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. ‘ ABSTRACT

The research is concerned with the normal mode approach to the
dynamic analysis of undamped.structural systems possessing large, but
finite, degrees of freedom, and in particular with the computational
application of Kron's eigenvalue method. The work originated from a
study of Weinstein's method, which is shown to be equivalent to
that of Kron's.

\ Standard eigenvalue algorithms are reviewed, with emphasis on
suitability for large problems, and a unified approach to component
synthesis methods is given, establishing those due to Kron and Hurty.

Kron's method is developed in detail and its computational merits
. discussed. New techniques for economically obtaining approximate
low frequency solutions are proposed, and illustrated on beam and
plate bending examples.

A computer program to implément the full and approximate Kron
methods, with the minimization of core space a high priority,is described.
The computational efficiency of these methods is investigated, and
their applicability to repetitive structures emphasized. The
approximate Kron ﬁethod is compared with the component mode method, the
latter being impiemented in a particularly concise way.

It is concluded that where the full eigenspectrum is of interest,
the full Kron method offers great economies over other methods,
particularly where the number of constraints is very much less than
the totél problem order, or where repetition is present. The approximate
Kron method enables approximate results to be obtained with great
savings in computer resources. This approach may be preferable to the
component mode method where highly redundant connection boundaries or

awkward boundary conditions are present.
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' . GLOSSARY

PRINCIPAL MATRIX SYMBOLS {Often with various suffixes)

-

Relating to a fully assembled system:

€ <X < >.o>eng>;ﬁ><x

Displacement vector

Force wvector

" Stiffness matrix

Mass matrix

Dampiag matrix ‘ -

Modal matrix (mass normalised eigenvectors)
Diagonal matrix of system eigenvalues

Modal coordinate vector

Dynamieal matrix of system

Displacement vector

Force vector ) in dynamical system coordinates
Modal matrix ,

Relating to a typical component:

=
(0]

'e'égkft g<

(9]

e

(o]

(o]

(o]

G°O><°O e

Displacement vector

Force vector

Stiffness matrix

Mass matrix

Modal matrix (mass normalised eigenvectors)
Diagonal matrix of eigenvalues

Dynamic stiffness matrix

Receptance matrix

(Ao—A1)

Connection coordinate vector

Partition of modal matrix at connection coordinates



Relating to a typical component

Ng : typical component ordér

bo comﬁonent sémi~bandwidth

"TNge number of component connection freedoms

oo number of component normal modes included

0. number of component constraint modes included

ng, ‘total number of component generalise& freedoms

m, number of simp;e const?aints in a typical set
mgo number of generalised constraints

Relating to the base and composite systems (principally Kron's method)

q number of components

npc number of primary components

My number of partial constraint sets

Iy total number of displacemeﬁt freedoms

ng total number of generalised (modal) freedoms .

m total number of simple constraints ;5322::
g _total number of generalised constraints

total number of connection freedoms in base system

c
1 _ number of unique connection freedoms in composite system
d, 4. ) semi-bandwidth of R matrix
8kl typical term in G matrix
4 typical term in R matrix
A]< typical base system eigenvalue
Amin minimum of | the set of all highest component normal
Amax maximum of | mode eigenvalues
- }c'min minimum of all constraint mode pseydo—eigenvalues
_ in base system
A value above which the constant part approximation

is effective .
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Reiating to the base and composite systems (Component methods)

X X 2
[¢] [ 2N =1

=< «<
o)

(4]
0

wIH OO

¥

Complete set of internal coordinates

Complete set of connection coordinates in base system

_ Force vector at base system connection coordinates

Unique set of connection freedoms in composite system
Force vector at the y. coordinates

Vector of constraint forces in composite system

Transformation matrix connecting X, and Y.

Constraint force transformation matrix

Composite diagonal matrix of component D, matrices
Modal constraint matrix

Typical submatrix in G

Composite system condensed receptance matrix

Composite system condensed dynamic stiffness matrix

i

diagonal matrix

= column vector

r
i}

. (A1l other symbols are defined in the text.)

PRINCIPAL SCALAR SYMBOLS

General symbols

Mmop MO o H U3

-

order of full system

semi-bandwidth of full system

number of eigenvalues/eigenvectors required
number of iterations

multiplicity

eigenvalue .
. - various suffixes
circular frequency J
f

frequency in Hz
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ABBREVIATIONS

M.D.S.
P.C.

P.C.S.
G.C.S.

F.K.M.
A KIM!‘
ClM.M.

s5.I.
E.J.

Minimum data set
Primary component
Partial constraint set

Generalised constraint set

Full Kron Method
Approximate Kron Method
Component mode method
Simultaneous iteration

Extended Jacobi method

10



CHAPTER 1

INTRODUCTION

1.1. MATRTX METHODS OF STRUCTURAL DYNAMICS

The prediction of the vibrational characteristics of large complex
structures is of great importance in a variety of Aeronautical, Civil
and Mechanical engineering situations. It may be, for example,
that the response of a structure to a known force input is required,
or that natural frequencies are required for design purposes.

With the advent of the high speed digital computer, the last
decade has seen a tremendous growth in the field of numerical methods
applied to solve engineering problems [1]. In the field of structural
analysis, the finite element method [2][3] is well established as a
means of expressing continuous sﬁstems in discretised form, that is in
terms of a finite number of unknowns.

Perhaps the greatest strength of the finite element method is
the ease with which it may be extended to non-linear problems, general
boundary value problems, and to structural dynamics [41[5].

The displacement method, in which the unknowns in the mathematical
model are displacements at points within the structure, is the most
successful and widely used approach, and is employed throughout this
worke. ~

Utilising a finite element displacement idealisation, the general

equation of motion of a structure may be written
MXx+Cx+ Kx= X(t) (1.1.1)

where X 1is a vector of n displacements
M, C, K are the mass, damping and stiffness matrices
respectively (symmetric n x n matrices)

X (t) is a vector of n time dependent applied forces.

If the inertia distribution uses the same displacement functions
as the stiffness distribution, a 'kinematically consistant' mass
matrix is formed [6] which ensures that frequencies are upper bounds.
Alternatively, a simpler diagonal 'lumped mass' matrix is often formed
thus forfeiting the bound property. Methods for forming damping
matrices are considered in references [71[8].

Restricting this discussion to deterministic problems there are

11
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two principle approaches to the solution of equ. (1.1.1) in the time
domain.

(a) Calculation of eigenvalues (natural frequencies) and
eigenvectors (mode shapes), thus defining a modal
transformation to uncouple the equations of motion prior

‘ to time integration. |

(b) Direct integration in time of the coupled equations of
motion.

The approach used depends upon the characteristics of the particular
problem.

The first approach is only applicable to linear problems. If

damping is neglected, or C is assumed to be proportional to K and/or

M , the undamped free vibration problem

MX+ Kx= 0O ‘ (1.1.2)

ig converted to a@n algebraic eigenvalue problem, the solution of which

yields the undamped frequencies and mode shapes (Section 1.4). These
mode shapes define a transformation to modal coordinates which
orthogonalises equation (1.1.2). It is often convenient to introduce
a modal damping term based on experimehtal evidence at this stage.

The uncoupled equations of motion may then be integrated in time. The
effort involved in this part is small compared to that involved in the
eigenreduction.

Where a damping matrix cannot be assumed proportional, a complex
eigenvalue problem of order 2n is formed, and the damped eigenvalues and
eigenvectors calculated [9].

Direct integration methods must be used where non-linearities are
present, for example when K, M or C vary in time [10]. The costly
eigensolution step is eliminated, but the step-wise integration of the
coupled equations is only advisable for relatively short time response.
Inaccuracies are inevifably introduced, amd stability is often a
problem.

Where possible, the modal approach is in general preferable. The
natural frequencies and mode shapes are often required in their own
right, and in any case provide valuable insight into the physical

behaviour of the structure.
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1.2. EIGENVALUES OF LARGE STRUCTURES

Large 6r complex structural idealisations inevitably involve very
large numbers of unknowns, e.g., several thousand. The mass and
stiffness matrices, while of large order, are generally sparse, and
special solution routines have been developed to take advantage of
this in static analysis [11]1[12].

In structural dynamics it is usually the 1ower'frequency spectrum
of the structure that is of interest. It is well known that the
number of freedoms required for a dynamic representation of a
structure is.less than for a static one. Coupled with the fact that
the 'cost' of an eigensolution varies as\n3 (as against n? for a
static solution) it is often desirable to reduce the problem order
prior to eigenvalue analysis. This is usually achieved by static

condensation (Guyan reduction) [13], however, the process induces errors

in the resulting eigenspectrum which are often difficult to predict.
Provided the condensed matrices are reasonably small (for example
150 freedoms) efficient in-core eigenvalue algorithms may be used.

Alternatively, the condensation step may be eliminated, and
eigenvalue techniques which work directly on the sparse matrices
employed. ’

A third alternative is to avoid using the assembled mass and
stiffness matrices by a piecewise approach where the structure is
considered to be formed from components. The synthesis of the normal
modes of the composite structure may or may not involve some form
of condensation procedure.

A further advantage of the modai technique in structural
dynamics is the possibility of reducing the number of freedoms used
in the response part by discarding coordinates corresponding to modes
that will contribute little. Figure 1.1 summarises the various
approaches to the spectral analysis of large structures.

1.3. SCOPE OF RESEARCH

The trend to more and more complex structures coupled with the

relatively high 'cost' of eigenvalue analysis has ensured that the search
for more efficient computational algorithms for the latter has not
diminished.

This thesis investigates the component-wise approach to undamped
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eigenvalue analysis, and in particular the computational implementation
of Kron's eigenvalue procedure [14] in a finite element environment.

To provide necessary background, standard eigenvalue algorithms are
reviewed in Chapter 2, with particular reference to large problem
applicability.

The research originated in a study of the variational characteristics
of eigenvalues and the classical Weinstein method {15] which are
described in Chapter 3.

Component synthesis methods are established in Chapter 4, in
particular the methods of Kron and Hurty. The former involves no
inherent 'condensation' procedure, while the latter relies upon one.

Kron's method is investigated in detail in Chapter 5 and is
shown to be equivalent to Weinstein's method. New 'approximate Kron
methods* to yield an approximate low frequency spectrum with good
savings in core space and computer time requirements and introduced and
illustrated in Chapter 6. Some concepts from Weinstein's method are
used.

The design and implementation of computational systems for both
the full and approximate Kron methods is described in Chapter 7, while
a form of Purty's method is concisely implemented for comparison
purposes (Appendix 2).

, Finally the computational efficiency of the Kron methods is
assessed with reference to alternative algorithms. The advantages of
the Kron methods in handling repetitive structures and awkward boundary

conditions is illustrated.

1.4, THE UNDAMPED STRUCTURAL EIGENVALUE PROBLEM

In this section,certain basic results and associated notation is
establisghed.

Assuming a harmonic response -X(t) = X eiut, where X is now taken
to contain amplitudes and ® is circular frequency, equation (1.1.2),
which may be formed via Lagrange's equations [5], reduces to the

well-known algebraic eigenvalue problem:
(K-MM)x=0, r=df . (1.4.1)

For non-trivial X, the solution to this equation is given by

| K- AM| = © S (1.4.2)
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which defines a polynomial of order n in A. The n roots of this
polynomial ére’the eigenvalues of the system, equal to the squares
of the natural frequencies. Corresponding to each eigenvalue Ai
there is a non-trivial X vector denoted by ¢Gf The get
d;=:[:¢3.¢;.... ¢QJ are the eigenvectors or 'normal modes' of the
problem and have the property of orthogonalising equation (1.4.1).

Thus defining a transformation to modal coordinates q' as

x=¢q' ' (1.4.3)

equation (1.4.1) becomes
(k-mq' =0 _ (Loboly)

where

k = d;tK q; » diagonal matrix of generalised stiffness,

s m= o'm & , diagonal matrix of generalised mass.

There is an arbitrary multiplier associated with each eigenvector,

and it is often convenient to "mass normalise™ the vectors by setting

_ ®=cdm?’
so that

oMo = T
and

oK = A

where A is the (n x n) diagonal matrix of eigenvalues. With a modal

transformation
x=®q (1.4.5)

equation (1.4.1) becomes |
(N-2I)g=0 (1.4.6)

This is known as the 'canonical' or 'normal' form of the eigenvalue
problem. If the mass matrix is consistent, its form will be identical
to that of the stiffness matrix. Both are invariably real and symmetric.

In general, M is positive definite, while K is positive semi-definite .



if the stx*.ucture is unconstrained to the extent thét rigid body
modes can c;ccur, such modes corresponding to A = o = 0.

The eigenvalue problem of equation (1.4.1) is in GENERAL form.
Some eigenvalue algorithms requir;e conversion to thé SPECTAL eigenvalue

problem form

To retain A symmetric, use is made of the fact that any positive definite
symmetric matrix may be factorised into a lower triangular matrix

multiplied by its transpose. Hence using a Choleski decomposition [16]:

K= L.Ly or M =L

provided the matrix to be decomposed is positive definite. L Kk and

Lm are lower triangular matrices. Utilising the transformations

x = Ly | B , (1.4.8)

or

x = Ly (1.4.9)

equation (1l.4.1) becomes

(A-ADy=0, A=% or (A-ADy=0, r=¢
W

where
A = Li;lM Ly (1.4.10)
-1 -t
or A =L, KL, respectively (1.4.11)

The mass and stiffness matrices are usually banded to some extent.
The Choleski factorisation preserves banding although zeros within the
band are in general destroyed. Banding is not usually carried through

to the inverse and thus A will be fully populated whichever approach

is used.

17 .
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If a lumped mass idealisation is employed, the factorisation
and inverse of M will also be diagonal, so that use of equation (1.4.9)

carries banding in K through to A .

1.5. MATRIX STORAGE METHODS

Before embarking upon the survey of eigenvalue algorithms, it is
convenient to consider the common techniques of storing matrices
'in-core', as considerable emphasis on the relative core requirements is
made.

A symmefric matrix A of order n is considered which may be thought
of as a mass or stiffness matrii.

1.5.1. Use of Symmetry

The simplest method is to store (say) the lower triangular part

of the matrix including the leading diagomnal in a one-dimensional array.
n x (n+l)

Termed 'triangular columnwise storage' the requirement is >

locations, and is thus limited to small n (Fig. 1l.2a).

1.5.2. Use of Banding

If the structural idealisation is numbered such that the matrices
have a reasonably constant bandwidth, 2b + 1 where b is termed the
semi-bandwidth, the leading diagonal and upper band may be stored in

a rectangular array of dimension n x (b + 1) (Fig. 1.2b).

1.5.%3. Variable Bandwidth

A more general approach is to store the off-diagonal terms in each

row in the lower triangle starting with the first nomn-zero term
encountered. A variable bandwidth may thus be made use of. The off
-diagonal terms are stacked in an array (say) A while the number
included from each row is recorded in the array IR. Diagonal terms are
held separately in the array AB. The total requirement is (2n + 4)
locations, where there are # entries in A (Fig. 1.2¢c). Zeros within
the variable band are of course stored. This is not a disadvantage in
that the very common matrix operation of factorisation, for example

by the Choleski method, in general disturbé included zeros. This
scheme is used extensively in the computer programs developed in this

work. '



1.5.4. Sparse Matrix Storage [12]

For very sparse matrices, it is clearly advantageous to merely
store off—diagonai terms (or blocks corresponding to a node) in an
array with an integer array of locations. Thus out-of-band and in-band
zeros would be omitted. -

Often, the actual non-zero terms will be held on a disc file
with only the .addresses of the non-zero blocks in core. This technique
is suitable where the matrix in question is only involved in

multiplication or addition processes.

19
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FIGURE 1.2

MATRIX STORACE METHODS
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CHAPTER 2

A REVIFW OF EIGENVALUE ALGORITHMS

2.1. INTRODUCTION

The central oﬁjectiﬁe of this review is the presentation of
algorithms for the solution of the undamped structural eigenvalue
problem in a unified manner with emphasis on suitability for large
problems. The component methods discussed in subsequent chapters in
general utilise algorithms deseribed here at some stage.

Large problems may involve from 200 to several thousand unknowns.
To permit comparison, general criteria must be borne in mind, for
examplet ‘ g
(a) central memory requirement,

(b> central processor time requirements,
(e) peripheral processor time requirements,
(d) suitability for few/meny eigenvalues,
(e) accuracy attainable and reliability,

(f) ease of implementation.

Throughoﬁt this thesis it is assumed that principal matrix
operations (e.g. factorisation) take place fully "in-core™. Central
memory requirements are thus formulated on this baéis.

The choice of algorithm invariably depends upon the characteristics
of the problem to be solved. Typical parameters affecting this choice
are

(i) problem size and bandwidth (structure topology),
(ii) location and extent of eigenspectrum required,

(i1ii) are all corresponding eigenvectors required?

Any eigenvalue algorithm is by necessity iterative in that the
eigenvalues are zeros of a polynomial function. However, it is convenient
to group algorithms under L headings according to the mathematical

property used:

(1) Transformation methods (Section 2.2)
(2) Determinant methods (Section 2.3)
(2) Iteration methods (Section 2.4) -

(4) Rayleigh quotient methods (Section‘2.5)
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The process of static condensation prior to eigensolutioh is
discussed in Section 2.E5.

In this~Chapter, it is assumed that the asseﬁbled mass and
stiffness matrices are of order n, have semi-bandwidth b, and that r

#igenvalues/eigenvectors are required.

2.2. TRANSFORMATION METHODS .

2.2.1. General Considerations

The title of transformation methods covers a well-established
group of techniques including the methods of Jacobi [17, p.266],
Givens [17, p.282], and Householder [17, p.290] and the IR [17, p.487]
and QR [17, p.515] algorithms.

Most techniques require the structural eigenvalue problem to be

converted to the special form: (Section 1.4)

(A-A\Dy =0 , A= o (2.2.1)

With a non-diagonal mass matrix, A is in general fully populated.
The basis of all transformation methods is the use of a series of

similarity transformations satisfying -

t
A = R AR

(2.2.2)
t
Rr+1 Rr+l = I
where R is the (r+1)™® transformation matrix. These similarity

r+1
transformations convert the problem to diagonal ortri-diagonal form

without affecting the eigenvalues of the problem. In the former event,
the eigenvalues are on the leading diagonal of the diagonalised A
matrix, while in the latter thetri~-diagonal eigenproblem may be
readily solved by the Sturm sequence method (Section 2.3).

The major computational effort is in the transformation stage.
Little additional work is involved in obtaining all, rather than just
a few; eigenvalues, the technique is thus, particularly favoured when
complete eigenreductions are required.

Unfortunately, even if banding in K is carried through to A ,

subsequent transformation tends to produce a full matrix, hence storage .



for the full lower triangle is required involving Ena words. It may
"also be -shown that the number of multiplications involved is proportional
to n’ (’-’3113 for Householder). These techniques are thus limited in
practice to small problems, e.g., < 150 freedoms. As an illustration,
with n = 100, storage of A requires approximately 5K words of

central memory, while at n = 200 this has risen to 20K.

For large problems it is imperafive to'employ a condensation

step to reduce the number of active freedoms to around 100. However,

as computers develop, backing store transfer times will progressively
decrease and the application of transformation methods to "out-of-core™

matrices may become a more attractive proposition.

2.2.2. The Exfended Jacobi Method

To avoid the conversion to special form, an extended Jacobi method

which simultaneously diagonalises the mass and stiffness matrices has
been developed by the author. The method has been used extensively to
obtain complete eigenreductions of problems up to 100 freedoms, and is
employed in the computer systems\developedtin this research. A brief
description is included in APPENDIX L.

While the method has proved convenient and reliable, storage
for both mass and stiffness lower triangles ié required. Transformation
methods are often more involved programming-wise and care must be taken

to cater for certain numerical ill-conditioning.

2.%. DETERMINANT METHODS

2.3.1. General Considerations

The basis of determinant methods is the location of the zeros of the

determinental equation

I
(@)

| K~ A M|
or . (2-301)
| FO| 0

The approach is extremely general in that terms in F () may contain
non-linear f;ncfions of A. The determinant of F (\) is evaluated for
a series of trial A's to permit convergence to the roots of
equation (2.3.1). )
As described in a subsequent section, the eviluation of a determinant -
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of a matrix is best achieved via a triangular factorisation. Thus,
banding in K and M is preserved. However, each root location
involves several such factorisations. The dpproach is thus
onlﬁ suitable for large problems where the bandwidth is reasonably small,
and only a few eigenvalues/ eigenvectors are required.

A distinct advantaée of the approach is that a specific range of
interes't in A may be investigated without the need to locate
eigenvalues starting at one end of the spectrum. Applied directly to
the fully assembled matrices, accurate results may be obtained over a

wide spectrum.

2.3.2. The Sturm Sequence Property

The scanﬁing of | F(A) | to locate roots is not a simple task in
that no a priori knowledge of the spacing and distribution of roots is
in general available, and a zero of multiplicity two (for example) may
easily be missed. Fortunately, the Sturm sequence method
provides a powerful means of overcoming these difficulties.” Originally
used by Givens in 1954 for ‘the solution of the tri-diagonal eigenproblem
(Section 2.2.1), it is established here in some detail for the special

algebraic eigenproblem:
(A-2IDy =0 (2.3.2)

The property relies upon the fact that the roots of a principal
minor of A of order j separate the roots of the minor of order (j+1).
Considering for convenience the case where j+1=n, equation (2.3.2)

may be partitioned:

An—l a E ‘I’
= A (2.3.3)
at a ¥ ¥

where A and {!Il ¥ } are an eigenvalue and corresponding eigenvector of
equation (2.3.2). Obtaining an expression for -ll; from the first set,

and inserting in the second results in the scalar equation

[ a%A_ - D a+rA-aly = O (2.3.4)

#

Let the eigenproblem of order (n-1) have eigenvalues [.Li and associated



eigenvectors Vi, then we may write (cf. Section 3.3.2)

.

A - = 2.3.5
) n-1 j=1 M- A
hence the L.H.S. of equation (2.3.4) may be written:
\ (atvi)2
(N = [E:TE;—:_XT + h-al (2.3.6)

Thus, £(A) = O defines A as an éigenvélue of equation (2.3.2) while
f(A) = @ when A= s o The numerators in the summation term above are
all positive, hence f(A) changes from + ® to - ® as A goes from

(b, - €] = (b, + e), vhere € is a small quantity. In addition,

the slope of f'(A) is always positive, so it is clear that the zeros of
f(A) interlace the poles A = W;o Further inspection shows that there
is a root of £(A) < W, and the root > p'n—-l'.

This inj:erlacing effect extends for each pair of adjacent
principal monors of (A-AT1). If, for a given trial value of A, the
principal minors are evaluated and set.in sequence with PO =1, i.e.,

N POP1P2°"'Pn-1Pn , a sign change between adjacent members in the
sequence indicates the presence of an additional root below A

(cf. Figure 2.1). The total number of sign changes between consecutive
members in the complete sequence thus gives the number of roots of
equation (2.3.2) exceeded by A. The sequence is said to exhibit the
STURM SEQUENCE PROPERTY.

The location of eigenvalues of the tri-diagonal matrix C
(Section 2.2.1) resulting from the Givens/Householder methods is
readily achieved by the Sturm sequence method in that the principal

minors of lC - hI‘ may be calculated from a simple recurrance formula

[181.

2.%.3. Sturm Sequence by Matrix Factorisation. Sign Count

The number of sign changes between adjacent principal minors may
be evaluated for the matrix (A - A1) in a particularly simple way.
For considering that the triangular decomposition of this matrix is termed
l'..(l), with leading diagonal terms zii’ then the’ principal minors are

given by
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FIGURE 2.1.

ILLUSTRATION OF THE STURH SEQUENCE PROPERTY
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etc.. Hence,
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11 PO 22 .Pl ) ii Pi-l

etc., that is, a negative diagonal term on the factored form

corresponds to a sign change in the Sturm sequence. The total number of
negative diagonal terms on the factorised form of ( A - AI) thus equals
,th! number of eigenvalues exceéded Ey A. If a Choleski decomposition
is'used instead of the Gaussian elimination implied here, the number of
imaginary row/cols should be used in lieu of the number of negative
diagonal terms. ’

Wittrick and Williams [19] extended the use of the Sturm sequence

property to the general determinant method, i.e., the solution of

| F(O L = O where F involves continuous functions of A,

(cf. Section 4.5.2) and gave the name SIGN COUNT to the number of
negative leading diagonal terms on the factorised form. This term is
used throughout this work, and indicated as follows for the matrix

F ()
SLF(M]

2.3.4. Sturm Sequence Method for (K - AM) x=0. Gupta's Method

The sturm sequence method is directly applicable to the structural
eigenvalue problem, involving the factorisation of ( K~ AM) for a
succession of trial M values. Ivaluation of the sign count at each
stage means that it is impossible to miss any roots (as could be
easily done with scanning algorithms based on determinant values alone).

As proposed by Peters and Wilkinson [20],simple bisections are
carried out until one root is isolated. A modified successive linear
interpolation'scheme is then employed to provide 'super-linear'
convergence on the simple root.

Application to the large structural eigenvalue problem has been
proposed by Gupta [21]1[22]. A feature of the program developed in the
latter reference is the use of variant of Gaussian elimination for the
factorisation of ( K- AM). It is carried out i? a working array of

dimensions (b+1)2b+1l) which 'slides' down the band of ( K ~ AM).

T T
7
7
i

<
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The process of inverse iteration isused to obtain the eigenvectors
once accurate elgenvalues have been obtained. l
The total core requirements of the method assuming that K and

M are held in constant bandwidth form is given by

C =~ lmb + 207

Gupta gives the number of multiplications per factorisation as 2nb2,

and indicates that on average 12 evaluations per root are required,

hence the number of multiplications for r eigenvalues is given by

M = 24nb2r
- i
The efficiency of the method is clearly highly dependent upon the
semifbandwidth, b. The method is compared with ones developed in this

thesis in Chapter 8.

2.4. ITERATIVE METHODS

2.4.1. The Power Method

The well known power method uses the special eigenproblem form of
equation (1.4.10) with X = 1/6P  such that in the iterative scheme

Yri1 7 Ay r (2.4.1)

Y., converges to the eigenvector corresponding to the largest
eigenvalue, [17, p.570]. Yo is an arbitarry starting vector, while

"is normalised wer.t. its largest element to obtain vy The

y;+l r+l1°

normalisation factor at convergence is equal to the eigenvalue.
Convergence to higher frequency eigenvectors is possible provided

the trial vector is orthogonalised after each iteration w.r.t.
previously found eigenvectbrs. However, this process is slow and the
method is usually only employed for locating a fundamental mode and
frequency. Further disadvantages are the need to form A , i.e. a
loss of banding, and the problems associated with a semi-definite

stiffness matrix. _

28
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2.h.2. Inverse Iteration

Inverse iteration is a well established technique for obtaining
the eigenvectof_and accurate eigenvalue li when an approximate eigen-

value g is available. In the iterative relation

'

(A-qD)y. ., = y._ (2.4.2)

r+l

provided g is a good estimate, yr+1 converges to the appropriate
eigenvector extremely quickly. The normalisation factor at convergence
is here l/(li - q), hence Ai nay also bé obtained. The process inveolves
‘the factorisation of ( A~ gqI) and forward and backward substitution
steps for each iteration.

Conversion to the special elgenproblem form may be avoided by

using the iterative relation
-
(K - gM) Xy = MXx. (2.4.3)

 Banding is thus preserved. The principal drawback of inverse iteration
is the slow convergence obtained where eigenvalues are closely
grouped [17, p.b1l9].

2.4.3. Simultaneous Iteration (S.I.)

Returning to direct iteration, the technique of simultaneous
iteration, which is essentially the power method with several trial
vectors, has received considerable recent attention, particularly
w.r.t. large-scale problems.

Jennings (1967) [23], and with Clint (1970) [24] presented the
technique applied to the special eigenproblem, i.e.,

u;.+1 =A u, (2.4.4)
whére u, is a set of t initial trial vectors which must be
orthogonal. A feature of the method was the incorporation of an
interaction analysis, to define an improved set of trial vectors for
use, after an orthogonalisation step, as input to the next iteration.
The off-diagonal terms in the symmetric (t x t) interaction matrix,

defined by
t t g
B=u. u = u, Au, (2.4.5)
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give a measure of the coupling between the trial vectors, and a
"linear prediction" of the first t eigenvectors may be conveniently
éefined. At conve;'gence, provided the final trial vectors .U are
orthogonalised by utu = 1, B will be the diagonal matrix of the
t highest eigeﬁvecfors, i.e. defining the t lowest frequencies.
Subsequently, Rutishauser (1969) [25] proposed a more accurate
interaction analysis step based on the eigenreduction of the matrix B
(see discussion below). In addition, he showed that at each iteration
stage, the comporent of the (t+1 th eigenvector is reduced in the

stlrl trial vector by the factor ( 1{(_1). Thus if r eigenvectors are

required, it is advisable to incluaé 2 or 3 additional trial vectors
to ensure satisfactory convergence. '

Bronlund (1969) [26] reviewed Jenning's scheme in the context of
the large structural eigenvalue problem, and noted that the need to
form A destroyed banding in K .

Recently, the method has been applied in the above context by
Jennings and Orr-(l9‘71) [27] and Dong, Wolf and Peterson (1972) [28].
Both papers show that the need to form A explicitly could be

avoided by carrying out the iterative relation

ot -] -t ‘ -
u. = L. ML u,.; (2.4.6)
in the % steps
(i) solve for v L;; vV = u_, (back subst.)

(ii) form W= My (2.4.7)

w (fwd subst.)

