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ABSTRACT 

The research is concerned with the normal mode approach to the 

dynamic analysis of undamped structural systems possessing large, but 

finite, degrees of freedom, and in particular with the computational 

application of Kron's eigenvalue method. The work originated from a 

study of Weinstein's method, which is shown to be equivalent to 

that of Kron's. 

Standard eigenvalue algorithms are reviewed, with emphasis on 

suitability for large problems, and a unified approach to component 

. synthesis methods is given, establishing those due to Kron and Hurty. 

Kron's method is developed in detail and its computational merits 

discussed. New techniques for economically obtaining approximate 

low frequency solutions are proposed, and illustrated on beam and 

plate bending examples. 

A computer pi-ogram to implement the full'and approximate Kron 

methods, with the minimization of core space a high priority,is described. 

The computational efficiency of these methods is investigated, and 

their applicability to repetitive structures emphasized. The 

approximate Kron method is compared with the component mode method, the 

latter being implemented in a particularly concise way. 

It is concluded that where the full eigenspectrum is of interest, 

the full Kron method offers great economies over other methods, 

particularly where the number of constraints is very much less than 

the total problem order, or where repetition is present. The approximate 

Kron method enables approximate results to be obtained with great 

savings in computer resources. This approach may be preferable to the 

component mode method where highly redundant connection boundaries or 

awkward boundary conditions are present. 
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GLOSSARY 

PRINCIPAL MATRIX SYMBOLS (Often with various suffixes) 

Relating to a fully assembled system:  

X 
	

Displacement vector 

Force vector 

Stiffness matrix 

Mass matrix 

Damping matrix 

Modal matrix (mass normalised eigenvectors) 

A 
	

Diagonal matrix of system eigenvalues 

q 
	

Modal coordinate vector 

A 
	

Dynamical matrix of system 

y 	Displacement vector 

Force vector 

q0 	Modal matrix 

in dynamical system coordinates 

  

Relating to a typical component:  

*Xo 
xo 
lko  
Ma  

ctto 

Displacement vector 

Force vector 

Stiffness matrix 

Mass matrix 

Modal matrix (mass normalised eigenvectors) 

	

Ao 	Diagonal matrix of eigenvalues 

	

$o 	Dynamic stiffness matrix 

	

Ro 	Receptance matrix 

Do 

	

oyc 
	Connection coordinate vector 

o
^ 

	

41c 	Partition of modal matrix at connection coordinates 



Relating to a tpical component  

no 	typical component order 

bo 	component semi-bandwidth 

oc 	number of component connection freedoms 

nno 	number of component normal modes included 

co 	number of component constraint modes included 

ng 	total number of component generalised freedoms 

m
o 	number of simple constraints in a typical set 
mgo 	number of generalised constraints 

Relating to the base and composite systems (principally Kron's method) 

q 	number of components 

pc 	number of primary components 

Ps 	number of partial constraint sets 

nt 	total number of displacement freedoms 

total number of generalised (modal) freedoms 
g 	 in base 
m 	total number of simple constraints systems 
mg 	total number of generalised constraints 

nc 	total number of connection freedoms in base system 

1 	number of unique connection freedoms in composite system 

d, dg  

gkl 
r.. 

k 

min 

2\ max 

min 

semi-bandwidth of R matrix 

typical term in G matrix 

typical term in R matrix 

typical base system eigenvalue 

1 

minimum of the set of all highest component normal 

maximum of mode eigenvalues 

minimum of all constraint mode pseudo-eigenvalues 

in base system 

value above which the constantpart approximation 

is effective 



Relating to the base and composite systems (Component methods)  

Xi = y i  Complete set of internal coordinates 
Xc 	Complete set of connection coordinates in base system 

)(c 	
Force vector at base system connection coordinates 

Yc 	Unique set of connection freedoms in composite system 

y
c 	

Force vector at the yc  coordinates 

C 	Vector of constraint forces in composite system 

.1 

Transformation matrix connecting X c and ye  
Constraint force transformation matrix 

D Composite diagonal matrix of component1)0  matrices 

G Modal constraint matrix 

Gi 	Typical submatrix in G 

R 	Composite system condensed receptance matrix 

Composite system condensed dynamic stiffness matrix 

r J Ea diagonal matrix 

column vector 

. (All other symbols are defined in the text.) 

PRINCIPAL SCALAR SYMBOLS  

General symbols  

n order of full system 

b 	semi-bandwidth of full system 

✓ number of eigenvalues/eigenvectors required 

t number of iterations 

p 	multiplicity 

eigenvalue 

circular frequency 	
various suffixes 

f 

C+..)  

frequency in Hz 

9 
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ABBREVIATIONS  

M.D.S. 

P.C. 

P.C.S. 

G.C.S. 

F.K.M. 

A K.M. 

C.M.M. 

S.I. 

E.J. 

Minimum data set 

Primary component 

Partial constraint set 

Generalised constraint set 

Full Kron Method 

Approximate Kron Method 

Component mode method 

Simultaneous iteration 

Extended Jacobi method 
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CHAPTER 1 

INTRODUCTION 

1.1. MATRIX METHODS OF STRUCTURAL DYNAMICS  

The prediction of the vibrational characteristics of large complex 

structures is of great importance in a variety of Aeronautical, Civil 

and Mechanical engineering situations. It may be, for example, 

that the response of a structure to a known force input is required, 

or that natural frequencies are required for design purposes. 

With the advent of the high speed digital computer, the last 

decade has seen a tremendous growth in the field of numerical methods 

applied to solve engineering problems [1]. In the field of structural 

analysis, the finite element method [2J[3] is well established as a 

means of expressing continuous systems in discretised form, that is in 

terms of a finite number of unknowns. 

Perhaps the greatest strength of the finite element method is 

the ease with which it may be extended to non-linear problems, general 

boundary value problems, and to structural dynamics [43[5]. 

The displacement method, in which the unknowns in the mathematical 

model are displacements at points within the structure, is the most 

successful and widely used approach, and is employed throughout this 

work. 

Utilising a finite element displacement idealisation, the general 

equation of motion of a structure may be written 

MR+6k+ Kx= X (t) 	 (1.1.1) 

where X is a vector of n displacements 

M , 	K are the mass, damping and stiffness matrices 

respectively (symmetric n x n matrices) 

X (t) is a vector of n time dependent applied forces. 

If the inertia distribution uses the same displacement functions 

as the stiffness distribution, a 'kinematically consistant' mass 

matrix is formed [6] which ensures that frequencies are upper bounds. 

Alternatively, a simpler diagonal 'lumped mass' matrix is often formed 

thus forfeiting the bound property. Methods for forming damping 

matrices are considered in references [7]E8]. 

Restricting this discussion to deterministic problems there are 
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two principle approaches to the solution of equ. (1.1.1) in the time 

domain. 

(a) Calculation of eigenvalues (natural frequencies) and 

eigenvectors (mode shapes), thus defining a modal 

transformation to uncouple the equations of motion prior 

to time integiation. 

(b) Direct integration in time of the coupled equations of 

motion. 

The approach used depends upon the characteristics of the particular 

problem. 

The first approach is only applicable to linear problems. If 

damping is neglected, or C is assumed to be proportional to K and/or 

M , the undamped free vibration problem 

Kx= 0 
	

(1.1.2) 

is converted to an algebraic eigenvalue problem, the solution of which 

yields the undamped frequencies and mode shapes (Section 1.4). These 

mode shapes define a transformation to modal coordinates which 

orthogonalises equation (1.1.2). It is often convenient to introduce 

a modal damping term based on experimental evidence at this stage. 

