and massless ligaments with same elastic properties. 

Some preliminary analyses are carried out by varying the independent non-dimensional geometric 

parameters  

bt

H
,  r

b

t

t
,  ,

R

H
                                                              (3.34) 

that depend on the ring radius (associated to the chirality) and on the width of the ligaments and the ring.  

Increasing the width of the ligaments, the frequencies grow up in all investigation range and the 

distance between the optic and the acoustic surfaces increases creating a partial band gap with growing 

amplitude in the interval 0     (Figure 3.5). Instead, increasing the radius or the width of the ring the 

frequencies decrease. When the width of the ring is small and therefore the ring is thin and flexible, an 

enrichment of the dispersion spectrum, in the low-frequency range, with new dispersion surfaces 

associated to ring-deforming waveforms can be observed (Figure 3.5b). In this case, the hypothesis of 

rigid body used in the beam lattice model loses validity (Vadalà et al., 2018). 
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These analyses highlight some issues in satisfying the conditions of the existence of a full band gap in 

the low-frequency range. These conditions are investigated numerically and determined in analytical form 

asymptotically as an inequality between the inertial characteristics of the ring and the slenderness of the 

ligaments. The physical realization of these conditions would require a technical arrangement like a 

material with functionally-graded elastic properties with tapered cross section or other modifications that 

destroy the invariant properties in the out-of-plane direction. It is possible to achieve a band gap at a 

target frequency using metamaterials with inertial resonators.  

The possibility of obtaining the same result is analyzed either by enlarging the parameter space or by 

removing some simplifying hypotheses of the reference model. The frequency corresponding to the 

vertex 2B  of the triangular boundary 1B , where the second acoustic surface and the first optical surface 

collide given rise to a point with a double frequency, is chosen as target center frequency. The 

independent non-dimensional parameters considered for these parametric analyses are 

i

r




,  b

r




,  1

2

,b

b

E

E
                                                            (3.35) 

where the parameter /i r   represents the mass density ratio between an intra-ring filler and the ring 

material, /b r   is the mass density ratio between the ligament and the ring material and the parameter 

1 2/b bE E  is the ratio between the Young’s Moduli of two ligaments made of different materials. The 

analysis cases and the parameter range variations are summarized in Table 3.1.  

The dispersion spectrum of the reference case for parameter values of / 1 / 20bt H  , / 3,r bt t 

/ 1 / 3R H   corresponds to the light blue curves in Figure 3.5. For the subsequent cases analyzed, the 

values of the parameters (3.34) are fixed as in the reference case. 

 

 

 

Figure 3.6 Case 1. Dispersion spectrum with the parameter (a) / 1i r   , (b) / 100i r   . 
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In the case 1 the ring of the tetrachiral material is filled with an intra-ring heavy filler having density 

.i  The parameters /b r   and 1 2/b bE E  are fixed and the ratio /i r   changes in the range reported in 

Table 3.1. Increasing the density ratio, the frequencies decrease and the distance between the optical and 

the acoustic branches is reduced, except in 2   where the acoustic and the optical frequencies 

coincide. (Figure 3.6). 

In the case 2 the tetrachiral material has the massive ligaments (Brun et al., 2013) and an empty ring. 

The parameters /i r   and 1 2/b bE E  are fixed and the ratio /b r   changes in the range reported in 

Table 3.1. Increasing the mass density of the ligaments, the frequencies decrease and an enrichment of the 

dispersion  spectrum  with  more  dispersion  optic curves in the low- frequency range is observed (Figure  

 

  

  
Figure 3.7 Case 2. Dispersion spectrum with the parameter (a) / 1 /10b r   , (b) / 1 / 2b r   , (c) / 1b r   ,          

d) / 10b r   . 
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Figure 3.8 Case 3. Dispersion spectrum with the parameter (a) / 1 /10b r   , (b) / 10b r   . 

 

3.7). These new curves are related to local waveforms, essentially partecipated by the ligaments 

dynamics. In Figure 3.7a the local waveforms have higher frequencies and do not interact with the low-

frequency branches. Increasing the ratio between the material densities, there is a stronger interaction 

with both acoustic and the optical branches. Furthermore, a total band gap can be observed between the 

curves 7 and 8 for / 10b r    (Figure 3.7d). 

In the case 3 the cell composed by a filled ring and the massive ligaments is analyzed. The parameter 

1 2/b bE E  is fixed and the ratios /i r   and /b r   change in the ranges reported in Table 3.1. Increasing 

the intra-ring filler mass density the frequencies decrease. Fixing the parameter / 100i r   , for small 

values of the density ratio /b r  , the dispersion curves do not present negligible changes, as shown in 

Figure 3.8a. By increasing the mass density of the ligaments, the frequencies decrease and an enrichment 

of the dispersion spectrum with more dispersion branches related to the local waveforms in the low-

frequency range is observed (Figure 3.8b). The interaction between these new curves and the other turns 

out to open full band gaps (Figure 3.8b). 

In the case 4 the tetrachiral material has an intra-ring heavy filler, two ligaments (blue ligaments in the 

Figure 3.9) with Young’s Modulus equal to 1bE  and the other ligaments (grey ligaments in Figure 3.9) 

with Young’s Modulus equal to 2bE . The ratio /b r   is fixed and the parameters /i r   and 1 2/b bE E   

change in the ranges reported in Table 3.1. Two different cells with inhomogeneous ligaments are 

analyzed and for both, increasing the parameter /i r   the frequencies of the dispersion curves decrease. 

From the comparison between Figure 3.9a and Figure 3.6a obtaied for / 1i r   , the frequencies of the 

non-centrosymmetric cell are higher, even if the curves shape is similar. In Figure 3.9b a partial band gap 

can be observed. Since the 1B  boundary does  not include  all the  irreducible Brillouin zone,  it can be 

concluded that the stop band affects the wave propagating along the diagonal direction. 
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Figure 3.9 Case 4. Dispersion spectrum with inhomogeneous ligaments with / 1i r    for a (a) non-

centrosymmetric cell, (b) centrosymmetric cell 
 
. 

  
Figure 3.10 Case 5. Dispersion spectrum with the parameter (a) / 1b r   , (b) / 10b r   . 

 

In the case 5 the dispersion spectrum is obtained for a non-centrosymmetric cell composed by a filled 

ring and massive ligaments. Increasing the parameter /b r  , the frequencies decrease and new curves 

related to local waveforms occur. They can be observed a strong interaction with the other branches. In 

particular, in Figure 3.10b the second and the third curves do not cross each. However, this scenario does 

not necessarily correspond to the birth of a full band gap, because the considered boundary 1B  does 

not encloses the entire irreducible Brillouin zone for non-centrosymmetric cell. 
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Figure 3.11 Reference case. Dispersion spectrum with the parameter / 1 / 20bt H  , / 3r bt t  , / 1 / 3R H  . 

 
 

3.3.1. Mechanical tuning 

A material that stops the propagation of harmonic waves with frequencies that do not belong to the 

spectrum, therefore a material that has a dispersion spectrum in which there is a total band gap, behaves 

as an acoustic filter for elastic waves. In this regard, the variation of the non-dimensional parameters 

(3.35) causes changes on the band gap amplitude   and on the center frequency  . Therefore, the 

controlled variation of these parameters can be considered a mechanical tuning of the acoustic filter 

realized by tetrachiral material. The dispersion spectrum of the reference case for geometric parameter 

values of / 1/ 20bt H  , / 3r bt t  , / 1 / 3R H   is shown in Figure 3.11. 

In the investigated parameter region, decreasing the mass density ratio /b r   between the ligaments 

and the ring material, the band gap amplitude   increases for each intra-ring filler mass density. 

Furthermore, increasing the mass density ratio /i r   between an intra-ring filler and the ring material 

the band gap amplitude   grows up (Figure 3.12a). A similar behavior can be observed for the center 

frequency in Figure 3.12b, where the pink band includes the values of the frequencies that are within the 

band gap for / 10i r   . For instance, chosen the center frequency 1.3  , that corresponds to the 

double frequency in the 3D dispersion spectrum of the reference case (Figure 3.13), and / 10i r   , it is 

obtained / 16b r    (red dot in Figure 3.12b) and a band gap amplitude 0.45   (red dot i Figure 

3.12a). The dispersion spectrum obtained for this parameter is shown in Figure 3.14. For the same center 

frequency, other solutions with different band gap amplitudes can be achieved (green, blue and orange 

dots in Figure 3.12). The dispersion spectrum with center frequency 1.3   obtained with the parameters 

/ 0i r    (empty ring) and / 18b r    (orange dots in Figure 3.12) is shown in Figure 3.15. 
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Figure 3.12 (a) Band gap amplitude, (b) Center frequency for a tetrachiral material with massive ligaments and 
intra-ring filler.  