S 1 !
(iii) solve for u. Lk u,

L Kk being the Choleski factorisation of the stiffness matrix.
The latter paper presents the B -eigenreduction form of the
interaction analysis by considering that a set of t trial vectors specify

a reduced set of t generalised coordinates z. where

X = u Z ! (2.14-.8)

The projection of the full problem onto the subspace defined by these

coordinates is given by

A\K z = M 2z (2.449)
r Y r

T



31

where K_ = utK u, M = utMu . e above problem is

r r r r T r
eigerireduced to yield an orthogonal set of t eigenvectors C)r within
the subspace. These eigenvectors are used to define the optimally

improved set of trial vectors

u = u e . (2-4-10)

in the full set of coordinate freedoms, which are input to the next
iterative step. The above'interaction analysis' is equivalent to the
eigenreduction of the B matrix as proposed by Rutishauser. The

profeedure is also known as subspace iteration.

2.4.h. S.I. with Semi-definite Stiffness Matrix

A problem clearly arises when rigid body freedoms are present in
that the stiffness matrix is singular. The original method for overcoming
this involved transformation to a set of generalised coordinates in which
the rigid body freedoms appear explicitly and may be treated
separately. A systematic procedure is given by Craig and Bampton [29].
However, the transformation stage tends to destroyybanding and the
approach is unsuitable for use in large problems.

A better method involves the addition of @M X to both sides of
the eigenvalue equation to give [30]:

(K+aM) X = (& + )M x- O (2.4.11)

where @ is a positite constant. The spectrum of eigenvalues is thus
shifted by (+ %) and the modified stiffness matrix ( K+ oM) is
non-gingular. Direct convergence to the rigid modes, which have

eigenvalues of (+ %) is obtained.

2.4.5. Computational Aspects of S.I.

Simultaneous iteration involves simple matrix operations, is
easy to program, and provides a convenient technique for extracting
the first few eigenvalues and eigenvectors of a system.

The approach is suitable for large problems in that banding is
retained. It is relatively easy to carry out the steps in equation (2.L4.7)
with L'k and M held in Yvacking store if necessary. However, the
overall stiffness matrix must be assembled to permit factorisatiom.

Figenvectors of 'multiple root' eigenvalues are automatically
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calculated.

Reference [27] gives core space and number of multiplication
estimates as follows
2

C onb + Fnt + Lt .

2

M (Znbt + 21211’02 +'16t3)c + Lnb

where ¢ is the number of iterations (usually aroﬁnd 6 or 7). The

technique is less sensitive to bandwidth than Gupta's Sturm

sequence program, but clearly loses advantage if t becomes too large.
The method, as applied to the full-order sparse ‘matrices, is

compared with techniques developed in this thesis in Chapter 8. It is

indeed utilised in some of these techniques at a 'component' level,

and a routine SIMULT is briefly described in APPENDIX 3.

2.5. RAYLEIGH QUOTLENT MINIMISATION METHODS

2.5.1. Introduction ,
The classical Rayleigh method for estimating the fundamental

natural frequency of a system [5] involves evaluating the Rayleigh
quotient
. t
XK X :
R(x) = < (2.5.1)
X"MX

where X is an assumed lowest mode shape. The basis of the approach
is that the eigenvalues of KX= A M X are the s‘;;‘;i;:\a‘.g‘n.;‘;y points of
R(X), the corresponding X being equal.to the eigenvector (cf.
Section %.2).

Recently, algorithms from non-linear programming have been applied
to solve this 'variational' form of the structural eigenproblem. -

These algorithms essentially involve the iterative modification
of X to minimise R(X). The lowest eigenvalue is obtained by
unconstrained minimisation, while higher eigenvalues involve the side
constraints that X nmust remain orthogonal to the j previously found

eigenvectors ¢ ., (i=1,3) i.e.

$Mx = 0 (1=1, (2.5.2)



Most algorithms involve the gradient of R which is easily computed

from

STK X - ROX)IMX]

v R('x) = \
(xPMx ) ‘

(2.5.3)

Initially the mefhod of steepest descent, where the‘local minimum
search direction is the negative of éhe local gradient was
employed. However, the approach is prone to poor convergence.
Subsequently, the method of conjugate gradients has provéd most
successful. '

- 2.5.2. The Method of Conjugate Gradients

The initial minimum search direction is sét as in the above method,
but successive directions are calculated from the local gradient to be
orthogonal to previous search directions. 3

The Fletcher-Reeves method [31] was improved by Bradbury and
Fletcher [32] and applied to the structural eigenproblem by Fox and
. Kapoor (1968) [33]. They utilised Rosen's gradient projection scheme [34]

to confine the vector X to the subspace orthogonal to previousgly
found eigenvectors. ' .

A problem in applying the conjugate gradient method is the
homogeneous form of the Rayleigh quotient. Fox and Kapoor removéd this
indeterminacy by normaliéing a chosen element in X to unity after
each step, thereby reducing the problem to (n-1) independent variables.
The gradient projection scheme was complicated by this method.

Geradin (1971) [35] presented an improved algorithm which avoids

.refering to the length of the X vector while building up the
conjugate directions, and incorporates a scaling transformation to speed
convergence. A further improved scheme has been reported by Fried

(1972) [36].

2.5.3. Computational Aspects

The central advantage of gradient minimisation technigues is that
not only do they operate directly on the general eigenproblen
form, but that the mass and stiffness matrices need never
be explicitly assembled. The matrix multiplications in equations (2.5.1)
and (%.5.3) may simply use the elemental matrices.together with the

appropriate global addresses, which are held on backing store.
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¥

?he programming, although more involved than the simultaneous
iteration method, is still relatively simple. Indeed standard
gradient minimisation programs may'be directly applicable. The
technique is well suited for determining the few lowest frequencies
of very large system. However, if higher frequencies are of
interest, the eigenvectérs of frequencies lower must first be located
(as with S.I.).

According to recent experience [37] convergence difficulties
are still encountered, the conditioning of the stiffness matrix being
an important factor. In addition, the examples frém Geradin show that
a strong convergence criteria is required to avoid terminating at a
'local' minimum. It would thus appear that there is no simple way
of sacrificing accuracy in pursuit Of.a faster solution.

No comparisons of this technique with other methods have been made
by the author.

2.6. CONDENSATION TECHNIQUES

2.6.1. Introduction

It is well known that the number of freedoms required to describe
. the inertia distribution of a structure is less than that required for
the stiffness distribution. Techniques have thus been developed to
reduce the number of freedoms actually carried forward into dynamic
analysis in the case of large problems. The elimination of variables
inherent in this procedure implies that the 'condensed' problem is
only approximate. The success of the process relies on the fact that,
provided a good choice of retained freedoms is made, the behaviour

of the structure at low frequencies is well approximated.

2.6.2. Basis of the Technique

The technique has its roots in Rayleigh's principle [38]
that "A first order error in an assumed mode shape results in a second
order error in the natural frequency". Thus Rayleigh's method as
mentioned in section 2.5.1. utilises‘one assumed mode shape, i.e. one
freedom to define an approximate system model. The Rayleigh-Ritz method
employs several deflection patterns which, in linear combination,
hopefully furnish a better approximation. Indeed the finite element

method itself is a generalisation of Rayleigh-Ritz using piecewise



assumed functions to represent a contimuous media.

The underlying principle is that via a set of generalised
coordinates, less in number than that in the full system (infinite for
continuous systems), the lowest modes of the structure may be approx-

~ imately répresented.

2.6.3. Condensation in large Problems

The traditional 'lumped-mass' approach to problems indeed involves
the selection of a set of coordina%es at which the inertia of the
structure is considered to act. However, even when this is employed, a
more general technique is desirable for transforming to an equivalenf
problem with far fewer freedoms.

Of principal interest here is the approach pioneered independently
by Irons [39, 40] ("eigenvalue economisers") and Guyan [13] ("Guyan
reduction™). The fﬁll displacement vector"x.of order n is
pértitionéd in ‘Xln, containing m master freedoms and Xs containing
(n - m) slave freedoms. The master freedoms are to be retained, and
must thus be capable of describing the low frequency behaviour of the

structure. The partitioned equation of motion is thus

Kmm KmS Mmm Mms X m N xm
. - A . = (2.6.1)
ms KSS Mﬂ’lS MSS X S xS

The slave variables must, in some way, be made dependent on the master
variables.. Irons and Guyan assumed that the slave displacements follow
the static deformation patterns defined by the master displacements.
Hence setting A = O in equation (216.1) and assuming that no external

forces act at the slave freedoms, the second set yields:

Xx = -K K X (2.6.2)

S SS ms m

The process is thus often known as STATIC.CONDENSATION. The

transformation
o ! T (2.6.3)
- X = X 2.6.3
X - K 1 K‘t m m
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is thus defined to condense equation (2.6.1) to the form
(Km - )\Mm) Xm = x (20601'!')

where

(2.6.5)

t ' -1 t \t
me = TMT = Mmm—(Kms Kssts)

| -1 -1t
- (K, KT My )+ (K O KTD My KD KY)

ms 55

(2.6.6)

The title "mass condensation”™ was given to a formulation based on
identical pr1n01ples by Ramsden and Stoker [41]. ZIFngineering intuition
is used to pick out the master freedoms, for example at areas of high
mass and reasonable flexibility. The effectiveness of the technique
applied to plate structures has been demonstrated by Zienkiewicz et al

[42].

2.6.4. The Interior Problem

A rigorous exposition of the assumptions involved in the above
condensation process has been given by Wright and Miles [43] and
Geradin [44]. The exact form of the master-slave relation from the

second set of equation (2.6.1) is

-1 -1
X, = (:l:-kKSS MSS (AM --Kms))(m (2.6.7)
which may be expanded to give
-1 - - t
X = [T+ AKIM  « 22(KIM )+ dKEOM) - K ) x

S S8 S8 S5 S5 IS5 ms ms m

(2.6.8)

If equation (2.6.8) is limited to first order in A, substitution into
the first set of equation (2.6.1) yields equation (2.6.4). For the
above expansion to be valid, it is shown that if W, are the eigenvalues

of the INTERIOR PROBLEM i,e.
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(KSS - p,MSS) X, = o ) (2.6.9)

(which is merely the full problem with master coordinates suppressed)

we reguire

Lo< g o ‘ (2.6.10)

4

The optimum choice of master coordinates is that which leads to the
maximum fundamental eigenvalue of the interior problem.

Wright and Miles investigated the use of the second order
approximation in equation (2.6.8). The resulting second order
eigenproblem was expressed as a first order one of size 2n. This scheme
was found inferior to the first order approximation plus an improvement

step involving the full order mass and stiffness matrices.

2.6.5. Computational Aspects

The above condensation procedure results in an approximate structural
model with a shifted eigenbasis. By the theory of Section 3.2, the
approximate eigenvalues are upper bounds on those of the full-order
problem, but it is not possible to estéblish accuracy directly.

‘ Wright and Miles, and Geradin considered the use of bound algorithms
as to define limits of accuracy, however, the methods used involve the

first iterate of the approximate eigenvector using the full-order
matrices. Thus the full-order stiffness matrix must be held in assembled
form to permit factorisation. If this is to be carried out in practice
one might well be advised to use a method which acts directly on the
full-order matrices in the first place.

The condensed mass and stiffness matrices obtained in this
technigue are in general fully populated. To avoid large core requirements,
. the master freedoms should be kept small. Typically a reduction will be from
2000 freedoms to 150. .Transformation methods are then highly suitable,
although only the few lowest frequencies obtained are likely to be
accurate. )

It is finally important to note that while the condensation of the
stiffness matrix is straightforward, that of the mass matrix is
considerably more involved and can lead to large computing times. Thus

if only a few frequencies are required, it would seem better to use a
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direct full-order problem method.
2.6.6. Frequency Dependent Condensation
This technique has recently been used [45] for the location of

higher natural frequencies, for example where a known high frequency
forcing function is preéent.

Essentially the procedure is to‘insert various trial A's in
equation (2.6.7) to define a reducing transformation for each value.
These trial A's are chosen around the range of interest. Clearly, if
an eigenvalue of the condensed problem is exactly equal to the trial
A assumed, the condensation procedure is 'gxact' and A is an eigenvalue
of the full-order problem. ]

It is felt that this approach offers no advantage over the direct

Sturm sequence scanning method for large problems.
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CHAPTER 3

WEINSTEIN'S METHOD

3.1. INTRODUCTION

The initial impetus for this work came from a study of Weinstein's
" method - a variational method for the solution of claséical partial
differential equation eigenvalue froblems [15]. Certain features ap-
peared to be of value in the context of large finite eigenproblems, in
particular the application of Rayleigh's constraint theorem.

In this chapter, the basic variational properties of
eigenvalues are summarised together with Rayleigh's theorem.
Weinstein's method is recast in matrix terminology and its implications
for la#ge, but finite, eigenproblems discusse@. Much of Weinsteiﬁ%,
and associated methods, are couched in rathegbbscure mathematical
terms. The emphasis here is not on rigorous proof, but to give an

insight into the underlying principles.

3.2. THE VARTATIONAL CHARACTERISATION OF EIGENVALUES

%.2.1. The Recursive Characterisation of FEigenvalues

The special form of the linear eigenproblem (equation 1.4.10) is
given by '

(A-ADy=0, A= of (3.2.1)
where y comprises a finite set of n coordinates and A is symmetric,

positivé semi-definite. With eigenvectors W satisfying @w'w =1,

the transformation to normal coordinates
y =wvaq (3.2.2)
applied to equation (3.2.1) produces the normal form:

( N - )\I) q = 0 . (3-2.3)

where A is the diagonal matrix of eigenvalues. The system potential

and kinetic energies in Y coordinates are given respectively by the
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quadratic forms: . -
U= yAy
ot
T = y'y
If the magnitude of .the vector y is fixed by the condition yty = 1,

" then equation (3.2.1) may be written as \h\,_ﬁ’u\(ﬁﬁa § Y% ogeve

n

y - (3.2.4)

t
yAy =‘)\.= iy

ai. .
i,j=1 A

This defines an ellipsoid, in general gkew W.r.t. the axes defined

by the elements in y . The normal form of the energies are

n . n o
\ 5
U= 3 Agf, T = % o @/
i=1 i=1

hence defining T = 1 as above gives the ellipse .equation in the form

t

q A q (3.2.5)

i
>
1l
™
it
He

The normal coordinates g, are thus seen as defining the principal axes
of the ellipsoid [47, p.8l], and the eigenvalues are given by the values
of Uwhen y (or @) defines a principal axis, subject to T = 1. Hence
the eigenvalues of equation (3.2.1) are defined by the STATIONARY POINTS
of U(y); a VARTATIONAL CHARACTERTSATION. e TN O

Eigenvalues are normally thought of as stationary points of the
RAYLEIGH QUOTIENT defined by |

— tA .
R(y) -—y—,E—y—' (3.2.6)
yy
// :
The form of R is homogeneous in Yy , hence specification of unique o
stationary values requires a condition such as yty = 1.
The minimum of R subject to this condition is given by y= ¢ 1
and R( \lll) = )\1. For y restricted to the subspace orthogonal to
1] 17 the new minimum value of R is obtained by ¥ = ¢ o1 i.e. the

second shortest principal axis.



The RECURSIVE CHARACTERISATION of eigenvalues thus states that
%the ith. eigenvalue ki and assoclated eigenvector q’i

of equation (3.2.1) are the minimum value and minimising
vector of the Rayleigh quotient for all vectors

orthogonal to the first (i - 1) eigenvectors".

3.2.2. Rayleigh's Theorem
Originally presented in Rayleigh's "Theory of Sound" [38],

Rayleigh's theorem concerns the effect of the imposition or removal of
a constraint on a vibrating system:

"If one constraint is imposed ﬁpon a linearly elastic

étructure whose eigenvalues Al’ 12,.....,Xh are in

ascending order, the eigenvalues of the constrained

structure kg satisfy e
o< A g (3.2.7)
i i i+l Ter

For removal of one constraint, the relation is

A S W (3.2.8)

The theorem may be illustrated directly for the fundamental

eigenvalue of a system. Any constraint P , where the constraint

condition is that bty = O is expressible as a linear combination
of the eigenvectors. If the constraint is ¢§ Yy = 0,1i#,1, then
y = ¢, is permissible and the overall minimum of R(¢,) = X

is obtainable. However, if \pg'y =0 , then by the recursive
characterisation of eigenvalues, the new minimum of R is lz. These
represent the two limiting cases, hence any other constraint will

produce a minimum in the range [Kllaj.
-2

3.,2<%3. The Max~Min Characterisation of Eigenvalues

The previous section's discussion suggests that Xa may be defined
as the maximum of all the possible minimum values of R obtainable by
application of one constraint. Often termed 'Courant's principle'
[46, p.31] this characterisation avoids explicitly utilising the lower
eigenvectors:

"The rth' eigenvalue Xr of a vibrating system is the maximum

value that can be given to the minimum of the Rayleigh

quotient by varying (r - 1) applied comstraints'.
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Denoting (r = 1) constraints by s: y = 0, (i=1,r-1):-

A, = mex($ l.... s )min R(y ) (3.2.9)

This characterisation leads toq£he extension of Rayleigh's theorem.
Consider a set of m independent constraints pj applied to the system of
equationa(B.Z.l). The rth. constrained system eigenvalue is thus

given by V

p -

7\m = max( S soeees s
r 1

1 poqr Ppeeees pi)min R(y )

Clearly kg > Kr as additional constraints have been applied. However,
if the m constraints pj were free to vary, the maximum value K$ could
achieve would be Ar+m' Rayleigh's theorem for a general number of

constraints is given as follows:

“If s arbitrary constraints are imposed upon a vibrating system
with eigenvalues hlka.;..lh in ascending order, then the
eigenvalues of the constrained system h: must satisfy
m -
< <
>\r < )\I‘ < KI‘+S (3.2.10)

3.2.4. The Rayleigh Ritz Method
The Rayleigh Ritz method (Section 2.6.2) is essentially a

procedure for approximating cpntinuously varying quantities via a
finite number of assumed variation functions. In the present context,
the reduction from an infinite, to a finite, number of unknowns is
equivalent to constraining the quantity in question. Hence in the case
of a vibrating system where displacement is approximated by a set

of assumed functions, the resulting eigenvalues are upber bounds
according to Rayleigh's principle w.r.t. the exact eigenvalues.
Increasing the number of freedoms produces mongtonic convergence from

above towards the exact value.

3%3.3. WEINSTEIN'S METHOD

3.3.1. Introduction [15]
In contrast to the Rayleigh - Ritz method, Weinstein's method was

introduced in 1935 to produce lower bounds on the true eigenvalues of



infinite (continuous) systems.

The technique involves weakening the boundary conditions on the actual
problem until a soluble BASE PROBLEM is obtained; wusually equivalent
to the removal of an infinite series of constraints from the system.

A finite series of constraints is then applied to the base problem to
approximately reconstitute the original boundary conditions. A series
of INTERMEDIATE PROBLEMS is thus defined. By Rayleigh's theorem, the
eigenvalues of the intermediate problems converge from below the

exact solutions.

The eigenvalues of the rth' intermediate problem are defined by
the Weinstein determinant of order r which is constructed from a
knowledge of the base system eigenvalueé and eigenvectors together with
the constraints. Q

The principle results are set out here in matrix terms for the

case of a finite degree of freedom problem [15, Ch. 3].

2.%.2. The Regolvant Matrix

Considering equation (3.2.1) to specify a base problem with known

solution, the i the eigenvalue is given by

Ay, = xi\pi (3.3.1)
thus
(A-ADg, = Oy - Dy, (3.3.2)

and defining the RESOLVANT MATRIX by

H= (A-AD™ (3.3.3)
we may write
1
Hq’i = m q’i (3-3-’-!-)
i

The eigenvectors of H are ¢ 50 and the eigenvalues Kfl:—i « Clearly,

H is not defined for A = ki, i=1,n. +

A general vector V is expressible as a linear combination of the

normalised eigenvectors:



44

n ’ )
v= oz (Ve | o (3.3.5)
i_= 1 - Y ,
henoe_ \
N t i
Hy = 3 fv ) ‘ | (3.3.6)
v = =1(xi-x)‘l‘i - ‘ -3 :

In classical mechanics terms, if V is a geﬁeral harmonic force
amplitude vector at frequency NEY , H is the receptance matrix of the '
base broblem, and the operation Hv "resolves'" the resulting
displacements into'noymal coordinate direotions: If vt;¢i'= O)for a
particular i, there is no generalised force in that mode, and the term.
is excluded from the series. Clearly, if A = hi and vtnpi £ O, the

condition of resonance occurs.

%.%.%3. Weinstein Determinant for 1 Constraint

We now consider 1 displacement constraint applied to the base

problem:
Py = 0 (3.3.7)

This equation may be interpreted as a condition of zero work for a
vector of harmonic forces P over the base system coordinates, hence
the condition for free vibration of the constrained system may be

written as
t

where Hp defines the displacements caused by the constraint forces p .

The Weinstein determinant of order 1 is defined by

t 2
(M) = (Hp)* SRR 2 (3.3.9)
W = p p = 2 U D
: i1 MM
| -
hence for free vibrations of the constrained system - orwa“ONJJ

I3

Wi(k) = 0
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A typical plot of Wl(k) is shown in Figure 3.1. The slope of the

is positive always as indicated by

aw. (2) n (ptwp.)2
1 i
= r (3.3.10)
dh i=1 O‘i - X)Z

The main properties of the Weinstein determinant are as follows:

The zeros of Wi(h) are the eigenvalues of the constrained system

which are not also eigenvalues‘of the base system.

A pole at Wl()i) indicates #he loss of a base system eigenvalue
hi (There will always be a computational pole at N = )i).

A finite non-zero, limiting value, at Wl(hi) indicates no change
in base system multiplicity of Ai.

A zero limiting value at Wl(Ki) indicates the increase by 1 of

the multiplicity at )i.

The interspacing of the constrained system eigenvalueé Xi
between those of the base system Xi’ is in accordance with
Rayleigh's theorem. It may be verified that P, = ‘Pl ensures
"complete raising of the lowest base system eigenvalue", as
aemanded hy the recursive characterisation of eigenvalues

(Section 3.2.2).

The Weinstein criterion for "complete raising", i.e. that

1 .
)\i = ki+1 is that w1(>‘i+

perturbation.

1 - §) <0 where € is a small

3.3.4. Weinstein Determinant for Several Constraints

For a series of m constraints attached to the base problem, it may

be shown that for free vibration of the constrained system Wm(k) = 0,

where Wm(X) is the Weinstein determinant for m  constraints defined

by

t
wm()\) = (le) Py

t t
(Hp)p1 (sz) 92
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The general term in the m x m determinental matrix is given by

( pi.:\p X pt. ¢ ) ,
%,\kk_ 5 L (3e3a2)

1}
[~

The constrained system eigenvalues are obtained from the following

rules; where the general base system eigenvalue Ai has multiplicity p; -

Wm(k) = O (order r), A = Ai locates constrained system eigenvalues
) of multiplicity r which are not also base
system eigenvalues.
W Ai) = POLE (order r) locates eigenvalue of multiplicity (pi ~r).
— _ n T " '
W (A) = FINITE, NON-ZERO " " M ' . -
Wm'(li) = ZERO (order r) n 't 't " (pi + r).

The Weinstein criteria for complete raising of an eigenvalue by m
constraints, i.e. that Alin = A, is that the series of WEINSTEIN NUMBERS
(the principal minors of WQ(K) with Wy = 1)

wo,wl’wz,...'.-'wm
evaluated at (ki+m - €) must contain k sign changes where k is the
= xi+m' (cf. extended Sturm

sequence algorithm of Section 4.5.2). It may be readily verified that

first number satisfying hi

P, = q;l,...t.., P, = ;pm is one set of constraints which satisfies

the criteria. ,/% O“R;A

%.h. SIGNIFICANCE OF WEINSTEIN'S METHOD

Weinstein's method offers a means of determining the characteristics

of one system by analysing another and applying constraints to the latter

to reconstitute the former. In the context of the large eigenvalue

problem the 'computationally convenient' base problem may be obtained

by uncoupling the full problem into components, that is a number of smaller
problems. Constraints may then be defined whicb recouple the components,

and the properties of the fully assembled system determined via the Weinstein
determinant of order m, instead o% the fully assembled structural matrices.

It is,however, unclear how the constrained system’eigenvectors are obtained~
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It will be seen in the following chapter that this technique of
uncoupling of a structure into components is the basis of Kron's
eigenvalue procedure. The determination of eigenvectors is covered
in this method. '

In Weihstein's method for infinite systems [15, Ch..7] it is
significant'that a finite number of constraints is employed in lieu
of an infinite number to obtain lower bounds on the lower exacf
eligenvalues. The general concept of choosing constraints so as to
produce the maximum raising of eigenvalues has strong computational
advantages, especially where the lower eigenspectrum is of ihterest, as
is |generally the case in structural dynamicé. This aspect is
investigated in Section 6.4. as a means of introducing approximations

into the Kron procedure.



CHAPTER &4

COMPONENT SYNTHESIS METHODS

L4.,1. INTRODUCTION

In this chapter, the general class of methods involving the
eigenvalue analysis of structures vie components is developed in a
unified mamnner. In particular, Kron's method and Hurty's component
mode method are establisghed.

The undeflying principle is the avoidance of the need to use the
assembled mass and stiffness matrices of the structure. In addition,
. repetition within the structure may be utilised to reduce computer
effort enabling larger problems to be solved.

The structure is considered to be built up from a number of
component parts, also termed substructures, branches or sub-systems.
Analysis of the components is initially performed and the results
used to synthesise the properties of the composite system.

Although this report is concerned with finite freedom problems,
mentionl is made of infinite freedom problems both for completeness and
in connection with the solution of non-algebraic eigenproblems.

- Two basic approaches are identified, the component commnection
technique, which leads to Kron's method, and the component release
technique. A group of approximate methods is then introduced, which

contains Hurty's method.

4.2. THE COMPONENT CONNECTION TECHNIQUE

L,2.1. Introduction
The basic philosophy of this technique, as propounded by Kron [14],

is the 'tearing' of the composite system into several completely
unconnected components. This constitutes the 'base' system. The
properties of each component are expressed at its connection coordinates,
and conditions of compatability and equilibrium invoked along the
connection boundaries between components to obtain a frequency equation
for the composite system. The order of thie equation is usually

substantiglly smaller than the fully assembled problem order.

L.2.2. The Dynamic Stiffness and Receptance Approaches

Discretisation by a displacement method is assumed. The undamped
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equation of motion for a typical component of order ns which could,

for example,‘ be an assembly of finite elements, may be written as = -
.. - PR -
(Ko - MM X = X_ A= (4.2.1)

Let complete set of normalised eigenvectors be Cbo, and
associated diagonal matrix of eigenvalues be I\O. The displacement

vector may be partitioned according to:

! 0 0
"X = X X
« © { i c }

o . . .
where ~ X contains the set of no connection coordinates
c .
c

and °X. contains the set of n_ (= n -1 ) internal coordinates.

i c

The problem of expressing the properties of each component in terms

of its connection coordinates may be approached in two ways:

1

(1) By the use of So

matrix.

(Ko - }\Mo), the component dynamic stiffness

(2) By the use of Ro = S;l, the component recéptance matrix.

This choice determines the conditions required to “couple the components
together, and the nature of the frequency determinant obtained. The
following sections give concise parallel developments of the dual
approaches to highlight the essential differences. It must be noted that
all S, R and D type matrices are functions of A. Kron's method

utilises the receptance approach for reasons that become clear.
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L.2.3. The Base System Fguations of Motion

DYNAMIC STIE‘E'NESS RECEPTANCE
C : - . . = . &
omponent e. of.m So X, Xo (4.2.2) Roxo X (4.2.3)
Normal formsf -t -1 -~
( A So = q:'o Do¢o Ro = cbo Dol‘bz
D, = (A, - \I)
o) o] ° cx 0 o] o)
Partiti ..~ S. A . .. R. . °©
:rtzgglo:nled 11 ic xl _ 1 11 1lc Xl - xi
° vee e o o o ~ lo o o o 1o
Sci Scc x'c Xc Rci Rcc Xc xc
"Condensed" e. of.
m,
0 o) o o) o] o)
(Assume Xi =0 )
Condensed o o o. o._-10 o o
Component Sc 1['300_ Sci S;; Sic} R.= R
Matrices (L.2.4)
o)
Partition @ =| Pi
0 o)
ot t be partitioned ®o
Normal form of o) canno € partitioned o o 1o &
Condensed Matrices No nowmal form exists. R, = b D0 L
(4.2.5)
OSC and ORC have | Eigenvalues of component [Eigenvalues of component
.. with its connection co- with its connection co-
poles coincident
ordinates fixed. ordinates free.
with: (RESTRAINED COMPONENT) (UNRESTRAINED COMPONENT)
Gather together
2 & R X = x_
all condensed com- -
ponent e. of. m's Scx.= X, (4.2.6) , 1 t(4'2'7)
in sui)ermatrix Rc = ¢c D ¢c:
equations.
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Hence: ;
- 1a 2 je 4
Sc = rsc SC..... SC..... Sc ._l
_ 1n 2 J q
RC = r BC RC..... Rc..... Rc__l

- 1.2 :i‘ q
X = { X" X eenre? X eunen xc}

X

| 1,2 J o}
. { X EX eeene? X eeeeadX }

where there are g components in the structure.

In addition, the normal form of Rc is available with

O
!

[ n-1 -1 -1 -1
Dl D2 Dj ""‘Dq

.

1, 2 j q
. Jal PR JRRRPAL

e
!

el

¢c’ SC and Rc are termed composite diagonal matrices, while D-l is

purely diagonal.

Let the order of the complete base system displacement vector

X = { XcXi} bentwhere

and similarly let X R and X 5 be of order n, and n. respectively.