The uncoupled equations of motion may then be integrated in time. The 

effort involved in this part is small compared to that involved in the 

eigenreduction. 

Where a damping matrix cannot be assumed proportional, a complex 

eigenvalue problem of order 2n is formed, and the damped eigenvalues and 

eigenvectors calculated [9]. 

Direct integration methods must be used where non-linearities are 

present, for example when K, M or C vary in time [10]. The costly 

eigensolution step is eliminated, but the step-wise integration of the 

coupled equations is only advisable for relatively short time response. 

Inaccuracies are inevitably introduced, and stability is often a 

problem. 

Where possible, the modal approach is in general preferable. The 

natural frequencies and mode shapes are often required in their own 

right, and in any case provide valuable insight into the physical 

behaviour of the structure. 



1.2. EIGENVALUES OF LARGE STRUCTURES  

Large or complex structural idealisations inevitably involve very 

large numbers of unknowns, e.g., several thousand. The mass and 

stiffness matrices, while of large order, are generally sparse, and 

special solution routines have been developed to take advantage of 

this in static analysis [ll][12]. 

In structural dynamics it is usually the lower frequency spectrum 

of the structure that is of interest. It is well known that the 

number of freedoms required for a dynamic representation of a 

structure is less than for a static one. Coupled with the fact that 

the 'cost' of an eigensolution varies as n3  (as against n2  for a 

static solution) it is often desirable to reduce the problem order 

prior to eigenvalue analysis. This is usually achieved by static  

condensation (Guyan reduction) [13], however, the process induces errors 

in the resulting eigenspectrum which are often difficult to predict. 

Provided the condensed matrices are reasonably small (for example 

150 freedoms) efficient in-core eigenvalue algorithms may be used. 

Alternatively, the condensation step may be eliminated, and 

eigenvalue techniques which work directly on the sparse matrices 

employed. 

A third alternative is to avoid using the assembled mass and 

stiffness matrices by a piecewise approach where the structure is 

considered to be formed from components. The synthesis of the normal 

modes of the composite structure may or may not involve some form 

of condensation procedure. 

A further advantage of the modal technique in structural 

dynamics is the possibility of reducing the number of freedoms used 

in the response part by discarding coordinates corresponding to modes 

that will contribute little. Figure 1.1 summarises the various 

approaches to the spectral analysis of large structures. 

1.3. SCOPE OF RESEARCH 

The trend to more and more complex structures coupled with the 

relatively high 'cost' of eigenvalue analysis has ensured that the search 

for more efficient computational algorithms for the latter has not 

diminished. 

This thesis investigates the component-wise approach to undamped 
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eigenvalue analysis, and in particular the computational implementation 

of Kron's eigenvalue procedure [14] in a finite element environment. 

To provide necessary background, standard eigenvalue algorithms are 

reviewed in Chapter 2, with particular reference to large problem 

applicability. 

The research originated in a study of the variational characteristics 

of eigenvalues and the classical Weinstein method [15] which are 

described in Chapter 3. 
Component synthesis methods are established in Chapter 4, in 

particular the methods of Kron and Hurty. The former involves no 

inherent 'condensation' procedure, while the latter relies upon one. 

Kron's method is investigated in detail in Chapter 5 and is 

shown to be equivalent to Weinstein's method. New 'approximate Kron 

methods' to yield an approximate low frequency spectrum with good 

savings in core space and computer time requirements and introduced and 

illustrated in Chapter 6. Some concepts from Weinstein's method are 

used. 

The design and implementation of computational systems for both 

the full and approximate Kron methods is described in Chapter 7, while 

a form of Hurty's method is concisely implemented for comparison 

purposes (Appendix 2). 

Finally the computational efficiency of the Kron methods is 

assessed with reference to alternative algorithms. The advantages of 

the Kron methods in handling repetitive structures and awkward boundary 

conditions is illustrated. 

1.4. THE UNDAMPED STRUCTURAL EIGENVALUE PROBLEM 

In this section, certain basic results and associated notation is 

established. 

Assuming a harmonic response .X(t) = X e at, where X is now taken 

to contain amplitudes and 0) is circular frequency, equation (1.1.2), 

which may be formed via Lagrange's equations [5], reduces to the 

well-known algebraic eigenvalue problem: 

( K - XM) x = 0 , X= w2 	(1.4.1) 

For non-trivial x, the solution to this equation is given by 

1 K XMI = 	 (1.4.2) 
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which defines a polynomial of order n in X. The n roots of this 

polynomial are the eigenvalues of the system, equal to the squares 

of the natural frequencies. Corresponding to each eigenvalue X. 

thereisanon-trivialxvectordenotedby+..The set 

= [(1), .2.... 4c i3 are the eigenvectors or 'normal modes' of the 
problem and have the property of orthogonalising equation (1.4.1). 

Thus defining a transformation to modal coordinates q' as 

(1.4.3) x = 4; q' 

equation (1.4.1) becomes 

( k Am) q' = 0 	 (1.4.4) 

where 

t s 
k = 40 K4, , diagonal matrix of generalised stiffness, 

it 	• m = 4) RAO , diagonal matrix of generalised mass. 

There is an arbitrary multiplier associated with each eigenvector, 

and it is often convenient to "mass normalise" the vectors by setting 

1  = 43; m 2  

so that 

4 tMd> = I 
and 

4t  K 

where A is the (n x n) diagonal matrix of eigenvalues. With a modal 

transformation 

x = 40 q 
	 (1.4.5) 

equation (1.4.1) becomes 

- XI) q = 0 
	 (1.4.6) 

This is known as the 'canonical' or 'normal' form of the eigenvalue 

problem. If the mass matrix is consistent, its form will he identical 

to that of the stiffness matrix. Both are invariably real and symmetric. 

In general, M is positive definite, while K is positive semi-definite 
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if the structure is unconstrained to the extent that rigid body 

modes can occur, such modes corresponding to X = a? = 0. 
The eigenvalue problem of equation (1.4.1) is in GENERAL form. 

Some eigenvalue algorithms require conversion to the SPECIAL eigenvalue 

problem form 

( A - XI) y = 0 	 (1.1+.7) 

To retain A symmetric, use is made of the fact that any positive definite 
symmetric matrix may be factorised into a lower triangular matrix 

multiplied by its transpose. Hence using a Choleski decomposition [16]: 

K = Lk  Lkt 
	

or 
	Nt = L m  

provided the matrix to be decomposed is positive definite. L k and 

Lm  are lower triangular matrices. Utilising the transformations 

-t 
X = k Y 

or 

X = L mty 

equation (1.4.1) becomes 

(A—XI)y=0, x_ 

where 

-t 
A 	k L k  

(1.4.8) 

(1.4.9) 

or 	(A- XI) y= 0 , x= w2  

(1.4.10) 

-1 -t 
or 	A= 	L rn 	respectively 	(1.4.11) 

The mass and stiffness matrices are usually banded to some extent. 

The Choleski factorisation preserves banding although zeros within the 

band are in general destroyed. Banding is not usually carried through 

to the inverse and thus A will be fully populated whichever approach 

is used. 
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If a lumped mass idealisation is employed, the factorisation 

and inverse of M will also be diagonal, so that use of equation (1.4.9) 
carries banding in K through to A. 