 

 

Figure 3.13 (a) Band gap amplitude, (b) Center frequency for a tetrachiral material with inhomogeneous ligaments 
and intra-ring filler.  

 

Alternatively, the band gap amplitude changes by tuning the ratio 1 2/b bE E  and by varying the intra-

ring elastic filler mass density. Increasing the ratio 1 2/b bE E  the band gap amplitude grows up for each 

intra-ring filler mass density (Figure 3.13a). In reverse, increasing the mass density ratio /i r   between 

an intra-ring filler and the ring material the band gap amplitude   decreases. For instance, for the center 

frequency 1.3   and / 10i r   , it is obtained / 8b r    (red dot in Figure 3.13b) and the band gap 

amplitude 0.5   (red dot in Figure 3.13a). The dispersion spectrum obtained for this parameter is 

shown in Figure 3.16. 
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Figure 3.14. Dispersion spectrum of a tetrachiral material with massive ligaments, intra-ring heavy filler and 
parameters / 16b r    and / 10i r   . 

 

 

 

Figure 3.15 Dispersion spectrum of a tetrachiral material with massive ligaments and parameter / 18b r   .   
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Figure 3.16 Dispersion spectrum of a tetrachiral material with intra-ring heavy filler, inhomogeneous massless 
ligaments and parameters 1 2/ 8b bE E   and / 10i r   .   

 

The Figures 3.12 and 3.13 can be used as a design alternative of tetrachiral materials for given pairs of 

the band gap amplitude and the center frequency. The Table 3.2 reports two models in which the 

parameters (3.35) are obtained respectively from Figures 3.12 and 3.13, setting 0.45   and 1.4  .  

 

3.3.2. Performance as acoustic filters 

The effects of an acoustic filter on the propagation of harmonic waves can be observed by modeling a 

finite dimension system and imposing a harmonic displacement, with frequency  , on a boundary (Zhu 

et al., 2016). A numerical experimentation has been carried out by using the software COMSOL 

Multiphysics. The domain of the pseudo-experiment is composed by a finite dimension rectangular strip 

of homogeneous material, with a central core realized by a cluster of 11x11 tetrachiral cells (Figure 3.17).  

 

Table 3.2 Parametric values in the models. 

 /i r    /b r    1 2/b bE E        

Model 1 10 13.5  1 0.5  1.4  

Model 2 10 0 9.5  0.5  1.4  

Model 3 0 10 1 0.496  1.675  
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Figure 3.17 Rectangular strip of homogeneous material, with a central cluster of eleven tetrachiral cells, with the 
corresponding dispersion spectra.  

 

 
Figure 3.18 Absolute displacements D  of the tetrachiral core at the time instant 0.001t s  for an imposed 

harmonic displacement with frequency (a) 1 0.6  , (b) 2 1.6  . 

 

For this example, the parameters (3.35) assume the values reported for the model 3 in the Table 3.2. By 

evaluating the dispersion spectra of the homogeneous material and the tetrachiral material, a full band 

gap, with amplitude 0.496   and center frequency 1.675  , is observed in the dispersion spectrum of 

the tetrachiral material (Figure 3.17). 

An automatic procedure has been employed to properly discretize the solid domain, with suited mesh 

refinements at the interface with the chiral media. Free boundary conditions have been imposed to the 

bottom and top sides of the domain, while the left and top sides have been fully clamped. As excitation 

source, an in-plane displacement has been imposed to the left side with single freqeuncy time-harmonic 

law. The numerical simulation of the undamped dynamic response has been achieved by means of an 
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implicit time-stepping scheme (generalized-α method). After the mesh refinements required to satisfy 

convergence criteria and by controlling the time step, the dynamic undamped response has been observed 

in the tetrachiral core and in the adjacent regions of the homogeneous material (see Figure 3.18).  

Looking at a certain time instant, the color map of the absolute displacement D  characterizing the 

response to the excitation frequency 1 0.6   shows a marked propagation of elastic waves through the 

tetrachiral core (Figure 3.18a). The wave propagation is also confirmed by the time histories of the 

absolute displacements of the core rings (Figure 3.19a). Indeed, the peak displacement values of the ring 

1 (the closest to the excited side) are quantitatively comparable with those of the ring 11 (the farthest 

from the excited side). On the contrary, the wave propagation is stopped by the tetrachiral core for a 

different excitation frequency 2 1.6   (Figure 3.19b). Indeed, the time histories of the core rings show 

that the peaks of the absolute displacements decrease with the distance from the excited side (Figure 

3.19b). These dynamic phenomena of wave passing or stopping are related to the different excitation 

frequencies, which falls within the pass and stop bands of the tetrachiral material spectrum, respectively 

(Figure 3.17). 

 

3.4. Parametric optimization  

A parametric optimization for the search of full and partial band gaps with the largest amplitude and 

lower center frequency is carried out.  

Defining the vector μ  that collects n  parameters and plays the role of multi-dimensional variable, the 

bandwidth maximization of low-frequency band gaps can be based on the definition of a suited                

μ -dependent objective function, which simultaneously accounts for the gap amplitude and the band 

 
Figure 3.19 Time histories of the absolute displacements D  of the rings 1, 6 and 11 of the tetrachiral core 

for an imposed harmonic displacement with frequency (a) 1 0.6  , (b) 2 1.6  . 
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center-frequency, hence qualifying in this respect as a multi-objective function. To this purpose, the non-

dimensional ratio can be defined as 
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where, supposing that the frequencies are sorted in ascending order, the numerator stands for the typically 

positive (even if possibly zero) gap amplitude between the k-th and h-th consecutive dispersion surfaces 

(where 1k h  ), while the denominator stands for the band center-frequency. When the numerator is 

negative, no band gap is present between the two surfaces. Therefore, the optimization problem 

essentially consists in searching for the vector μ  that maximizes the objective function in the admissible 

parameter region. Consequently, the optimization issue can be mathematically formulated as a 

constrained maximization problem: 

maximize ( )kh
μ

μ                                                   (3.37) 

min maxs.t.   μ μ μ   

( ) 0,g μ   

where minμ  and maxμ  fix the boundaries of admissibility for the parameters vector, and ( )g μ  denotes a 

vector function defining additional relations, introduced – if necessary - to costrain a certain slave 

parameter as a known function of the other master parameters (Bacigalupo et al., 2017). Altogether, the 

constraints define a properly bounded space for the parameters vector. 

Due to its mathematical formulation, the optimization problem turns out to be a challenging task in 

non-linear programming. Moreover, since the multi-variable objective function is not concave in the 

general case, the function maximization cannot be treated as a concave maximization problem. Multiple 

solutions associated to local maxima can co-exist. Therefore, the global maximum is necessarily 

approximated by the highest among several local maxima obtained numerically. 

A multi-start technique is used in conjunction with the Globally Convergent Method of Moving 

Asymptotes, or GCMMA. In the multi-start technique the method is applied repeatedly a number S  of 

times, with different initializations, and the best design vector found in all the repetitions is taken as a 

surrogate of a globally optimal parameters vector. As for the specific choice of the multi-start technique, 

the following two approaches are considered in the following: 

1) A Monte Carlo initialization of the variables, taken as realizations of independent uniformly 

distribuited random variables with supports min max[ , ]i i   for i-th variable i ; 

2) A quasi-Monte Carlo initialization, obtained at the first generating a quasi-random Sobol 

sequence (Niederreiter, 1992) on the n -dimensional unit cube [0,1]n , then, applying to every 

vector belonging to such a sequence the mapping  : 0,1
n nh  , with ( )h y  being defined as  
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Compared with the Monte Carlo initialization method, the quasi-Monte Carlo approach has the 

advantages of being exactly replicable, and of generating more uniform sequences of initial points, 

whereas with the Monte Carlo approach there is in principle the possibility of generating the same initial 

point (or very similar initial points) more than once in the sequence (Figure 3.20).  