L.z2.4. Transformation to the Composite System -

Let there be m equations of composite system compatability with the

simple form X, = Xj . A transformation may be defined:
x =. Tc yc ‘ (4‘208)

where Y. contains a set of 4 connection freedoms in the composite
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system. Where several component connection freedoms of the same sense
coalesce, only one is carried into Y. hence £ € m. Internal
freedoms are unchanged by the coupling up process and for completeness

we may write
X;: = ¥V; _ : (4.2.9)
The order of the Eomposite system s thus given by n = (nt -m)a

Equation (4.2.8) may be used to directly transform the dynamic
stiffness eguation (4.2.6): '

t t
T.S_ Ty, = T.X_ = Y (4.2.10)

where Y?:is the set of forces at the composite system connection
freedoms. The COMPOSITE SYSTEM CONDENSED DYNAMIC STIFFNESS MATRIX of

order £ is defined by

t
s= T.S T, (4.2.11)

For free vibrations of the composite system, we require the two

conditions to be satisfied:

Syc = 0 (4.2.12)
Tt x = 0 (4.2.13)
(¢4 C

The latter implies that forces at the component connection freedoms must

be internal, while the former provides a frequency determinental

equation.

The force tranSformétion contained in equation (4.2.10) camnot be -

used as it stands to transform the receptance equation (4.2.7). As
shown in Section 5.2.2., a set of forces which satisfies the 'internal'
condition is defined by a new transformation:

X = Pcc (h.2.14)

[+

FL is termed here the CONSTRAINT FORCE MATRIX,fér each of the m columns
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corresponding element in

Pc defines an internal set of forces in a constraint, the

¢ (m x 1) being an undetermined multiplier.

Furthermore it may be shown that the displacement compatability

relation may be

rewritten in the form

~

(4.2.15)

Utilising the above 2 equations, equation (4.2.7) may be transformed

to yield

. ,
P.R_,P.c= Rc =20

(4.2.16)

where R is the COMPOSITE SYSTEM CONDENSED RECEPTANCE MATRIX

corresponding to the set of m "constraint forces" in € .

A summary of this section is shown in the following table. In

particular, the canonical form of R is given.

DYNAMIC STIFFNESS

RECEPTANCE (KRON)

_ Transform to

composite S = T: S. T, (4.2.17f R = pz Rc P, (4.2.18)
system matrices
Normal formsof £ -1 t
No normal form R = Pc q,c D ¢o Pc
S and R
‘ (4.2.19)

Composite system

& comnection °

m connection forces

unknowns displacements in Y. in €
Frequency equation Scy= 0 Rc=0
i = ith =
Conditions for elther Ye Y ertaer ¢ 0
free vibration or ‘ s ‘ - 0 or l R ‘ -

Poles of
frequency deter-
minant coincide

with

eigenvalues of restrained
component s

, eigenvalues of
unrestrained components |
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4

L.%3, THE COMPONENT RELEASE TECHNIQUE

4.%3.1. Introduction

The basic philosophy of this technique is to suppress the
connection coordinates of the fully assembled 'composite’ system to.
generate independent restrained components. The composite system is
regained by the release of Qhese applied constraints.

/ The dual approaches of dynamic stiffness and receptance are
"again developed in parallel.

|

| | ‘ ,
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4.3.2-
.DYNAMIC STIFFNESS : RECEPTANCE
S.. S, X. X. R.. R, X X.
Assembled e.of. m 11 e + _ * 11 ic 1
in partitioned sic Scc yo:: Y Ric Rcc Yc yc
form .
(composite system) (4.3.1) (4.3.2)
(N.B. Sil & Rii are comp. diag. matr1ce§)
SixjL = Xi R:_LXi = X,
Set ¥, = 0 to (4.3.3) (4.3.4)
obtain base where where l
‘ S, - S.. R - (R..-R l-T
system 1 11 1 il 1c
e. of ms (4.3.5)
~t -1 A=l .t
Normal forms of Si = d’i Di ¢i Ri = ¢i Di ®i
base
system matrices |(y g, ¢i is comp. diag., Di is diagonal)
Sy =Y
Condense compo- c ¢ (y 2.6)
site system e. of} 4 e _
m by assuming whaere Rcc Yc = Y
Xi = 0 S = [SC - S Sll le] (4-3-8)
and eliminating . (4.3.7)
i
Normal forms of 1 Rcc cannot be expressed
S and R S [S S ¢ D (blslc] in terms of the
ce (4.3.9)] normal form of Ri
Set Yc = for |either y. = 0 either y. =0
free vibration or | 8] = 0 or |l R | = o
cc
Poles of | 8 | are at res- |Zeros of [ Rcc‘ are at
trained component eigen~ restrained component
values. eigenvalues.
(Clearly R = S~1) -
cc
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4.4, COMPARISON FOR FINITE SYSTEMS

Providea m and & are much less than n , the techniques described in
the previous two sections have subsfantially reduced the effective order
of the problem with no reduction in the number of freedoms and thus no
inherent loss of accuracy.' The penalty for this is that the final
eigenvalue problem is no longer of the usual algebraic form. The
determinants of S, R, Rcc are in general polynomial quotients in
A. The composite system equations of motion are non-algebraic
eigenproblems to which the standard techniques of Chapter 2 are
inapplicable; Instead, some form of frequency scan is requiréd to locate
values of A satisfying these equations, involving the setting up of the
above matrices for a succession of trial values of A.

From a consideration of the formulations of the two previous -
sections, it is clear that the 'natural' approach in the case of
unrestrained components is receptance, and in the case of restrained
components, dynamic stiffness. In both cases, the formation of the
matrices R and S wutilises the component eigenreductions, thus both
speeding up the matrix set up for a given A, and identifying the poles
of the determinant. For finite system the remaining two approaches may
be discarded as "misfits". .

Although the size of S will often be smaller than that of R ,
where more than two connection coordinates of the same sense
coalesce at one point, the form of R (equation 4.2.19) is far more
suitable for frequency scanning than that of § (equation 4.2.9) as in
the latter Scc and Sic are still functions of A. The receptance
approach is thus to be preferred, except when 4 << m, and forms a
powerful method for handling large structures in the minimum of core

space without inherent loss of accuracy. The approach forms the basis

of Kron's method, which is developed in detail in Chapter 5.

Returning to a more general view, the component connection technique
involves the application of constraints to unrestrained components.
Assuming the constraints to be applied sequentially, several
intermediate systems are formed, and it is clear from Rayleigh's
theorem that the eigenvalues of these systems converge monatonically
towards those of the composite system from'below (cf. Weinstein's
method).

The component release technique on the other hand involves a



series of constraint releases and thus eigenvalues of the intermediate
systens con&erge from above in monotonic fashion (cf. Rayleigh Ritz).

It is evident that both dynamic stiffness approaches reach the
same composite system equation. In the component connection
technigue the process is essentially

(1) eliminate internal freedoms of component,

(2) assemble condensed component dynamic stiffness matricés.
While in the component release method, the condensation process is

carried out effectively on the assembled matrices.

4.5. INFINITE SYSTEMS

L.5.1. Comparison of Approaches

For completeness, it is useful to griefly discuss the case of
infinite freedom systems. Such systems usually comprise structural
elements which have dynemic stiffness or receptance terms as closed
form functions of A. Assembly is carried out by means of a finite
set of displacement coordinates. Thus the resulting dynamib stiffness
or receptance matrices constitute non-algebraic eigenproblems, as an
infinite number of internal coordinates have implicitly been eliminated.

The implication of this is that determinant scanning methods are
immediately necessary. Furthermore, the eigenreduction of the
components is not a simple algebraic eigenproblem, and any finite set
of modes used to represent'the component would involve
considerable effort and in any case are incomplete. The 'normal form'
advantage of Kron's method is lost, and the dynamic stiffness
formulation appears slightly superior in view of the possibility of
smaller frequency determinants.

Simpson and Tabarrok (1968) [48] gave an example of an infinite

freedom system analysed by the component connection dynamic stiffness

approach. The natural frequencies were obtained by direct scanning
of | 8]. It is interesting to note that their theoretical
frequencies were lower than the experimental ones, the result expected
when seen in the context of applying a finite set of constraints to
couple an infinite freedom system.

The dynamic stiffness component release method has been developed

extensively by Wittrick and Williams [49] for vibration and stability

analysis of infinite systems. e

58
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The fundamental problem is to obtain frequencies which satisfy the

non~-algebraic eigenproblem

SFXF = 0- (h.h.1)

where X = {xi yc} (using the )existing notation), and S p is the
corresponding dynamic stiffness matrix. The straightforward scanning
procedure involves triangulation at each trial A value to obtain the
determinant of S g After Gaussian triangulation of the first n,

columns, the following form is obtained:

S.. S, X 0
11 1lC 1 -

= (4'402)
0O S Ye X,

Clearly triangulation is implicit in the condensation of 8 7 to § ,
and triangulation of each column corresponds to the release of a
coordinate. The advantage, in introducing the concept of components here
is that the work involved in each factorisation may be reduced in the
event of repeated components [50]. In addition, connection coordinates
may be eliminated as "internal coordinates" of a new larger component,
thus enabling the size of the working matrix to be kept small. This
successive condensation process is identical to the well-known use of
SUB-STRUCTURES in the efficient solution of static problems [12].

L.5.2.. The Extended Sturm Sequencg Algorithm

Of central importance to the development of the last method
was the extension of the Sturm sequence scanning method (Section 2.3%.3)
to the non-algebraic eigenproblem by Wittrick and Williaums [193.nMInﬂ;“
essence, the number of eigenvalues exceeded, J, by a given trial A ig '

given by

I = 3, = sl Sy(N] (hka3)
o]

where Jo is the number exceeded in the system with X p = 0, and s
indicates 'sign count' as defined in Section 2.3.3. The algorithm is of

great importance in Kron's method for scanning the matrix R (V)



(8ection 5.5.5). While a full derivation is contained in the
above reference, the algorithm is considered here for the case of the
condensed finite freedom dynamic stiffness matrix, 8 (RA).
Consider S F(7\) to be the dynamic stiffness matrix corresponding
to a complete, finite, set of displacements XE" $Tom the Sturm
sequence property, s[SEKAJ] equals the number of eigenvalues exceeded
by A. From equation (4.4.2), the number of eigenvalues exceeded in the base
system defined by Yy = 0 is clearly s[ Sii]. Release of the n,

coordinates in y(:yields the fully factorised form

i

N
sy S,

and clearly

sLS(M]1 = sl Sii(?»)] + s[ S(N)] (4.4.04)
. .
For a finite system, . -
~t' -1
Sis = @ D ¥

hence J_ in equation (4.4.3) is given by sl Di(k)], and we have

I = s[D; (V] + s[SN] (4o4.5)

L.6. APPROXIMATE COMPONENT METHODS (COMPONENT MODE METHODS)

L.6.1. Introduction

The methods discussed so far in this chapter have been exact in

the sense that there is no approximation introduced other than the
initial structural idealisation.
There is, however, a class of methods,.known under the general

title of component mode methods where the order of the problem is reduced

by a Rayleigh - Ritz type approximation. In general, freedoms corresponding

to high frequency component normal modes are discarded, and a set of
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freedoms retained to give an approximate representation of the low
frequency behaviour of the structure. The advantage of the approach is
that the 'reduced' problem is expréssed in the usual algebraic

form, thus enabling standard algorithms to be employed.

The various methods, of which those due to Gladwell and Hurty
are best known are a natural extension of the elimination method of
Section 2.6. as shown in the following sub-section.

One of the methods, due to Craig and Bampton [55], is described
in detail in APPENDIX 2, together with a computer program to
efficiently implement the theory. This program is used to enable com-
parison of the component mode method with the forms of Kron's method

developed in this report.

4.6.2. Elimination of Variables in Component Form

The assembled dynamic stiffness equation of motion (4.%3.1) may be

written in the form:

K.. K. M., M, X, X,
A e : " (4.6.1)
- )\ = - .
t t
Kic ch IWic Mcc yc . Yc

With vy c identified as 'master freedoms' and X ; @s internal

freedoms, equation (L4.6.1) is synonymous with equation (2.6.1). The
assumption that the interior freedoms follow the static displacement
patterns defined by the boundary freedom leads to the elimination method

reducing transformation matrix 'TO

= Yy = T Y (4.6.2)

No freedoms are carried forward from the internal coordinates. The

"interior" eigenvalue problem:

(Kii - MLIx. = 0 (4.6.3)

is clearly the set of restrained component eigenproblems, with K i3
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and hﬂjj'composite diagonal matrices. The convergence condition for
the first-order approximation (equation (2.6.10)) is now that the
required composite system frequency must be 1esé than the lowest
natural frequency of all the restrained components.

The methods now briefly discussed are extensions of this basic
approach, énd may be characterised by their 'reducing traﬁsformation‘,

which containsthe essential Rayleigh - Ritz approximation.

L.6.3. The Partial Orthogonalisation Technigque [54]

;In this simple method, a few of the lowest normal modes of each

restrained component are calculated and gathered together in, & .

_ i
with generalised coordinates @ 50 These coordinates are used to
describe the displacements of the internal coordinates, and the

reducing transformation is given by

X; ® 0ol q
= + + (4.6.14)
yC 0 I yC

The approximation is reasonable provided the normal modes can represent
the composite system modes to a high degree. This is more likely for
structures which are very rigid in the regions of the Yy c

coordinates.

4.6.4. The Branch Mode Method

Gladwell's branch mode method relies, as the name implies, on the

structure having a branchlike topological configuration. Again, the
lowest modes from each branch are calculated, but here a branch normally
consists of several components, one of which is free to distort, while
the others are assumed either fixed or rigid; physical intuition is
used to determine the better assumption. The reducing transformation may

be written as:

X. &i q - \
= ) ' (4.6.5)

'...l

Q
¢
‘
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where @ contains the amplitudes in the modes. In the special case
where all branch modes are chosen so that 1 component vibrates while all
the others are fixed, the transformation is equivalent to that of
equation (4.6.4) with only the ai'freedoms included. This highlights
the fact that the branch mode method implicitly assumes that the
connection coordinates between any pair of components are rigid relative

to each other.

L.6.5. The Component Mode Method

This group of methods is essentially the elimination method with a
few low frequency restrained component normal modes includes from each

component (‘bi). The reducing transformation is of the form:

= (4.6.6)

where the d’c are termed 'constraint modes' are §rg/;articularly
important in the case of flexible boundaries. These modes are

normally defined by the static approximation

~

¢ - - KLk, (4.6.7)

C 11 1icC
]

Originally proposed by Hurty (1965) [52], rigid body modes were
treated separately in the case of free-free components, with constraint
modes calculated for redundant connection coordinates only. However,
Craig and Bampton (1968) [55] utilised constraint modes for every
connection freedom thus implicitly including any rigid freedoms. It
is important to note that while the number of normal modes included is
arbitrary, the number of constraint modes is fixed by the number of
connection coordinates.

Goldman (1969) [56] reported a variant utilising free-free normal
modes and rigid body modes only. Like the branch mode method, a rigid
boundary is assumed and application is limited to situations where this
is a reasonable assumption.

Generalised methods utilising both restrainedland unrestrained

component modes have been developed by MacNeal (1971) [57] and Benfield and
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and Hruda (1971) [58]. These methods however are rather more
complicated both to program and to use and involve a degree of
intuition in thé choosing of modes.

In all these methods, accuracy drops off sharply for higher
composite system modes, and it is not in general easy to say whether a
frequency is accurate (e.g. to within 1%) or not. Hurty (1965) [53]
produced a formula for estimating the»error involved in each mode
due to the truncation of higher modes, but it is of little practical
help. '

. The component mode téchnique has found use particularly in the
des%Ln of aerospace structures where modular configurations are

f
commonplace.

k.7, SUMMARY OF COMPONENT METHODS

Component methods in general offer a means of economically handling
large finite structures as a series of reasonably sized eigenproblems.

In particular, use may be made of repeated compoﬁents to reduce the work.
A common need is also the synthesis of composite system characteristics
from the results of practical vibration tests on component parts.

Provided all the component modes éfe used, Kron's method provides
an excellent way of handling large systems with no inherent loss of
accuracy. The computational application of the method, and its
advantages are investigated fully in this thesis.

Where only the low frequency composite system eigenspectrum is of
interest, the component mode approach offers a convenient means of
eliminating unwanted freedoms, so reducing the problem to manageable size.
However, it would appear from the literature that intuition must be used
to decide when accuracy is likely to deteriorate

The question of introducing approximations into Kron's method has
not been reported in the literature, and is investigated in this thesis.
As a result, useful approximate methods for the description of the low

frequency composite system are formulated and illustrated.



65

CHAPTER §

KRON'S METHOD

5.1. INTRODUCTION

In the previous Chapter, Kron's method was introduced as the
receptance approach in the component connection method. Here, the
method is developed in detail. The displacement and force transformations
are discussed and the Kron determinant examined. The calculation of
eiienvalues and eigenvectors is discussed and the computational merits of
the method outlined. '
As originally proposed [14], Kron's method was couched in rather
obscure electrical terminology. Siﬁpson and Taborrok (1968) [48] gave
a clear receptance formulation as indicated in the previous Chapter.
and suggested a Newton's method algorithm for locating composite
system eigenvalues. Brameller and Lo (1970) [59] utilised the
escalator method for the eigenvalues. Simpson (1972) [60] gave a
Lagrangian formulation together with a powerful eigenvalue algorithm
based on the one proposed by Wittrick and Williams [19].

Further papers by Simpson have congidered

(1) a lagrangian derivation together with an alternative dual approach
in which the frequency determinant unknowns are displacements [61];
(2) the extension of the original formulation to the non-

~proportionaly damped eigenproblem [62]. .

These extensions are not considered in the present work.

5.2. THE CONSTRAINT TRANSFORMATION

5.2.1. The Digplacement Transformation

The transformation of equation (4.2.8) of section 4.2.4. may be

written:

X = X = T . y (5'2'1)

where
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X = the set of 4 connection displacements to be carried through
to the composite system.
o (DOMINANT DISPLACEMENTS)
X = the set of m connection disélacements not carried into
the composite system.
' (DISCARPED DISPIACEMENTS)

' In general, 1'1 (4 x 2) may be constructed square non-singular, with
T 5 (m x 4) rectangular withm 2 4.
X Constraints of the form X = Xj are here termed SIMPLE CONSTRAINTS.
By %ppropriate arrangement we may write
I
xc = X
1 ¢ -
so that

T, = I

and 'r2 will also be a boolean matrix. If only 2 displacements coalesce
at any point, X = will be of length L, and by appropriate arrangement

we may write 2

(For further discussion of the transformation, see [L48]).
y. may be eliminated in equation (5.2.1) to give an equation of

the form

t
P.Xx, = O , (5.2.2)
where
t -1

may be defined for 1'1 non-singular. Plz isa (m x nc) matrix, n, is

the length of Xc. Each row represents one linearly independant

holonomic constraint between the elements of the X R vector, i.e.
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5.2.2. The Force Transformation

For free vibration of the composite system (Section 4.2.4) the

condition was obtained:
t .
TCX = 0 ' (5.2.3)

It may be readily verified that a set of forces satisfying this is given

by:
X - | X - -Tit T; ¢c= P c (5.2.4)

X I

where XC is partitioned comformably with {x o ‘ Xc }. Equation (5.2.4)
expresses a force transformation. Fach column in 2 P(}is a set of
forces in a particular constraint satisfying equilibrium, and the
corresponding element in € (m x 1) is a 'generalised force

coordinate' (or lagrangian multiplier). Equation (5.2.3) implied that

the forces in each constraint are internal, or self-equilibrating.

5.%. KRON'S DETERMINANT

Applicétion of equations (5.2.1).and (5.2.4) to the base system

receptance equation (4.2.7):

-1 t -

¢OD @Y) ¢0Xc = X c (5.3.1)

leads to
R(M ¢ = O (5.3.2)
where
t ~1 t
R(\) = F"c ®. D () . P, (5.3.3)
(m x m) (m x nc) (nt x ﬁt) (nc x m)

(nc x nt) (nt X nc)

¥



For non-trivial € vector, we obtain the frequency equation

IR(W] = o . \ (5.3.14)

known as the KRON DETERMINANT (of order m).

5.3.1. The Form of Kron's Determinant

Equation (5.3.3) may be re-written in the form
. r

RV = G'Dp™H(M G (5.3.5)
inrhszre G is an (nt' x m) matrix defined by

t P, (5.3.6)

Each element in G is given by;

t
g . = (¢ p ) (5-307)
kj ¢ c:j
Indeed the jth. column of G is the 'resolution' of the jth.

constraint vector in terms of the base system eigenvectors.

Recalling that D (M) has the simple diagonal form with kth. term

o -1
dy = (xk— A

where 7\12, k=1, n, are the base system eigenvalues, the general term

in Kron's determinant is given by

t t
n, ( )( ) n
+d k=1 SN VIR k=l () - M)

Clearly R(A) is a symmetric (m x m) matrix, and in general a
quotient of two polynomials in A, the denominator being

t

RIRSYERY B ' (5.3.9)

n
k=1

68
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In general, poles of R (L) coincide with base system eigenvalues,
while zeros of R () coincide with composite system eigenvalues
according to equation (5.3.4). Algorithms for locating composite system

eigenvalues . are considered in Section 5.5.

5e3e2e Equivalencé to the Weinstein Determinant

~ By retaining the full eigenvectors @ and extending Pc to

correspond to the full X wvector, the constraipts may be written as

t . .3.10
/ P'x - [o Pl x,] = o (5-3.10)
. c f
X
and the general term in G becomes 8. = ( q)lt pi). By using this

definition in equation (5.3.8), it is evident that the Kron determinant
is identical to the finite freedom Weinstein determinant (see equation

. (3.3.12)). The properties of Section 3.3..4 thus apply equally to either.

5.4. THE CALCUILATION OF EIGENVECTORS

5.4.1. Persistent Figenvalues and Vectors

It is convenient to consider first the general case of a composite

system eigenvalue ki equal to a base system eigenvalue K;. Clearly
R (xi) is not defined, but slightly perturbed arguments i.e.

ki + €, ki + €% 10 where ¢ << Xi would enable the limiting value to be
ascertained.

In general, it will be a superposition of zeros and poles which
may be treated separately.

The muléiplicity of the pole is equal to the number of base
system eigenvalues 'lost' through application of the constraints.
ITf the base system multiplicity of RE was pE, tﬁen by Rayleigh's
theorem and ignoring any 'arrivals' from below Xﬁ, the
PERSISTENT MULTIPLICITY of ki is given by

P, > p-m ®, > O
P -

Such PERSISTENT EIGENVAIUES correspond to an infinite value of
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]R (}\i)l and hence imply the condition:
l c = O B ) ' (5014'01)

This in turn implies that the imposition of the constraints

have noeffect on the coniponent modes‘corresponding to Kf;, and that
eigenvectors of persistent eigenvalues are simple linear combinations
of the component modes corresponding to KZ, such that the displacement
transformation of equation 5.2.1. is satisfied.

3

5.4.2. Gained Figenvalues and Vectors

Eigenvalues corresponding to roots of the numerator of R (M),
whether equal to a base system eigenvalue or not are termed here
GAINED EIGENVALUES. The multiplicity of the eigenvalue is merely that of the
of the root (pi ), hence the total multiplicity of }\i is in general

G
given by )

p. = D. *+ p. (5.4.2)

where p; = 0 always for A # )\12.

p
Corresponding to each gained eigenvalue )‘i’ there will be piG

non-trivial linearly independent, € vectors. R (?x.l) will be

piG -fold degenerate, and equation (5.3%.2) may be partitioned:

R11 Ryl € 0
= (5.4.3)
.R'Zl R22, I 0
where R is non-singular and R is of order p, . There are thus
11 22 iy
p. cBlumns in C where
i
G
’
C =1L c,C,--- Cj---] = C

1

From the first set in equation (5.4.3), C’ is fhe solution to the



equation

Rnc = - R12 (5.4.4)

thus enabling C to be formed. Each column of C may then be used

to generate the full eigenvector from the relation:

-1 t
X35 = o D ()»i)d)c Pccj - (5.4.5)

5.%. THE CALCULATION OF EIGENVALUES
5.5.1. Introduction

As Kron's determinant is a non-linear funétion of A, algebraic
eigenvalue algorithms are inappropriate. Instead, frequency scanning
must be used involving the evaluation of |R(M\)| for a succession of
trial values of A. ’

From Rayleigh's theorem, application of 1 constraint to the base

system produces bounds on the constrained system eigenvalues of
0 1 . »o
IS Y ) (5.5.1)

and poles and zeros alternate along the M axis. However application

of m (> 1) constraints yields the wide bounds

Nog A g (5.5.2)
i i T Ti+m

and there is no set ordering of zeros and poles. A simple frequency

scan of |R(A)| would require a fine mesh to reduce the risk of

missing roots. The large number of determinant evaluations required

would almost certainly lead to unacceptably long computer times.

5.5.2. Scalar Scanning
Proposed by Simpson and Tabarrok (1968) [48], the method involves

partitioning equation (5.3.2) along its last row and column to give:

= (5'5‘3)

71
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Fliminating CS leads to

rmcm = - O . - - (5-5- )'!”)
where
L -1
m = (rmm - ranrss(mn) (5.5.5)

is a scalar function of A whose zeros are identical in géneral to those

of lR(%J‘. ‘The poles of r  coincide with t?e zeros of | lés\, i.e.

the eigenvalues of the composite system with 1 constraint

released. By equation (5.5.1) poles and zeros altern?te, implying that

the latter appear as simple roots. It is shown [48] that the

component eigenvalues correspond to ;computational poles'. At the cost

of inverting an (s x s) matrix (where s = m - 1) for each trial A, a simple

expression for (7;%) enables Newton convergence on the roots of T
Clearly, the poles of r ~are not known 'a priori' and a

preliminary scan is advised. A further difficulty occurs when a simple

pole and a zero of Ty, coincide, for example where the mth. constraint causes

"zero raising' of an eigenvalue. A finite non-zero value results, and

the eigenvalue must be detec%ed by an auxiliary scan of l rSS{. The -

algorithm is thus not entirely reliable.

5.5.3. The Escalator Method
The escalator method [63] was introduced for the solution of the

algebraic eigenproblem, but is inefficient compared with more modern
algorithns.

Brameller and Lo [59] proposed its use in conjunction with the Kron
determinant. One constraint is applied to the base system and the
leading (1 x 1) sub-determinent of R (M) scanned enabling the
calculation of the complete set of (nt - 1) eigenvalues and vectors.
These are then considered to form a new base problem, and a new determinent
of order 1 is defined involving the second constraint.

The attraction of the approach is that the problem is reduced to a
succession of simple 'l constraint scans' which all enjoy the‘property
of alternating zeros and poles. However an enormous amount of useless
'intermediate' information is clearly generated. In addition, the

complete set of vectors (which in contrast to the super-diagonal form of
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the initial base system set are in general full) are required to
be held in backing store at each stage. The algorithm is thus

wastefull both in time and core.

5.5.4. The Step-by-step Method

Developed by the present author, this method was used to calculate
composite systeﬁ eigenvalues and to study the "eigenvalue raising'"
effects of constraints. ' ‘

The m constraints are applied sequentially, the intermediate
systems being characterised by successively larger leading sub-determinants
of R (M\). The eigenvalues of the rth. system (i.e. r constraints
applied) are determined from the (r x r) leading sub-matrix with the
eigenvalues of the (r - 1)th. system providing bounds according to

equation (5.5.1). Thus

(i) any new eigenvalue must appear as a simple zero.
(ii) the multiplicity of an existing eigenvalue must satisfy
r-1 r r-1 ‘
- < <

P; 1 P; p;  +1 (5.5.6)
The procedure may be made selfchecking so that it is impossible to
miss an eigenvalue. However, the process is inefficient in that the inter-
mediate system eigenvalues are in general of no interest. Computational
experimenté have shown that for even very low m values, the
procedure of the following section is far more economical in time, and
is thus to be preferred except where eigenvalue raising is to be

studied.

5.5.5. The Fxtended Sturm Sequence Algorithm
Simpson (1972) [60] has proposed a modified form of Wittrick and

Williams 'extended Sturm sequence algorithm' which was introduced
in Section 4.5.2.. The arguments of that section may be conveniently
extended to Kron's determinant.

The base system, corresponding to € = O , is characterised by
R ()) infinite, and from equation (5.3.5), the number of eigenvalues
exceeded by a given M in the base system is s[D(A)], where s indicates
the SIGN COUNT. -

As each element in € is released, a constraint is gpplied to the

base é&stem, and as a direct consequence of Rayleigh's theorem, there is
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a possibility of one less eigenvalue being exceeded by A. The loss
of an eigentvalue is indicated by a change in éign between two
consecutive principal minors of R (M), hence the total number of
eigenvalues lost on application of m constraints is s[ R(M)]J.

The actual number of eigenvalues exceeded by A is thus given by
IV = [P - sLR(VI ' (5.5.7)

A full proof is given in Simpson [60]. In addition, he proposes a
Newton algorithm for location of the roots of a scalar function of A
as l[defined in Section (5.5.2). The algorithm involves inversion of a
matrix of order (m-1) for each trial A and may thus be expensive in
computer effort for large m values. - '

This algorithm is not utilised in this work. Instead, a
procedure for directly scanning [f?(l)l has been developed, and is
described in Section Al.3.3. It has been found far superior to the
methods of the prévious sections and is incorporated in the Kron's
method programs.

In conclusion, the extended Sturm sequence algorithm is an extremely
efficient way of solving the non-algebraic eigenproblem, and is the
major reason why Kron's method is now highly competitive with other

techniques for large structures.