1.5. MATRIX STORAGE METHODS  

Before embarking upon the survey, of eigenvalue algorithms, it is 

convenient to consider the common techniques of storing matrices 

'in-core', as considerable emphasis on the relative core requirements is 

made. 

A symmetric matrix A of order n is considered which may be thought 
of as a mass or stiffness matrix. 

1.5.1. Use of Symmetry 

The simplest method is to store (say) the lower triangular part 

of the matrix including the leading diagonal in a one-dimensional array. 

Termed 'triangular columnwise storage' the requirement is n x (n+1)  
2 

locations, and is thus limited to small n (Fig. 1.2a). 

1.5.2. Use of Banding 

If the structural idealisation is numbered such that the matrices 

have a reasonably constant bandwidth, 2b + 1 where b is termed the 

semi-bandwidth, the leading diagonal and upper band may be stored in 

a rectangular array of dimension n x (b + 1) 	(Fig. 1.2b). 

1.5.3. Variable Bandwidth  

A more general approach is to store the off-diagonal terms in each 

row in the lower triangle starting with the first non-zero term 

encountered. A variable bandwidth may thus be made use of. The off 

-diagonal terms are stacked in an array (say) A while the number 

included from each row is recorded in the array IR. Diagonal terms are 

held separately in the array AB. The total requirement is (2n + 1) 

locations, where there are A entries in A (Fig. 1.2c). Zeros within 

the variable band are of course stored. This is not a disadvantage in 

that the very common matrix operation of factorisation, for example 

by the Choleski method, in general disturbs included zeros. This 

scheme is used extensively in the computer programs developed in this 

work. 
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1.5.4. E122Lq2212LEI-zaLaEma [12] 
For very sparse matrices, it is clearly advantageous to merely 

store off-diagonal terms (or blocks corresponding to a node) in an 

array with an integer array of locations. Thus out-of-band and in-band 

zeros would be omitted. 

Often, the actual non-zero terms will be held on a disc file 

with only the addresses of the non-zero blocks in core. This technique 

is suitable where the matrix in question is only involved in 

multiplication or addition processes. 
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FIGURE 1.2 

MATRIX STORAGE METHODS 
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CHAPTER 2 

A REVIEW OF EIGENVALUE ALGORITHMS 

2.1. INTRODUCTION  

The central objective of this review is the presentation of 

algorithms for the solution of the undamped structural eigenvalue 

problem in a unified manner with emphasis on suitability for large 

problems. The component methods discussed in subsequent chapters in 

general utilise algorithms described here at some stage. 

Large problems may involve from 200 to several thousand unknowns. 

To permit comparison, general criteria must be borne in mind, for 

example: 

(a) central memory requirement, 

(b) central processor time requirements, 

(c) peripheral processor time requirements, 

(d) suitability for few/many eigenvalues, 

(e) accuracy attainable and reliability, 

(f) ease of implementation. 

Throughout this thesis it is assumed that principal matrix 

operations (e.g. factorisation) take place fully "in-core". Central 

memory requirements are thus formulated on this basis. 

The choice of algorithm invariably depends upon the characteristics 

of the problem to be solved. Typical parameters affecting this choice 

are 

(i) problem size and bandwidth (structure topology), 

(ii) location and extent of eigenspectrum required, 

(iii) are all corresponding eigenvectors required? 

Any eigenvalue algorithm is by necessity iterative in that the 

eigenvalues are zeros of a polynomial function. However, it is convenient 

to group algorithms under 4 headings according to the mathematical 

property used: 

(1)  Transformation methods (Section 2.2) 

(2)  Determinant methods (Section 2.3) 

(3)  Iteration methods (Section 2.4) 

(4)  Rayleigh quotient methods (Section 2.5) 
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The process of static condensation prior to eigensolution is 

discussed ih Section 2.5. 

In this Chapter, it is assumed that the assembled mass and 

stiffness matrices are of order n, have semi-bandwidth b, and that r 

eigenvalues/eigenvectors are required. 

2.2. TRANSFORMATION METHODS  

2.2.1. General Considerations 

The title of transformation methods covers a well-established 

group of techniques including the methods of Jacobi [17, p.266], 

Givens [17, p.282], and Householder [17, p.290] and the LR [17, 13.487] 

and QR [17,  p.515] algorithms. 

Most techniques require the structural eigenvalue problem to be 

converted to the special form: (Section 1.4) 

( A - XI) y = 	 x = w2 
	

(2.2.1) 

With a non-diagonal mass matrix, A is in general fully populated. 

The basis of all transformation methods is the use of a series of 

similarity transformations satisfying, 

Ar+1 = Rrt+1 Ar Rr+1 
(2.2.2) 

t D  
"r+1" 

D  
r+1 = 

where Fl/41 is the (r+l)th transformation matrix. These similarity 
transformations convert the problem to diagonal ortri-diagonal form 

without affecting the eigenvalues of the problem. In the former event, 

the eigenvalues are on.the leading diagonal of the diagonalised A 
matrix, while in the latter thetri-diagonal eigenproblem may be 

readily solved by the Sturm sequence method (Section 2.3). 

The major computational effort is in the transformation stage. 

Little additional work is involved in obtaining all, rather than just 

a few, eigenvalues, the technique is thus particularly favoured when 

complete eigenreductions are required. 

Unfortunately, even if banding in K is carried through to A , 
subsequent transformation tends to produce a full' matrix, hence storage_ 
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for the full lower triangle is required involving 1n2  words. It may 

also be-shoWn that the number of multiplications involved is proportional 

to n3  (23n3  for Householder). These techniques are thus limited in 

practice to small problems, e.g., *. 150 freedoms. As an illustration, 

with n = 100, storage of A requires approximately 5K words of 

central memory, while at n = 200 this has risen to 20K. 

For large problems it is imperative to employ a condensation 

step to reduce the number of active freedoms to around 100. However, 

as computers develop, backing store transfer times will progressively 

decrease and the application of transformation methods to "out-of-core" 

matrices may become a more attractive proposition. 

2.2.2. The Extended Jacobi Method  

To avoid the conversion to special form, an extended Jacobi method 

which simultaneously diagonalises the mass and stiffness matrices has 

been developed by the author. The method has been used extensively to 

obtain complete eigenreductions of problems up to 100 freedoms, and is 

employed in the computer systems developed in this research. A brief 

description is included in APPENDIX 4. 

While the method has proved convenient and reliable, storage 

for both mass and stiffness lower triangles is required. Transformation 

methods are often more involved programming-wise and care must be taken 

to cater for certain numerical ill-conditioning. 

2.3. DETERMINANT METHODS  

2.3.1. General Considerations 

The basis of determinant methods is the location of the zeros of the 

determinental equation 

K- XM1 	0 

or 
	

(2.3.1) 

I F (X) I= 0  

The approach is extremely general in that terms in F (X) may contain 
. 	• 

non-linear functions of X. The determinant of F (X) is evaluated for 

a series of trial A's to permit convergence to the roots of 

equation (2.3.1). 

As described in a subsequent section, the evaluation of a determinant 
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of a matrix is best achieved via a triangular factorisation. Thus, 

banding in ic and M is preserved. However, each root location 

involves several such factorisations. The approach is thus 

only suitable for large problems where the bandwidth is reasonably small, 

and only a few eigenvaluesieigenvectors are required. 