The GCMMA is an extension of the method of moving asymptotes (MMA) (Svanberg,1987) which 

searches for a locally optimal solution of a nonlinear programming problem by solving a sequence of 

simpler maximization sub-problems, at each iteration m . These are obtained by approximating the 

objective and constraint functions of the original optimization problem around the current vector ( )mμ  of 

the variables, and updating such variables after solving each sub-problem. From an optimization 

perspective, each sub-problem has the following properties (Christensen and Klarbring, 2004): 

1) The approximations ( ) ( )m
kh μ  are first order approximations, in the sense that, when the function 

to be approximated is locally differentiable, there is no error in the approximation of the function 

value and of its gradient when evaluated at the current design variables (for the objective 

function, local non-differentiability may occur in case the band gap at the current variables is 

null, if this is due to the second and third dispersion surfaces being tangent at one point of the 

domain); 

2) Such approximations are concave functions; 

3) The approximation ( ) ( )m
kh μ  is separable, meaning that it is the sum of single-variable functions 

(one function for each variable), which makes each optimization sub-problem quite easy to solve 

through standard Lagrange multiplier techniques. 

The MMA is based on a more flexible approximation, which is generated using a technique named of 

moving asymptotes. This means that each approximation ( ) ( )m
kh μ  has the form 
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where, for each iteration, ,( )i mU
kh  , ,( )i mL

kh  , ( )m
iU  and ( )m

iL  are suitable constants (Svanberg,1987), and, to 

get a bounded approximation, the constraints 

( ) ( ) ( ) ( ) ( ) ,m m m m m
i i i i iL a b U                                                        (3.40) 

are added for other suitable constants ( )m
ia  and ( )m

ib  (Svanberg, 1987). The name of the method derive  

from the fact that the vertical lines ( )m
i iL   and ( )m

i iU   are asymptotes for the approxiamtion (3.39), 

which move from each iteration to the successive one. It is worth remarking that MMA may not always 

converge to a stationary point of the original optimization problem. For this reason, its variation 
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GCMMA was presented in Svanberg (2002) as a globally convergent version of MMA, in which the 

convergence of the modified method to a stationary point of the original problem is guaranteed. However, 

due to the high nonlinearity of that problem, such a point is not guaranteed to be its global minimizer. For 

this motivation, to improve the quality of the solution obtained by GCMMA, the method is combined 

with a quasi-Monte Carlo multi-start technique. 

The optimization problem for the tetrachiral material can be formulated as the constrained 

maximization of a four variables objective function defined according to equation (3.36). Therefore, the 

search for the optimal solution is performed in a properly-bounded four-dimensional space of the non-

dimensional mechanical parameters expressing the ligament slenderness, the ring-to-cell aspect ratio, the 

chirality angle and the ring-to-ligament width ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.21 Dispersion spectrum for the optimized tetrachiral material ( / 0.06bt H  , / 3.19r bt t  , / 0.20R H  ). 

 

Figure 3.20 Initialization of a 2-dimensional admissible region of the parameter domain: (a) Montecarlo sampling 
and (b) quasi-Montecarlo sampling. 

 

(a) (b) 
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The optimization problem for the tetrachiral material is found not to admit solutions corresponding to 

full band gaps in the admissible parameter space. The problem is reformulated to search for partial band 

gaps and the highest amplitude stop band at the lowest center frequency is found between the second 

acoustic surface and the optical surface along the two orthogonal propagation directions connecting the 

centroids of adjacent rings (Figure 3.21). 
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CHAPTER 4 

4. INERTIAL METAMATERIAL WITH VISCOELASTIC RESONATORS 

Focusing on the dynamic response of periodic microstrucutured materials, a major issue of mechanical 

interest consists in governing the Bloch wave propagation by means of spectral design techniques and/or 

energy dissipation mechanisms. To this purpose, in chapter 3, the possiblity to inhibit the Bloch waves 

propagation around certain target center-frequencies by designing the microstructural parameters in order 

to open band gaps in the material dispersion spectrum is discussed. 

In the spectral design of periodic microstructure materials for low-frequency wave filtering, the extent 

and dimensionality of the optimal solution domain can be significantly enlarged by designing inertial or 

acoustic metamaterials, realized by introducing auxiliary massive oscillators, mechanically coupled to the 

cell microstructure. Indeed, if the oscillators are properly tuned (local resonators), their dynamic 

interaction with the microstructure ends up opening a band gap in the dispersion spectrum. It can be 

demonstrated that the achievable band gap is nearly centered at the oscillator frequency, with a bandwidth 

almost directly proportional to its inertial mass.  

Starting from the scientific background reported in chapter 1, the physical-mathematical formulation of 

advanced microstructural models for locally resonant acoustic metamaterials is an active research field in 

theoretical mechanics, whose continuous development is currently motivated by some open investigation 

issues. First, a general improvement in the elastodynamic description of the linear and nonlinear 

dissipation mechanisms occurring in infinite periodic phononic systems has been recognized as the 

theoretical key-point for the future advances in the energetically consistent modelization and spectral 

design of acoustic metamaterials (Hussein et al., 2014). Second, a completely new class of mechanical 

meta-behaviours has been postulated to be developable in the next few years, by exploiting the virtuous 

contrast and synergy among constituent ingredient materials featured by strongly dissimilar elastic, plastic 

and viscous properties (Bertoldi et al., 2017). Based on these motivations, this chapter presents a beam 

lattice formulation for describing the wave dynamics of a dissipative acoustic metamaterial, originated by 

a periodic non-dissipative microstructure, viscoelastically coupled with local resonators. The viscoelastic 

coupling is consistently derived by a physical-mathematical construct based on the Boltzmann 

superposition integral, whose kernel is properly approximated by a Prony series. Consequently, the non-

conservative wave propagation is governed by a linear homogeneous system of integro-differential 

equations of motion. This integral description of the viscoelastic metamaterial dissipation enriches the 

classic formulations of viscous damping, sometimes following the rheological Rayleigh or Maxwell 

models, which can be recovered for particular parameter values and low-order approximations of the 

governing equations in the transformed Laplace space. According to the so-called inverse method 

(Hussein et al., 2014), the associated non-polynomial eigenproblem is solved in the space of complex-

valued frequencies by assigning real-valued wavevectors. Subsequently, the complex spectrum can be 

reformulated in terms of real-valued damped frequencies and damping ratios. This solution approach 
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differs from the complementary direct method in which the governing eigenproblem is solved in the space 

of complex-valued wavevectors by assigning real-valued frequencies.  

In order to characterize the free and forced propagation of damped waves in the acoustic metamaterials, 

a discrete linear model of the periodic beam lattice microstructure, visco-elastically coupled with local 

resonators, is formulated (Section 4.1). Therefore, the dynamic problem concerning the wave propagation 

of damped waves is stated according to the Floquet-Bloch theory (Section 4.2). First, the complex 

dispersion spectrum characterizing the free dynamics is determined for the beam lattice with quadrilateral 

elementary cell, and the effects of different approximations of the coupling relaxation functions are 

parametrically analysed, with reference to the exact dispersion curves (Section 4.3). The exact 

eigensolution given by numerical solvers is compared with the approximate solutions achievable by the 

application of asymptotic perturbation methods (Section 4.4). Second, the forced response to harmonic 

single-frequent external sources is investigated in the frequency and time domain for the fundamental 

cases of non-resonant, resonant and quasi-resonant external forces (Section 4.5).  

 

4.1. Governing equations of the beam lattice model  

The periodic metamaterials with viscoelastic resonators can be based on different planar topologies 

described by quadrilateral or triangular beam lattices (Figure 4.1). The periodic cell of the metamaterial, 

with characteristic size a  and unitary out-of-plane depth ,d  is featured by a centrosymmetric 

microstructure realized by a massive rigid ring, with radius ,R  mass 1M  and rotational inertia 1.J  Each 

ring is connected with the rings of adjacent cells by n  identical flexible and light ligaments of length ,l  

width w  and Young's modulus .sE  The ring-ligament connection is supposed to realize a perfectly rigid 

joint. Each ring hosts a heavy disk with radius ,r  co-centered with the ring center and embedded in a soft 

viscoelastic annular filler. This circular massive inclusion plays the role of local resonator. The mass and 

rotational inertia of the local resonator are 2M  and 2J , respectively. The motion of the rigid ring is 

described by the in-plane displacement vector u  and the rotation  , referred to the internal point located 

at the ring center of mass. The motion of the resonator is described by the in-plane displacement vector 

v  and the rotation  . The integral-differential equations governing the forced response of motion of a 

reference cell read (Bacigalupo and Gambarotta, 2017c) 
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where dot indicates derivative with respect to time t  and the auxiliary stiffness parameters 



INERTIAL METAMATERIAL WITH VISCOELASTIC RESONATORS  63 

 

 

   
2 3

3 32 2

,        ,
2

,        ,
4 12

i s i i i i i s i

a s l s

w w a w
E E

l l l

w a w l
K E K E

l l

                
       

       
   