5.6. CORE SPACE REQUIREMENTS

! The principal advantage of Kron's method in the context of large
problems is its relatively low demands on core space, thus allowing
very large problems to be handled "in-core". The size of the composite
system frequency matrix R (R) is éoverned by the number of constraints

m and not by the order of the base system n There is thus no

implicit need to reduce the number of freedst, hence very
accurate results may be obtained; equivalent in fact to an analysis of the
fully assembled structure with all freedoms retained. In this section,
an approximate expression for the core space reguirement is obtained, and
the optimum way of defining the R(A) matrix evolved.

The Kron determinant is fully defined by the matrices G and D
according to equation (5.3.5). The general term (equation 5.3.8) may

be written
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n
: t g.8 . . s
r.., = y SRk 5 i1 (5.6.1)

1] k=1 (N = ) k=1 (A - M)

The components may be analysed sequentially with contributions
to G and R stored on disc, thus space for one component only is re-
quired. With a typical component order of nos and assuming that a
transfomation method is required to obtain the complete
eiggnreduction, the core required is approximately ni locations.

IL Provided m & n_ (approx.) these locations are available for the ,
formation of the R (M) matrix. In addition, storage must be available
for the D matrix (nt locations) and the G matrix, the requirement
for which is not immediately obvious.

The formation of the G matrix is indicated in equation (5.6.2)

below.

9.9,..-9 o |l P, Py - P (5.6.2)

(nt x m) (nt x nc) (nC x m)

Assuming all constraints only involve one coordinate from each of two

adjacent component, then each constraint pc. will only have non-zero

products with O (2no) eigenvectors. Thus in edch column g’i, there

will be ano non-zero entries, and the total number of non-zero entries in
G is anom.

Each term in R (M) represents the "linking'" between two
constraints, and will be non-zero only if qthe cons;traints refer to a
common component. This determines the number of non-zero terms in each
series for rij as indicated inkFig. 5.1. An appropriate figure for
the total number of non-zero 35 5 terms (equation 5.6.1) involved in R (M)
may be obtained by assuming that each location in the lower triangle of

R (A) has n . This gives (nomz)/a non-zero a};j terms as against
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FIGURE 5.1.

ILLUSTRATION OF THE DEPENDENCY OF CONSTRAINT LOCATION
ON THE NUMBER OF NON-ZERO TERMS IN
EACH ELEMENT OF R()\)

(1) Constraints i and j refer to the same components

N

N~ pi/” -

Non-zero 83 and gkj terms coincide - maximum of 2n0 non-zero

terms in series for rij'

(2) Constraints 1 and j refer to one common component

N~ S~p."
1 J

Non~zero 8 and gkj coincide only when k relates to component

B, hence maximum of I NOn-zero terms in series for rij'

(3) Constraints i,j have no common component

Fk\~Pi/)z “k\‘p,;;ﬁ o , “"W:

J

All 8 X gkj products will be zero, so rij = 0.
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(2nom) non-zero g, . terms. Thus for m > L, storage of the g-terms
requires less core and is preferred, even though slightly more work
is involved in the formation of R (\) for each trial A. The,

approximate total core requirement is given by

2

CKRON = n_ o+ Z%t + 2no@ (5.6.3)
Component Base Non-zero terms
eigenreduction System and in G
+ RN composite
- system
eigenvalues

» Clearly the minimisation of n, will have a favourable effect on
CKRON but will inevitably lead to a larger m value. It must be
remembered that the effort involved in the full solution of R (M)
ig greater than for an algebraic eigenproblem of the same size.

The optimum subdivision of the composite structure will often be
governed by the obvious advantages of repeated components. The question
of how to take full advantage of repetition both in terms of components,
and within the G matrix is discussed in Chapter 7.

In the following Chapter, technigues which greatly reduce the

above core requirement are introduced.

5.7. A SIMPLE EXAMPLE

A simple spring-mass system comprising 3 components is shown in

Fig. 5.2. This example is selected to demonstrate the theory of
Kron's method including the special case of persistent eigenvalues.
The masses and spring stiffnesses are as indicated in the figure.

The component eigenreduction may be verified ast
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A B c
A 7
A=r02_1 =[o1] °A = Mo 3/2_1
bo-|Ws WE|[Pe-|Ye Yo|e - |3 Y3
Yz e Yo "o Y5 /a5
helce
DV = [ 0-A, 22, 0=}, 1-A, O-A, 72 |
and )
) - r A¢ B¢ C¢ _j
The two constraints are X, = x3 and LX)y = x5 , hence defining
xCl = X2 X’+
x02 = X3 X5
equation (5.2.1) is written as
X2 1 ‘ 0] y2
T
X o ), —-E)____fi_—— Vs 1
= = = y
X x, 1 0 T2 ¢
2
x5 0 1
Thus T, = T._ = I in this case and we have
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‘ Pc = -1 0
0 -1
1 0
0 1

each column involving the set of internal forces in that constraint.

The G matrix is then calculated from equation (5.3.6):

%
G = ¢c X Pc )
i i i ) _- i
L 0 L » 0 o] -1 0
NE) N
L o -+ 0 0 0 o -1
N2 N2
1 1 1 1
£ = o) = =
2 2 3 2 2 © . ©
1 1 1 1
- = = o} = - =
2 2 2 2 off © T
o X 0 0 0 L
V3 | N3
o A2 0 0 0 2
vz V3
R\ = G?t D_l(k) G may be verified to be two 2 x 2 matrix
' [ X X J sv)
R\ = e > (
[ _% X] [/12 A %]
o-» T T & o-x "o~ TH -

Rough plots of r, (i.e. one constraint applied) and

(rll Xr.,. - rgl) (i.e. both constraints applied) are shown in fig. 5.3.

22
The eigenvalues of the intermediate and composite systems are

tabulated below, emphasising Rayleigh's theorem:
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BASE SYSTEM 0 0 0 1 % 2 (6)
INTERMEDIATE SYSTEM 0 o* 2, 32- 3* (5)
COMPOSITE SYSTEM 0 1 1 ) (W)

*  Component C is unaffected by the first constraint and so its

eigenvalues are merely carried through.

Note that in Fig. 5.3(b), the double pole at A = O indicates the loss
of 2 eigenvalues (from the base system), while the finite non-zero values at
A=1and A= % indicate 'no change', being the superposition of one
pole and one zero. The s[ R(M)] values in the table below this figure
may be readily checked, confirming the operation of equation (5.5.7).
A single "zeroing" term is encowntered on the leading diagonal of
the factored form of each of R(%), R(1 + e)and RG + €),
confirming the eigenvalues to be "gained". The corresponding

eigenvectors are thus calculated by the equation (5.4.5) as!

A E 1 %
¥y 1 ~1 1
Y2 23 0 “E
y} - 13 1 1
v, -1 -1 g

_10
As expected from Rayleighs principle, a perturbation of e = 10

produced an error in the vector in the fifﬁh decimal place.

However, no "zeroing" term is encountered using R (0 + €)
indicating a "persistent'" eigenvalue. Clearly a linear combination of
the 3 coméoneﬁt rigid body modes satisfying the constraint
transformation is { 1 1 1 1 i.e. the composite system

rigid body mode.



- CHAPTER 6

s

- APPROXTMATIONS IN KRON'S METHOD

~

6.1. ~INTRODUCTION

Kron's method, as established in Chapters 4 and 5, involves the

application of m constraints to a base system comprising n, degrees of

freedom. . Provided all the constraints are applied, and th: full square
set of eigenvectors and assoéiated eigenvalues are émployed from each
coiponent, results obtainable from an analysis of the Kron determinant
will be ‘'exact', that is equivalent to an analysis of the fully
assembled problem. In otherrwords,,thé procedure involves no

inherent loss of accuracy. This appréach is termed the FULL KRON METHOD.

However, in most practical situations, only the lower composite
system eigenspectrum is of interest, and it would clearly be
aavantageous to be able to obtain approximate results in this range
with good savings in computer time and core space.

In this Chapter, methods of introducing approximations into Kron's
method are developed, and their effect on the accuracy of the
subsequent solutions discussed. Simple beam and plate bending exampleé
provide numerical illustrations.

Two forms of approximation are introduced

(1) Reduction in the number of modal freedoms used to

represent each component,

(2) Reduction in the number of constraints applied to

couple the components.
The former is of the Rayleigh-Ritz type, resulting in the stiffness of
cach component being overestimated. The latter may be termed a
Weinstein type approximation which tends to underestimate the stiffness
at the component boundaries. When used simultaneously, a hybrid method
results in which the opposing effects tend to cancel each other out.

It is emphasised that these approximate methods are intended to
compliment the full Xron method and to further utilise the implicit low
core space demands of the approach. _

Finally, an economisation procedure in connection with the scanning
of the Kron determinant, whether full or approximate, is introduced.

The computational advantages of these methods are discussed in

detail in Chapter 8. .



84

6.2. REDUCTION IN THE NUMBER OF COMPONENT MODELS

6.2.1. Introduction

The effect of inciuding a redﬁced number of component modes while
still applying the full set of m constraints is now considered. The
approximation is of the Rayleigh~Ritz type in that the composite system
is constrained to vibrate with a reduced set of freedoms. ZFigenvalues

obtained are thus upper bounds on the 'full-solution' eigenvalues.

6.2.2. Truncation of Receptance Series

Initially, the approximation is discussed in terms of truncating
the receptance series  for each component.
Considering a typical component of order N, the modal matrix at

the connection coordinates is partitioned according to

o}

| & = [‘;¢Cl°¢ca] (6.2.1)

C

where © d)c contains the lowest,no modes and 0¢c contains the remainder.
The full 1 receptance matrix at 1 the n 2 connection coordinates

(Chapter 4, equation (4.2.5)) is

and introducing the partition of equation (6.2.1):

0 o} 0 o_=-1

R. = o P D 0 ot
c [ €1 %, ] 1 ¢Cl

on-1 ot

0 D, ®?
2

o} o  _~lo o} o _-~lo
= L] D + &P D, o (6.2.2)
Cl 1 cl 02 2 02

where oDzl involves the lowest n eigénvalues.

Each term in R is given by
c



ng 0¢ k.0¢ . .
T = o '—E;E'——“‘g“ ) (6.2.3)
Pq k=1 (°N_ = A)

0

. o . .
where the component eigenvalues Xk are arranged in ascending order.

Inclusion of the lowest n component modes yields the approximate

. 1
receptance matrix

D e, (6.2.4)

with each term a truncated receptance series (BK64, p. 215)

n

01 Oé 0¢ .
°p - § Rk dc (6.2.5)
Pay k=1 (°>Lk_m

with associated error

n O (o) ’
o % %

89

°epq1 i k:nZ +1 (O3 - W) . 0
°1
This approximation is reasonable proyided oepql << orpql , and clearly
the number of terms that must be included in
Orpql depends upon the convergence of the series in equation (6.2.3).

Errors will be larger in general for diagonal terms, as all the terms

in the series for °¢ will be additive.

P
The terms include% are intended to represent the component at low

frequencies, thus A may be confined to the low end of the spectrum.

non-normalised eigenvectors <b° are employed, the moadal mass term
appears explicitly in the receptance series:
)
o
°rpq - p —BEox ' , (6.2.7)
k=1 mk( kk - N

Ir
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hence for kk >> A, the denominator may be approximated to Omkoxk’
which is equal to okk, the generalised stiffness. Convergence thus
depends on the growth of the generalised stiffness terms, and the
customary decrease in eigenvector amplitudes in the higher modes.
However, it is known that receptance series for beams and plates in
particular converge slowly for 'slopes' and higher order freedoms
[64, Ch. 5].

In general, the generalised stiffness increases in a manner not
too far removed from that of the eigenvalues. Hence a possible criteria
wo#ld be to discard component modes corresponding to eigenvalues

Saiisfying

N > Nyxx10 (6.2.8)

where XMAX is the maximum frequency square of interest.

Continuing with the Kron formulation, the matrices o[)l and
ch may be gathered for all components into the composite diagonal

matr%ces Dl and ¢c , so that the approximate composite system

receptance matrix is 1 given by
t -1 .t t -l
Rl = Pc¢cl Dl (bcl Pc = Glnl Gl (6.2.9)

Each term in Ril is a truncated series:

n

1 g .8 - ’
1 p) Seifi ' (6.2.10)

r. . =

U ae o

where there are ny base system eigenvalues K; in Dil' For simple

constraints, each term in R 1 is a sum of receptance series from

b
Tst

satisfy a convergence criteria separately, but it is quite possible

two adjacent components, e.g., (arp + ). Each series may
for the included parts to cancel to some extent whereas the errors
(ae + be ) do not. The combined error may appear large.
pay stl
In short, the extent of the effect of a reduction in modal freedoms
when viewed in terms of truncating component receptance series is

unpredicable.
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6.2.3. Effects of Truncation in Beam Examples

Two simple beam examples (Fig. 6.1), each comprising 2 components,
were used to test the effect of truncation of receptance series.*

Both examples involve the two constraintsi-

X (lateral displacement continuity)

%7 9

xg = X (slope continuity)

The natural frequencies of the components are shown in TABLE 6.1,
while the first 4 composite system natural {requencies with_all modes
in¢luded are given in TABLE 6.2. The resulting percentage errors
in the first L4 composite system natural frequencies for increasing
degrees of truncation (starting with the higheet mode) is shown in
Fig. 6.2 for both examples. ' 4

In the case of the fixed-fixed beam, the loss in accuracy for
frequencies f2 agd fl+ is quite reasonable. For example, the error
in f2 (= 97.67 Hz) only exceeds 1% when component modes at 776 Hz
and above are omitted. However the accuracy of fl and f3 decreases
disasterously, even on the omission of component modes with frequency
2 orders of magnitude greater. )

A A similar pattern is evident with the cantilever beam, but here it
is the second and fourth frequencies which lose accuracy extremely
rapidly. ] V

It is thus clear that in certain situations, omission of even one
or two component modes can lead to unacceptable errors, and that

truncation on the basis of equation 6.2.8 appears impracticable.

6.2.4. The Cause of Large Frrors

An investigation into the cantilever beam example illustrates the
mechanism behind the large errors réported in the previous sub-section.

Here, the frequency determinant is given by

r2 )

11700 = To1 (6.2.11)

(r

lR()\)l = ryy Ty =

r r

21 "2z

the ¢lements r5 5 also being functions of A. The roots of | R | at N

and A\, involve the expression in equation (6.2.11) zeroing with 110 Ton

3

2 dimensional, L degree of freedom beam finite elements were employed
(APPENDIX 5).

*
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TABLE 6.1.

COMPONENT NATURAL FREQUENCIES

{BEAM EXAMPLES) (Hz)
A and B C
1 22.26 0.0
2 139.66 0.0
3 393.61 141.79
L 776.51 392.86
5 144k, 26 771.46
6 2319.50 © 141%.59
7 2677.17 2213.325
8 6033.46 3432.70h
9. 5716.37
10 6311.20
TABLE 6.2.

EXACT COMPOSITE SYSTEM NATURAL

FREQUENCIES (Hz)
FIXED-FIXED
BEAM CANTILEVER BEAM
35.41 5.56
97.67 2. 88
191.81 97.71
218.29 191.79
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and Toy of comparable magnitude. However, the roots at Ka and Kh

result principally from the term r zeroing, with r_., small. This

indicates that the slope continuitézconstraint is higily active, physically
implying that & high bending moment is involved in the formation of
the composite system mode. A high internal moment implies high
curvatures in the region of the compgnent junction. However, the
component normal modes in Kronsmethod are calculated with free,
unloaded connection coordinates, and thus such high curvatures will
only be present in high component modes. Truncation of these modes
seriously affects the ability of the components to represent the
composite system mode.
As an illustration of this point, fig. 6.7% shows the first &4
composite system modes for the full number of component modes and for
a truncation case. Note how the curvature in the region of the junction
is reduced in the approximate modes corresponding to kz and kh.
Numerically, the effect may be explained by examining the series
for the T terms at kzz

(6.2.12)
22 k=1 (7\1? - A)

®ile
(@]

where K;, (k = 1, nt) are the base system eigenvalues arranged in
ascending magnitude order. If there are s base system eigenvalues

less than Kzﬁ

' 2 2

5 g n

= -—ZTEELET* = bH ““égg“—— (6.2.13)
k=1 ()‘2 - kk) k=s+l (\{ - ?\2)

Fig. 6.4(a) illustrates the variation in the magnitude of the terms in the
,p With A, = 0.480 x 107 (cf. exact 0.48017 x 107), while

Fig. 6.4(b) plots the successive partial series summations against

series for r

increasing number of terms included. It is clear that the series does
not converge decisively, and with the cancelling out of the low
frequency terms, even omission of the last 3 terms seriously affects
the value of r__. In such a case, the resulting yalue of T is

22
negative, implying that a larger value of Xz is required to restore the:
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FIGURE 6.3.

CANTTIEVER BEAM MODE SHAPES

(not to scale)

(FIRST 4 MODES)

f1 - 5.56 Hz

flA= 5.66 Hz

(MODES IDENTICAL)

fs = 34.88 Hz
f2A= 58-14 Hz

97.71 Hz

f =
f3A= 97.84 Hz

(MODES IDENTICAL)

£, = 191.79 Hz

f4A= 212.2% Hz

—p—— BEXACT MODES

—— — ——

APPROXTMATE MODES

The fip frequencies, and associated mode shapes
(dotted lines) are for ths approximate system with the
lowest 5 modes included from component A, and the

lowest 6 modes from component C.
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balance in equation (6.2.13), as demanded by the Rayleigh-Ritz principle.
To summarise, significant errors may be introduced by truncation
where large internal connection forces arise, for example where a
connection boundary between components is very flexible.
Goldman (1969) [56] reported a form of component mode method utilising
rigid body modes and unrestrained component modes and remarked,
without any details, that "quite 1arée errors could be introduced in

certain ill-conditioned circumstances'".

6.3. USE OF STATIC MODES IN MODAL REDUCTION

6.%3.1. Static Constraint Modes

The attraction in being able to successfully utilise a much reduced
number of component modes is three-fold. Firstly, the necessity to
calculate the complete set of component modes is removed. Secondly,
the core requirement‘for the matrix G (Znom locations) waild be
greatly reduced where the reduced number of component freedoms ng
satisfies ng < n, - Finally, the series for each term in the °
Kron determiflant would be reduced, thus speeding up scanning.

The problem iz to define extra modes in addition to the lowest few
component normal modes to provide the 'higher frequency freedom' associated
with large constraint forces. This may be achieved by using static modes
corresponding to unit forces in turn at the connection coordinates of the
components, all other forces being zero. Hence for a component without
rigid freedoms, the stiffness matrix is non-singular and the ng congtraint

modes OZC are calculated for A = O by ¢

K°2 =X (6.3.1)

. r{"xi"xc}: {o I}

The duality of this approach with the component mode method is again

where

K
i

evident in that the latter uses constraint modes which correspond to gnit

displacements.

For a component with rigid body freedoms, the situation is a little

more complicated. Three possibilities for forming constraint modes are:



(i) use of M in equation (6.3.1) in place of K,
(ii) combination of forces at commection coordinates to
form self-equilibrating force systems

(iii) wuse of (!(O - uhﬂc) (non-singular) in place of K,

The first alternative, although used successfully, generated very

95

'high frequency' constraint modes with the result that extra normal modes

are in general required. The second is undesirable in that it is not
easily generalised, indeed it is impossible for the cantilever beam
example unless additional 'dummy'connection coordinates are specified.
The final alternative has been used with complete success in the
examples tried. The simultaneous iteration technique (8.I.) is
employed for the few lowest compohent normal modes (see sub-section
7+3.1.). If i eigenvalues are so found, the additional trial vectors

which are always used in S.I. yield approximate values for ki+l and

Xi+2 etc.. A suitable choice for p has been found to be
N ha '
e (6.3.2)

thus guaranteeing that ( Ko - “’Mo) is non-singular.
It may be noted that the amount of work involved in the formation
of the constraint modes is considerably less than for the same number

of additional narmal modes.

6.%.2. Orthogonalisation of Constraint Modes

The component receptance series must be formed from a set of
orthogonal vectors, thus the n  constraint modes()zc:must be
orthogonalised w.r.t. the set © of n, ~normal modes included OCbn.

This is carried out at 'zero frequgncy', hence the resulting
ortho-normal constraint modes may be termed static modes irrespective
of the method by which they were generated. The Gramm-Schmidt process
[46] is employed as indicated below.

The first constraint mode may be expressed as a linear combination

of the complete set of component eigenvectors dbk, k=1, n-
n "n
o o -
z = = ¢ = X o ¢, + z (6.%.3)
- % k=1 LR k=1 &K ‘1

(The superscript o is dropped here for convenience.)



The orthogonality conditions

¢Lt§.KO EC -= O’ k=l, nn : (6-3.4)
1 o .

are introduced, and with equation (6.3.3) yield the coefficients

1 t
% o= A Koz (6.3.5)

(Note that in the case where ¢ , 15 a rigid body mode, the

orthogonality condition must refer to hﬂcg. Hence z is

calculated from equation (6.3.3) and normalised such that

(6.3.6)

1}
-t

-t -
z. M,z
C:L [o] C:L

Finally, the "pseudo-eigenvalue" for the mode is calculated from

- —t - i
xcl = Z°1 K, Z°1 (6.3.7)

Subsequently, Z c is treated as an additional normal mode and the

process repeated f%r Z c.*

2 reasonably fast, involving simple matrix

The process is
operations. An advantage is that unnecessary constraint modes may be
automatically discarded, further reducing the number of freedoms. The

initial work done is calculated from

¢y = 2 .l(o Ze.
i i
°2
Clearly if o << 1, the initial constraint mode contains a high

-

proportion ~ of modes included so far, and is less likely to be of

importance in the description of the component.
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The n, orthogonalised constraint modes are gathered together Iin-
o .

o
Zc’ and

the component modal matrix is now given by

o, o©
® = [ ,an. Z:C ]

o

The total number of component modal freedoms is denoted by

where n. << n_ (usually) and n <n .
n o ¢, o,

The total number of modal freedoms in the base system is denoted by

a 3 N
& i=1 8o
and for a worthwhile effective condensation of freedoms we require
ng <<n £ '

It would seem sensible, on physical grounds, to include component
normal modes up to a given reference A value for all components. If the
maximum normal mode eigenvalue from each component is placed in a set S,
the minimum and maximum of this set are designated kmin and Amax
respectively. Thus Amin and xmax should ideally be close. An additional
useful parameter is hc o the minimum constraint mode pseudo-
eigenvalue in the base system.

The technique described in this section is designated the MODAL
APPROXIMATE KRON METHOD.

6.%3.3. The Skew-Vector Effect

In general, the staticly orthogonalised constraint modes of the

previous section violate the component mass matrix orthogonality condition

i.Ce

(6.3.9)

1
i
=

ZZ.MO“’}; 4 0 itk i
1
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Away from A= Q, the constraint modes form a skew set of vectors

in the space spanned by the strictiy orthogonal set of n, component
normal modes. Clearly the receptance series orthogonality condition
is violated, and the eigenvalues obtained from an analysis of the
Kron determinant will cofrespond to a different base problem.

Let hﬁ() be that part of the component mass matrix
A

responsible for the coupling terms (assumed small) in the modal mass
matrix. It may be shown that the first order change in azn
eigenvaluekhi due to M 0. and assuming no change in eigenvector,

A

is given by

t
AiA = - kicbiMOAcpi (6.3.10)

It is thus not possible to say in what sense the zero of the Kron

determinant will be altered. However, the effect should be small

provided A << XC . This effect is in addition to the Rayleigh-
min

-Ritz effect, which with consistent mass formulation yields

eigenvalues which are ﬁpper bounds.
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Fortunately, the eigenvector subsequently calculated includes
only the Rayleigh-Ritz effect amd the Rayleiéh quofient obtained from
the generaliséd stiffness and mass terms RRQi will always be an
upper bound. ‘

The magnitude of the skew-vector effect may thus be investigated
by defining the VARIATION NUMBER for each composite system eigenvalue

by

AR

YRy

v x 100 % (6.3.11)

6.3.4. Beam Examples

The importance of including constraint modes is illustrated with
reference to the beam examples of Section 6.2. The composite system
natural frequencies were calculated for 4 test cases, 2, b, ¢, d
corresponding to, the inclusion of an increasing number of component
normal moges. Details of these cases appear in TABLE 6.3.- fMAX
relates to the maximum component normal mode frequency included while
f relates to lowest constraint mode pseudo-frequency. Natural
frgéaencies above this latter datum were found to be extremely
inaccurate and are not presented.

On physical grounds, it is desirable to include component normal
modes up to a common 'cutt-off' frequency, hence the choice of normal
mode inclusions in the cantilever beam case (see TABLE 6.1).

The results are presented in Figures 6.5 and 6.6 to illustrate
the convergence of natural frequency with increase in normal modes
included. The locations of fmax and fC . are indicated for each
case. Convergence to the lower frequen%%%s is extremely good, and
takes place in order of ascending frequency monatonically from
above as expected. In both examples, all approximate natural
frequencies below the relevant fmax are within 1% of the full solutions,
while accuracy drops away between fmaX and fc .

Figure 6.7 gives plots of frequency M rror and variation
number for the 4 cases in the cantilever beam example. Comparison
with figure 6.2(b) emphasises the importahce of constraint modes in
this example. Variation numbers are within & 0.2% for natural

frequencies below f . . It would thus appear that 'zeros' of the Kron

determinant may be safely used below the relevant fmax' At higher



TABLE 6.3.

BEAM EXAMPLES - TEST CASE SPECIFICATIONS

EXAMPLE: Fixed-Fixed Beam Cantilever Beam
CASE: a b ¢ a a b c d
Nomor Hoges | 1) {2220} 5y | () | (1,2) [ (2,9 (5,0 ,5)
Constﬁ:inif%des (1, [, @, ] Q0] @2 a,2)fa,2)]a,2)
fuax (Hz) 22.26139.7) 393.6] 776.5] 22.26{141.8{393.6] 776.5
fCMIN (Hz) 194;9' 632.6}1365. 4} 2460.5§159.2 |391.1}914.3}1690.3

First number in above
brackets refers to
component A, second to
component B. )

First number in above
brackets refers to
component A, second to
component C.

Full solution
involves:

(8,8) Normal modes

(8,10) Normal modes
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FIGURE 6.5,

FIXED-FIXED BEAM EXAMPIE -~ PIOT QOF COMPOSITE SYSTEM
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FIGURE 6.6 102

CANTTIEVER BEAM EXAMPLE -~ PLOT OF COMPOSITE SYSTEM NATURAL
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CANTILEVER BEAM EXAMPLE - _PLOTS OF NATURAL FREQUENCY ERROR
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frequencies, the "skew vector“ effect is more 1mportant and much
larger variation numbers are observed.

It may be noted that the 'unit shear force' constraint mode was
omitted from the representation of component & in all cases as its
;g ratio was 0(10-4). Inclusion of this mode was found to yield

1 . . Lo
marginal improvement in accuracy.

6.%3.5. Plate Bending Example No. 1

The plate bending example in Figure 6.8 was‘used to further
investigate the accuracy obtainable using constraint modes, and the
extent of the skew-vector error. The example comprises 2 cantilever
plate components to be coupled along the line XX. Conforming plate
bending elements having L nodes and 4 freedoms per node were employed
(APPENDIX 5). The base system thus comprises 96 freedoms, and connection
involves 12 simple constraints. No use of symmetry was made in this
illustrative example.

TABLE 6.4 gives the specifications of the test cases carried out.

In cases A through E, all 12 constraint modes were included, while in F,

apparently less important constraint modes were cut out, according to
2 -2 e
= << 10 “ (Section 6.3.2).
1
The 'full solution' eigenvalues were established via the full Kron

method and a direct assembly method. Tests were then carried out reducing
the number of modal freedoms without constraint mode éempensations. Loss
of accuracy on a similar scale to that experienced with the beam
examples of Section 6.2.3 resulted.

The results of the test cases of TABLE 6.4 are presented in

TABLE 6.5 include
(i) up to 8 composite system eigenvalues (as calculated

by the Rayleigh quotient)
(1i) percentage eigenvalue error (w.r.t. full solutions)

(iii) variation number (%)
The value and 'location' of the maximum eomponent normal mode eigenvalue
(Amax) and the minimum component constraint mode pseudo-eigenvalues
(x - ) are also given.

min

For cases A through E, the elgenvalue errors and variation numbers

are in general within 1% below h ax? while between A _ and A

mi
accuracy rapidly deteriorates and variation numbers can become very large.
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PLATE BENDING EXAMPLE WO.1

3 2 1
é 5 b
) COMPONENT 1
q ) 7 (with node numberings;
4 freedoms per node)
12 11 1o
15 1 13
X e = X
COMPONENT 2

Overall size of coupled plate 2' x 8!

Component orders ng, = N, = 48

Plate bending element dimensions 12" x 12" x 0.1"
E = 107 1b/in2, v =% r@= 027 1b/in3

Order of base system = 96

Number of constraints = 12

Order of composite system = 84
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TABLE 6.4.

PLATE BENDING EXAMPLE NO. 1

SPECIFICATION OF TEST CASES

C! FOR FEACH COMPONENT
ASE NO. OF NORMAL NO. OF CONSTRAINT TOTAL NO. OF
MODES INGLUDED MODES INCLUDED - COMPONENT FREEDOMS
A 1 12 13
B 2 12 14
c 3 12 15
D L 12 16
B : 5 12 17
F L . 9* 13
* C
CONSTRAINT MODES EXCIUDED IF 53 < 107
1




PLATE BENDING EXAMPLE NO. 1 =~

TABLE 6.5.