A distinct advantage of the approach is that a specific range of 

interest in A may be investigated without the need to locate 

eigenvalues starting at one end of the spectrum. Applied directly to 

the fully assembled matrices, accurate results may be obtained over a 

wide spectrum. 

2.3.2. The Sturm Sequence Property ' 

The scanning of I  F7(X) I to locate roots is not a simple task in 

that no a priori knowledge of the spacing and distribution of roots is 

in general available, and a zero of multiplicity two (for example) may 

easily be missed.. Fortunately, the Sturm sequence method 

provides a powerful means of overcoming these difficulties.' Originally 

used by Givens in 1954 for the solution of the tri-diagonal eigenproblem 

(Section 2.2.1), it is established here in some detail for the special 

algebraic eigenproblem: 

(A - XI) y = 0 (2.3.2) 

The property relies upon the fact that the roots of a principal 

minor of A of order j separate the roots of the minor of order (j+1). 

Considering for convenience the case where j 1 = n, equation (2.3.2) 

may be partitioned: 

An-1 a 

ab 	an 

= X 
	

(2.3.3) 

where A and {41 * } are an eigenvalue and corresponding eigenvector of 

equation (2.3.2). Obtaining an expression for 4, from the first set, 

and inserting in the second results in the scalar equation 

E at( 	- XI)-1  a + X - an]* = 0 (2.5.4) 

Lettheeigenprohlemoforder(n-l)haveeigenvaluesil.and associated 
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eigenvectorsV.,then we may write (cf. Section 3.3.2) 

X 	
(n-1) V. t 

v. 
- I) = E 	 n-1 	X i=1 

hence the L.H.S. of equation (2.3.4) may be written: 

( 	
2atv.) 

f(x) 	[ E 	 
- 

(2.3.5) 

(2.3.6) 

Thus, f(X) = 0 defines X as an eigenvalue of equation (2.3.2) while 

f(X) = co when X= pi. The numerators in the summation term above are 
all positive, hence f(X) changes from +co to -Go as X goes from 
(p. - e) 	(P. 	e), where e is a small quantity. In addition, 
the slope of ft(X) is always positive, so it is clear that the zeros of 

f(X) interlace the poles X = pi. Further inspection shows that there 
is a root of f(X) < p1 and the root > µn-1' 

This interlacing effect extends for each pair of adjacent 

principal monors of (A - XI). If, for a given trial value of X, the 

principal minors are evaluated and set.in sequence with Po  = 1, i.e., 

POP1P2"—Pn-lPn , a sign change between adjacent members in the 

sequence indicates the presence of an additional root below X 

(cf. Figure 2.1). The total number of sign changes between consecutive 

members in the complete sequence thus gives the number of roots of 

equation (2.3.2) exceeded by X. The sequence is said to exhibit the 

STURM SEQUENCE PROPERTY. 

The location of eigenvalues of the tri-diagonal matrix C 

(Section 2.2.1) resulting from the Givens /Householder methods is 

readily achieved by the Sturm sequence method in that the principal 

minors of IC - XII may be calculated from a simple recurrance formula 

[18]. 

2.3.3. 	 g cFactorion-Sj.nCountSturmSeuencebMatri) 

The number of sign changes between' adjacent principal minors may 

be evaluated for the matrix (A - X I) in a particularly simple way. 
For considering that the triangular decomposition of this matrix is termed 

L (X), with leading diagonal terms iii,then  the principal minors are 

given by 



P 2. 

P3  

FIGURE 2.1.  

ILLUSTRATION OF THE STURM  SEQUENCE PROPERTY 
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A 
P 1 

2£ 

r 
1 root 
exceeded in 
system of 
order 3 

2 roots 
exceeded in 
system of 
order 3 
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P = 1P=2 	P=22 	P= ( 2..
1  

1, 1 	11' 	11 22' 	1 
i=1 

etc.. Hence, 

P. 
1 • 

211 P 
_ 	.6 - - 2 	 A  . 

O ' 	22 P ' 	Pi  1 	-1 

etc., that is, a negative diagonal term on the factored form 

corresponds to a sign change in the Sturm sequence. The total number of 

negative diagonal terms on the factorised form of (A - XJE) thus equals 
th number of eigenvalues exceeded by X. If a Choleski decomposition 

is used instead of the Gaussian elimination implied here, the number of 

imaginary row/cols should be used in lieu of the number of negative 

diagonal terms. 

Wittrick and Williams [19] extended the use of the Sturm sequence 

property to the general determinant method, i.e., the solution of 

I F (X) = 0 where F involves continuous functions of X, 

(cf. Section 4.5.2) and gave the name SIGN COUNT to the number of 

negative leading diagonal terms on the factorised form. This term is 

used throughout this work, and indicated as follows for the matrix 

F ( X) 

S C F(x)3 

2.3.4. Sturm Sequence Method for (K - XM) y:_,A). Gupta's Method 

The sturm sequence method is directly applicable to the structural 

eigenvalue problem, involving the factorisation of ( 	XPA) for a 

succession of trial X values. Evaluation of the sign count at each 

stage means that it is impossible to miss any roots (as could be 

easily done with scanning algorithms based on determinant values alone). 

As proposed by Peters and Wilkinson [20],simple bisections are 

carried out until one root is isolated. A modified successive linear 

interpolation scheme is then employed to provide 'super-linear' 

convergence on the simple root. 

Application to the large structural eigenvalue problem has been 

proposed by Gupta C213[22]. A feature of-the program developed in the 

latter reference is the use of variant of Gaussian elimination for the 

factorisation of ( H:- XII). It is carried out in a working array of 

dimensions (b+1)2b+1) which 'slides' down the band of ( K XP01). 

O 
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The process of inverse iteration is used to obtain the eigenvectors 

once accurate eigenvalues have been obtained. 

The total core requirements of the method assuming that K and  

M are held in constant bandwidth form is given by 

C 	4nb + 2b2 

Gupta gives the number of multiplications per factorisation as 2nb2, 

and indicates that on average 12 evaluations per root are required, 

hence the number of multiplications for r eigenvalues is given by 

M 	24nb2r 

The efficiency of the method is clearly highly dependent upon the 

semi-bandwidth, b. The method is compared with ones developed in this 

thesis in Chapter 8. 

2.4. ITERATIVE METHODS 

2.4.1. The Power Method  

The well known power method uses the special eigenproblem form of 

equation (1.4.10) with X = 1/.02 
such that in the iterative scheme 

Y r+i 	A Y r 
	 (2.4.1) 

Yr+1 converges to the eigenvector corresponding to the largest 
eigenvalue, [17, p.570]. yo  is an arbitarry starting vector, while 
yr+1  is normalised w.r.t. its largest element to obtain y 

r+1
. The 

normalisation factor at convergence is equal to the eigenvalue. 

Convergence to higher frequency eigenvectors is possible provided 

the trial vector is orthogonalised after each iteration w.r.t. 

previously found eigenvectors. However, this process is slow and the 

method is usually only employed for locating a fundamental mode and 

frequency. Further disadvantages are the need to form A , i.e. a 
loss of banding, and the problems associated with a semi-definite 

stiffness matrix. 
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2.4.2. Inverse Iteration  

Inverse iteration is a well established technique for obtaining 

the eigenvector, and accurate eigenvalue Xi  when an approximate eigen-

value q is available. In the iterative relation 

( A- ciL )  Yr+1 = Yr 
	 (2.4.2) 

provided q is a good estimate, yr+1  converges to the appropriate 

eigenvector extremely quickly. The normalisation factor at convergence 

is here 1,4(ki  q), hence X. may also be obtained. The process involves 

the factorisation of ( A - q I) and forward and backward substitution , 

steps for each iteration. 