K d d t t k t

                   (4.2) 

while ( )dk t  and ( )k t  are time-dependent relaxation functions accounting synthetically for the 

viscoelastic ring-resonator coupling. The in-plane displacement vector iu  and the rotation i  describe the 

motion of the n  rings connected to the reference ring. The unit vector id  accounts for the orientation of 

the i-th connection ligament, and it  is the unit vector normal to id , according to a counter-clockwise 

system. The reference ring is excited by the generalized external forces f  and g , while the resonator is 

assumed unloaded. It is worth noting that assuming time-independent relaxation functions allows the 

recovery of the dynamic equations governing the non-dissipative beam lattice metamaterial  

The soft viscoelastic filler is characterized by the translational and rotational relaxation functions ( )dk t  

and ( )k t  that can be modeled by using the Prony series. Considering only the first exponential term of 

the series, the relaxation functions read 

( ) exp 1 exp ,

( ) exp 1 exp ,
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where rt  is the relaxation time, dek , dk , ek , k  are dimensional mechanical coefficients, and

/d d dek k  , / ek k     are the associated non-dimensional parameters, referred to as viscosity ratios 

in the following. The dependence of the non-dimensional relaxation function  d d sk k E d  on the non-

dimensional time 1St t aE M  is shown in Figure 4.2a for a fixed relaxation time and different          

d -values. The increment of the exponential decay rate for increasing viscosity ratios d  can be 

 
Figure 4.1 Beam lattice metamaterials and reference periodic cell. 
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appreciated. A similar qualitative scenario can be obtained for the time-dependence of the non-

dimensional relaxation function 2( )sk k a E d  . 

4.2. In-plane Bloch waves 

The propagation of elastic waves can be studied by applying the bilateral Laplace transform 

 [ ] ( ) exp dst t
  L  to the equations (4.1), where s  is the complex Laplace variable. According to 

the Floquet-Bloch theory, the quasi-periodicity conditions can be imposed on the displacements and the 

rotation in the Laplace space 

 

Figure 4.2 Viscoelastic kernel for 1 10rt  , ( ) 35 100de de sk k E d  : (a) Relaxation function versus time;           

(b) Exact and approximate Laplace transforms of the relaxation function versus the Laplace variable ( 5d  ), (c), 

(d) Real and imaginary parts of the Laplace transforms of the relaxation function versus the complex Laplace 
variable  ( 5d  ). 
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where ix  is the vector pointing the i-th ring center, ˆ,u  ̂  are the displacement and rotation in the Bloch-

Laplace space and qk i  is the real-valued wavevector expressed through the polar coordinates, with q  

representing the wavenumber and i  being the unit vector of the generic propagation direction. Therefore, 

the algebraic transformed equations of in-plane motion read 
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where f̂  and ĝ  are the generalized forces in the Bloch-Laplace space. The two auxiliary s -dependent 

rational functions ( )dR s  and ( )R s  are the bilateral Laplace transform of the relaxation functions  
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If necessary for the sake of simplicity, the bilateral Laplace transforms (4.6) can be approximated with 

their h -order Taylor polynomials, centered at 0s  , yielding 

1

1

( ) ( 1)
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h
j j j

d de d r
j

h
j j j

e r
j

R s k k t s

R s k k t s  





 

 








                                                     (4.7) 

It is worth noting that for 1h   the Taylor polynomials introduce in the equations (4.5) some linear 

terms in the Laplace variable, recovering the classical viscous damping originated by velocity-

proportional dissipation. Specifically, the first, second and third order polynomial approximations of the 

Laplace transforms (4.6) are reported in Figure 4.2b considering [ ]dkL  as an analytical function of the 

non-dimensional variable  1 ss s M aE , fixed a certain non-dimensional relaxation time rt . The 

comparison with the exact function allows to appreciate the approximation accuracy in the closeness of 

the starting point 0s   up to the polar singularity at 1 rs t  . Furthermore, the real part  Re [ ]dkL  and 

the imaginary part  Im [ ]dkL  are properly compared with the respective first, second and third order 

approximations as a function of the complex s -variable in Figure 4c,d. 

The matrix form of the linear algebraic equations (4.5) is ˆ ˆ( , )s C k U F , where  ˆ ˆˆ ˆ ˆ
T

 U u v , 

 ˆˆ ˆ 0
T

gF f 0  and the matrix ( , )sC k  is a 6-by-6 Hermitian matrix having the explicit form 
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where I  is the 2-by-2 identity matrix and the submatrices A , a , a  and b  are 
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            (4.9) 

where the equivalent exponential and trigonometric forms are reported. 

 

4.3. Free wave propagation  

For the free wave propagation, the complex-valued dispersion relations ( )s k  can be determined by 

solving the eigenvalue problem associated to the homogeneous equations of motion ˆ( , )s C k U 0 , 

obtained by setting to zero the generalized external forces ( ˆ f 0 , ˆ 0g  ). As preliminary remark, it must 

be highlighted that different eigenvalue problems are associated to the exact relaxation functions (4.6) and 

to each order of their approximations in s -power series (4.7). Specifically, the exact and approximate 

relaxation functions correspond to rational (non-polynomial) and polynomial eigenvalue problems in the 

s -unknown, respectively.  

The following algebraic procedure to simplify the mathematical treatment of the eigenvalue problems 

(by conveniently reducing both rational and polynomial problems to higher dimension linear problems) is 

used: 

 By considering the third eigenvalue problem in the unknown eigenvalue s  as benchmark, the 

problem ˆ( , )s C k U 0  is expressed by separating the s -orders of the governing matrix 

( , ),sC k yielding 

 (0) (1) 2 (2) 3 (3) ˆ ,s s s   C C C C U 0                                                                                    (4.10) 

where the bracketed superscript of the matrices (0) (1) (2), ,C C C  and (3)C  denotes the s -order.  

 The polynomial eigenvalue problem (4.10) is expressed in an equivalent linear form ( )s L V 0 

where  2 ˆ ˆ ˆ T

s sV U U U  and the matrix ( )sL  is written as 
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(3) (2) (1) (0)

( ) .s s

   
        
      

C 0 0 C C C

L 0 I 0 I 0 0

0 0 I 0 I 0

                                                                        (4.11) 

 The s -values that make the auxiliary higher-dimensional matrix ( )sL  singular coincide with 

the eigenvalues solving the polynomial eigenvalue problem (4.10). The corresponding 

eigenvectors coincide with a subvector of the vector V . 

The dispersion spectrum is composed by all the complex-valued relations ( )s k  solving the eigenvalue 

problems for assigned real k -values. Precisely, the real and imaginary parts of each solution define a pair 

of dispersion surfaces defined in the bidimensional k -domain. Alternatively, the dispersion spectrum can 

be illustrated by representing the three-dimensional dispersion curves (or spectral branches) defined by 

the real and imaginary parts Re( )s  and Im( )s  of the complex-valued relations ( )s q  along a particular 

propagation direction.     

Focusing on the cellular metamaterial characterized by the quadrilateral beam lattice, the eigenvalue 

problem is stated for the particular periodic cell with square shape ( 2 ).a l R   For this metamaterial the 

submatrices (4.9) assume the particular form 
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        (4.12) 

where the auxiliary trigonometric functions ( ) 1 cos( )i iC k k a   and ( ) sin( )i iS k k a , with i = 1,2. The 

analysis of the dispersion spectrum can be focused on the first Brillouin zone B  of the bidimensional         

k -domain, which is defined { : [ , ]}i ik a k    k B=  in non-dimensional form for the quadrilateral 

metamaterial. Within this square zone, the complex-valued spectrum can be synthetically illustrated by 

determining the dispersion curves along particular propagation directions. Specifically, the real and 

imaginary parts of all the dispersion curves can be described over the closed boundary B  of the 

triangular subdomain 1 B B , limited by the vertices 1 2 3B ,B ,B  (pointed by the non-dimensional 

wavevectors 1 (0  0)Tk , 2 (0  )Tk , 3 (  )T k  respectively). Accordingly, the boundary B  is 

spanned by the non-dimensional curvilinear abscissa  , varying in the range [0,2 2 ]  .  
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4.3.1. Complex-valued dispersion spectra 

Focusing first on the lowest (first) order approximation of the relaxation functions, the dispersion curves 

related to an ideal metamaterial M  are reported in Figure 4. The particular mechanical parameters are 

ideally selected to be 1 5R R a  , 3 50w w a  , 1 10r r a  , 2 21
1 1 1 2( )J J M a R Rw w        , 

2 2
2 2 1 (2 )M M M r Rw w       , 2 21

2 2 1 22( )J J M a M r     and resonator-to-ring mass density ratio

10  . Dispersion curves related to visco-elastically damped resonators ( 35 100dek  , 16 2500ek  ,

5d      , 1 10rt  ) and undamped resonators ( 0d       or rt  ) are illustrated.  