RESULTS OF TEST CASES

FULL
CASE A B C D E F SOLUTTON
EIGI\E%YALUE Eigenvalues (determined to 5 places) (Calculated from R.Q.)
1 T 7979 | 74,979 74,931 74,934 74,933 74,937 74.931
2 586.77 SLT.80 541.80 541.80 541.80 541.80 541.80
3 - T 586.76 __ 568.87 568.86 - 568.84 576.28 568.84
L _2505.6 | T 2220.% 2220.4 2205.4 2220.4 2204.9
5 751033 2455.0 | 2L400.3 2400.3 _o2s11.2 |l 2389.6
6 6439.7 626L.6 6113.6 626L.6 6111.4
7 176L46.0 | 6477.7 __626h.6 |l 10215.0 6257.3
8 o 13822.0 | 1378L.0 | 21866.0 13247.0
Eigenvalue error (% relative to full solution
1 T 0.064 0.064 0.004 0. 004 0.003 0.008
2 8.30 T 700 T T 0.0 0.0 0.0 0.0
3 T 3.15 __ _0.005 0.004 0.0 1.310
4 13.64 0.703 0.703% 0.023 0.703%
> 21h4.3 2.74 _ _ O.548 0.448 J _ 5.090
6 5.37 2.51 0.03%6 2.51
7 _ 1820 5.5 | _ 0277 | 63.25
8 b=y .13 » 65.06
Variation no. (%)
1 T TI1.I8 1.215 0.045 0.052 0.00L 0.052
2 Ly.123 ¥ = 0.075 0.005 - 0.004 0.001 - 0.003
3 — 46.551 | _ __0.120 0.141 0.0L4 0.039
L 4,054 2.453 2.860 0.143 2.863
5 - L0.604 24.281 | 0.421 0.631 | _ = 0.077 _
6 55,441 - 0.218 0.360 - 0.218
7 12.171 63.928 | _ _ _ 0.2 29.542
8 — 20,074, 1.592 - 3.039
Aax(--2 29.734 533.93 1151.4 5727.0 9184.4 5727.0
Aoy 1226.6 L4460, 4 19792.0 27049.0 51525.0 | 41741.0

LOT
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In case B, the first eigenvalue to exceed A was calculated to
illustrate the total loss of accuracy expectg%? The excellent
convergence of low composite system eigenvalues for increasing

number of component freedoms is illustrated in Figure‘6.9. A general
accuracy criteria might be that

"component normal modes should be included up to the

.highest composite system X value of interest'.

The results for case F, where only 9 out of tﬂe possible 12
constraint modes are included (omitted modes correspond to the 3 lateral
displacemenfs at the connection boundary nodes) show that while some
composite system eigenvalues are unaltered, others are affected appreciably.
Care must thus be taken when excluding constraint modes.

‘ Finally, it is noted that there is no consistant correlation

between variation number and eigenvalue error.

6.4. REDUCTION IN THE NUMBER OF CONSTRAINTS
6.4.1. Introduction

In this section, a technique is presented which allows, in certain

circumstances, a reduced set of constraints to be employed to connect
components in Kron's method, while approximately retaining the low
frequency composite system characteristics.

The attraction in being able to reduce the number of constraints
which have to be applied is not only that the core requirement for
§ G (z 2nom) is reduced but also that the size of R is reduced.
While the saving in core for G is roughly linear in m, the
saving in core space for R , and in the computer effort required for
the frequency scanning of R vary as m2. Very significant savings may thus
be made.

If constraints are applied sequentially to the base system, a
series of intermediate systems are formed. By Rayleigh®’s theorem,
application of each constraint raises, or at least does not lower, the
eigenvalues of the current intermediate system.

With 'simple' constraints, the pattern of "'raising'" of any eigenvalue
is generally unpredicable, as indicated in Fig. 6.10(a); The principle

of the technique is to express the m simplé constraints in generalised form

by utilising ideas from Weinstein's method (Chapter 3), such that
application of the first few generalised constraints produces the

maximum raising of the lower eigenvalues (Fig. 6.10(b)).
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FIGURE 6.10.
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The te?hnique is essentially limited to situations where a number
of gimple constraints link two adjacent components, that is where
the value of m is likely to be large anyway. A two-component plate
bending example is included to illustrate the efficiency of the
technique. _ .

It is assumed at this stage that the full set of component modes is
empldyed. Hence the approximate eigenvalues obtained will be lower
bounds on the exact ones. '

I

6.4.2. Generalisation of Constraints

Assuming simple constraints, the composite system frequency

equation in Kron's Method is given by
t -1 .t : ,
Rc = PCQJC D ¢C PC ¢c =0 (6.4.1)

where each column in Pc e.q. P 5 defines a set of internal forces
in the jth. constraint. The technique involves the definition of a

transformation,

c = U c ; - (60402)
(mx1) (mxmg) (mgxl)
where U defines mg independant linear combinations of the m simple

constraints. Clearly mg < m. Hence a set of mg generalised constraints

are defined by

EC - P U (6.4.3)

c

and the 'reduced' Kron equation is defined by

=1

Rc = Poo, Do P, = 0 (6.1.1)

The problem is thus to define the mg generalised constraints in Pc
such that the desired eigenvalue raising effect of Fig. 6.10(b) is
produced.

6.4.3. Natural Constraints

In Weinstein's method for infinite systems (Section 3.4) a finite
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series of constraints is applied in lieu of an infinite series to
obtain accurate lower bounds on the final system eigenvalues. This
suggests the possibility of obtaining the same effect in finite systems
having large numbers of constraints. ‘

The basis of this method for defining generalised constraints is
the important result (Section 3.%.3) that "if the first constraint is
taken as the lowest eigenvector of the baée problem, then the lowest
eigenvalue is completely raised".

If the-first constraint is‘defined by P 1 the Kron determinental
équation is given by

n

t ($, pp)°

X s = 0 (6.4.5)
=1 (7&;— A)

From Weinstein, complete raising will occur if

¢ p, # O
$fp, = 0 (k=2 ) (6.1.6)

Here, p 1 represents a set of internal constraint forces, hence
equatlon (6.4.6) may be given a physical interpretation:
‘ "For complete raising of Al no work shall be done
\by the set of force pllover the base system
modes ¢k,&=2,mm
alternatively ‘
"For complete raising of )‘.i, ¢1 must do the
maximum amount of work over p:ff.
This condition is clearly satisfied by P, = d)l. The choice of
= ¢2, p3 = ¢3 then defines the series of constraints to be taken.
In our situation, p 1 1s almost certainly restricted to a subspace
of the total space defined by thenibase system freedoms,
corresponding to the connection coordinates. Hence the Kron equation is
"t (¢ p —
ok - o0 6.4.7)
- k=1 (kﬁ -\ . .t
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The set ofn*;partial eigenvectors d)o are linearly dependent to
degree Cnt; m), hence it is not possib%e in general to choose a
p, vector to satisfy the equlvalent of equation 6. 4 6. and produce

oompiete ralslng. Instead, kl satisfies

0 1

0
NSNS

and is defined by (see Fig. 6.10(c))
c, "¢
____..—1_._._._1___ = N _q_.._..__.}__. (6'4.8)

By inspection of this equation, it may be secen that choosing P, to

. . 1
do the maximum amount of work over ¢ . will permit a near

1
maximum value of,%i. Hence choose

p = 4)0 ’ (6.4-9.)

Additional constraints are then defined by p = ¢ o etc. Although
not strictly necessary, it is convenient to for% an orth ggondl set of

constraints by the Gramm-Schmidt scheme as follows: Normalise P,

1
‘initially by
ptp =1 , (6.14.10)
“2 4
Then
5 = . .11
Po, = Po " %P (6.4.11)
Utilising the condition
t (6.4.12)
P, P, = 0O L.
1 2 .
yields -
- o - t hond ]
1 © P Pe
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Henge P, is calculated from equation (6.4.11) and normalised by
P c2p02 2 1, and the process extended for P 03 etc..

The advantage of this orthogonalisation is that less important
constraints whére the ratio of post-orthogonalisation
vector magnitude to that before orthogonalisation is less than a given
tolerance may be cut out; )

It is, of course, possible to generate a complete set of m
generalised constraints, however the intention ig to stop short of this
and use a reduced number of constraints. Such generalised constraints
are here termed NATURAL CONSTRAINTS., This theory is one possible way of
defining a reduced set of constraints which approximately
represent the force patterns between components at low frequencies.

The technique has been developed here in general terms. An example
is now given to illustrate the practical construction and effectiveness

of natural constraints.

6.4.4., Plate Bending Example No. 2

The example (Fig. 6.11(a)) consists of 2 cantilever plate components
to be connected along the line XX. The situation differs from that of plate
example No. 1 in-that there are a relatively large number of simple
constraints (m = 24) coupling the components. The same 16 degree of
freedom plate bending elements were employed,.and the base system
comprises 144 freedoms.

A set of , ( <m) natural constraints P 2 is defined using the-
partial eigenvectors of component A. The same set of constraints are

applied to component B, hence the G matrix is defined by

A N A N

- G-A - |®; O Pe| = | ®5 Pg

B N B N

G, 0 &, |I-P, -®C P,
(6.4.13)

If orthogonal natural constraints are used, certain terms in G A
will be zero. In this example, component B's eigenvector are merely a
mirror image of those of component A, so the zeros will appear in G B

also. The natural frequencies of the components of course coincide.



Pm\
s
141!

FIGURE 6.11.

(a) 2 _COMPONENT - PLATE BENDING EXAMPLE (NO.2)

/
fe—2"—]
S X-l T
T é (_W_I_, I S y
N o l
L, 3 | :
3 | N X
v . 3 l E
3 X :
COMPONENT 1 COMPONENT 2
a= 8  t (thickness) = 0.1"  Ee 10/1b/ii?
b= 7‘02“ Q = 0027 Y = %“

Component orders: ??ol e 1?02 = T2
Total number of base system freedoms: n = 144
Number of simple constraints: m = 24

(v) ILLUSTRATION OF SYMMETRIC AND ANTISYMMETRIC
NATURAL _CONSTRAINTS

NO PARTITIONING SYMMETRIC - ANTISYMMETRIC
(w.r.t. boundary)



Hbhedada =

F
R
E
Q
i
E
N
C
Y
(Hz)

FIGURE 6.12.
2 COMPONENT PLATE EXAMPLE NO. 2
PLOT OF SYSTEM NATURAL TFREQUENCIES VS. NUMBER

116

OF CONSTRAINTS APPLTED

(-0-28)
0 2y
27:0 O~ w@-—~O—— @~ - —Q—~ —O—= —-O~— —O o f(,

26-0 - : t
25-0 - |

240

]

23-0 - I

22:0 |

I

'

20-0 - {
!

]
—

i9-0
18+0
17-0
16-0
{5-0
40
{3-0
12-0
1t-0 -

10-0 -

(_qu) (‘1'5") 24
/,O——-O-——o—-—o—-—-—a————o———&“*@*-”@ 2

o)

LA SRS IAAR S S IS SaSRs B snessment cesen I o Y l%
o 1 2 3 & 5 & 7 8 3 10 1t iz 24

. NO. OF NATURAL CONSTRAINTS APPLIED



117

Although the partial eigenvectors ¢ ﬁ may be used directly, it
is physicaliy better to partition according %o
A | AA A
ot - {32 32
i i i

a

. A ° ~
where ¢$ o corresponds to SYMMETRIC connection displacements and ¢ A

C.
L

i .
corresponds to ANTI-SYMMETRIC ones. If a mirror is considered to be
- [
placed along the line XX, symmetric displacements (here w, 3%) do
not appear to change sign in the mirror image, while anti-symmetric ones

2
e
(%ﬁu, 5;%;) do. Each partial eigenvector thus produces 2 natural

constraints in general (Fig. 6.11(b)).

The lowest 6 composite system natural frequencies were determined
on application of 1, 2, 3,.&es.,12 natural constraints, while the full
set of 2L constraints were used to generate exact frequencies.

The effect of the constraint applications on system natural
frequencies is shown in (Fig. 6.12). As expected convergence is
monotonic from below, and all frequencies are obtained to within o
accuracy after 6 constraints. Convergence to composite system eigenvalues
became progressively slower as frequency increased. As a result of the
mirror imaged base system components, the base system natural frequencies
are of multiplicity 2. One of these frequencies must in each case
remain unchanged on application of the first constraint by Rayleigh's
theorenm.

To emphasise the advantages of a reduced number of congtraints
the cofe requirement and scanning time for the R matrix are compared
for the cases of 6 natural constraints and 24 simple constraints. The
lower triangle of R (fully populated) required 21 and 300 locations
respectively, while the former's scanning time for the first 6 frequencies
was a factor of 11.3 shorter. The time spent in generating the natural

constraints was minimal.

6.4.5. Further Discussion

It is anticipated that the generalisation of constraints by the
method of natural constraints is limited to situations where a large
number of simple constraints perform the same topological
comnection. Each constraint set in the base system may be treated
separately with the possibility of a reduction from m, simple

constraints to mg generalised constraints.
o
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Although the above example uses components which are merely
mirror images of each other, the technigue is immediately extendable to

the coupling of unlike components.

Where the partial. eigenvector shapes from all components to
be joined along a given boundary are reasonably similar, then natural
constraints may be generated with reference to either components.
Alternatively, natural constraints could be generated for all
comporients and a procedure devised'té form-an orthogonal set using the
"lowest" few constraints from each. However, where a flexible component
is to bé attached to a relatively stiff component, for example the
connection of an aircraft wing to the fuselage, it is essential to use

the modes from the flexible component.

6.5. THE HYBRID APPROXIMATION METHOD
6.5.1. The Hybrid Method

The approximation techniques of Sections 6.3 and 6.4 may be used
Siﬁultaneously to produce THE HYBRTD KRON APPROXIMATE METHOD for
representation of the low composite system eigenspectrum. : The
reduction in component mode numbers implies an incomplete

description of displacement over the components, while the reduction

in the number of constraints implies an incomplete description of the
forces linking the components. A

The resulting approximate eigenvalues must lie between those of the
constituent approximations. Consider a base system comprising full sets
‘ofrﬁzmodal freedoms and m constraints, and let the hybrid approximation
mode] bg described by ng (<11 ) modal.freedoms and mg(< g? conszfalnts.
If K are the full solutlon eigenvalues, and Kl , A g are
respectlvely, solutions with the modal approximation only and the

constraint approximation only then we have

n, ,m n,,m n_,m
LE B o< At g a8 (6.5.1)
1 1 1
. n_,m
According to Rayleigh's theorem, the hybrid solutions A € & must
satisfy
n, ,m n_,m
\P 8 < 28 8
1 1
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as a reduction in modal freedoms is involved. Equally, they must

satisfy
nm n_,m
LEE < A8 :
i i

as a reduction in the number of constraints is involved. Hence the

desired result

n.,m nm n_,m
LY 8 g 2 BB g 28 (6.5.2)

i i i
is obtained.  The hybrid solution is thus no worse than the least
accurate of the constituent approximate results. Indeed, the effect
of the constituéﬁt approximation is opposite, and thus tends to
cancel out. However, convergence will no longer in general be
monatonic and it is impossible to say whether the resulting eigenvalues
are an upper or lower bound on the full solution eigenvalue.

In practical terms, the combination of the copstituent'approximations
is intuitive, and enables the core space and time savings of both methods
to be utilised. The procedure is indicated in Fig. 6.13 for a
component of order n with a connection boundary involving m, constraints.

Initially nn0 normal modes are obtained where usually n << .
Natural constraints are formed using all (or a subset) of these
modes, number mg (< mo) usually. These natural constraints specify the force
patterns at the component boundary, hence it is logical to determine
constraint modes which correspond to fhése patterns. Hence nco
constraint modes are formed where e < Mg - This has the
advantage that the number of constraint modes is minimised.

The possibility then exists of utilising the constraint modes to
define further natural constraints. Such constraints, when orthogonalised
w.r.t. the existing natural constraints will be in general of high order,
and the resulting increase in the number of constraints has not been found

to justify the increase in accuracy obtained.

6.5.2. Application to Plate Bending Example No. 2

The hybrid method was employed to calculate the lowest 5 frequencies
and modes of plate bending example no. 2 (Figure 6.11(a)) for various

numbers of component modes as indicated in TABLE 6.6. o
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TABLE 6.6

FOR EACH COMPONENT
APPROXIMATTON|NO. OF NORMALINO. oF maTURAL| , NO: OF |TOTAL NO. OF
MODES CONSTRATNTS | CONSTRAINT | DISPLACEMENT
CASE MODES FREEDOMS
n m n n =n +n
no gO Co 80 nO CO
C L 8 8 12
E .6 : 12 12 18
2Ly SIMPLE
FULL SOLUION 72 CONSTRATINTS 0 72

The convergence of the frequencies with increasing numbers of
modal freedoms and constraints is indicated in Fig. 6.14. It may be
seen that the first 5 frequencies are determined to within + 2% in case
C which utilises 12 out of 72 component freedoms and 8 out of 2L constraints.
All frequencies obtained were greatef or equal to those of Section 6.4.4
which correspond to the constraint approximation only.

The possibility of convergence from above and below is indicated,
and indeed an increase in the number of modal freedoms/constraints may
even cause a slight deterioration in accuracy (cf. mode 5, cases B and
C). In this example, 4 out of 5 frequencies are "low" in case E,
indicating that the constraint approximation is tﬂe mére serious one.

The computational implications of the method are fully discussed
in Chapter 8. However, it may be noted here that while the G matrix for
the full solution of this example is of dimensions (1hh x 24),
i.e. 3456 locations, the case C here utilises a G matrix of size
(24 x 8), or 192 locations. The run time for case C is approximately

one~fifth of that for the full solution. !
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6.6. THE CONSTANT PART APPROXTMATION

This téchnique is a device for speeding up the scanning of
,l F{(k)[ when A is restricted to a low eigenvalue range, say
0 £ 2 Ay Itis appiicable to either the full or approximate
Kron methods. ‘
Fach term in R (M) is given by
B 88 ]
rij = z o (6.6.1)
k=1 kk - A :

The terms in this series for which KE >> Ay will remain essentially
constant as A varies over the range defined above. Hence the series may

be divided into a constant part rgj, and a variable part rzj where

: n n
S g Safa o B Bafig
» >+ - , ¢ o @ - LAvE
1d k=1 w(7\12 - A) +d k=n1+1 KE
and
r.. = rY. + r?.
1] 1] 1J

The terms included in rij are those which satisfy '

)‘1‘2>7C

where, for example, A may be defined by
A ] )\lx 102

In this case the maximum error induced in any term in rgj is 1%. For
a given K, a constant part of the R matrix may be formed for all time

as R . Thus
¢

R(M = R (M + R
v C

and for each trial A value, only R v(X) need be evaluated. However
storage will be required for R . in additian to that for R (M.
Clearly the saving in time for each set up of R (\) depends on the
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!
factor /ng.

The effect of this "numerical" approximation will in general

be to raise the composité system eigenvalue. The worst error may be
assumed to lie in diagonal terms rzi, as all terms therein are positive,
hence the errors are additive. With A = O, r;i will be an under-estimate
of the true sum, hence the effect is analogous to a small truncation

of the series (see Section 6.2). ‘

A numerical illustration of the approximation is given in

" Section 8.5. _ o S :
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CHAPTER

THE COMPUTATIONAL IMPLEMENTATION OF KRON'S METHOD
C B

7.1. SYSTEM ORGANISATION

7.1.1. The SystemsEIGL and EIGp

In this chapter, computational systems to implement both the full
and approximate Kron methods, designated EIGl and EIG2 respectively,
are briefly described. Both systems comprisé an essentially similar
suite of programs written in FORTRAN L and developed on the CDC 6400
computer at Imperial College, London University.

A detailed description of the systems, with particular emphasis
on data éupplied by the user and core space requirements, is contained
in APPENDIX 1. Discussion in this chapter is thus limited to the overall
system organisation and the major concepts and procedures used. The
use of computer program symbols is limited to the appendix, where a
reference list is included. )

The computational efficiency of the systems is investigated in the

following chapter.

7.1.2. System Features

The fundamental aim in the application of the theory was the minimi-
sation of central memory requirements to permit as large a problem as possible
to be handled effectively 'in core'. This philosophy requires that all
. major computing operations e.g., factorisation, matrix multiplication
should be carried out 'in core', and that transfers to and from backing
store should be minimised. Two major features are directed towards this
aim.

Firstly, the attraction of Kron's method is perhaps greatest when the
base system contains repetition, both in terms of components and '
linking constraints. In Section 7.2 the concept of a 'minimum data
set' for the description of the base system is introduced. The
computational systems are designed to use this minimum data set
efficiently, in particular with respect to the formation of the R (M)
matrix.

Secondly, the nature of the technique allows the total process to

5

be conveniently divided into four parts:
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Part 1 - The analysis of the base system

Part 2 - Calculation of composite system eigenvalues

Part 3 - Calcglation of composite system eigenvectors
- Part 4 - Calculation of composite system generalised

mass and stiffness terus

This sub-division allows each part.to be 'overlayed', that is, the
program for each part is located in the same core area. .The re-use of
storage arrays for different purposes in each part further reduces
overall core requirements. To facilitate this last feature, data
profuces by each part is written to disc store and only read back into
core when required by subsequent parts. The basic system organisation

and disc transfers for EIGl/EIGz are shown in Figure 7.1.

X 7.1.3. The Overlay Structure
The overlay structure for EIGl/EIG2 is shown in Figure 7.2.

The main overlay is resident in core throughout, and serves to call the
primary overlays, record overall timings, and to control how far a given
run proceeds. For example, if only natural frequencies are of interest,
the systems may be terminated automatically after the completion of part 2.

The four primary overlays correspond to the four parts defined in the
previous section. Once a primary overlay is completed, the following
primary overla& and associated subroutines are loaded into the same core
area. In addition, the first primary overlay calls upon two secondary
overlays.

An important advantage of this subdivision is that it is simple to
run each part as a self contained program with data transfers via permanent
files. This may well be advantageous for large jobs and is a feature not

so readily available with many other eigenvalue technigues.

7.2. STRUCTURAL SYSTEM CONCEPTS

?7.2.1. The Minimum Data Set (M.D.S.)
The efficiency of Kron's method often depends largely on identifying

a base system with repetition. This repetition is made use of in the
computational systems by defining a 'minimum data set', necessary for the
definition of the R(X) matrix. .

The base system may be though% of in schematic terms, as in figure 7.3(a);

boxes represent components while arrows represent constraint sets. A
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constraint set is taken to be any number of constraints performing the

same topoloéical connection. However, to accommodate generalised

constraints, a set should be further restricted to refer to one particular
boundary region for each component involved.

It is inevitable that in any practical computer implementation,
restrictions must be made. It is here assumed that all constraints are
expressible as simple constraints initially i.e., x; = %5 (or x, = 0).
This restriction still enables a large class of problems to be handled.

Each component is assigned a unique identification (C1, C2 etc.), and
likewise each constraint set (S1, S2 etc.). In the example of
Figure 7.3(a), there are three unique components, in the sense that the -
remaining components are simply these translated and/or rotated in space.
Fach unique component selected is termed a PRIMARY COMPONENT (P.C.) and
denoted by PC1, PC2, PC3 (Figure 7.3(b)).

The R (A) matrix is defined by the equation

RO = G'prn G ,, (7.2.1)

Clearly, the eigenvalues obtained from the primary component eigenreductions
will be sufficient to fully define D(R).

Each constraint set, in general, refers to two components, and
defines a set of columns in the G* matrix. For a set of simple

constraints connecting two components A and B, these columns are defined by

G A gt . :
A <bc o I

. Bt (7.2.2)
Gy 0 "o /|-I |

The sub-matrix (3A corresponds to the linking to the constraint set with
component A, and is identified as a PARTIAL CONSTRAINT SET (P.C.S.). Thus
each constraint set in Figure 7.3(a) may be divided into two constituent
partial constraint sets, and the unigue set of these G sub-matrices
defined by PS1, PS2 ete.

Figure 7.3(b) is now the schematic for the MINIMUM DATA SET (M.D.S.)
required to define R (A). BEach primary component contributes a set of
eigenvalues for the definition of D (A) and has at least one partial

constraint set derived from its eigenvectors. Fach partial constraint set
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FIGURE 7.3

(a) A TYPICAL BASE SYSTEM SCHEMATIC
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contributes a unique sub-matrix of G (Figure 7.3(c)).
In genéral, each component will have some coordinate transformation
to be applied to the partial constraint set matrices. In the interests

of simplicity, this facility is ﬁot included in the current work.

7.2.2. A Simple Beam FExample

To illustrate the procedure for defining the minimum data set,
Figure 7.4(a) shows a simple free beam comprising four “ '
two-dimensional beam elements.

The first step is to break the compogite system into components
(Figure 7.4(b)). In the example, each element is considered to be a
component, hence the four components are identical. To reconstitute the
composite syétem, constraints are laid between the components. With the
numbering system of Figure 7.4(b), these constraints are

23 = x
. (7.2.3)
X, = %

between the two left-hand component ete..

Figure 7.4(c) shows this base system in schematic form. Thus the
components are identified Cl, C2, C3, Ch4, and each of the constraint
sets 81,82, S3% comprises two constraints each. Those for 81 are given
above in Equation (7.2.3).

The user is now in a position to extract the minimum data éet
schematic (Figure 7.4(d)) which in this case comprises one primary
component and two partial constraint sets, the first of which refers to
local component displacements x3 and %) and the second to x and X2.
Figure 7.4(e) finally gives a diagrammatic representation of the

M.D.S. storagé requirements.

7.2.%. The Formation of the R (A) Matrix

The use of the minimum data set in the formation of the R (N

matrix is illustrated by reference to the beam example of the previous
section. )
Assuming that the eigenvalues of PCl are contained in [)1(k),
and that the G sub-matrices corresponding te PS1 and PS2 are given by
Gl and G2 respectively, by reference to the -base system schematic )
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EXAMPLE OF THE FORMATION OF THE MINIMOM DATA SET
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of Figure 7.4{(c) it may be verified that:

-1 I O N T |
D™ = ['D; Dy Dy D, )
and
G -[6 o o | (7.2.4)
-G, G
-G, G,
i 0. -G,

R(\) matrix according to equation (7.2.1), a further

advantage emerges. The
sub-matrices or 'blocks' of the form GiD;{lGj. Thus

Forming the

R (\) matrix is formed from a small number of

t
R} = (A1+A2) --I\3 o
t
-A, (A, + A) -A;
] 0 -As (A, + Aa)_
where
t -1
1 = G;D, G,
t -1
2 G2DlG2
t -1
A, = G,D" G,
(N.B. All the Ai matrices, like the Dk matrices are functions of
M.
As the R ()\) matrix must be constructed for every trial A

during frequency scanning, it is highly desirable to make this process
The identification of repeated blocks clearly
The form of the R (A) is fixed by the

configuration of constraint sets in the base system, as each non-zero

as efficlient as possible.
reduces computer effort.
sub-matrix in R (N) represents the linking between two constraint
sets. Thus, once data describing the base system is specified, the

form of R (M) may be established for all time. The numbering of the
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base system constraint sets, i.e. S1, 52 should be chosen to produce

the minimum band in R (A) to further reduce core requirements.

7.%. PRINCIPAL PROGRAM FEATURES

7.3.1. Part 1 =~ Analysis of the Base System (Section Al.2)

Part 1 of the systems are responsible for forming
and storing the information required for the M.D.S.. The user directly
supplies details of the pfimary components and their assoclated partial
constraint sets. Both systems access a library of finite elements.

i In EIGL, the full lower triangles of the primary component mass
and stiffness matrices are stored to enable the extended Jacobi method
to be used. The complete set of eigenvalues and eigenvectors are
calculated, and the former, together with the (Qj_xnatrices are stored
on disc.

In EIG2, the variable bandwidth scheme is used for the primary
component mass and stiffness matrices, and simultaneous iteration is
employed to calculate the lowest n normal modes. This method is highly

suitable in that the mass matrix 1g® left in tact while the

factorisation of the stiffness matrix is required anyway for the
calculation of constraint modes. The user may reduce the number of
constraints in any partial constraint set by converting to natural
constraints. Subsequently, constraint modes corresponding to the
constraints included, will be calculated and orthogonalised.

Tolerances within the program control the cutting out of unwanted natural
constraints or constraint modes. The parameters Amin’ Amax and hc ]
are set automatically within EIG2, fan

The principal core space requirement in part 1 corresponds to the
component mass and stiffness matrices.. Although this will be less in the
case of EIG2, additional space for the normal and constraint modes is

required.

7.%3.,2. Part 2 - Calculation of Composite System Eigenvalues.
(Section Al.3)

Essentially, Part 2 is responsible for the formation and

scanning of ] R (h)l. The M.D.S. information is loaded into core from
disc and the data describing the base system in terms of primary components

and partial constraint sets is read in. This information is all that is

b i< e TRT—— e e T S - I
PR i TS PN A e T PR Y TR TR SR I RO Y e - A o —
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required for the definition of the form of R (), and data is then
constructed for the economical set up of this matrix, which is held
in variable bandwidth form.

A list of unique base system eigenvalues in ascénding order is
constructed and the composite system eigenvalues determined by use of the
extended Sturm sequence algorithm (8ection 4.5.2). This involves
forming R (A) for each trial value of A and obtaining its sign
count via Choleski factorisation. The scanning procedure is fully
described in Section Al.3.3 of APPENDIX 1. Essentially, the multiplicity
at each unique base system eigenvalue is determined, and the range
between 2 adjacent base system eigenvalues investigated. Composite
system eigenvalues in this range must appear as roots of ] R (A)I.
Bisection is used to isolate simple zeros whence more powerful algorithms
may be used to home in on the root. The modified successive linear
interpolation algorithm of Brent [65] has been used for this purpose
(Section A.1.3.4).

The facility exists to calculate all composite system eigenvalues
(in the case of EIGl), the lowest n eigenvalues, or just those in a
given range Xl £ A £ XZ. The 'constant part' approximation may also
be specified. In EIGl, A is read in, while in EIG2 it is set equal to
hmax so that the terms in the 'constant part' correspond only to constraint
mode eigenvalues.