Conversion to the special eigenproblem form may be avoided by 

using the iterative relation 

( K qM) Xrl ia  = M X r 	 (2.4.3) 

Banding is thus preserved. The principal drawback of inverse iteration 

is the slow convergence obtained where eigenvalues are closely 

grouped [17, p.619]. 

2.4.3. Simultaneous Iteration (S.I.) 

Returning to direct iteration; the technique of simultaneous 

iteration, which is essentially the power method with several trial 

vectors, has received considerable recent attention, particularly 

w.r.t. large-scale problems. 

Jennings (1967) [23], and with Clint (1970) [24] presented the 

technique applied to the special eigenproblem, i.e., 

Ur+1 =A Ur 	 (2.4.4) 

where 	U0 
 is a set of t initial trial vectors which must be 

orthogonal. A feature of the method was the incorporation of an 

interaction analysis, to define an improved set of trial vectors for 

use, after an orthogonalisation step, as input to the next iteration. 

The off-diagonal terms in the symmetric (t x t) interaction matrix, 

defined by 

B = U r  Ur+i  = Ur  A ur 	 (2.4.5 ) 
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give a measure of the coupling between the trial vectors, and a 

"linear prediction" of the first t eigenvectors may be conveniently 

defined. At convergence, provided the final trial vectors U are 

orthogonalised by Ut U = I, B will be the diagonal matrix of the 

t highest eigenvectors, i.e. defining the t lowest frequencies. 

Subsequently, Rutishauser (1969) [25] proposed a more accurate 

interaction analysis step based on the eigenreduction of the matrix B 
(see discussion below). In addition, he showed that at each iteration 

stage, the component of the (t+1.)th eigenvector is reduced in the 
t+ 

s
th 

trial vector by the factor (77-). Thus if r eigenvectors are 

required, it is advisable to include 2 or 3 additional.  trial vectors 

to ensure satisfactory convergence. 

Bronlund (1969) [26] reviewed Jenning's scheme in the context of 

the large structural eigenvalue problem, and noted that the need to 

form A destroyed banding in K . 
Recently, the method has been applied in the above context by 

Jennings and Orr (1971) [27] and Dong, Wolf and Peterson (1972) [28]. 

Both papers show that the need to form A explicitly could be 

avoided by carrying out the iterative relation 

' I 	 1 	-t 
U
r 

= Lk M Lk  U (2.4.6) 

in the 3 steps 

. t 
(i) solve for V 	Lk V = Ur-1 (back subst.) 

(ii) form 	W = M V 	(2.4.7) 

(iii) solve for U r ' Lk  ur = w 	(fwd subst.) 

L k  being the Choleski factorisation of the stiffness matrix. 

The latter paper presents the El-eigenreduction form of the 

interaction analysis by considering that a set of t trial vectors specify 

a reduced set of t generalised coordinates Zr  where 

X = Ur Z 
	

(2.4.8) 

The projection of the full problem onto the subspace defined by these 

coordinates is given by 

A Kr  2r 	M
r Zr 	 (2.4.9) 
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where Kr  = ur K Ur, 141, = U tM Ur. The above problem is 
eigenreduced to yield an orthogonal set of t eigenvectors 0

r 
within 

the subspace. These eigenvectors are used to define the optimally 

improved set of trial vectors 

Ur = Ur r 	 • (2.4.10) 

in the full set of coordinate freedoms, which are input to the next 

iterative step. The above'interaction analysis' is equivalent to the 

eigenreduction of the B matrix as proposed by Rutishauser. The 

pro eedure is also known as subspace iteration. 

2.4.4. S.I. with Semi-definite Stiffness Matrix 

A problem clearly arises when rigid body freedoms are present in 

that the stiffness matrix is singular. The original method for overcoming 

this involved transformation to a set of generalised coordinates in which 

the rigid body freedoms appear explicitly and may be treated 

separately. A systematic procedure is given by Craig and Bampton [29]. 

However, the transformation stage tends to destroy banding and the 

approach is unsuitable for use in large problems. 

A better method involves the addition of a M X to both sides of 

the eigenvalue equation to give C3011 

( K 	M) X . (w2  + a) M x 	(2.4.11) 

where a is a positive constant. The spectrum of eigenvalues is thus 

shifted by (+ 	and and the modified stiffness matrix ( K 04) is 

non-singular. Direct convergence to the rigid modes, which have 

eigenvalues of (+ 
1 
 is obtained. a 

2.4.5. Computational Aspects of S.I.  

Simultaneous iteration involves simple matrix operations, is 

easy to program, and provides a convenient technique for extracting 

the first few eigenvalues and eigenvectors of a system. 

The approach is suitable for large problems in that banding is 

retained. It is relatively easy to carry out the steps in equation (2.4.7) 

with L k and M held in backing store if necessary. However, the 

overall stiffness matrix must be assembled to permit factorisation. 

ligenTectors of 'multiple root' eigenvalues are automatically 



xtK x 
R( x) - 

xt m x 
( 2.5.1) 
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calculated. 

Reference [27] gives core space and number of multiplication 

estimates as follows 

C = 2nb + 3nt + 12t2  

M = (3nbt + 22nt2  +'16t3)c + 2nb2  

where c is the number of iterations (usually around 6 or 7). The 

technique is less sensitive to bandwidth than Gupta's Sturm 

sequence program, but clearly loses advantage if t becomes too large. 

The method, as applied to the full-order sparse matrices, is 

compared with techniques developed in this thesis in Chapter 8. It is 
indeed utilised in some of these techniques at a 'component' level, 

and a routine SIMULT is briefly described in APPENDIX 3. 

2.5. RAYLEIGH QUOTIENT MINIMISATION METHODS 

2.5.1. Introduction 

The classical Rayleigh method for estimating the fundamental 

natural frequency of a system [5] involves evaluating the Rayleigh 

quotient 

where X is an assumed lowest mode shape. The basis of the approach 
Crl I VA mum 

is that the eigenvalues of IOC= X M X are the stationary points of 

ROO, the corresponding X being equal to the eigenvector (cf. 

Section 3.2). 

Recently, algorithms from non-linear programming have been applied 

to solve this 'variational' form of the structural eigenproblem. 
These algorithms essentially involve the iterative modification 

of X to minimise R(C). The lowest eigenvalue is obtained by 

unconstrained minimisation, while higher eigenvalues involve the side 

constraints that X must remain orthogonal to the j previously found 

eigenvectors 4ri, (i = 1,j) i.e. 

401 m x 	0  (i = 1,j) 
	

(2.5.2) 
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Most algorithms involve the gradient of R which is easily computed 

from 

V R( X ) = 2[ K X - R( X ) M X] 	 (2.5.3) 
X 

Initially the method of steepest descent, where the local minimum 

search direction is the negative of the local gradient was 

employed. However, the approach is prone to poor convergence. 

Subsequently, the method of conjugate gradients has proved most 

successful. 