The real and imaginary parts of the complex frequency s , which can be referred to as wave damping 

and wave frequency in the following, are related to the propagation in space and the attenuation in time of 

the mono-harmonic wave traveling through the metamaterial. Negative real parts of the complex 

frequency correspond to time exponentially decaying amplitudes of the propagating wave. As expected, 

the undamped metamaterial shows a dispersion diagram composed by six purely imaginary dispersion 

curves, corresponding to waves propagating without attenuation (Figure 4.3a). A full large-amplitude 

band gap separates the three low-frequency dispersion curves from the three high-frequency dispersion 

curves (Figure 4.3b). It can be verified that the low-frequency curves are associated to waveforms 

systematically localized in the ring (ring polarization), with quasi-static contribution of the resonator. 

Differently, the high-frequency curves are associated to waveforms mainly localized in the resonator 

(resonator polarization). Looking at the damped metamaterial, the dispersion spectrum possesses six 

complex-valued curves (Figure 4.3a). The three curves in the low frequency range can be conventionally 

referred  to as spectral branches  of quasi-propagation, since  they are  dominated  by  the  imaginary  part  

 

 
Figure 4.3 Complex-valued dispersion spectrum of the metamaterial M  corresponding to the first-order 
approximation of the relaxation functions: (a) wave frequency and wave damping, (b) wave frequency. 
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of the complex frequency, with  minimal participation of the real part. It can be verified that the slight 

dynamic interaction between the ring and the resonator, caused by the ring polarization, reduces the 

attenuation offered by the viscoelastic coupling. Consequently, no appreciable differences can be 

recognized in the low-frequency spectra of the damped and undamped metamaterials. The remaining 

three curves in the high frequency range can be conventionally referred to as spectral branches of strong-

attenuation, since they are significantly contributed by the real part of the complex frequency. It can be 

verified that the strong ring-resonator interaction caused by the resonator polarization increases the 

attenuation offered by the viscoelastic coupling. As important remark, the strong frequency reduction 

caused by the viscoelastic coupling in the damped metamaterial causes a marked decrement in the band 

gap amplitude (Figure 4.3b). 

Considering a second-order approximation of the relaxation functions, the approximating series 

introduce 2s -proportional contributions to the polynomial eigenvalue problem, which can modify the 

second s -power terms deriving from the inertia forces. The corresponding dispersion curves are shown 

in Figure 4.4. As first remark, the negative real part of all the dispersion curves tends to decrease, causing 

a small increment of the damping in the propagating waves (Figure 4.4a). As major remark, the essential 

difference with respect to the first-order approximation is related to the high-frequency dispersion curves, 

which concur to determine a pass band with significantly larger amplitude (Figure 4.4b). The amplitude 

enlargement also slightly reduces the band gap between the high frequency and the low frequency 

branches of the spectrum. As complementary remark, it can be noted that the limit of long wavelengths 

( 0)   is a triple frequency point for the high-frequency dispersion curves. 

 

 

 
Figure 4.4 Complex-valued dispersion spectrum of the metamaterial M  corresponding to the second-order 

approximation of the relaxation functions: (a) wave frequency and wave damping, (b) wave frequency. 
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Figure 4.5 Complex-valued dispersion spectrum of the metamaterial M  corresponding to the third-order 

approximation of the relaxation functions: (a) wave frequency and wave damping, (b) wave frequency. 

 

Considering a third-order approximation of the relaxation functions, the approximating series introduce 

new 3s -proportional contributions to the polynomial eigenvalue problem. The corresponding dispersion 

curves are shown in Figure 4.5. As first remark, the real part of all the dispersion curves shows a further 

decrement (damping increment) with respect to the second order approximation (Figure 4.5a). As major 

remark, the order augment of the polynomial eigenvalue problem determines the emergence of an 

additional real-valued dispersion curve of the spectrum. Consequently, although the number of non-zero 

 

 
Figure 4.6 Complex-valued dispersion spectrum of the metamaterial M  corresponding to the exact relaxation 

functions: (a) wave frequency and wave damping, (b) wave frequency. 
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wave frequencies remains unchanged, the number of branches in the complex-valued dispersion spectrum 

exceeds the total number of degrees-of-freedom in the periodic cell. It is worth remarking that the new 

real-valued dispersion curve corresponds to waves non-propagating in space but highly damped in time. 

As minor remark, the pass band associated to the high-frequency dispersion curves is shifted to a higher 

frequency range and also increases in amplitude with respect to the second order approximation (Figure 

4.5b). 

 

 

 
Figure 4.7 Complex-valued dispersion spectrum of the metamaterial M  with low viscosity ratio corresponding to 

the exact relaxation functions: (a) wave frequency and wave damping ( 3  ), (b) wave frequency ( 3  ),            

(c) wave frequency and wave damping ( 1  ), (d) wave frequency ( 1  ). 
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Finally, considering the exact relaxation functions, the wave dispersion properties are governed by a 

rational eigenvalue problem. The corresponding dispersion curves are shown in Figure 4.6. As for the 

third-order approximation, the number of spectrum branches exceeds the total number of degrees-of-

freedom in the periodic cell. Specifically, the spectrum shows three real-valued dispersion curve 

corresponding to non-propagating damped waves (Figure 4.6a). In the comparison with the undamped 

metamaterial, it can be clearly recognized that the exact treatment of the viscoelastic coupling determines 

a slight amplification of the band gap separating the low-frequency and the high-frequency dispersion 

curve (Figure 4.6b). The relevance of this key observation is principally related to the qualitative and 

quantitative comparison with the approximate (first-order) treatment of the viscoelastic coupling. Indeed, 

from the quantitative viewpoint, the classical first-order approximation is found to strongly underestimate 

the band gap amplitude. Furthermore, from the qualitative viewpoint, it also returns a band gap reduction 

with respect to the undamped metamaterial. As complementary remark, the amplitude of the high-

frequency pass band is also amplified. For the sake of completeness, a wide parametric analyses has been 

performed to assess the effect of different viscosity ratios on the exact dispersion spectrum. To exemplify 

the results, the dispersion spectrum related to a smaller viscosity ratio ( 3   and 1  ) is shown in 

Figure 4.7. As major remark, the lower viscosity causes a systematic augment of the negative real part 

(damping reduction) for all the dispersion curves associated to propagating waves. On the contrary, the 

lower viscosity systematically shifts the dispersion curves associated to non-propagating waves to a lower 

real value range (Figure 4.7a,c, Figure 4.8). Smaller viscosity ratios also tends to reduce the amplitudes of 

the band gap (Figure 4.7b,d).  

Figure 4.8 Complex-valued dispersion spectrum of the metamaterial M  with viscosity ratio corresponding to the 
exact relaxation functions: (a) wave damping ( 1  ), (b) wave damping ( 3  ), (c) wave damping ( 5  ). 

 

4.4. Asymptotic approximation 

The perturbation methods represent an efficient alternative to the numerical solution of the 

eigenproblem governing  the wave dispersion.  Each complex eigenvalue  ( ) ( )h hs k k  can be regarded  
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as one of the zeroes (with multiplicity hm ) of the characteristic function ( , ) det( ( , ))Q   k C k .  

The perturbation technique is described in paragraph 3.2.2 expressing the non-dimensional 

characteristic function in the form ( , )F z  where s    is the non-dimensional eigenvalue.   

Table 4.1 reports the solution scheme required to achieve a fourth-order approximation (3.26) of all 

fifteen eigenvalues by employing the vertices 1B  (corresponding to * 0  ) and 2B  (corresponding to
*  ) as reference points to start the perturbation analysis. 

 

Table 4.1 Solution scheme of the perturbation equations up to the fourth order.  