In EIG2 scanning is automatically halted once Xmax is exceeded while
in EIGl, the 'constant part' approximation is cancelled (if in use) if
the current trial A comes within an order of A.

The principal core requirement in Part 2 is for the R (M) matrix
(stored in the same locations as the component mass and stiffness
matrices), the 'minimum data set', and the lists of unique base system

eigenvalues and multiplicities.

7.3.3. Part 3 -~ Calculation of Composite System Eigenvectors
(Section Al.4)

It is convenient from a system organisation point of view to

calculate all the eigenvalues required and then to proceed to the
vector calculations. The user may then obtain those eigenvectors which
appear of interest.

Part 3 essentially implements the theory of Section 5.4 for the

calculation of eigenvectors of both persistant and gained eigenvalues.
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Multiple eigenvectors corresponding to the same eigenvalue are
calculated.’

The primary component modes are recalled from disc to enable
conversion of the modal eigenvector to physical displécements, the core

space used for the R (L) matrix being reused. Additional core space is

required only for a paif of modal and physical eigenvectors.

7.3.4. Part 4 - Calculation of Generalised Mass and Stiffness

Terms ’

The calculation of the generalised terms corresponding to each
composite system eigenvector is straightforward, the primary component
mass and stiffness matrices being recalled from disc.

The ratio of generalised stiffness to generalised mass yields XRQ

for that mode, and the variation number (Section 6.3%.3%.) is automatically

calculated in the case of EIG2.

B "y - - Ty - CemewL e . o
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CHAPTER 8

THE COMPUTATIONAL FFFICIENCY OF KRON'S METHOD

8.1. INTRODUCTION

In this chapter, the full and approximate Kron methods are reviewed
and their computational efficiencf in%estigated. Comparisons are made
with direct assembly methods and with the component mode method
described in APPENDIX 2. )

The capability of Kron's method to economically analyse
repetitive structures and to convenien£ly handle displacement boundary
conditions is illustrated with reference to a stiffened plate example.

8.2. THE FULL XRON METHOD

8.2.1. General Review

Where accurate eigenvalues are required over.a wide range of A,
methods involving no inherent approximation, save that due to the
initial discretisation, are necessary. For large order systems,
transformation methdds are unsuitable and possible techniques remaining
include ‘ -

(i) Gupta's sturm sequence method [22] (Section 2.3.4)
(ii) The Full Kron Method (Chapter 5) ,

The full Kron method is the only practical technique for handling large
structures in the piecewise manner, yet retaining full accuracy. There
is no need to assemble the complete structural mass or stiffness matrices,
and provided the number of constraints, m, required to couple the
components is much less than the assembled problem size, the technigue
places relatively low demands on core space (Section 5.6). The composite
system eigenvalue problem is non-algebraic, but may be conveniently
solved via the extended Sturm sequence algorithm, (Section 5.5.5). The
approach is thus competitive computer time-wise.

The piecewise approach allows the recognition of repeated components
and constraint sets. The effort involved in the analysis of the
components, and of the compogite system frequency matrix may thus be

minimised (Section 7.2).

8.2.2. Computational Reguirements ,

The efficiency of a particular method may be judged on the basis of
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computer time apd core space requirements. For the former, it is
usually sufficient to obtain an estimate of the number of multiplication
operations involved.

The convenient implementation of the Kron method has been discussed
in general terms in Chapter 7, and individual core requirements are
formulated in APPENDIX 1. These core requirements are summarised here
in TABLE 8.2(a). All symbols may be referenced in the glossary. The
difficulty whereby core space is reused for several purposes is overcome
by the specification of three major areas, Cl’ C2 and CB' The overall
maximum requirement; established in equation (8.2.1), is highly
dependent on nO (here taken to be the maximum component order). However
it is independent of r, the number of composite system eigenvalues/
eigenvectors required. The minimisation of m 5 the number of partial
constraint sets, is particularly beneficial. The R (M) matrix is
stored in variable bandwidth form, and the expression for CR utilises
an 'average semi-bandwidth d'. The requirements of the extended Jacobi
transformation method are contained in TABLE 8.1.

Expressions for the number of multiplications involved are shown
" in TABLE 8.2(b)* . The expression for the scanning of  R(A) deserves
comment. Assuming n_ non-zero terms in each series for rij’ the
number of multiplications per matrix formation is 2mdn . Factorisation
of R (M) involves a further md® multiplication.. As 2n > 4
usually, the set up time exceeds factorisation time. Recognition of
repeated blocks within R (1) (Section 7.2.3) and the 'constant
part approximation' (Section 6.6) are techniques by which the time
taken for this operation may be greatly reduced and a factor of %
is included here in view of these features. The major effort is in the
component eigenreductions (proportional to n and to npc) and in the
scanning of the R (A) matrix (proportional to m and r). The work

involved in the formation of the @G matrix terms is ignored.

8.2.%. Comparison with Gupta's Method

A theoretical comparison of computational requirements between
Kron's method and Gupta's method is given for the 2~dimensional frame
structure of figure 8.1(a). Each member is considered to comprise

2 axial-flexural beam elements possessing six freedoms each. The fully

+ In all such expression, the effort involved in forming mass and stif-
fness matrices is negiected.
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COMPUTATIONAL REQUIREMENTS FOR DIRECT

ASSEMBLY METHODS
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APP?&%%?ATE APPROXTMATE
METHOD NUMBER OF COMMENTS
REQUIREMENTS
(WORDS) MULTIPLICATIONS
) Unsuitable for
n > 150
Extendéd c, = (n2+2n) m, = 6cn3 c=No. of iterations
Jacobi J J :
. (typically ¢ = 6)
Transformation Produces complete set
Method (8.1.1) (8.1.2) of eigenvalues and
eigenvectors
> 2nb2 multiplications
Gupta's cq = S5nb m, = 250b°r for examining each
Sturm trial A.
Sequence . Average of 12 trial
Method (8.1.3) (8.1.4) s per
root located.
Car = M. = Lobe + t = No. of trial
ST ™ SI ~ 2 -
) vectors
Simultaneous 1.2 2,413 ¢ = No. of iterations
Ttoration 2nb+3nt+ht<} [Znbt+ihnt“+%t"Jc Typi cally
t=2r+ 3
(8.1.5) (8.1.6) c=7




1490

TABLE 8.2,

COMPUTATIONAL REQUIREMENTS OF THE FULL KRON METHOD

(a) Core Space

LOCAL {NO. OF LOCATIONS
ARBA| simor|  (wORDS) USE
5 Full lower triangular storage of
PART 1 ¢y Ry (no + no) component K, N%r Eigenvectors
occupy same space.
¢, cp 2md R matrix (+ constant part space)
PART » n mem mon Minimum data set.
¢ °MDS pc o pPs o o List of unique eigenvalues,
03 e 3nt multiplicities, base multiplicities
¢y Jeg/ oxy . R matrix/component eigenvectors
PART 3 c c C vector, modal and physical
2 MDS . X
composite system eigenvector.
c c 2n
3 v t
S ) Component K, M
PART 4 Current composite system eigen-
c Sy vector + gen. mass and stiffness
5
terms.
OVERALL (n2 + n )
MAXTMUM ’
REQUIREMENT| K = ond * [Ppets * Mpaoto) * [3nt] (8.2.1)

Where choice exists, the larger requirement must be used.

e r—— ——vRo  ———



TABLE 8.2. (Continued)

(b) Number of Multiplications

14

SYMBOL | NUMBER OF MULTS. COMMENT
3 Eigenreduction of each primary
PART 1 my (6cno Jn component by extended
pe dJacobi method
5 Formation and factorisation of
PART 2 m, l2r(mdno + md<) each R(\). (Average of
12 trial A's per root assumed)
5 ' Formation, factorisation and
r(mdno + md< + 2md deflation of F?(Ki)
PART % m3 v oomm + n.nm Solution for €
o to Formation of eigenvector Xj
Formation of generalised mass
T
PART 4 e 2rno(no + g and stiffness terms
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2-DIMENSTONAL FRAME STRUCTURE
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(b) THE BASE SYSTEM '1' (KRON'S METHOD) (ng = 198, m = 18)

-

M M . 8 ] b
ot ! = - ot
n, = 63 bo = 17 0 = 72 bo = 17
Bage System Schematic
Cl < N c2 C3
_ _
P31 PS2 P31 PS3
- PC1 PCl PC2
H
nbs =3 m =2




3
FIGURE 8.1. (Continued)
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assembled structural matrices used in Gupta's method are of order
180, with 'a semi-bandwidth of 20. No use of symmetry is made in this
illustrative example. The general requirements for Gupta's methoé
are contained in TABLE 8.1. ' | 7
Two possible base systems are shown for use in Kron's method.
The first (Figure 8.1(b)) utilises two large primary components
while the value of m is kept low. The second (Figure 8.1(c))
utilises two small primary componenté, however the value of m is
somewhat larger. Base system schematics are shown for both cases.
TABLE 8.3(a) summarises the approximate core requirements of
Gupta's method and the two Kron systems. The core advantages of the
latter are clear, and in particular, the second Kron system demonstrates
the'édvantage of keeping down the component size. Indeed with the
core space allocation scheme of TABLE 8.2(a), the minimum core space
is roughly ocbtained for m = 2n0. The low core requirements for the
minimum data sets emphasise the advantages of recognising
repetition in the base system. It may be noted that the core required
for part 2, i.e. scanning of R (A) is respectively 2.84K and 3.3LK.
This program stage may thus be efficiently executed in a small core
-partition.
The number of multiplications required by the methods are summarised
in TABLE 8.3(b), r being left as a parameter. Figure 8.2 shows a
plot of mﬁltiplications versus r for the 3 cases considered. The
Kron method clearly does a good deal of work once and for all
at the component eigenreduction stage, while the work in Gupta's method
varies linearly with r. Thus if r <5, Gupta is faster, but for
r 2 5, 'Kron plus base system 2' is superior. If r 2> 36, then the
greater amount of initial work in 'Kron plus base system 1' pays off

via the scanning of a smaller R()) matrix.

8.2.L4. General Conclusions

To summarise, the core requirements of Kron's method are
certainly less than those of Gupta, while the time requirements may also
be. There is no essential difference in the accuracy attainable by
the two methods. However, the accuracy of the composite
system representation in Kron's method is clearly controlled by the
accuracy of the component eigenreductions. Alth?ugh a detailed error

analysis is not attempted in the current work, it may be that with

REMEEES o et e
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TABLE 8,73,

- COMPUTATIONAL REQUIREMENTS FOR FULL KRON/STURM SEQUENCE METHODS

(a)  Core Requirements

FULL KRON METHOD GUPTA'S §.S. METHOD
Base System 1 Base System 2
Cxy (cl) 5.256 K * 2.070 K *
g (ep) 0.324 K 1.530 K
Mpg (02) 1.917 K * 1.134 K * CaupTA = 18.0 X
g (03) 0.594 K * 0.675 K *
CKRON 6.174 K 3.879 K

* Indigates Contribution to Maximum Space Demand

(b) DNumber of Multiplications

FULL KRON METHQOD
GUPTA'S S.S. METHOD

Base System 1 Base System 2

my 22,438 K 5,781 K
m, 146 rK 569 rkK

\ o = 1,800 rK
m3 16 rK 6l rK GUPTA

(22,438+162r)K (5,781x630r5K
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repetition, the accumulation of roundoff error is less in Kron's method
when compared with the large order matrix factorisations required in
Gupta's method. ‘

There is no inherent topological restriction in Kron's method, however
care must be taken to choose a base system to suit requirements. If
a large number of composite system eigenvalues are required, keep m low,
while if only a few are required, kéep the component size small, A
physically sensible choice of components will help avoid any possible il1l-~
~conditioning.

A practical example of the use of the full Kron method is given in

Section 8.L.

8.3. THE APPROXIMATE KRON METHODS (A.K.M.)

8.%.1. General Review

Where only the lower eigenspectrum of a structure is of interest,
the approximate Kron methods introduced in Chapter 6 may be used. The
advantages of the full Kron method (Section 8.2) are retained, while
approximate results may be obtained with large savings in computer

-

resources.
The MODAL APPROXIMATE KRON METHOD involves the use of a small number
of component normal modes plus constraint modes to represent the component.
Simultaneous iteration for these normai modes is fast and utilises
banding in the component mass and stiffness matrices. The size of the
‘minimum data set is reduced, and likewise the effort in forming the
corresponding R (A) matrix.
Where components are to be connected along continuous boundaries,
the possibility exists of reducing the number of constraints along a
that boundary, in addition to the zbove approximation; the HYBRID
APPROXIMATE KRON METHOD resulting. The core required for the minimum data
set is further reduced both due to the reduced number of
generalized constraints and the reduced number of constraint modes
(Section 6.5). However, of greatest importance is the reduction in order

of the R (\) matrix implying a considerable decrease in scanning effort.

8.%.2. Computational Requirements -

Approximate expressions for core space requirements and nunbers of
multiplications are given in TABLE 8.4 for the approximate Kron methods.

Provision is made for a reduced number of component modal freedoms,
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TABLE 8.&.
COMPUTATIONAL REQUIREMENTS OF THE APPROXIMATE KRON
METHOD
(a) Core Space
LOCAL )
AREA SYMBOL NO. OF LOCATIONS USE
¢ | oy 2n b KO, M0 matrices
PART 1 <5 | O nongo Normal and constraint modes
c3 Cy (working spabe) Interaction matrix/generalised
constraint sets etec.
¢y | ep 2mgdg R matrix (+ constant part)
Mini 3
PART 2 , |°ups npcngo+mpcmgongo inimum data set
c5 R Bng Unique eigenvalues, multiplicities

base multiplicities

c, |c / c R matrix/ component modes
1 R M

PART 3 °5 |°upg (as part 2)
05 Sy 2nt C‘vector/modal eigenvector/

physical eigenvector

o1 |okm (as part 1)
PART 4 . .
c c Current composite system eigen-
347V vector + generalised mass and
. stiffness terms
OVERALL _ 2nobo npcngo+mpsmgongo Znt
MAXTMUM ok = or + or o+ | or (8.3.1)
REQUIREMENT d nn n
Q 2m8 g o go > g

Where choice exists, the larger requirement must be used

P RN cgmer Wit sl - L, e



TABLE 8.h. (Continued)

(b} Number of Multiplications
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SYMBOL|NUMBER OF MULTIPLICATIONS COMMENT
n [n b2 + Factorisation of K ]
pPc o o o
5 2 9.45 . . For each
PART 1| m, (3n0b0t+2not +%t” e Simult. Iteration .
.8 b ] Solution for and [ primary
go o o orthogonalisation of | component
constraint modes
PART 2| m. Jlor(m d n +m d2) As for full Kron
2 £ 8588 g¢g
r(m dn +m a2 .
g£.85 80 g8
PART m + 2m 4 As for full Kron
51 ™3 g
+ Engmgo + ntngo)
PART 4| m 2rno(no+1)q As for full Kron
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ng < I and a reduced number of constraints in constraint sets,
m o < moﬁ The order of the R ()\) matrix is given by mg {(<m) with
sefi-bandwidth dg' The component mass and stiffness matrices are
assumed to have semi~bandwidth bo. The work required to form any
generalised constraints is neglected. The general requirements for

simultaneous iteration [27] are recorded in TABLE 8.1.

8.3.3. The 2-D Frame Example
TABLE 8.5 sets out the theoretical requirements of the MODAL
APPROXTMATE KRON METHOD applied to the 2-dimensional frame introduced in

Section 8.2.3. It is assumed that five component normal modes are used-
in a1l components and that all constraint modes are included. Thus
primary component 1 in base system 1 requires storage for five normal
modes and 18 constraint modes.

Here, base system 1 is probably a better choice in that the total
number of generalised freedoms retained (ng) is 51 out of a total
base system order (nt) of 198. In base system 2, the respective
figures are 120 and 225, due to the large number of constraint modes being
carried.

The savings in core and computing effort compared with the full
Kron method (TABLE 8.3) are evident, the overall core requirements being
reduced by about one third. Note that with base system 1, the
scanning of R (L) may be carried out in just over 1K words of core,
compared to 2.8K for a full Kron method. The savings associated with
the minimum data set are most marked. .

Comparison of the figures for M, in TABLES 8.3 and 8.5
illustrates the enormous savings in not having to form a complete component
. eigenreduction. Thus for base system 2 and r = 10, the total effort is
reduced by a factor of 10 6n using the approximate method.

Simultaneous iteration (S.I.) (Section 2.4.3) is a fast
convenient method for obtaining the lowest eigenvalues of large order
matrices with no inherent loss of accuracy. The requireménts of S.I.
for the frame are included in TABLE 8.5 for r = 5 and r = 10 to permit
general comparisons.

While the core space advantages of the Kron approach are again
exemplified, the effort involved is comparable for low r. Thus provided
the core is available for S.I., the superior accuracy makes this approach

more attractive. However, the effort involved in S.I. increases more
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TABLE 8.5.

2-D FRAME EXAMPLE

COMPUTATIONAL REQUIREMENTS ¥FOR APPROXIMATE KRON/DIRECT
SIMULTANEOUS ITERATION METHODS

(a) Core Requirements

APPROXIMATE KRON METHOD
SIMULTANEOUS ITERATION
BASE SYSTEM 1 | BASE SYSTEM 2 -
E3
¢y Cxy 2. 188K 0.900K
% ! *
O Y 1.449K 0.828K
Cop = [7.5+0.52(r+3%)]K
¢y | o 0.324K 1.530K *
<, °MDS 0.577K 0.577K Forr =5
c5 | g 0.111K 0.111K osg = 11.52K
N 0.396K * 0.450K * | Yor r =10
3 v
Car = lﬁ;gég
CKRON 4. 29%K 2.808K

* Indicates Contribution to Maximum Core Space Demand

(b) Number of Multiplications

MODAL APPROX. KRON METHOD SIMULTANEOUS
BASE SYSTEM 1 BASE SYSTEM 2 ITERATION
m, 741 K 287 K Assume ¢ = 7
m, 51 rK 141 rK For r = 5(t = 8)
my 8 rK 19 rK mer = 842 K
) For r = 10(t = 13)
= 1551 K
Mg RON (741 + 59r) K (287 + 160r)K MsT 1551
Forr=5
— 1,0%6K MERON = 1,087K
For r = 10 . !
Mypon = 1,331K myRON = 1,887K

3 g Ll ke A T Shats - S e T s -
SN i - MR - R N TERTTUITRRY TR . e TR T v s B T s o T e S Tl
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than linearly with r, as does the core requirement. Hence for very
" large structures with a good degree of repetition, and where r is
reasonably large, the approximate Kron method would, in all

likelihood, offer far more economical approximate solutions.

8.3.4. Comparison with the Component Mode Method (G.M.M.)

A convenient implementation of a form of the component mode method
{(System EIG3) is described in APPENDIX 2.

A detailed theoretical comparison with the approximate Kron method
igydifficult as the choice of base system and number of component modes
included will depend on the particular problem circumstances. However -
they are both component-wise methods for reducing the number of freedoms
in large eigenvalue problems. The computationél requirements will be
largely similar, and both may utilise repetition in some form.

Whereas the number of connection freedoms may often be less than
the number of constraints, the additional normal mode freedoms used in
the component mode method can lead to composite system matrices of
- larger order. However, if component normal modes are to be included
up to a pre-determined cut-off value, then fewer 'higher frequency' fixed

constraint normal modes in the C.M.M. will in general be required.
Furthermore, the component eigenproblem is of smaller order.

Physically, the fixed constraint component normal modes of the
C.M.M, may be expected to well'represent composite system behaviour
when connection boundaries are stiff, for example when m is large.

By the same token, the free connection coordinate normal modes utilised
in the Kron approach will be superior where boundaries are flexible,

for example when m is small. However the hybrid approximate Kron method
. may be used in situations where m is large to good advantage.

A practical comparison of the methods is given in the example

of the following section.

8.4, A STIFFENED PIATE EXAMPLE

8.4.1. Introduction

The stiffening of plate structures via the attachment of ribs is

common practice in many engineering branches. With regard to vibrations,
the stiffening may be employed to raise the lowest structural frequencies,
or indeed to ensure that there are no natural frequencies close to a

higher known forcing frequency.

R T R e e



FIGURE 8,3,

STIFFENED PLATE FEXAMPLE
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As the main intention is to provide a practical comparison
of methods éescribed in this thesis, the example is kept particularly
éimple. The structure comprises a cantilever plate with beam
supports at regular intervals. The beams are of solid cross section,
and have stiffness only in the lateral plate direction. This
stiffness is kept low to avoid frequency bunching (Figure 8.3).

The arrangement permits the use of repetition to be illustrated.
The structure has an axis of symmetry XX. Here the half-

du

2
~problem is analysed for symmetric modes, that is with Sy Ow

and 3;5§

constrained along XX. A further feature of interest is the way in which
these boundary conditions are handled by the Kron method approach.

The problem is then briefly feconsidered assuming a simply
supported end YY, destroying symmetry. The advantages of Kron's method
are further exemplified. ‘

The methods considered in the following discussion are

(i) The Full Kron Method (Program EIG1)
(ii) The Approximate Kron Method (Hybrid version) (Program EIG2)
(iii) The Component Mode Methodv(Program!EIGB),

8.4.2. Half-Structure Base System Specifications

Kron's Method i
Details of the base system for use with both the full and

approximate Kron methods are contained in Figure 8.4.

Leaving aside the symmetric boundary conditions to be applied along
XX, the half-structure may be torn along the beam centre-lines to produce
three identical components. The one primary component PCl and associated
partial constraint sets PS1 fo PS4 are indicated in Figure 8.4(a).
'The division of the constraints into symmetric and anti-symmetric sets is
not only a pre-requisite for defining generalised constraints. For it
is an important feature of Kron's method that boundary conditions,
such as those along XX, may be treated as constraints applied to the
base system. Thus in the base system schematic of Figure 8.4(b),
constraint set S5 embodies constraints of the form %? = O etec..

In the full Kron method, a full eigenreduction of a 6li~freedom
component is required, and with each constraint set comprising 8
constraints, the order of the composite system frequency matrix is 40.

Utilising the Hybrid Approximate Kron Method; use of 4 component



FIGURE 8.4.

ANATIYSIS OF HALF STRUCTURE

IDEALISATION OF SYSTEM FOR KRON'S METHOD

"{a) Definition of Primary Component and Partial Constraint Sets

PS3 (Symmetric Freedoms)

Y
PSh (Asymmetric Freedoms)
- - ~
SIDE 1 A
/2
§ PC1
g.
A
3
SIDE 2%W A/2
g PS2 (Asymmetric Freedoms)
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PS1 (Symmetric Freedoms)

PCl contains 64 displacement freedoms.

Fach partial constraint set comprises 8 displacement freedoms.

(b) Base System Schematic
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(¢) Base System Data

FIGURE 8.h. (Continued)
CORRESPONDING
COMPONENT 1 ppIMARY COMPONENT
c1 PC1
co PC1
C3 pPC2

CONSTRATNT PARTTAL CONSTRAINT SET
SET 1 5
S1 PS1 PS3
52 Ps2 PSY
83 Ps1 PS3
Sh PS2 PSL
S5 Psp - -




FIGURE 8.5.

ANATYSIS OF HALF STRUCTURE

BASE SYSTEM FOR COMPONENT MODE METHOD
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normal modes (for example) will generate 4 generalised constraints in
each set, and a total of 16 static constraint modes for the primary
component. The order of the composite system frequency matrix will thus
be reduced to 20. In such a case, the symmetric boundary condition,

like component continuity, will only be approximately satisfied.

Component Mode Method

The base system for the component mode method is indicated in
Figure 8.5. In contrast with ‘the Kron approach, boundary conditions must be
incorporated prior to component analysis. Thus all three components must
bejanalysed for normal and constraint modes. However, use of the
IRLP parameter in program EIG3 (Section A2.4) avoids having to
re-set up the mass and stiffness matrices for component 2.

With the numbers of fixed constraint normal modes taken from the
cdmponents_as 3, 2, 2 respectively, the total order of the composite

system problem is given by

%2 (bouﬁdary freedoms) + 7 (normal mode freedoms) = 39

8.4.3. Symmetric Modes - Test Cases

The basic set of 7 test cases, identified A through I, are
detailed in TABLE 8.6. The first relates to the full Kron method,
while the last two relate to the component mode method.

The first five symmetric modes were evaluated in each case."The'
eigenvalues from run A, validated by a direct assembly eigensolution, are
here taken to be the 'exact' solution. Percentage eigenvalue errors are
given for the remaining test cases. The mode shapes are indicated in
Figure 8.6.

The comp utational requirements of each case are also indicated in
TABLE 8.7, as are comparative core regquirements for Gupta's Sturm

sequence and Jenning's simultaneous iteration methods.

8.4.4, Symmetric Modes - Results

The Full Kron Method (Run A)

Although the lowest five symmetric modes were computed, there is of

course no 'low frequency' restriction with program EIGl. The maximum
core requirement of 7K words compares favourably with the 17K required
by Gupta. ,

The eigenvalues were determined to five places by simple bisection

-y g . -, TemrRevs e meaory



TABLE 8.6.

T

STIFFENED PLATE EXAMPLE - SYMMETRIC MODES (HAIF STRUCTURE)
PROGRAM: EIG1 EIG3
CASE: A D E F G,
n = 64 n.= L n.= 5 n.= Z/l/l noo= 3/2/2
DETAILS: m = 4LO n = 8 n = 10 n' = 36 n' = 39
= 20 =
mg 2 mg 25
' EXACT EIGENVALUES'
EIGEN- 1. 331.6L -3.054 -1.197 0.154 0.0
VALUE 2. 458.98 -1.2%3 -0.804 0.176 0.041
ERRORS 3. 1146.6 -0.794 -0.689 0.087 0.070
(%) L. 3505.2 ~2.235 -1.110 L6l 0.238
. 5- - 6251-1 "'00637 "'Ool+99 7071 3.82
VARIATION 1. -0.002 -0.003
NOS. (%) 2. 0.011 -0.003%
(EIGp 3. 0.317 -0.035
ONLY) 4. -0.756 -0.461
5. 0.156 -0.055

6GT



TABLE 8.7.

T

STIFFENED PIATE EXAMPLE ~ SYMMETRIC MODES (HAIF STRUCTURE) - COMPUTATIONAL REQUIREMENTS

CASE A g B o D ]{ G
CP Time (6600 secs.)

PART 1 47.0 5.1 7.% 12.1 15.7 . 14.0 17.0

PART » 41.3 1.1 2.7 4.9 8.9 3.2 5.4

PART 3 4.1 0.9 0.9 1.1 1.5 2.5 2.7

PART 4 3.8 0.7 0.7 0.7 | 0.8 1.1 1.5
TOTAL 96.2 ll 7.8 11.6 18.8 26.9 20.8 26.6

Core Requirements (K words)

T Cpy 4,288 * ! Cxy 2.240 * 2.240 * 2.240 * 2.240 * 2.240 * 2.240 * Cxm
Cupg 2.112 * Cy 0.640 * 0.960 * 1.280 * 1.600 * 0.252 0.263 Cye
cg 0.692 Cypg 0.090 0.195 0.340 0.525 1.160 1.324 Cut
cy 0.576 * cp 0.047 0.102 0.178 0.275 0.900 * 0.951 * cy

cy 0.284 * 0.384 * 0.38 * 0.384 *
]
RE@%%NT 6.976 3. 264 3.584 3.904 b 22l 3.140 3.191

CGUPTA = 17.48

cgy = 11.184 (for 7 trial vectors)

* Indicates Contribution to Maximum Core Requirement

09T
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STIFFENED PLATE EXAMPIE
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root location, an average of 13 bisections being required.

The Hybrid Approximate Kron Method (Runs B, C, D, E)

The four test cases here correspond to an increasing number of
component normal modes (nn ) included. In the hybrid
method this reflects itsel? in increasing numbers of constraint modes
and generalised constraints. Eﬁgenvﬁlue convergence is fairly slow,
however with nno = 5, errors. are within about 1%. Variation numbers
below kmax are small. As observed in the example of Section 6.5, accuracy
deteriorates rapidly once Kmax is exceeded. It is interesting to note
that convergence is from below, that is, the approximation due to
generalised constraints is dominant.

The core space and computer time predictions of Section 8.3 are
borne out. The very low time demands of runs B and C suggest that the
technique may be used for fast prediction of rough frequencies.

As in Run A, eigenvalues were determined to 5 places by an average

of 1% simple bisections.

The Component Mode Method (Runs F, G)

These two cases correspond to the inclusion of 2, 1, 1 and 3, 2, 2

component normal modes respectively. The accuracy obtained

for the lowest modes is superior to that from the hybrid approximate
Kron method, possibly because with stiff connection boundaries it is the
better suited method in this situation. The computational requirements

are generally similar to that of the previous method.

8.5. IMPROVED SCANNING EFFICIENCY IN KRON'S METHOD

Two methods of reducing the total effort involved in scanning the
R (\) matrix, evaluated with reference to the stiffened plate example,
are
(i) use of Brent's linear interpolation root location
algorithm (Section Al.3%.4)

(ii) wuse of the 'constant part' approximation (Section 6.6).

8.5.1. The Full Kron Method
In Part 2 of run A (TABLE 8.7), a total of 77 formation/

factorisations of the matrix R () were required in the location of the

first. five symmetric mode eigenvalues. Out of these, 1% were used prior
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to locating ranges containing simple zeros. The location of the
zeros within these ranges then took an average of an additional
13 each. .

Use of Brent's linear interpolation algorithm reduced this average
to 9, and the time taken for part 2 was reduced from 41.3% secs to
31.5 secs, a saving of éh%. Identical eigenvalues (to 5 places) were
obtained.