2.5.2. The Method of Conjugate Gradients 

The initial minimum search direction is set as in the above method, 

but successive directions are calculated from the local gradient to be 

orthogonal to previous search directions. 

The Fletcher-Reeves method [31] was improved by Bradbury and 

Fletcher [32] and applied to the structural eigenproblem by Fox and 

Kapoor (1968) [33]. They utilised Rosen's gradient projection scheme [34] 

to confine the vector X to the subspace orthogonal to previously 

found eigenvectors. 

A problem in applying the conjugate gradient method is the 

homogeneous form of the Rayleigh quotient. Fox and Kapoor removed this 

indeterminacy by normalising a chosen element in X to unity after 

each step, thereby reducing the problem to (n-1) independent variables. 

The gradient projection scheme was complicated by this method. 

Geradin (1971) [35] presented an improved algorithm which avoids 

refering to the length of the X vector while building up the 

conjugate directions, and incorporates a scaling transformation to speed 

convergence. A further improved scheme has been reported by Fried 

(1972) [36]. 

2.5.3. Computational Aspects  

The central advantage of gradient minimisation techniques is that 

not only do they operate directly on the general eigenprobleth 

form, but that the mass and stiffness matrices need never 

be explicitly assembled. The matrix multiplications in equations (2.5.1) 

and (2.5.3) may simply use the elemental matrices, together with the 

appropriate global addresses, which are held on backing store. 
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The programming, although more involved than the simultaneous 

iteration method, is still relatively simple. Indeed standard 

gradient minimisation programs may be directly applicable. The 

technique is well suited for determining the few lowest frequencies 

of very large system. However, if higher frequencies are of 

interest, the eigenvectors of frequencies lower must first be located 

(as with S.I.). 

According to recent experience [37] convergence difficulties 

are still encountered, the conditioning of the stiffness matrix being 

an important factor. In additiOn, the examples from Geradin show that 

a strong convergence criteria is required to avoid terminating at a 

'local' minimum. It would thus appear that there is no simple way 

of sacrificing accuracy in pursuit of a faster solution. 

No comparisons of this technique with other methods have been made 

by the author. 

2.6. CONDENSATION TECHNIQUES 

2.6.1. Introduction 

It is well known that the number of freedoms required to describe 

the inertia distribution of a structure is less than that required for 

the stiffness distribution. Techniques have thus been developed to 

reduce the number of freedoms actually carried forward into dynamic 

analysis in the case of large problems. The elimination of variables 

inherent in this procedure implies that the 'condensed' problem is 

only approximate. The success of the process relies on the fact that, 

provided a good choice of retained freedoms is made, the behaviour 

of the structure at low frequencies is well approximated. 

2.6.2. Basis of the Technique 

The technique has its roots in Rayleigh's principle [38] 

that "A first order error in an assumed mode shape results in a second 

order error in the natural frequency". Thus Rayleigh's method as 

mentioned in section 2.5.1. utilises one assumed mode shape, i.e. one 

freedom to define an approximate system model. The Rayleigh-Ritz method 

employs several deflection patterns which, in linear combination, 

hopefully furnish a better approximation. Indeed the finite element 

method itself is a generalisation of Rayleigh-Ritz using piecewise 
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assumed functions to represent a continuous media. 

The underlying principle is that via a-set of generalised 

coordinates, less in number than that in the full system (infinite for 

continuous systems), the lowest modes of the structure may be approx-

imately represented. 

2.6.3. condensa gareProblema  
The traditional 'lumped-mass' approach to problems indeed involves 

the selection of a set of coordinates at which the inertia of the 

structure is considered to, act. However, even when this is employed, a 

more general technique is desirable for transforming to an equivalent 

problem with far fewer freedoms. 

Of principal interest here is the approachlioneered independently 

by Irons [39, 40] ("eigenvalue economisers") and Guyan [13] ("Guyan 
reduction"). The full displacement vector X of order n is 

partitioned in X m
, containing m master freedoms and X containing 

(n m) slave freedoms. The master freedoms are to be retained, and 

must thus be capable of describing the low frequency behaviour of the 

structure. The partitioned equation of motion is thus 

mm 

Kms 

Kms 

ss 

M 
MM 

M t  ms 

M 
ms 

M ss 

X m 

X 

>c m  

xs 
( 2.6.1) 

The slave variables must, in some way, be made dependent on the master 

variables. Irons and Guyan assumed that the slave displacements follow 

the static deformation patterns defined by the master displacements. 

Hence setting X = 0 in equation (2.6.1) and assuming that no external 

forces act at the slave freedoms, the second set yields: 

-1 	t 
X s = -K 	K 	X ss ms m (2.6.2) 

The process is thus often known as STATIC,CONDENSATION. The 

transformation 

(2.6.3 ) 
- K

- 
 K 

 
ss
1 
 ms 

x m = Tx m  

I 
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is.thus defined to condense equation (2.6.1) to the form 

where 

(Km - JAM ) x
Ill = Xm  

= TtKT 	 K - K K K t  mm ms ss ms 

(2.6.4) 

(2.6.5) 

M m TMT 	M mm - ( K 
ms 

 K-  
ss  
1 m mst )t 

-1 	 t - (K K-1 M t ) + (K K 	L K K ) ms ss ms 	ms 	Ms ss s ss ms 

(2.6.6 ) 

The title "mass condensation" was given to a formulation based on 

identical principles by Ramsden and Stoker [41]. Engineering intuition 

is used to pick out the master freedoms, for example at areas of high 

mass and reasonable flexibility. The effectiveness of the technique 

applied to plate structures has been demonstrated 'by Zienkiewicz et al 

[42]. 

2.6.4. The Interior Problem  

A rigorous exposition of the assumptions involved in the above 

condensation process has been given by Wright and Miles E433 and 
Geradin E443. The exact form of the master-slave relation from the 

second set of equation (2.6.1) is 

X = ( 
	x  K-1 M  )-1K-1( 	K ) s 	ss ss ss ms ms m (2.6.7) 

which may be expanded to give 

X 
= 

	
I+ X IC" ' 

	+ X2( K-1  M ) + ...] K-1( XMt 	K ) X s ss ss 	ss ss 	ss ms 	ms m 

(2.6.8) 

If equation (2.6.8) is limited to first order in X, substitution into 

the first set of equation (2.6.1) yields equation (2.6.4). For the 

above expansion to be valid, it is shown that if 141  are the eigenvalues 

of the INTLIRIOR PROBLEM i.e. 



(K - pti )x = 0 • ss Mss)  s (2.6.9) 
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(which is merely the full problem with master coordinates suppressed) 

we require 

< 1 	 (2.6.10) 

The optimum choice of master coordinates is that which leads to the 

maximum fundamental eigenvalue of the interior problem. 

Wright and Miles investigated the use of the second order 

approximation in equation (2.6.8). The resulting second order 

eigenproblem was expressed as a first order one of size 2n. This scheme 

was found inferior to the first order approximation plus an improvement 

step involving the full order mass and stiffness matrices. 

2.6.5. Computational Aspects 
The above condensation procedure results in an approximate structural 

model with a shifted eigenbasis. By the theory of Section 3.2, the 

approximate eigenvalues are upper bounds on those of the full-order 

problem, but it is not possible to establish accuracy directly. 