* 0    *    

m  *  1z  2z  3z  4z  5z  6z  7z  m  *  1z  2z  3z  4z  

4 *
1,2,3,4  - - - 

1  1  1  1  1 *
1  1  1  1  1  

2  2  2  2  1 *
2  2  2  2  2  

3  3  3  3  1 *
3  3  3  3  3  

4  4  4  4  1 *
4  4  4  4  4  

2 *
5,6  - 5,6  - 

5  5  5  … 1 *
5  5  5  5  5  

6  6  6  … 1 *
6  6  6  6  6  

2 *
7,8  - 7,8  - 

7  7  7  … 1 *
7  7  7  7  7  

8  8  8  … 1 *
8  8  8  8  8  

2 *
9,10  - 9,10  - 

9  9  9  … 1 *
9  9  9  9  9  

10  10  10  … 1 *
10  10  10  10  10  

1 *
11  11  11  11  11  … … … 1 *

11  11  11  11  11  

1 *
12  12  12  12  12  … … … 1 *

12  12  12  12  12  

1 *
13  13  13  13  13  … … … 1 *

13  13  13  13  13  

1 *
14  14  14  14  14  … … … 1 *

14  14  14  14  14  

1 *
15  15  15  15  15  … … … 1 *

15  15  15  15  15  

Legend: “-” = undetermined, “…” = higher-order unknows 
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The mechanical parameters used for exact dispersion spectrum illustrated in Figure 4.5 are selected to 

obtain the approximate dispersion curves in the interval [0, ]  . As an example, the complex 

eigensensitivities of the fourth-order approximate 1  and 2  are reported in Table 4.2 as explicit functions 

of the non-dimensional mechanical parameters, where 1 2 1C R  , 2 2
2 ( 2 )C w Rw r w        , 

2 2
3 (7 / 2) 2C w w r       , 3 2 2

4 3C w w w r        ,  4 2 2
5 (3 / 4) (1 / 2) (3 / 4) 2 / 3C w w r r        . 

The comparison between the exact (continuous line) and approximate (dots) dispersion curves, with

Im(s) 0 , are shown in Figure 4.9 and 4.10, chosen the vertices 1B  (left approximation for * 0  ) and

2B  (right approximation for *  ) as reference points to start the perturbation analysis, respectively. 

The fourth-order approximate solutions well-match the real and the imaginary part of all dispersion 

curves among the reference point and / 2  , but some curves are not good approximations in the 

entire interval [0, ]  .  

 

Table 4.2 Eigensensitivities of the fourth-order approximate eigenvalues 1  and 2 . 
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The mismatches can be significantly reduced by properly combining the left and right companion 

approximations, conventionally referred to as i
  and i

  in the following. Among the others, a suited 

possibility is to adopt the linear and weighted combination 

,i i iw w             with   1,w w                                       (4.13) 

where w  and w  are  -dependent weighting functions that attain the boundary values 1w  , 0w   

(at 0   ) and 0w  , 1w   (at   ). Therefore the weight of each approximation function attains a 

maximum at its own reference point, while it monotocally decreases up to a minimum at the reference 

point of the companion function. Each combination i
  (for 1...15i  ) is built by adopting the highly-

adaptable pair of trascendental weighting functions  

1 tanh( (2 ))

2 2 tanh( )

1 tanh( (2 ))
,

2 2 tanh( )

w

w

  


  







 


 

                                            (4.14) 

where the parameter   governs the higher (small  - values) or lower (larger  -values) smoothness of 

the transition from unity to zero across the range [0, ]  .  

The weighted combination is reported in Figure 4.11 for 2  . A good agreement among the exact 

and the approximate solutions can be observed except around / 2  . For more satisfying result, the 

perturbation technique can be also applied by using / 2   as reference point to start the perturbation 

analysis. 

 

 

 
Figure 4.9 Complex-valued dispersion spectrum of the metamaterial M : exact and approximate solutions for 

reference point * 0  : (a) wave frequency and wave damping, (b) wave damping (c) wave frequency. 
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Figure 4.10 Complex-valued dispersion spectrum of the metamaterial M : exact and approximate solutions for 

reference point *  : (a) wave frequency and wave damping, (b) wave damping (c) wave frequency. 

 

 

 Figure 4.11 Complex-valued dispersion spectrum of the metamaterial M : exact versus matched approximate 
solutions: (a) wave frequency and wave damping, (b) wave damping (c) wave frequency. 

 

4.5. Forced wave propagation 

For time-harmonic forced waves, the generalized external forces applied at the generic ring pointed by 

the position vector nx  can be expressed as     ( )exp expn nH t St  f p K x  and

    ( )exp expn ng m H t St  K x , where ( )H t  is the unit step function, p  and m  are time-independent 

force amplitudes, S  is the complex-valued forcing frequency and K  is the real-valued forcing 

wavevector. Since the coordinate origine can conveniently located at the centroid of the loaded ring 
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( )n x 0 , the right-hand terms of the equations (4.1) governing the forced dynamics of the reference ring 

read  

 
 

( , )  ( ) exp

( , )  ( )exp ,

S t H t St

g S t m H t St





f p
                                               (4.15) 

where the real part of the complex-valued frequency S  is assumed not null and negative in the general 

case, in order to account for generic, exponentially decaying external loads. Consequently, since the 

linear algebraic equations (4.5) have been written in the matrix form ˆ ˆ( , ) ( , )s S sC k U F , the right-hand 

term  ˆˆ ˆ( , ) ( , ) ( , ) 0
T

S s S s g S sF f 0  is obtained by applying the bilateral Laplace transform to 

equation (4.15), yielding  

ˆ( , )  

ˆ( , ) ,

S s
s S

m
g S s

s S







p
f

                                                            (4.16) 

where s S  can be easily recognized as a simple pole of the transformed external forces.  

Assigned a generic forcing frequency S , the stationary lattice response is described by the transformed 

displacement vector in the Bloch-Laplace space 

ˆ ˆ( , , ) ( , ) ( , ),S s s S sU k D k F                                                   (4.17) 

where the six-by-six matrix 1( , ) ( , )s s D k C k  is also known as dynamic compliance matrix. According 

to this formulation, the roots of the characteristic equations det ( , ) 0s C k , that define the Floquet-Bloch 

spectrum of the metamaterial, are expected to determine poles in the components of the compliance 

matrix ( , )sD k . From the mechanical viewpoint, the forced response amplitude is essentially determined 

by the relative position between these spectral poles and the poles of the transformed external forces.  

Therefore, accordingly with the procedure proposed by Slepyan (2012), (and also in Kunin 2012; 

Movchan and Slepyan 2014), the transformed displacement vector ˆ ( , , )S sU k  can be antitransformed by 

the inverse space-dicrete Fourier transform, leading to the transformed displacement vector ˆ ( , )S sU  of 

the n-th ring in the Laplace space. The stationary lattice response is finally expressed in the time-

dependent complex-valued displacement vector ( , )S tU  by applying the inverse bilateral Laplace 

transform  

 1 1ˆ ˆ( , ) ( , ) ( , ) exp d , ,
2  

r

r
S t S s S s st s r



 
 

 
     U U U  

 

 L                (4.18) 

which is evaluated as  ˆ( , ) ( , )exp( )S t R S s stU U , where R  stands for the residual of ˆ ( , )exp( )S s stU  

and the sum is extended to all the poles of ˆ ( , )S sU . 

 

4.5.1.Compliance matrix 

In order to determine and discuss the forced response of the particular metamaterial M , the dynamic 
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compliance matrix can be analyzed first. The non-dimensional complex-valued component 

11 0 11 0( , ) ( , ) sD s D s Ek k     is considered for a fixed non-dimensional wavevector 0k . Selecting the 

particular wavevector 0 (1 0)Tk  , the loci of the null real and imaginary parts of the 11D -denominator 

(coincident with the 0( , )sC k   -determinant) are shown in Figure 4.12a (curves in blue-scale) in the plane 

of the real and imaginary part of the complex frequency s . In the general case, the crossing points of the 

loci do not identify points of polar singularities or poles for the dynamic compliance, since they can 

coincide with intersections between the continuous loci of the null real and null imaginary parts of the 

11D -numerator (curves in red-scale). On the contrary, the poles for the dynamic compliance are identified 

by the few crossing points in which the denominator vanishes for non-null values of the numerator. These 

peculiar points are characteristic properties of the metamaterial and can be referred to as complex 

resonance points. For the particular 11D - component under investigation, three distinct resonance points 

can be recognized (marked by yellow circles). The magnitude of the complex-valued component 

11 0( , )D sk    is found to rapidly but continuously grow up in the closeness of these points, approaching 

infinite values (Figure 4.12b). It can be remarked that the resonance points actually coincide with some of 

the s -values already identified by the dispersion function 0( )s k  in the free vibration analysis. In 

particular, the resonance points can be associated to the first acoustic branch (point 1A ), to one of the 

purely damping branches (point 1D ), and to one of the optical branches (point 1O ) of the complex-valued 

spectrum shown in Figure 4.6a. Similarly, resonance points associable to the same or some other branches 

of the metamaterial spectrum can be found for each component of the compliance matrix (Figure 4.13). 

 

4.5.2. Forced response 

Focusing on the transformed displacements of the metamaterial M  under the effect of the external 

complex-valued exponentially decaying force 0
ˆ ( , )S sF  with fixed forcing frequency 0S , the wavevector 

k -dependence of the complex-valued displacement component 1Û  is firstly analyzed.  