The constant part epproximation reduces the formation time for

R (}), although eigenvalue accuracy suffers. With 2 = 105, only the

lowest 8 component eigenvalues remained 'active', yet the loss of

accuracy as indicated below was extremely small:

Eigenvalue No. % FEigenvalue Error *

0.0

0.002
0.026
0.579
0.029

A A

* w.r.t. values obtained in run A.

The corresponding loss in eigenvector accuracy is likewise small. As

predicted in Section 6.6, the approximate eigenvalues obtained are
consistently high . The time saving obtained is impressive. Using
the linear interpolation algorithm, the part 2 time was reduced from
%21.5 secs to 12.8 secs, a saving of 59%ﬁ

However, it must be remembered that while the linear interpolation
algorithm may be used at all times, the advantages of the constant part

approximation recedes as the range of interest of A rises.

8.5.2. The Approximate Kron Method

The above techniques were implemented for the case D in TABLE 8.6.
Again, use of the linear interpolation aléorithm reduced the average
number of formation/factorisations of the R (A) matrix from 13 to 9
for each root location. The time taken for part 2 in this case was
reduced from 14.9 secs to 13.9 secs, a saving of 20.4%.

T The total time for all 4 parts is thus reduced by 29.6% to 67.7 secs.
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Use of the constant part approximation, with X automatically
set to twice the highest component normal mode eigenvalue,
Amax’ produced significant savings with small (additional} loss in
eigenvalue accuracy. The time of 3.9 secs was reduced to 2.3 secs, a saving
of hl%, while the percentage change in eigenvalues w.r.t. those

obtained in run D are as follows:

Eigenvalue No. % Eigenvalue Change
1 0. 005
2 0.051
3 1.060
L 1.649
5 0.714

‘The overall run time was reduced by 13.8% to 16.2 seconds. As a range
of interest of A is always to be confined below )max in practice, use of

the constant part approximation thus appears very attractive.

8.6. ANALYSIS OF THE COMPLETE STIFFENED PLATE

To further illustrate the advantages of repetition in Kron's
method, the problem of the stiffened plate is reconsidered with
the end YY (Figure 8.3) simple supported. Symmetry is thus destroyed, and
analysis of the full structure (300 freedoms) is required.

The base system adopted for Kron's method is shown in Figure 8.7
Agaiﬂ, only one primary component is defined. The simple support
boundary condition is handled by defining an additional partial
constraint set, PS5, corresponding to the 'w' freedoms along side 2
of the primary component (Figure 8.h4a). [In the case of the full Kron
method, the set PS1 could simply be split into 2 sets comprising 'w'

and %ﬁ‘ freedoms respectivelyl].

8.6.1. The Full Kron Method
Run H (TABLE 8.8) relates td the full Kron method with linear

interpolation and the constant part approximation O = 105). The total_

number of constraints involved is 84. The first 5 eigenvalues were



FIGURE 8.7.

ANALYSIS OF FULL STRUCTURE (SIMPLY SUPPORTED END)

TDEALISATION OF SYSTEM FOR KRON'S METHOD

(a) Base System Schematic
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(b) Base System Data
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CORRESPONDING
COMPONENT | pp1MARY GOMPONENT
c1 PC1
Cz PCL
Cc3 PC1
ch PC1
c5 PC1
c6 PC1
CONSTRAINT | PARTIAL CONSTRAINT SETS
SET 1 >
81 PS1 PS3
Sp PS2 PSlk
8% PS1 PS3
Sy PSp PSSy
85 PS1 PS3
6 PSo PSl
87 PS1 PS3
S8 PS> PSh
s9 PS1 P83
810 PSo PSh
S11 PS5 -




TABLE 8.8

ANALYSTIS OF THE COMPLETE STIFFENED PIATE

H I
' HYBRID APPROXIMATE
FUFE $EON METHOD XRON METHOD
)\ = 105 n = l.|.
no
m= 8L Do © 8
mg = l.|_l.|_
EIGENVALUES % ERROR
1. 338.20 228.40 (-2.90)
2e 399.71 391.45 (=2.07)
3. 565.82 559.2h (-1.16)
.. 927,70 919.31 (-0.90)
5. 1633.6 1615.1 (-1i.13)
CORE REQUIREMENTS (K words)
CKM = l-l—- 288 * . CKM = 2- 2’4—0 *
Cyps = 2.3%68 * ey = 1.536 *
cp = 1.778 Cupg = 0.420
ey = 1l.152 * cp = 0.478
¢y = 0.768 *
CxroN = 7.808 Crgoy = 5k
CP TIME (6600 seconds)
PART 1 b7.7 13.3
PART » 30.5 9.4
PART 3 8.3 2.4
PART I 7. 1.5
TOTAL 93.9 26.6

* INDICATES CONTRIBUTION TO MAXIMUM REQUIREMENT

Uses linear
Interpolation

YES

N

0

Uses the C.P.
Approximation

YES

NO

16%
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obtained. Direct solution verified that the eigenvalue error induced

by the constant part approximation was in all cases less than 0.1%.
Clearly the doubling of the problem size had a relatively small

effect on computational requirements. Core required was 7.218K words

(cf. 6.976 in run A of TABLE 8.7) while CP time required was

93.9 seconds (cf. 67.7 seconds in segtion 8.5.1). In contrast, the

requirements of Gupta's method would have been roughly doubled.

8.6.2. The Hybrid Approximate Kron Methogd

Use of the hybrid approximate Kron method to obtain fast '
eigenvalue estimates was tested by means of run I in
TABLE 8.8. Four component normal modes were included. Linear
interpolation and the constant part were not used, thus comparison may
be made directly with run D of TABLE 8.7. While the partial constraint
sets PS1 to PSL were expressed in generalised form, the four constraints
in PS5 were retained as simple constraints so that the simply supported
boundary condition was enforced in full. The total number.of constraints
involved was thus Lk.

Again, the computational'requirements do not greatly exceed thosge
for the half-problem. The core is increased from about 3.9K words to |
L.5L4LK words, while the time is increased from 18.8 secs to 26.6 secs.
The eigenvalues and mode shapes obtained are reasonable guides as to
the 'exact' system properties, although additional constraints are
probably required to reduce the error on the two lowest eigenvalues.

As with Gupta's method, the requirement of direct simultaneous
iteration would roughly double for the full problem.

A possible base system for the component mode method is shown in
Figure 8.8. It is interesting to note that with either
3 or 2 normal modes per component, the order of the composite system
matrices is 94, that is more than twice the Ll 'constraint freedoms'
utilised in run I.

In general terms, it is thus clear that the larger the degree of
repetition, the more attractive both the full and approximate Kron methods

become.
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FIGURE 8.8,
ANALYSIS OF FULL STRUCTURE (SIMPLY SUPPORTED END) -
IDEALISATION OF SYSTEM FOR COMPONENT MODE METHOD
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CHAPTER 9

CONCIUSLONS AND FURTHER RESEARCH

9.1. - THE FULL KRON METHOD

Hitherto, Kron's method had received scant attentién in the field
of structural eigenvalue problems. However, the recent publicity
given to the method by Simpson, and in particular his proposition of
the extended sturm sequence algorithm for scanning has opened the door

‘f r its establishment as a competitive algorithm.

7 In this work, the basic approach is paralleled with the above
work, and the practical implementation on a digital computer and use
thereof has been successfully investigated.

It has been established that Kron's method is particularly
suitable where

(i) the value of m is small

(ii) repeated components and constraint sets may be identified.

The tremendous core space advantages of the approach enable
maximum use to be made of computing resources, either to solve extremely
large problems efficiently 'in-core', or to confine middle range
problems to a relatively small partition, a useful feature in a time
sharing environment.

In assessing the role that Kron's method should play in the field
of eigenvalue algorithms, several facts stand out. The effort

\involved in implementing the method is probably greater than for direct
assembly techniques. User effort is greater in that the components and
connection data must be specified, but this is a light task compared
to the initial structural idealisation. The technique is particularly
suitable when a large number of composite system eigenvalues/eigen—
vectors are required, and of course when relatively high frequencies are
of interest. Finally, the ability to carry out the analysis in several
stages, with the possibility of checking and restarting after each
stage, is an additional attraction when analysing extremely large order

structures.

9.2. THE APPROXTMATE KRON METHOD

A major original contribution of the current research has been to

establish techniques which further utilise the advantages inherent in
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Kron's method to economically obtain approximate low frequenc& composite
system eigeﬁvalues and elgenvectors.

A degree of judgement is required on behalf of the user, however
the approaches developed are extremely versatile. Where few connection
coordinates are involved, relatively few static constraint modes will be
required to compensate for the excluded component modal freedoms. A
Rayleigh~Ritz type approximation is thus introduced so that the
resulting eigenvalues are upper bounds. Where many connection coordinates
are involved along a stiff boundary, more component normal modes may
be required but alternative economies are available via a reduced set of
generalised constraints and associated static constraint modes. In this
hybrid approach, the error induced by the modal freedom approximation
and the constraint approximation tends to cancel out. ,

As it is often only the lowest modes of very large order structures
that are required, the economical approximate implementation of the Kron

method would thus appear attractive for many practical situations.

9.%. TFURTHER RESEARCH

In many ways, the research carried out for this thesis has been a

preliminary study. There is scope for further detailed analysis of the
mathematical basis for the approximate technigues introduced and for
improved methods for selecting generalised constraints. Also, any
piece of numerical analysis should ultimately be underwritten by error
analysis.

A particularly desirable development would be a means of
establishing bounds on the results obtained from the approximate methods.
The approach described in Section 2.6.5 is inapplicable in the case of
component techniques in that the fully assembled structural stiffness
matrix is at no stage formed, and alternative methods must be derived.

The computer programs developed, while far from optimum do form a
basis for the efficient implementation of Kron's method. Algorithms for
the efficient location of the roots of the R (A) matrix will be just
one area deserving further attention. ’

It is, however, in the field of applications that the author
feels the most exciting prospects to lie.  The various techniques have
been tested here on limited examples, and a full evaluation on truly large

problems is of the highest priority.
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9.4. SOME APPLICATIONS

.

9.4.1. Typical Structures

The global dynamié analysis of aircraft structures is perhaps the

classic example of a component structure. With the main fuselage, tail
section and wings identified as principal components, it is clear
that the value of m may be kept low.  Component modes and frequencies
are often available from practical vibration tests. It will be
particularly important to include constraint modes for the wings if onlj
a few free-free wing modes are included.

A common natural frequency problem is that of turbo-generator
foundations. ©Such structures often embody a high degree of repetition,‘

again permitting Kron's method to be used to advantage.

9.L4.2. Sophisticated Constraints

There is no theoretical restriction on the form of the constraints
relating to component displacements, provided that a non-singular
Tllmatrix (Section 5.2.1) may be formed. A general constraint

connecting components A and B may be written as

n n
A A A B B B
+ ¥ C.X.
=1 49

= 0

‘where X?, X? are displaceﬁent freedoms and c?, C? are coefficients.

A useful application of the above form of constraint occurs where
there is a displacement freedom mismatch between components, perhaps due
to a different form of idealisation. A simple illustration is indicated

in Figure 9.1, a possible constraint equation being

i

FIGURE 9.1
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9.4.3. Modification Analysis

An important advantage of any component-wise technique is that the
effect of small modifications to the structure may be evaluated
efficiently. Only those components altered need to be re-analysed,
and provided modifications are small, the original normal modes may
be used for example as input to the simultaneous iteration routine to
rapidly converge to the new ones. ‘ )

. Again, assuming small or local modifications, the effect on the
overall structure modes and frequencies are likely to be minor. It
“would not seem a difficult task to arrange for the original eigenvalues

to be used as first approximations to the roots of the new R (M)

matrix to minimise scanning effort.

————— o s o

Finally, it is the authors belief that with the trend to larger
and more complex structural systems, Kron's method of piecewise eigenvalue
analysis will take its place in the ever growing field of eigenvalue

algorithms.
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APPENDTX 1

THE COMPUTATTONAL SYSTEMS EIG1 AND EIG, (KRON'S METHOD)

Al,1. INTRODUCTION

In this appendix, the systems EIGl and EIGZ for the implementation -
of the full and approximate Kron methods respectively are described.
Particular emphasis is placed on the user supplied data end principal
core storage requirements. Sections Al.2 to Al.5 deal with the four
constituent parts.

The major computer program symbols (capital letters) necessary
for general understanding and use of the systems are recorded at the

end of this appendix in three reference tables:

TABIE Al.1 List of input data,
TABLE Al.2 Major program variables
TABLE Al.3 Fixed parameters.

The input data is classified as either 'data' (D) or 'parameters' (P),
the latter being used to define or control a process. Program variables
are set within the systems and record information about the problem
being processed. Fixed parameters are defined in DATA statements in
the main overlay and are not normally varied. They include tolerances
and iteration limits.

Large parts of the systems are identical and in generai, di scussion
relates to the more complex system EIG2. To indicate differences, the

following symbols are used:

t applies to EIGl only
+ applies to EIG2 only.

Al.p. PART 1 - THE ANALYSTS OF THE BASE SYSTEM

Al.2.1. PROGRAM COMPNT (OVERIAY 1.0)

This program is responsible for the analysis of the base gystem

and the writing to disc Btore of the M.D.S. information. A flowchart
is shown in Figure Al.1. #** (

The run title, together with the parémeter IMOD and the number
of primary components NPC are read in, and the two secondary overlays
called in sequence for each P.C.. On completion of the analysis of

each P.C., information concerning it is stored and the variables NTP

B

All flowcharts appear at the end of this appendix.
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and NGP are updated.

Al.2.2. PROGRAM SETKM (QVERIAY 1,1)

Responsible for forming the primary component mass and stiffness
matrices, the flowchart is shown in Figure Al.2. The data describing
the primary component is read in including NO, the order, and in the case
of EIG2 the parameter ITYP.

In EIGl, the component mass and stiffness matrices are stored in
full lower triangular form while the variable bandwidth scheme is used

in EIG2. The respective core requirements are thus

1

C, = NO+ (NO+ 1) qu =~ Z#NO + 2%BO*NO

(A1.1)

where BO is an average semi~bandwidth.
Both version access a small library of finite elements
FELIB, but may be easily modified to accept any particular element or

library.

A1.2.%. PROGRAM MODES (OVERIAY 1,2) (EIG1 Version)

This program is responsible for eigenreducing the component matrices

and storing the M.D.S. information on disc. 4 flowchart is shown in
Figure Al.3.
i The extended Jacobi method (the routine DIAG, APPENDIX 4) is used
fo form the complete set of NO modes and eigenvalues for the primary
component which are located in the area previously used for the mass and
stiffness matrices.
The number of partial constraint sets, MCS, relating to the current

P.C. is then read in. For each P.C.S., the MO connection coordinates
are read as local displacement numbers, and the (51 matrix, which is
simply the appropriate.eigenvector partition is stored on disc 10 together
with the eigenvalues. The dimensions of each (;i matrix is NO by MO,
hence for a total of NPC primary components and MPS partial constraint

sets the M.D.S. core requirement is given by:

NPC MPS
C = = N +
3wk kS i

(eigenvalues) (G 5 matrices)

1 NO. * MO. (A1.2)
1 1 *

z
=1
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This core space is not infact required until Part 2.
On coﬁpletion of each P.C.5. information concerning it is stored,

and the variable M is updated.

Al.2.4. PROGRAM MODES (OVERIAY 1,2) (EIG2 Version)
The FIG2 version of PROGRAM MODES (figure Al.4) is considerably

more complex than the EIGIL version in that it contains facilities for
calculating constraint modes and generalised constraints, thus permitting
a reduction in the number of component freedoms and/or linking
constraints.
f Simultaneous iteration (the routine SIMULT, APPENDIX 3) is
used to calculate the first NN normal modes of the primary component.
In the case of a free component, a multiple of hﬂc)is added on to
Ko prior to factorisation.

SUBROUTINE CSTRNT reads MCS and the data concerning each P.C.S.
i.e. MO, MGO, ICST and ISET. Any new natural constraint sets are
calculated, as are constraint modes corresponding to all constraints.
On completion of each P.C.S. the variables M and MG are updated.

Where natural constraints are requested by ICST = 2 SUBROUTINE
GCON is called. The number and nature of the nodal freedoms involved
must be identical along the connection boundary, and the 'normal’ and
'tangential' freedoms must be specified by the user at a typical node.
The magnitude ratio of each orthogonalised constraint is calculated and
if less than TLN, the natural constraint is discarded.

SUBROUTINE CMODE forms an ortho-normal set of NM constraint modes
and calculates their associated pseudo-eigenvalues. The total
mumber of freedoms for the current P.C. is given by NGO = NN + NM. The
set of NGO modes must be stored in addition to the component mass

and stiffnéss matrices,and require a space of

202 = NO* NGO " (A1.3)

Further space for the interaction matrix (S.I.) and any natural
congtraint sets may be neglected.
Finally, SUBROUTINE GTERMS forms and- stores the G ; matrices for
each P.C.5.. Here the size of each G, & NGO*MGO, hence the M.D.S.

core requirement is given by



R

5 NPC MPS
C5 = PN NGO, + = NGO, = MGO, (A1.n)
: i=1 * =1 J J ,
(eigenvalues) ( G i matrices)

The parameters EMIN, EMAX corrésponding to kmin’ kMaX are updated
during SUBROUTINE MODES.

Al.2.5. Core Reguirements for Part 1

The total requirement for EIGL is given by () while for
EIG2 it is (C) + 2C.) (Equations Al.1, A1.3). With NO large
(e.g. > 100), the latter requirement can show good savings over the

former.

Al.3, PART 2 -~ CAICUIATION OF THE COMPOSITE SYSTEM EIGENVALUES

A1.3%.1. PROGRAM EIGVAL (Overlay 2,0)
The flowchart for this program is shown in Figure Al.5. Initially,

the parameters IVAL and ICON plus any associated data are read in.
IVAL controls the number of eigenvalues located i.e. either the NR
lowest or those in the range E1 < A < FE2. ICON controls whether
the 'constant part' approximation is used. If it is, N is set equal
to 2 x EMAX in EIG2 while A must be specified by the user in EIG1.
Terms in the 'constant part' are thus defined by ki > .
SUBROUTINE INPUT reads the M.D.S. information from disc store

in the core space previously used for K'e and hﬂe in part 1. The
data describing the base system in terms of P.C.'s and P.C.S.'s is then
read in, allowing SUBROUTINE SEIUP to establish the form of R (V)
and data to facilitate its economical automated formation.

The variables MM and L are set here. MM is the order of R (})

and is equal to the number of constraints applied to the base system.
The variable bandwidth storage scheme is used for R (X), hence L is
the length of the vector containing the off-diagonal terms. The core
space required for R (1)) is given by

CL{- = 3*MM+2*L (A1.5)

the additional set of diagonal and off-diagonal arrays being required
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for'storage of the 'constant part' of R (M. The arrays used to
store K & and M o in Part 1 are re-used for this purpose thus
allowing a value of MM close to the maximum allowable NO value.

SUBROUTINE FARRAY utilises the base system data to construct an
ordered list of unique base system eigenvalues and associated multip-
licities for the primary component eigenvalues over the range of interest
of A.

Control is finally passed to SUBROUTINE SVAL which locates the
composite system eigenvalues by use of the extended Sturm sequence scanning

algorithm (See Section Al.3.3.).

Al.3.2. The Description of the Base System

The data description of the base system components and constraint
sets is listed in TABLE Al.1. It is important to note that the unique
identification number assigned to each component (e.g. Cl, C2,...) is
given by the location in the ITC array. Similarly the first set of
entries in the arrays IDA, MTA, IDB, MIB correspond to constraint set
81 ete.

The simple beam example of Section 7.2.2. is here used to illustrate

the data required (derived from Figure 7.4(c)).

SYMBOL VALUES COMMENTS ;

NC L No. of components
ITC(NG) {1 1 1 1‘} P.C. types

(c1) (c2) (c3) (ch) Tdentifiers

MS 3 No. of constraiﬁ% sets
IDA(MS) { 1 2 3 } Component ident. nos.
MTA(MS) { 1 1 1 } P.C.S. types
IDB(MS) { 2 3 L } Component ident. nos.
MTB(MS) { 2 2 2 ‘ P.C.S. types

(81) (82) (83%) " Identifiers
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Al.3.3. SUBROUTINE SVAL

This routine implements the extended Sturm sequence
scanning algorithm (Section 4.6.4), which essentially enables the number
of eigenvalues exceeded by any given A to be established, thus allowing
any or all of the eigenvalues to be converged upon.

For a given argument, A, the number of eigenvalues exceeded
is obtained by calling SUBROUTINE KOUNT which in turn calls
SUBROUTINE RTERMS to form  R(L), and SUBROUTINE TRIAD to form the
Cholesky decomposition of R(MV. ‘

SUBROUTINE SVAL is thus primarily concerned with the scanning
procedure, and a flowchart is shown in Figure Al.6.

R()\) is singular at any base system (primary) eigenvalue
lg, hence to establish the composite system mulfiplicity, it is necessary
to evaluate the number of eigenvalues exceeded at Xg - @ and Xz + e,
where ¢ is a small perturbation.

Between each pair of pfimary eigenvalues is deemed to lie an
a 'principal rangé', for example:

Nte €A S N,
(see Figure Al.7a). )
Composite system eigenvalues occurring within a principal range must
appear as roots of R (A). (Secondary eigenvalues).

The scanning starts as the lowest primary eigenvalue and the
procedure

(1) establish multiplicity at a primary eigenvalue
(2) 1locate roots in following principal range
is repeated»henceforth.

Fach principal range is repeatedly bisected, thus prdducing several
sub-ranges, until a root of order unity is isolated in a sub-range. In
this event, control is passed to SUBROUTINE ZERO where interpolation
methods may be used to speed convergence (see Section Al.3.4). Care is
taken to recognise convergence to a multiple root.

The bounds for other sub-ranges produced by the bisection are stored
in a working table, provided that there are roots within the upper sub-
-range. This procedure, which is illustrated in Figure A.1.7(b) ensures
that the information obtained by each trial X evaluation is not
wasted. » _

In EIG2, scanning is halted once an eigenvalue is located which



FIGURE Al.7.

THE TLOCATION OF THE ROOTS OF IR()

(a) 7YPICALIR(A)| PLOT INDICATING PRINCIPAL RANGES
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(b) PROCEDURE FOR LOCATION OF ROOTS IN PRINCIPAL RANGE
A
| ?\L {+1 tr2 ‘
ANIREERZE
K i [ -
| i > A
! ]
I !
|
! A
X, x, Xg Xy,
' WORKING TABLE ARGUMENTS
Bisect | XL, XM XU {(x *x,)
1
Save XM. Redefine limit ' XL XU (x *xq 5)
Bisect 1XL XM XU (% * X,  Xp)
Save XM. Redefine limit VXL XU (% *x, x; x,
Single root isolated - call ZERO - locates A{ (x *x, Xy  X,)
I
Move up to next sub-range : XL XU ( x X, %X x,)
1 4 3 2
Repeated bisection converges to a multiple root -7\5_ 10,
No addition to the working table (= Xy * X3 X))
]
Move up to next sub-range ' X XU | ( x, X, 13 * %,
]
Single root isolated - call ZERO - locates 7\i + ( X X, s S xz)
Move up to next sub-range __ Principal range completed.

" ¥%¥ Indicates sub=-range

under examinetion




exceeds EMAX, and a warning message is printed out.
In EIGL, the 'constant part' approximation corresponding to
ICON=1 is discontinued.(if in use) by simply setting ICON=O when an

upper limit on a principal range is encountered which satisfies

EU > EBAR/10.0.

Al.3.5L, The Location of Simple Roots

. The well-known technique of simple bisection was utilised
throughout most of the developed work, principally because it is a
'safe' algorithm to use.

However, investigations into moré efficient algorithms were made
at a late stage with attention focussing on the technique of modified
successive linear interpolation as proposed by Peters and Wilkinson
[20]. In essence, the value of | R(A)| is evaluated at each
trial A (involving just a little more work than that required for
establishing a sign count) enabling linear interpolation to be used for
the new root estimate. Unacceptable iterates and slow convergence are
avoided by cowmbining linear interpolation with bisection.

In the practical tests discussed in Chapter 8 however, a similar
algorithm due to Brent [65] was incorpdrated into the computational

systems.

Al.L., PART 2 -~ CAICULATION OF COMPOSITE SYSTEM EIGENVECTORS

The flowchart for the controlling PROGRAM EIGVEC is shown in
Fig. Al.8.

181

SUBROUTINE SET assigns unique displacement and modal freedom numbers

to the base system components, and sets the variables NT and NG.

For each unique eigenvalue of interest hi’ multiplicity p,» R (%i
is formed. SUBROUTINE TRIAD now simultaneously factorises this matrix
and removes row/columns corresponding to a "zero" diagonal term. The
resulting factorisation is thus of the non;singﬁlar matrix R 11°
The number of "zeros" encountered is equal to the 'gain multiplicity',
MZ.

Figenvectors corresponding to persistént eigenvalues are calculate
by SUBROUTINE PVEC, with the 'persistent multiplicity' given by
MP = p; - MZ.

?

Each eigenvector corresponding to a gained eigenvalue is calculate

)

d

4



by the sequence of routines:
(i) BHS - forms a column of the R 1, Matrix
(ii) SIVE - . forward and backward substitution for C-.
(iii) FILL - forms complete € vector
(iv) RVEC ~ forms physical eigenvector X N
(involves re~reading component modes
from disc store).
Completed eigenvectors are written to disc 10.
The component eigenvectors are stored in place of R (Ki), thus
the only additional core requirements over and above that for Part 2
is for the modal and physical eigenvectors:

Ic = oxnr 2c_ = 'NT + NG (A1.6)

5 5

Al.5. PART L ~ CALCUIATION OF GENERALISED MASS AND STIFFNESS TERMS

The flowchart for PROGRAM GENKM is shown in Figure A1.9. The
contribution to the generalised mass and stiffness terms is calculated
for each component individually, and added in to the accumulating
terms. The ratio of generalised stiffness to generalised mass yields

the (Rayleigh quotient) eigenvalue for that mode.

Program listings for the computational systemsdescribed in this

182

appendix are to be incorporated in gn Aeronautical Structures.Departmental

Report.
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FIGURE Al.1

PART 1 -~ OVERLAY (1,0) - PROGRAM COMPNT

( s )

N

INITIALISE
VARIABLES

READ
TITLE,
IMOD,
NPC

WRITE

TITLE,
TMOD,
NPC

M

CALL OVERIAY (1,1)
(PROGRAM SETKM)

CALL OVERIAY (1,2)
(PROGRAM MODES)

STORE
PRIMARY
COMPONENT
INFORMATTION

UPDATE NTP, NGP
NTP = NTP + NO
NGP = NGP + NGO:

RETURN




> DO FOR EACH ELEMENT
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FIGURE Al.2

PART 1 - OVERLAY (1,1) PROGRAM SETKM

( : START

t Different Subroutine
INITIALISE Versions for EIG1

MASS g STIFFNESS
ARRAYS TO ZERO

i

READ
COMPONENT
INFORMATTION

W

CALL ELEMENT

ACCESS FINITE
ELEMENT LIBRARY,
FORM ELEMENT
K, M

e e

\

CALL ASSEM t
ASSEMBLE K _, M

e
u
o}

INTO K’;, M

READ NO.
OF DISPLACEMENTS
TO BE SUPPRESSED
(NBC)

YES

NO
CALL BC 4
CONSTRAIN
u “u
KoM,

le
N

STORE K , M _ON
DISE g °

RETURN
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FIGURE Al1.3%
PART 1 - OVERLAY (p,1) — PROGRAM MODES (EIG1)

(Called for each primary component)

START

CALL DIAG

CALCULATE SET
OF EIGENVALUES g
EIGENVECTORS

READ
MCS

STORE EIGENVALUES
AND EIGENVECTORS
ON DISC 8

STORE MCS AND -
EIGENVALUES ON
DIsC 10

DO FOR EACH PARTTAL CONSTRAINT SET

MPS = MPS + 1

READ MO AND SET
OF MO
CONNECTION CO-
ORD. NOS.

CALL GTERMS

STORE Gi SUB-

MATRIX TERMS
ON DISC 10

y

UPDATE
M

RETURN
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FIGURE Al.L
PART 1 - OVERIAY (2.1) - PROGRAM MODES (EIG2)
START
18 YES FORM
COMPONENT K = K +FAC«M A
FREE? =K o K, FROM
NO 7 DISC 8
FACTORISE CALL CMODE
K
o FORM ORTHO-
NORMAL SET OF
NC CONSTR.
READ MODES
NN
NGO= NN + NC
CALL SIMULT
CAICUIATE NN -
NORMAL PRINT SET
MODES oF NGO
EIGENVALUES
AND MODES
STORE
EIGENVALUES
AND MODES ON
DISC 8
FORM -
K -K-zxM -
o o o STORE NGO,
EIGENVAIUES
AND MCS ON
FACTORISE DISC 10
K
(@]
J CALL GTERMS
) FORM AND STORE

CALL CSTRNT

READ PARTIAL
CONSTRAINT
SET DATA.
FORM
GENERALISED
CONSTRAINTS.
SOLVE FOR
CONSTRAINT
MODES

G MATRIX TERMS
ON DISC 10

RETURN




FIGURE Al1.5

START ]

-
BHES
[t

READ
PARAMETERS
IVAL, ICON

PART 2 - OVERIAY (2.0) -~ PROGRAM EIGVAL

READ EBAR (EIG1)
= 2xEMAX

SET EBAR

(EIG2)

]

WRITE
HEADINGS,
PARAMETERS

CALL INPUT

READ M.S.D.
INFO FROM
DISC.10 INTO
IN-CORE ARRAYS

READ DATA ON
COMPONENTS

AND CONSTR-

AINT SETS

L

CALL SETUP

SET DATA FOR
FAST SETUP
OF R MATRIX

CALL EARRAY

FORM ORDERED
LIST OF BASE
SYSTEM
EIGENVALUES &
MULTIPLICITIES

CALL SVAL

LOCATE COMPO-
SITE SYSTEM

EIGENVALUES BY

EXTENDED STURM
SEQUENCE
METHOD

[ momm




(Extended Sturm Sequence Scanning Algorithm)
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FIGURE Al.6

SUBROUTINE SVAL

SET 'CONSTANT!
PART OF R FOR
2° > EBAR

1
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DO FOR EACH PRINCIPAL RANGE

.