Wright and Miles, and Geradin considered the use of bound algorithms 

as to define limits of accuracy, however, the methods used involve the 

first iterate of the approximate eigenvector using the full-order 

matrices. Thus the full-order stiffness matrix must be held in assembled 

form to permit factorisation. If this is to be carried out in practice 

one might well be advised to use a method which acts directly on the 

full-order matrices in the first place. 

The condensed mass and stiffness matrices obtained in this 

technique are in general fully populated. To avoid large core requirements, 

the master freedoms should be kept small. Typically a reduction will be from 

2000 freedoms to 150. Transformation methods are then highly suitable, 

although only the few lowest frequencies obtained are likely to be 

accurate. 

It is finally important to note that while the condensation of the 

stiffness matrix is straightforward, that of the mass matrix is 

considerably more involved and can lead to large computing times. Thus 

if only a few frequencies are required, it would seem better to use a 



direct• full-order problem method. 

2.6.6. Frequency Dependent Condensation  

This technique has recently been used [45] for the location of 

higher natural frequencies, for example where a known high frequency 

forcing function is present. 

• Essentially the procedure is to insert various trial Vs in 

equation (2.6.7) to define a reducing transformation for each value. 

These trial Vs are chosen around the range of interest. Clearly, if 

an eigenvalue of the condensed problem is exactly equal to the trial 

X assumed, the condensation procedure is 'exact' and X is an eigenvalue 

of the full-order problem. 

It is felt that this approach offers no advantage over the direct 

Sturm sequence scanning method for large problems. 

3S 
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CHAPTER 3 

WEINSTEIN'S METHOD 

3.1. INTRODUCTION 

The initial impetus for this work came from a study of Weinstein's 

method - a variational method for the solution of classical partial 

differential equation eigenvalue problems [15]. Certain features ap-

peared to be of value in the context of large finite eigenproblems, in 

particular the application of Rayleigh's constraint theorem. 

In this chapter, the basic variational properties of 

eigenvalues are summarised together with Rayleigh's theorem. 

Weinstein's method is recast in matrix terminology and its implications 

for large, but finite, eigenproblems discussed. Much of Weinsteins, 

and associated methods, are couched in ratheObscure mathematical 

terms. The emphasis here is not on rigorous proof, but to give an 

insight into the underlying principles. 

3.2. THE VARIATIONAL CHARACTERISATION OF FTGENVALUPS  

3.2.1. The Recursive Characterisation of Eigenvalues 

The special form of the linear eigenproblem (equation 1.4.10) is 

given by 

	

( A - XI) y = 0 , 	X = w2 
	

(3.2.1) 

where y comprises a finite set of n coordinates and A is symmetric, 

positive semi-definite. With eigenvectors go satisfying tpt  q = j , 
the transformation to normal coordinates 

	

y = p q 
	

(3.2.2) 

applied to equation (3.2.1) produces the normal form: 

( A - XI) q = 0 	 (3.2.3) 

where A is the diagonal matrix of eigenvalues. The system potential 

and kinetic energies in y coordinates are given,respectively by the 



quadratic forms: 

= ytA y 

T = yt  y 

If the magnitude of the vector y is fixed by the condition yty = 
• then equation (3.2.1) may be written as )NI„ok,v/4 

n 
ytA y = k = 	E 	a..y.y. 

i,j=1 13 1  
(3.2.4) 

This defines an ellipsoid, in general skew w.r.t. the axes defined 

by the elements in y . The normal -form of the energies are 

U_ E %iqf , 	T= E 
i=1 	1=1 1  

6 

hence defining T = 1 as above gives the ellipse equation in the form 
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qt A 
n 

2 - =A = E 	qi  
i=1 

(3.2.5) 

The normal coordinates qi  are thus seen as defining the principal axes 

of the ellipsoid [47, 13-81]1 and the eigenvalues are given by the values 

of D.  when y (or q ) defines a principal axis, subject to T = 1. Hence 

the eigenvalues of equation (3.2.1) are defined by the STATIONARY POINTS 

of U(y); a VARIATIONAL CHARACTERISATION. 	VA 	16NPro. 

Eigenvalues are normally thought of as stationary points of the 

RAYLEIGH QUOTIENT defined by 

ytfiL  y 

R(y) 	t  
y y 

(3.2.6) 

The form of R is homogeneous in y , hence specification of unique 

stationary values requires a condition such as yt y = 1. 

The minimum of R subject to this condition is given by y = 4, 1 
and R(111/1) = A1. For y restricted to the subspace orthogonal to 

the new minimum value of R is obtained by y = 41
2' 
 i.e. the 

second shortest principal axis. 
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The RECURSIVE CHARACTERISATION of eigenvalues thus states that 

"theith.eigenvaiueX.and associated eigenvector 

of equation (3.2.1) are the minimum value and minimising 

vector of the Rayleigh quotient for all vectors 

orthogonal to the first (i - 1) eigenvectors". 

3.2.2. Rayleigh's Theorem 

Originally presented in Rayleigh's "Theory of Sound" [38], 

Rayleigh's theorem concerns the effect of the imposition or removal of 

a constraint on a vibrating system; 

"If one constraint is imposed upon a linearly elastic 

structure whose eigenvalues Xi, X, 	are in 
•

ascending order, the eigenvalues of the constrained 

structure X. satisfy 

	

X. ‘. X. 	X. 
1 	1 	ii-1 

For removal of one constraint, the relation is 

	

X.-1 < X1 	X 1 

(3.2.7) 

(3.2.8) 

The theorem may be illustrated directly for the fundamental 

eigenvalue of a system. Any constraint p , where the constraint 

condition is that riby . 0 is expressible as a linear combination 

of the eigenvectors. If the constraint is 4i  y = 0, i / 1, then 

y = 	1  is permissible and the overall minimum of R(4 1) = xi  

is obtainable. However, if q,1 y = 0 , then by the recursive 

characterisation of eigenvalues, the new minimum of R is X2. These 

represent the two limiting cases, hence any other constraint will 

produce a minimum in the range [X-X J. 
12 

3.2.3. The Max-Min Characterisation of Eigenvalues  

The previous section's discussion suggests that X2 
may be defined 

as the maximum of all the possible minimum values of R obtainable by 

application of one constraint. Often termed 'Courant's principle' 

[46, p.31] this characterisation avoids explicitly utilising the lower 

eigenvectors: 

"The rth. eigenvalue Xr 
of a vibrating system is the maximum 

value that can be given to the minimum of the Rayleigh 

quotient by varying (r - 1) applied constraints". 



Denoting (r - 1) constraints by sit  y = 0, (i = 1, r - 1):- 

A
r = max( S1 	 S

r-1)min R( y ) 
	

(3.2.9) 

This characterisation leads to the extension of Rayleigh's theorem. 

Consider a set of m independent constraints p.
3  applied to the system of 

equations(3.2.1). The rth. constrained system eigenvalue is thus 

given by 

Am = max( S
1 
	 S

r-1' 
p 	 10.)min n(y ) 

Clearly m
r as additional constraints have been applied. However, 

if the m constraints p. were free to vary, the maximum value 7+7, could 
achieve would be A +m. Rayleigh's theorem for a general number of r 
constraints is given as follows: 

"If s arbitrary constraints are imposed upon a vibrating system 

with eigenvalues A1A2.....Ari  in ascending order, then the 

eigenvalues of the constrained system Ar  must satisfy 

A
r 
. Am  < 

r+s 	 (3.2.10) 

3.2.4. The Rayleigh Ritz Method  

The Rayleigh Ritz method (Section 2.6.2) is essentially a 

procedure for approximating continuously varying quantities via a 

finite number of assumed variation functions. In the present context, 
the reduction from an infinite, to a finite, number of unknowns is 

equivalent to constraining the quantity in question. Hence in the case 

of a vibrating system where displacement is approximated by a set 

of assumed functions, the resulting eigenvalues are upper bounds 

according to Rayleigh's principle w.r.t. the exact eigenvalues. 