According to equation (4.17), the displacement component is expressed by the linear combination

1 11 1 12 2 13 3
ˆ ˆ ˆ ˆU D F D F D F   . In Figure 4.13, the magnitude of the non-dimensional component 

 1 1 1
ˆ ˆ sU u E M a

 is reported over the first square Brillouin zone B  for the particular non-dimensional 

forcing frequency 0 3S   and for unitary values of the non-dimensional force amplitudes. Choosing 

different values of the complex frequency s , strongly dissimilar values of the 1Û


-magnitude are 

obtained, depending on whether the frequency s  falls within the stop band ( 1 1s    , see Figure 4.14a) 

or close to a dispersion curve within a pass band ( 2 2.51 3.05s    , see Figure 4.14b). As first remark, 

the magnitude of the linear combination 1Û


 is geometrically non-symmetric in the square Brillouin zone

B , in the general case. However, the cubic symmetry of the metamaterial microstructure can be verified 

to systematically determine doubly symmetric magnitudes of each term contributing to the linear 

combination. As major remark, when the frequency s  cannot resonate because it falls within the stop 

band ( 1s  associated to point 1P  in Figure 4.6a), the metamaterial response does not show any evident peak 
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Figure 4.12 Compliance matrix of the particular metamaterial M : (a) loci of the null real and null imaginary parts 

of the 11D -numerator (curves in red-scale) and 11D -denominator (curves in blue-scale), (b) magnitude of 11D . 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.13 Compliance matrix of the particular metamaterial M : (a) loci of the null real and null imaginary parts 

of the 22D -numerator (curves in red-scale) and 22D -denominator (curves in blue-scale), (b) magnitude of 22D . 

 

in the entire Brillouin zone B , independently of the wavevector k  (Figure 4.14a). On the contrary, when 

the frequency falls within the pass band ( 2s  associated to point 2P  in Figure 4.6a), the metamaterial 
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response can reach infinite-valued amplitudes, depending on whether the ( , )s k -combination lies on one 

of the dispersion curves (Figure 4.14b). Indeed, infinite-valued amplitudes are obtained for the frequency 

2s  at resonance, that is in the closeness of the wavenumber 1 1k   (Figure 4.14c), which exactly 

corresponds  to  a  dispersion  curve  of  the  spectrum  (point  2P   in  Figure 4.6a)  and  also  to one of the 

singularities (point 1O ) of the compliance matrix coefficient 11D  (shown in Figure 4.12 for 0 (1 0)Tk    

or 1   in Figure 4.6a). On the contrary, if a slight variation  is introduced to shift the frequency s  from  

 

 

 
Figure 4.14 Magnitude of the displacement component 1Û

  in the forced response of the particular metamaterial M : 

(a) not-resonant complex frequency 1 1s     falling within the stopband, (b),(c) complex frequency 

2 2.51 3.05s     falling within the passband at resonance, (d) complex frequency 3 21.005s s   falling within the 

passband at quasi-resonance. 
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the dispersion curve (quasi-resonance), the metamaterial response reaches high but finite-valued 

amplitudes (see for instance the 1Û


-magnitude shown in Figure 4.14d for 3 21.005s s  ). 

Therefore, attention is focused on the frequency s -dependence of the complex-valued displacement 

component 1Û  of the metamaterial M , which is again analyzed under the effect of the external 

complex- valued exponentially decaying force 0
ˆ ( , )S sF  with fixed forcing frequency 0S . In Figure 4.15, 

the non- dimensional  component  1Û


  is  reported  versus  the  real and imaginary parts of the frequency 

s  for the wavevector  0 1 0
Tk , if the external forces are characterized by the forcing frequency 

0 3S   and unitary amplitudes. In this case the forcing frequency does not resonate with any of the 

metamaterial frequencies. The continuous loci of the null real and null imaginary parts of the 1Û


-

denominator are shown in Figure 4.15a (curves in blue-scale). All the crossing points of the loci that do 

not identify poles, because they also coincide with intersections between the continuous loci of the null 

real and null imaginary parts of the 1Û


-numerator (curves in red-scale), are not significant. The 

remaining crossing points identify poles of the forced response. Among them, three poles (points 2 ,D

2 ,O 2A  marked by yellow dots) are characteristic properties of the metamaterial, while a fourth pole 

(point 1G  marked by green dot) is associated to the forcing frequency. It is worth noting that the 1Û -poles 

do not correspond exactly to the 11D -poles in Figure 4.12a, due to the second and third contributions to 

the linear combination 1 11 1 12 2 13 3
ˆ ˆ ˆ ˆU D F D F D F   . The magnitude of the complex-valued component 1Û  

is found to rapidly but continuously grow up in the closeness of all the four poles (and their complex 

conjugates), approaching infinite values (Figure 4.15b).  

 

 
Figure 4.15 Response of the particular metamaterial M  to non-resonant force ( 1 3S  ): (a) loci of the null real and  

null imaginary parts of the displacement component 1Û
 -numerator (curves in red-scale) and 1Û

 -denominator (curves 

in blue-scale), (b) magnitude of 1Û
 . 
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In Figure 4.16, the non-dimensional component 1Û


 is reported versus the real and imaginary parts of 

the frequency s  for the wavevector  0 1 0
Tk , if the external forces are characterized by the forcing 

frequency 2 0.701S   and unitary amplitudes. In this case the forcing frequency quasi-resonates with one 

of the metamaterial frequencies. Again, four poles in the forced response of displacement component 1Û   

can be detected (Figure 4.16a). As expected, the pole associated to the forcing frequency (point 2G  

marked by green dot) is found to lie in the closeness of a characteristic pole (point 2A  marked by yellow 

dot) of the material. The magnitude of the complex-valued component 1Û  is found to rapidly but  

continuously  grow  up  in  the closeness of all the poles (and their complex conjugates), approaching 

infinite values (Figure 4.16b). In correspondence of the two close poles, the quasi-resonance condition is 

found to determine the mutual interaction between a pair of undistinguishable peaks. 

 ase velocity, defined by the relation (2.7), associated to the points P1 and P2, assumes the values  

monic force with complex frequency S , the double anti-transform should be applied to determine the 

displacement vector ( , )S tU . Without loss of generality, the anti-transform (4.18) can be applied to the 

integrand function 1 1
ˆ ( , , )S sU k  of the space-discrete Fourier anti-transform for a single selected value 1k  

of the wavevector, for the sake of simplicity. According to this idea, the real and imaginary parts of the 

first anti-transformed component 1
1 1 1 1 1

ˆ( , ) ( , , )U t U S s    k k L  of the vector 1 1
ˆ ( , , )S sU k  can be analyzed. 

In Figure 4.17, the time-histories of the non-dimensional real and imaginary parts  1 1Re ( , )U k   and  

 1 1Im ( , )U k   are reported in the non-dimensional  -time domain for 1 ( 0)Tk  .  

Two different time-histories are compared, corresponding to a harmonic non-decaying external force 

(with purely imaginary frequency 1 3S  ) and a harmonically decaying external force (with complex 

frequency  1 1/100 3S    ), respectively. The comparison shows that   –  after  a  short  transient  –  the  

 
Figure 4.16 Response of the particular metamaterial M  to quasi-resonant force ( 2 0.701S  ): (a) loci of the null 

real and null imaginary parts of the displacement component 1Û
 -numerator (curves in red-scale) and  

 1Û
 -denominator (curves in blue-scale), (b) magnitude of 1Û

 . 
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Figure 4.17 Time domain response of the particular metamaterial M to harmonically non-decaying external force    

( 1 3S  , gray curves) and harmonically decaying external force ( 1 1/100 3S    , red curves) at fixed wavevector

1 ( 0)Tk  : (a) non-dimensional real part of 1 1( , )U k  ; (b) non-dimensional imaginary part of 1 1( , )U k  . 
 

 

Figure 4.18 Time domain response of the particular metamaterial M to harmonically non-decaying external force     

( 1 3S  , gray curves) and harmonically decaying external force ( 1 1/100 3S    , red curves) at fixed wavevector

1 ( 4 0)Tk  : (a) non-dimensional real part of 1 1( , )U k  ; (b) non-dimensional imaginary part of 1 1( , )U k  . 