SET RANGE
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I
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~ FIGURE A1.6 (Continued)
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STORE
EL, KEL
EU, KEU
IN WORKING
TABLE

N 72
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(See separate
flowchart)
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FIGURE A1.6 (Continued)

The Analysis of a Principal

Range
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150

¥

DEFINE SUB-RANGE DATA
FROM WORKING TABLE

XL, KL}

XU

XU,

\

SET NO. OF ROOTS
IN SUB-RANGE
KS = KU - KL

(i.e. XL €£X £XU)

CALL ZERO

DIVIDE SUB-RANGE

XM= (XU + X1)/2

LOWER SUB-
RANGE IS
BARE, SET
XL = XM
KL = KM

LOCATE
ISOLATED
EIGENVALUE

Convergence to )
a multiple root

\

ESTABLIISH NO. OF]
EIGENVALUES
EXCEEDED BY XM

K

SET NO. OF ROOTS
IN 'LOWER' SUB-

RANGE KS=KM-KL

IN 'UPPER' SUB-
RANGE KSS=KU-KM

SET NO. OF ROOTS

BXAMINE
'IOWER' SUB-
RANGE. SET

(= KM)

STORE XM, KM

IN WORKING TABLE

STORE EIGENVAIUE
AND MULTIPLICITY
IN MAIN LIST

{

SET WORKING TABLE
POINTERS FOR NEXT
SUB-RANGE




FIGURE A1.8

PART 3 .- OVERIAY (3,0) - PROGRAM EIGVEC

( START )

( READ 1IVEC )

IV =1

CALL SET

ASSIGN FREE-
DOM NUMBERS

TO COMPONENTS

[é

DO FOR EACH UNIQUE EIGENVALUE

(2) .

Is
VECTOR

SET
. PERTURBATED
ARGUMENT

)

CALL RTERMS

SET UP
R()

4

CALL TRIAD

FACTORISE
AND DEFIATE
R ()

© C
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DOI =1, MZ

CALL RHS

FORM R.H.S.

CALL SLVE

SOLVE FOR
cl

CALL FILL

FORM C

CALL RVEC

EIGENVECTOR

CALCUIATE
PHYSICAL

CALCUIATE
PERSISTANT
MULTIPLICITY
MP:%—MZ

CALL PVEC

CALCUIATE 'PERSISTANT'
ETIGENVECTORS




r———é DO FOR FACH PRIMARY COMPNT

A92

FIGURE A1.9

PART L - OVERIAY (4,0) - PROGRAM GENKM

START

REWIND 8

INITTALISE
GEN. MASS AND
STIFFNESS ARRAYS

L

V4

READ
K,

o o
FROM DISC 8

REWIND 10

y

—>1 . DO FOR EACH EIGENVECTOR

READ
EIVENVECTOR
FROM DISC 10

re DO FOR EACH BASE SYSTEM CMPNT

EXTRACT PART
OF EIGENVECTOR
RELATING TO
COMPNT. ( Xo)

FORM x'K x
0] o} 0]

&
MDD x M, x,
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ETGENVALUES FROM APPROPRTATE
GEN. TERMS GEN. MASS g GEN.
T STTFFNESS TERUS
WRLTE OUT
GEN. TERMS
v
\  =erumw




TABLE Al.1

93

S

LIST OF INPUT DATA

PROGRAM
COMMENT CYMEOL CLASS USE/MEANING
PART 1 TITLE Title of job
IMOD P No. of parts to be executed
(= l, 2, 5, or Ll')
4 NPC D No. of primary components
Data to describe component. First card always contains
NO D Primary component order
ITYP P = 0 (fixed component) = 1 (free
component)
NN D No. of component normal modes
required
ﬁ MCS D No. of partial constraint sets for
FOR current P.C.
EACH MO D No. of connection freedoms in current
P.C. P.C.S.
MGO D No. of generalised connection
freedoms required
FOR ICST P P.C.S. type O = normal, 1 = gener-
alised constraints (read in),
FACH 2 = natural constraints
P.C.S. ISET P G.C.S. identifier. = O implies a new
set
\ MA(MO) D Local commect. coord. nos for P.C.S.
PART 2 IVAL P Control paraméter for comp. system
eigenvalue
NR D Calculation = O calculates all
N D = 1 lowest NR calculated
E2 D = 2 EL £ A £ E2 calcld.
ICON P Constant part approximation control
EBAR D parameter = O no approximation

1 A% > EBAR defines
. i
constant part

nu
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TABLE Al.1 (Continued)

PROGRAM

COMMENT SYMBOL CIASS USE/MEANING

PART 2 (contd NC D No. of components in base system

ITC(NC) D P.C. type for each component
MS D No. of constraint sets in base
system
IDA(MS) D Component ident. nos -
Dominant

MTA (MS) D P.C.S. types half
IDB(MS) D Component ident. nos Di scarded
MTB(MS) D P.C.S. types half

PART 3 IVEC D No. of eigenvectors required




.
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TABLE Al.p

LIST OF MAIN PROGRAM VARTABLES

commne | e | ST USE/MEANING
PART 1: NTP COMPNT Sum of P.C. displacement freedoms
* NGP COMPNT Sum of P.C. generalised freedoms
¥ NGO MODES P.C. generalised order
Of the set comprising the highest
*
EMIN MODES normal mode eigenvalues from all
* EMAX MODES P.C.'S,'EMIN is the minimum, EMAX is
the maximum

M CSTRNT Total no. of connection coords

specified for all P.C.S.'s
* MG CSTRNT Total no. of generalised constraints
specified for all P.C.S.'s
MPS CSTRNT Total no. of P.CeS.'s
* MGS GCON Total no. of GeCeS.'s specified
* NM CMODE No. of ortho-normal constraint modes
included for a given P.C.
NLG GTERMS Total no. of G terms written to disc,
hence defines length of array required
to store them in~core in part 2.
PART 2: MM SETUP Order of the matrix R ()

L SETUP Length of vector containing off-diagon-
al terms for R (A)

NE EARRAY Total no. of entries in the lists of
unique eigenvalues and associated
multip licities

NV ~ EARRAY Total no. of eigenvalues contained in
above list

PART 3: NT SET Total no. of displmt. freedoms in base
system

NG SET Total no. of generalised freedoms in

base system
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TABLE Al.3
LIST OF FIXED PARAMETERS

The fixed parameters relating to the routine SIMULT (S.I.) in
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EIG2, and to the routine DIAG (E.J.) in EIGl are described along with
these routines in APPENDICES 3 and L.respectively.

COMMENT | NAME ggggn& MEANING/USE T%’I{I%L
* FAC MODES Used to provide a non-singu- 10°
lar stiffness matrix for the
S.I. process in the case of
a free component by
K = (K + FAC * M )
o o o
* TOL TRIAK Tolerance for recognising a 10°
zero diagonal term on factor-
isation
* TLM CMODE Tolerance for inclusion test- 1072
ing of constraint modes
* TLN GCON Tolerance for inclusion test- 1072
ing of generalised constraints
TLU EARRAY Tolerance for separation of 107k
close eigenvalues
TLX SVAL Tolerance for use in setting 107
ZERO scamning algorithm arguments,
EIGVEC location of roots, perturbat-
ion of primary eigenvalue
arguments
TLZ TRIAD Tolerance for recognising 1077
zero diagonal terms on tri-
angulation
MIN ZERO Minimum no. of simple bisec- 7
tions
- MAX ZERQ Maximum no. of bisections + 15
interpolation steps
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APPENDIX 2

THE CCOMPONENT MODE METHOD AND SYSTEM EIG3

Ap.1. GENERAL DESCRIPTTION

The Gomponent Mode Method has been discussed in a general context
in Section 4.6.5. :

Here, the method of Craig and Bampton [55], requiring the calculation
of fixed constraint normal modes and constraint modes for each
component is extended to a non-diagonal mass matrix.

Use of the simultaneous iteration technique both for component
normal modes and composite system normal mo&es enables the procedure
to be programmed in an extremely concise way. Details of the
program ELG3 are included in this Appendix. 4

Numerical results obtained are compared with results from Kron's

method in Chapter 6.

A reference list of nomenclature is contained in TABLE A2,2.

Ap.2. THE COMPONENT ANALYSIS

Initially the structure is subdivided into components by
restraining the connection freedoms along component boundaries. Each
component may however be considered separately from the rest of the
structure. A typical component is now considered. .

Let the full displacement vector be partitioned into connection
freedoms Xc and internal freedoms X 5 and the undamped equation of

motion partitioned accordingly:

ii ic i i

1
>
]

(A2.2.1)

A2.2.1. Normal Modes

The 'fixed constraint' normal modes are found for X o = 0 and

xj_=: O , that is by the eigenreduction of:

(Kii - )»Mii)xi = 0 , (A2.2.2)
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In general only the few lowest modes are found; & N with generalised

coordinates  ( N*

A2.2.2. Constraint Modes

Constraint modes are found by imposing a unit displacement in turn
at the connection coordinates while all other connection coordinates are
fixed. Static modes are used, hence with A = O, the first set of

equation (A2.2.1) gives

K. x.+ K X = 0 (A2.2.3)

ii 1 ic c

If the set of imposed connection coordinate displacement patterns are
gathered together in the unit matrix I , the corregponding constraint

modes b o are obtained by the solution to the equation:

K. & - -K - (A2.2.4)

ii c ic

It may be noted here that the number of normal modes n, is

arbitrary while the number of constraint modes n, is fixed.

A2.2.3. The Component Coordinate Trangformstion

The transformation to generalised coordinates is defined by

X = | x| = | @A = Tgq (A2.2.5)

and utilising this to transform the equation (A2$2.1) results in

(Kc - )\Mc) q= Q | - (A2.2.6)
where
K = TtK
C (o]
M = T'W™
(o] o]
Q = T'X '



199

For non-diagonal K o and M o (component stiffness and mass matrices),
the form of* K . and M . is identical ~ here shown for K c:
[ t
K, = | (@K &) : (svt. )

t t ot
(o K;;®y+ K ;09 (K + @K+ K;® +@K; @)

(A2.2.7)

By virtue of the orthogonality of the normal modes, and with suitable

normalisation:
oik. . @ A
N ™tii N N
oM. & - T
N i1 N ~

where A N is the diagonal matrix of normal mode eigenvalues.
However, by equation (A2.2.4), the off diagonal block in Kc

is zero, and the second diagonal block simplifies so that equation (A2.2.6)

may be written as?

AN 0 I McN qN Y
- -l - ~ = (A2.2.8)
0 ch McN cc Xc XC
where

I‘Z = K + K . ¢ (A2¢209)
ce cc ci ¢

M =M + M.o + oM oM. ® (a2.2.10)
cc cec ¢l "¢ ¢ ci ¢ ii ¢

g t

MCN = q:c Mii¢N+ Mcich (A2.2.11)
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Ap.2.4. Use of Simultaneous lIteration

The usual method for solving equation (A2.2.4) is to form the
Cholesky factorisation of K‘ii’ and to perform forward and backward
substitution for each R.H.S..

The factorised stiffness matrix is thus readily available for
use in a simultaneous iteration process for the normal modes. 8.I. is
thus very convenient, involving forward and backward substitution again
and matrix products with the mass matrix M 140 provided only a small

fraction of the normal modes are required.

A2l3., ASSEMBLY AND SOILUTION
|

A2.3.1. The Assembled Composite System Matrices

A consideration of two components, A and B, is sufficient to
indicate the assembled system matrices. Component normal coordinates
are carried through as independent freedoms, while the connection
coordinates are felated to the global set of connection coordinates by
a boolean transformation, ensuring displacement compatibility between
components.

Considering A Xc = B Xc = x(ﬂ the composite system matrix

eigenvalue equation is as follows: ( X _= 0)

C o~ - - =) . - - s
Ap I ]
N SYMM, SYMM, AqN 0
. A )
A B A B B B
L 0 of ch+ ch)- i Mc:N McN ( Mcc+ MCC)J L xc, L 0 i
(A2.2.12)

Provided only a fraction of the normal modes from eachA
component is included, the order of the abové eigenvalue problem is
considerably smaller than the fully assembled problem. In addition,
the partitioning and general form of equation (A2.2.12) indicates that
a variable bandwidth storage method would, place relatively low demands on

COTre.

The general composite system eigenvalue equation is denoted by

?

(K-M) g =0 (A2.2.13)
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£2.%3.2. Solution of the Composite System Eigenproblem

The composite system eigenproblem is of 'algebraic' form and may
be solved by standard method, however transformation methods would
‘greatly increase the core requirement. Equation (42.2.12) describes‘
an approximate system in which higher mode freedoms are pot
included, thus only the lower eigenspectrum is of practical interest.
Clearly, the factorisation of the stiffness matrix K is a very light
task and so simultaneous iteration is again highly suited.

In a situation where a fair number of eigenvalues are required
tojgood accuracy, or just intermediate ones, the Sturm sequence method
mai be used. Clearly, only factorisation of the last n, rows of
( K'=2 M) is required for each trial M (where n is the number of
global connection coordinates). The sign count so obtained is added

to the number of component normal mode eigenvalues exceeded by A to

obtain the full sign count.

\A2.3.3. Eigenvector Calculation

The full composite system eigenvectors are obtained from the
generalised eigenvectors by application of equation (A2.2.5) for each

component, thus obtaining the displacement at the internal freedoms.

A2.4, THE COMPUTATIONAL SYSTEM EIG3

The theory of the previous sections is applied in the pfogram system
EIG3, The three part organisation and use of disc storage is
indicated in Fig. A2.1, while the overlay structure is shown in Fig. A2.2.
Table- A2.3 1lists the input data and other principal
program symbols respectively at the end of this appendix.

The three constituent parts are now briefly discussed.

A2. 4.1, Part 1 - The Amlysis of the Components
The flowchart for PROGRAM COMPNT is shown in Fig. A2.3. No attempt

is made to define a minimum data set as in EIG2, however the parameter
IREP (see Table A2.3) is introduced to save work in cases where there
is a form of repetition between components.
PROGRAM SETKM, responsible for forming Ko and M o is
identical to that of EIG2, using variable bandwidth storage.
' BROGRAM NODES is flowcharted in Fig. Az.h. 'K _and M are
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first partitioned conformably with X, = {Xi xc} , and the
last NC rows are held in full, where NC is the dimension of X,

The gpaces containing Kci and M oy are useful in the subsequent

computation of K _, M  and M .. once the normal and
cc ce cN
constraint modes have been calculated.
Where suppression of the connection freedoms does not render K i
non-singular, additional internal freedoms may be designated

connection freedoms to remove rigid modes.

A2.L. 2.‘ Part 2 - The Composite System Assembly and Analyvsis
The flowchart for PROGRAM VALVEC is shown in Fig. A2.5. The

various component matrices are read back from disc where they were
stored during part 1, and assembled into composite system matrices of the

general form:

rl\l' %YMM, — — I ;SYMM. -
K = Mo, M = I‘\
0 \A{\j_(}s 0 B “ T .
i 0 ch_ ~M0N1 MIcN2 MCNNCIS Mcc“
< NA: > &NB—>

The dimension NB is read in at the start of the run, while NA is calculated
during part 1. Variable bandwidth storage enables large problems to be
held in a reasonable core space, provided NB is not too large. The
stcn'rage arleas used for Ko and M0 in part 1 are reused for

Kanda M . Similarly, the routines for factorisation, S.I., mass
matrix multiplication etc., used during part 1 are simply reused during

part 2.

-A2.4.3. Part 3 — Full Eigenvectors. Generalised Mass and

Stiffness Terms

The flowchart for PROGRAM CMPVEC is shown in Fig. A2.6. For each

component in turn, the local eigenvector is calculated, amd the contribution

towér@s the composite system generalised terms calculated.
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A2.5. APPLICATION TO FIATE BENDING EXAMPLE (NO,1)

The program EIG3 was tested using the plate bending example
introduced in Section 6.3.5. The results obtained by including 2, 3
and 4 ‘fixed constraint' normal modes (cases A, B, C respectively) from
each component are shown in TABLE Ap.1. 12 'unit displacement!
constraint modes are included in all cases. Hence the orders of the

composite systems are given by

Case A 2+ 24+ 12 = 16
Case B 24+ 3%+ 12 = 18
Case C L +Lk+ 12 = 20

The lowest six eigenvalues, obtained to five places, are presented
together with percentage error with respect to the full solution.

The results validate the operation of the program and indicate
the excellent representation of the low composite system eigenspectrum.
It was noted that, in general, accuracy dropped off rapidly once the
highest component normal mode eigenvalue had been exceeded.

These results may be compared with those obtained by the approximate
Kron method (TABLE 6.5). While accuracy of the lowest eigenvalues is
generally better with the latter approach, the accuracy fall-off
occurs earlier. This is expected as the 'fixed constraint' normal modes
extend to a higher M value than an equivalent number of 'free connection

coordinate modes' as used in Kron's method.



TABLE Ap,1

PLATE BENDING EXAMPLE (NO. 1)

RESULTS FROM TEST CASES

A B c FULL
Composite System Eigenvalues SOLUTION
1 75.046 7h.947 74947 74,931
2 5. 41 5hli. 26 542.22 541, 80
3 570, 24 568.04 568. 88 568. 84
L 2323.3 2238.5 2222.4 2204.9
5 2%98.0 2394.0 2391.4 | 2389.6
6 6909.1 6258.3 6184.7 6111.4
% Errors w.r.t. full solution
1 0.153 0.021 0.021
2 0.482 0. 454 0.077
3 0.246 0.018 0,007
A 5.41 1.52 0.794 i
5 0.352 0.184 0.075
6 13.05 2.40 1.20

First L 'fixed constraint' component eigenvalues are

1228.5
3205.4
m78.5
17159.0
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FPIGURE A2.1.

EIG3 - BASIC ORGANISATION AND DISC TRANSFERS

( START )
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Ko My
<”N ¢c

CALC. by, D Ay
_HENCE FORM
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’ ‘

K M

h
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COMPOSITE SYSTEM
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EIGENVECTORS

’

CALCULATE
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VECTORS & SYSTEM
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STIFFNESS TERMS

{ STOP )
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PROGRAM COMPNT
OVERLAY (1.0)

PROGRAM EIG3
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FIGURE ~ A2.3.
PROGRAM COMPNT - OVERLAY (1,0)

( START )

71 D0 FOR EACH COMPONENT

WRITE
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1 2

IREP?
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FIGURE A2.4,

PROGRAM MODES
- OVERLAY (1,2)

( START )

READ
NN, NC

NLC(NC)
NGC(NC)

: N
PARTITION
Ko Mg

ACCORDING
TO {Xj Xi}
FACTORISE K4

J.
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FIRST NN
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FORM K 4o
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RETURN
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FIGURE A2.5.

- PROGRAM _VALVEC
-~ OVERLAY (2,0)

(Lomm )

[P0 FOR EACH COMPONENT
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COMPONENT
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FACTORISE
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FIGURE A2.6.

PROGRAM CMPVEC - OVERLAY (3,0)

: { START )

f
INITIALISE
GENERALIGED

MASS & STIFFNESS

ARRAYS

/s

REWIND 8 l

> DO FOR EACH COMPONENT |

N

READ

O, MO, ¢Eo c,

FROM DISC 8

y
|REWIND 10 I

DO FOR EACH COMPOSITE SYSTEM EIGENVECTOR
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EIGENVECTOR

FROM DISC 10

USE®, & T0

CALCULATE X

COMBINE {X; Xy}
70 ORIGINAL ORDER X

4
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% R
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ADD INTO
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MASS & STIFFNESS
TE?@S

Ne

WRITE
GENRALISED ) ’
MASS & STIFFNESS
TERMS

RETURN
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TABLE A2.2

THEORY NOMENCLATURE

SYMBOL DIMENSION MEANING
KO ' Component stiffness matrix
. noxn
M ° Component mass matrix
X, n Component (full) displacement vector
5 n, Vector of component internal freedoms
Xc . n, Vector of component connection
freedoms
)(0 n . Vector of component forces (full)
¢c (no X nc) Matrix of constraint modes
¢N (no X nn) Matrix of normal modes
q (nc + nn) Component generalised displacement
‘vector
qN (nn) Component normal mode coordinate
vector
I(c (nc + nn}x Condensed component stiffness matrix
M, ' (nc + nn) Condensed component mass matrix
K
ce (nc x nc)
Mcc (nc x nc) Submatrices in Kc and M .
McN (nc X nn)
Ny (nn x nn) Diagonal matrix of normal mode
eigenvalues
L4
K Composite system stiffness matrix
' nxn
Composite system mass matrix
' 4
q n Composite system displacement vector
n_ Typical component order
n, Number of component connection
freedoms
Number of component internal freedoms
n Number of component normal modes
Order of composite system
R T Number of normal mode freedoms in
& composite system
n, Number of connection coordinates
in composite system




TABLE Ap.3
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GOMPUTER PROGRAM NOMENCLATURE FOR EIG3

LIST OF INPUT DATA

PROGRAM
COMMENT CTVROL READ IN BY USE/MEANING
TIG(6) COMPNT Title of run
IMOD COMPNT "Overall control" parameter
(as per EIG1/2)
NCS COMPNT No. of components
NB COMPNT Total no. of comnection freedoms
in composite structure
( IREP COMPNT "Repeated component'" parameter.
IREP=0 normal. '
F IREP=1 and are as for previous
g component
IREP=2 only change from previous
component is new global con-
E nection coordinates
A
c { te {Data to describe component - first card always contains:
B NO SETKM Component order
g * NN MODES No. of component normal modesg
M required
g * NC MODES - No. of component connection freedoms
N .
B * NLC(NC) MODES Local displacement nos. of the
N connection freedoms
T
\ NGC(NC) MODES Global displacement nos. of the
connection freedoms
NR VALVEC No. of composite structure normal
modes required
NA COMPNT Sum of all the component normal
OTHER modes
PRINCIPAL )
.(= NO -~ NC
PROGRAM NI PART Order of' K,;( )
SYMBO;S N VALVEC Order of K', M’ (= NA + NB)
(t not required if IREP = 1)
(* not required if IREP = 2)
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APPENDIX 3

SUBROUTINE SIMULT (SIMULTANEQOUS ITERATION METHOD)

A3.1. SUBROUTINE SIMULT

The theory of simultaneous iteration has been dealt with in
Section 2.%. A flowchart of the routine SIMULT is shown here in
Figure A3.1.

The three fixed parameters used by the routine are as follows:

NAV = number of additional trial vectors to be used above
NN (typically 3)

LIM = the maximum number of iterations permissable
(typically 10)

TLS = a tolerance for convergence testing (typically 10-5)

The stiffness matrix is factorised prior to entering SIMULI. The
interaction analysis utilises the off-diagonal terms in the interaction
matrix to provide a measure of the coupling between trial vectors.
Convergence is obtained when all the first NN diagonal terms in the
interaction matrix are within a small tolerance of the previous
iteration's values. This tolerance is given by the latest diagonal

term x TLS.
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FIGURE A3,1.
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APPENDIX I,

SUBROUTINE DIAG (EXTENDED JACOBI METHOD)

AlL.l. " BASIC THEORY

The extended Jacobi method involves the conversion of the structure
mass 'and stiffness matrices simultaneously to diagonal form via a

series of similarity transformations:

Pr Kr—l Pr = K. Kr -+ k (diag) asr - ®
(A4.1)
t . .
Per—l Pr = M, Mr - m (dgiag) asr - ®

The technique is useful where a complete set of eigenvalues and eigen-
vectors are required for fairly small problems.
Each transformation step zeros a pair of off-diagonal lower triangle

terms ¢ e.g., for the (i,j) terms (non-zero terms in Pr indicated).

The condition that kij = mij = O enables Py and P, to be calculated by

2
_ = b i J(bhac)
P, = a (AL, 2)
where
a = k.m. . -m,6 .k, .
JJ 1] JJ 1]
» = k..nm,. -m, k..
jjii jiii
c = k..m, ., -m k, .
ij ii ijii
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whence
- (k.. + k..
( 1% Py JJ)

.
—

p ==
2 (kii + pzkij)

(A4.3)

™R

The minus sign is used consistently in the numerator of equation AL.2.
Care must be taken to récognise ill~conditioning in this numerator.

The following special cases are also recognised

. c
if a = O Py = -3

if ., a = b = 0 1 is indeterminate

if B = O, an alternative expression for equation

(A4.3) involving mass terms should be used.

The procedure adopted is to work through the off-diagonal terms in
" a columnwise manner. In general, however, previously zeroed locations
are disturbed by subsequent transformation, and several 'passes' are-
required until all the off-diagonal terms are within some acceptable
tolerance. The transformed mass and stiffness matrices remain symmetric
at each stage. Both zero and coincident eigenvalues and associated
vectors are obtained by the technigue.

If the total number of transformations used to obtain a"converged'
state is s, the eigenvalues are given by ki = kii/mii while the eigen-

vectors are formed from the transformation matrices by

S

® = ([ P, (AL 1)

r=1

A normalisation procedure is incorporated on each transformation.

I py or p, exceed unity modulus, the appropriate column of Px‘

is factored by L or L « At each stage it is thus only necessary to

save the terms 1 Py e p2, p3, ph where p3 and Py, are the diagonal

terms in the columns containing P, and Py respectively.

Al,2. SUBROUTINE DIAG

SUBROUTINE DIAG and associated subroutines are responsible for
carrying out the theory of the previous section. DIAG initially reads

in the control parameters listed below:



TOL tolerance for off-diagonal term testing

MAXK maximum number of complete 'passes' allowable

(typically 8 - convergence usually obtained
in 5 or 6)

Ic a write parameter — used as a debugging aid

(normally 0)

IN eigenvector normalisation parameter
= O no normalisation
= 1 w.r.t. largest term
= 2 such that ¢:1L-' d)i = 1
= 3 such that ¢§M ¢, = 1
Iw number of eigenvalues and eigenvectors required

as printed output (starting with the lowest).

DIAG accesses the structure mass and stiffness matrices and the

problem order via COMMON blocks. The matrices must be stored in

triangular columnwise form.

values Pys Pos pB, pLF being stored on a scratch dise file. A test for
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The transformations are then carried out, the

convergence is made at the end of each 'pass', the criteria being that all .

off-diagonal terms must be less than a tolerance based on the smallest

diagonal terms. As a zeroing leading diagonal stiffness matrix term

is possible, a minimum diagonal term is set within the program. At

convergence, the eigenvalues are calculated.
Control is passed to SUBROUTINE MULT which recovers the Py terms

from disc store and forms up the eigenvector matrix in the same core

locations as utilised by the input mass and stiffness matrices.

Finally SUBROUTINE WRIT prints the eigenvalues and eigenvectors in

ascending order.
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o ’ APPENDIX 5 -

BEAM AND PLATE FINITE ELEMENTS

Brief details of the beam and plate bending finite elements
utilised in conjunction with the computational systemsare included in

this appendix.

A5.1. »-DIMENSIONAL BEAM ELEMENT

The beam element used included flexural stiffness in one plane )
only and is rigid in extension (Figure A5.1(a)). Hermitian polynomials
corresponding to the four element freedoms and expressed in terms of the
local coordinate q define the displacement interpolation functions:

AL I

(2

1
I

w4 = g(— l-qgq+4g=+ q

Ignoring the effect of sghear flexibility, there is one non-zero
shear component i.e., ex. Assuming linear elasticity with Youngs
modulus E, and density per unit volume p, straightforward application

of the displacement method produces an element stiffness matrix given

by
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. EL [ 7 £

= - S . I = =

kg 23 12 ymm . e
64 142

-12 ~-64 12

64 247 68 WP

and ignoring rotary inertia, a kinematically consistent mass matrix

given by B
\ tL T
HTg = 556 156 Symm
224 uL°
5k 124 156

134 =342 _ood L4R

(assuming unit depth).

; A5,2. RECTANGULAR PLATE BENDING ELEMENT

Initial tests were carried out using a 12 degree of freedom
unconforming rectangular plate bending element (see for example [66]).
Possessing w, gﬁ, gg freedoms at each node, the total number of freedoms
is insufficient to define a complete cubic displacement polynomial over
fhe’element, and normal slope continuity between adjacent elements is
not enforced. This non-confirming property leads to erratic convergence
as grid size is refined.

Such behaviour was observed in some of the test examples, and it was
decided to employ a 16 degree of freedom conforming element instead [67]
The conforming properties assure that convergence to the exact
natural frequency is monatonically from above [68]. 5

The element is shown in Figure A?.Z, the twist (g%ﬁ%) being the
additional freedom included at each of the four nodes. The element was
programmed utilizing Hermitian polynomials,in terms of local coordinates
and Gaussian integration. Constant thickness is assumed.

ql’ qz,

Both elements employed were %alidated against documented test case.

¥



219

.. YIGURE  A5,.1.

2-DIMENSIONAL BEAM ELEMENT

7 o

/ l ] 1\t ,
| | A
1 ) g

< FIGURE A5,2,

16 DEGREE OF FREEDOM RECTANGULAR
PLATE BENDING ELEMENT

Z (W)
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