 

stationary damped response to the non-decaying external force (gray time histories) oscillates with 

constant amplitude at the frequency of the external force. On the contrary, the damped response to the 

decaying external force (red time histories) oscillates with exponentially decreasing amplitudes. No 
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significant differences can be detected in the amplitudes of the real and imaginary parts of the complex 

valued response, whose respective phases are in quadrature, as expected. In Figure 4.18, the time-histories 

of the non-dimensional real and imaginary parts  1 1Re ( , )U k   and  1 1Im ( , )U k   are reported for

1 ( 4 0)Tk  . Again, two different time-histories are considered, corresponding to the harmonic non-

decaying external force (with 1 3S  ) and the harmonically decaying external force (with

1 1/100 3S    ), respectively. The comparison shows that – after a significantly longer transient – the 

damped response to the non-decaying external force (gray time histories) tends to stationary oscillations 

with constant amplitude. The damped response to the decaying external force (red time histories) shows a 

long transient regime of oscillations, again with decreasing amplitudes. 
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CHAPTER 5 

5. CONCLUSIONS 

In chapter 2, the dispersion properties of monodimensional crystal lattices has been studied distinguishing 

between the lattice with monoatomic cell and the one with biatomic cell, including the mass-in-mass 

lattice, with focus on the effects that the presence of a viscoelastic device causes on the dispersive 

properties of the material. For damped material, the dispersion spectrum is characterized by complex-

valued frequencies. 

In chapter 3, a general mechanical formulation has been presented for describing the linear wave 

dynamics of non-dissipative beam lattice materials, characterized by a periodic cellular microstructure 

composed by a geometrically repetitive pattern of rings interconnected by flexible ligaments. The 

propagation of the Bloch waves in the bidimensional infinite material domain has been studied using 

three different models (beam lattice model, first order continuum model and homogenized micropolar 

continuum model) and a good agreement has been obtained by the comparison of the dispersion 

spectrum. Parametric analyses of the dispersion spectrum for a periodic tetrachiral material have been 

carried out for different values of geometric and mechanical parameters, with focus on how these 

differences affect the dispersion spectrum. The analyses obtained by varying the geometric parameters 

highlight some issues in satisfying the conditions of the existence of a full band gap in the low-frequency 

range. These conditions are related to the inertial characteristics of the ring and the slenderness of the 

ligaments and the physical realization would require a technical arrangement like a material with 

functionally-graded structural properties with tapered cross section or other modifications that destroy the 

invariant properties in the out-of-plane direction. The possibility to achieve a band gap at a target 

frequency has been analyzed enlarging the parameter space or removing some hypotheses of the reference 

model. In some cases, an enrichment of the low-frequency range with new dispersion curves has been 

observed. For a cell with massive ligaments, these curves are related to local waveforms, participating 

essentially by the ligaments dynamics. Furthermore, increasing the mass density of the ligaments it is 

possible to obtain, between the optic curves, a total band gap in the low-frequency range around the target 

center frequency. The opening of a full band gap has been observed also for a tetrachiral material with an 

intra-ring heavy filler and ligaments made by two material with different Young’s Modulus. Increasing 

the ratio between the Young’s Moduli of the ligaments the frequencies of the optical curves grow up and 

increasing the mass density of the intra-ring filler a total band gap between the second acoustic curves and 

the first optic curves in the low-frequency range has been observed. The optimization problem for the 

tetrachiral material has been studied and it is found that the problem does not admit solutions 

corresponding to full band gaps in the admissible parameter space. Partial band gaps are found by 

reformulating the optimization problem to obtaining the highest amplitude stop band at the lowest center 

frequency. 

In chapter 4, the non-dissipative microstructure of a beam lattice has been enriched by introducing 

auxiliary dissipative oscillators, housed by the periodic rings and purposely tuned to realize an acoustic 

viscoelastic metamaterial by exploiting the dynamic mechanism of local resonance. Each auxiliary 
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oscillator, or resonator, has been viscoelastically coupled with the hosting ring. As peculiar aspect, the 

viscoelastic ring-resonator coupling has been derived by a proper mathematical formulation based on the 

Boltzmann superposition integral, whose kernel has been expressed by a Prony series. Accordingly, the 

free damped dynamics of the periodic cell is governed by a linear homogeneous system of integro-

differential equations of motion. Therefore, imposing the quasi-periodicity conditions according to the 

Floquet-Bloch theory and applying the bilateral Laplace transform, a linear coupled system of ordinary 

differential equations with frequency-dependent coefficients has been ascertained to govern the free 

damped propagation of Bloch waves. Consequently, the associated nonlinear, non-polynomial 

eigenproblem has been stated and numerically solved to determine the complex-valued dispersion 

spectrum of the viscoelastic metamaterial characterized by a quadrilateral periodic cell. The acoustic and 

optical branches characterizing the complex-valued frequencies of the dispersion spectrum along the 

triangular boundary of the first Brillouin zone spanned by real-valued wavenumbers have been analyzed. 

Particularly, the complex spectra corresponding to different Taylor series approximations of the 

frequency-dependent rational coefficients governing the eigenproblem have been investigated. Finally, 

the forced dynamics of the viscoelastic metamaterial under the effects of harmonically decaying and non-

decaying waves of external single frequency forces acting on the microstructure has been investigated. 

The metamaterial response has been determined and parametrically analyzed in terms of dynamic 

compliance matrices and displacement components, both in the frequency and the time domains.  

Based on the work done, the following concluding remarks can be synthesized: 

 Some limits in satisfying the conditions of the existence of a full band gap in the low-

frequency range by variating the geometric parameters of the microstructured material have 

been observed. However, the actual possibility to achieve a band gap at a target frequency by 

enlarging the parameter space or removing some hypotheses of the reference model has been 

verified. The variation of the mechanic parameters causes changes on the band gap amplitude 

and on the center frequency and, therefore, the controlled variation of these parameters can be 

considered a proper mechanical tuning of the phononic filter realized by tetrachiral material. 

 The dispersion spectrum is characterized by complex-valued dispersion functions for acoustic 

metamaterial with viscoelastic resonators. The classic eigenproblem and the complex spectrum 

associated to the standard dynamic equations with linear viscous damping have been recovered 

at the first-order approximation of the relaxation function. Due to the non-polynomial nature of 

the eigenproblem coefficients, the exact eigensolution is characterized by a number of complex 

spectral branches that can exceed the discrete model dimension. Exceeding spectral branches 

characterize also the eigensolution for high-order approximations of the eigenproblem 

coefficients. From a qualitative viewpoint, these exceeding branches have been found to enrich 

the purely real-valued part of the complex spectrum, corresponding to standing waves that do 

not propagate in space but are damped in time. Focusing on the propagating waves from a 

quantitative viewpoint, the exact and approximate eigensolutions shows that low-order 

approximations may determine non-negligible spectral effects, including the over-estimation or 

under-estimation of the stop bandwidth separating the acoustic from the optical branches. 
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 Poles and peaks dominate the complex frequency response functions to harmonic external 

forces applied to the metamaterial microstructure. These poles can either be related to the 

characteristic spectral properties of the metamaterial or be associated to the forcing frequency 

of the decaying or not-decaying external forces. The closeness between the forcing frequency 

and the branches of the dispersion spectrum determines resonant, quasi-resonant and non-

resonant conditions. 

From the theoretical viewpoint, future developments could be focused on studying the complex-valued 

waveforms associated to the spectral frequencies of the viscoelastic metamaterials. Indeed, these 

dispersion properties are fundamental spectral variables to determine both descriptive quantities, like the 

polarization factors of the wavefronts, and physical entities, like the directional fluxes of the mechanical 

energy transferred by the propagating waves (Bacigalupo and Lepidi, 2018). Moving from the standpoint 

of the beam lattice formulation in Chapter 4, the qualitative and quantitative effects of viscoelasticity on 

the energy flux flowing in non-conservative beam lattice metamaterials can be considered an affordable 

matter of study. In order to confirm the theoretical findings, instead, high-fidelity computational analyses 

are still required to verify the qualitative phenomena and quantitative results characterizing the forced 

response of the viscoelastic beam lattice metamaterials. In this respect, a supplementary effort to achieve 

small-scale experimental verifications would also be desiderable. To this purpose, hybrid systems that 

allow a realible physical-numerical simulation of the wave propagation through an infinite domain, by 

consistently overcoming the operational limit of finite experimental domains, is a promising frontier 

(Becker et al., 2018; van Manen et al., 2018). Finally, looking at the stimulating perspectives of modern 

microengineering design, a challenging task consists in the parametric multi-objective optimization of the 

viscoelastic metamaterial. Indeed, optimal physical realizations require solving a constrained optimization 

problem – perhaps by means of suited nonlinear programming techniques (Bacigalupo et al., 2019b) –, in 

which the admissible ranges of all the microstructural design variables are fixed consistently with the 

ingredient materials available to build the multi-phase viscoelastic metamaterial. 
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