Increasing the number of freedoms produces monotonic convergence from 

above towards the exact value. 

3.3. WEINSTEIN'S METHOD 

3.3.1. Introduction [15] 

In contrast to the Rayleigh - Ritz method, Weinstein's method was 

introduced in 1935 to produce lower bounds on the true eigenvalues of 

42 



43 

infinite (continuous) systems. 

The technique involves weakening the boundary conditions on the actual 

problem until a soluble BASE PROBLEM is obtained; usually equivalent 

to the removal of an infinite series of constraints from the system. 

A finite series of constraints is then applied to the base problem to 

approximately reconstitute the original boundary conditions. A series 

of INTERMEDIATE PROBLEMS is thus defined. By Rayleigh's theorem, the 

eigenvalues of the intermediate problems converge from below the 

exact solutions. 

The eigenvalues of the rth. intermediate problem are defined by 

the Weinstein determinant of order r which is constructed from a 

knowledge of the base system eigenvalues and eigenvectors together with 

the constraints. 

The principle results are set out here in matrix terms for the 

case of a finite degree of freedom problem [15, Ch. 3]. 

3.3.2. The Resolvant Matrix 

Considering equation (3.271) to specify a base problem with known 

solution, the i 	eigenvalue is given by 

A 4i  = 	 (3.3.1) 

thus 

(A- xutpi  = (xi  - x) 410i  

and defining the RESOLVANT MATRIX by 

H. (A- XI )-1  

we may write 

H 41i  -  1   i  

(3.3.2) 

(3.3.3) 

(3.3.4) 

The eigenvectors of H are 11, ., and the eigenvalues 1 	Clearly,  
IiisnotdefinedforX=X.,i = 1,n. 

A general vector V is expressible as a linear combination of the 

normalised eigenvectors: 



n 
V = 	E ( vt 

i)  +i 1 = 1 
(3.3.5) 
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hence 

n 	( V
t 
41i  

i = 	

) 
H v = 	E I (xi 	x)  (3.3.6) 

In classical mechanics terms, if V is a general harmonic force 

amplitude vector at frequency TX , H is the receptance matrix of the 
base problem, and the operation HY "resolves" the resulting 

displacementsintonormalcoordinatedirections.IfVt*.=0 for a 
2 

particular i, there is no generalised force in that mode, and the term 

isexcludedfromtheseries.Clea , the 

condition of resonance occurs. 

3.3.3. Weinstein Determinant for 1 Constraint  

We now consider 1 displacement constraint applied to the base 

problem: 

p t  Y = 0 

This equation may be interpreted as 

vector of harmonic forces p over 

the condition for free vibration of 

written as 

(H p )tp = 0 

(3.3.7) 

a condition of zero work for a 

the base system coordinates, hence 

the constrained system may be 

(3.3.8) 

where H p defines the displacements caused by the constraint forces p . 
The Weinstein determinant of order 1 is defined by 

WI(X) = ( Hp)t  p = 	E 	(x. 	_ 
i I I 

n 	( pt g,i ) 2  

• 

hence for free vibrations of the constrained system 	01-torlo(v") 

W (X) = 0 

(3.3.9) 
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TYPICAL PLOT OF122_00 

CONSTRAINED SYSTEM EIGENVALUES 

COMPLETE - RAISING 

BASE SYSTEM EIGENVALuhS 
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A typical plot of W1(X) is shown in Figure 3.1. The slope of the 

plot is positive always as indicated by 

dw1  (x) 	n ( pt 4i )2 

dX 	= i = 1 (X. - X)2  
(3.3.10) 

The main properties of the Weinstein determinant are as follows: 

(1) The zeros of W1
(X) are the eigenvalues of the constrained system 

which are not also eigenvalues of the base system. 

(2) A pole at W1
(X) indicates the loss of a base system eigenvalue 

X.
1  (There will always be a computational pole at X = X.). 

A finite non-zero, limiting value, at W1(Xi) indicates no change 

in base system multiplicity of X. 

A zero limiting value at W1(i) indicates the increase by 1 of 

the multiplicity at X. 

(3) The interspacing of the constrained system eigenvalues Xi 

between those of the base system X., is in accordance with 

Rayleigh's theorem. It may be verified that pl  = ql, ensures 

"complete raising of the lowest base system eigenvalue", as 

demanded by the recursive characterisation of eigenvalues 

(Section 3.2.2). 

(4) The Weinstein criterion for "complete raising", i.e. that 

X. = X. 	is that W1(X. 	
- c) 5 0 where c is a small 

1+1 
perturbation. 

3.3.4. Weinstein Determinant for Several Constraints  

For a series of m constraints attached to the base problem, it may 

be shown that for free vibration of the constrained system Wm(X) = 0, 

where Wm
(X) is the Weinstein determinant for m constraints defined 

by 

 

( H  Pi)t  p1 

( H p2)t  P l  

( H pm)t  pi 

   

    

Wm(X) = 

( H 13,2)t p2  
SYMMETRIC 

( •H pm)t  pm  
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The general term in the m x m determinental matrix is given by 

	

n 	( P3_ .* )( P.41 ) . 	E 	k 3 k  

	

13k = 	(Xk A)  
(3.3.12) 

The constrained system eigenvalues are obtained from the following 

rules; where the general base system eigenvalue Xi  has multiplicity p,. 

W(X)=0(orderr),X=X.locates constrained system eigenvalues 

of multiplicity r which are not also base 

system eigenvalue s. 

14".. 	POLE (order r)  locates eigenvalue m 	 pi 

W
m 
 (X.) = FINITE, NON-ZERO " 

	
It 	 It 	 It 	

pi.  

Wm( Xi) . ZERO (order r) 
	

it 	 It 	 It 	 It 
	

(pi  + r). 

The Weinstein criteria for complete raising of an eigenvalue by m 

constraints, i.e. that xT X. 	is that the series of WEINSTEIN NUMBERS i+m 
(the principal minors of Wm(X) with WO  = 1) 

W W W 
0,  l' 2' 	 IW  

evaluated at (X. 	- 6) must contain k sign changes where k is the i+m 
first number satisfying X. 	= A. . (cf. extended Sturm 

sequence algorithm of Section 4.5.2). It may be readily verified that 

Pi = 4' 	 , pm = + m  is one set of constraints which satisfies 
the criteria. 7 0  

3.4. SIGNIFICANCE OF  WEINSTEIN'S METHOD  

Weinstein's method offers a means of determining the characteristics 

of one system by analysing another and applying constraints to the latter 

to reconstitute the former. In the context of the large eigenvalue 

problem the 'computationally convenient' base problem may be obtained 

by uncoupling the full problem into components, that is a number of smaller 

problems. Constraints may then be defined which recouple the components, 

and the properties of the fully assembled system determined via the Weinstein 

determinant of order m, instead of the fully assembled structural matrices. 

It is,-however, unclear how the constrained system'eigenvectors are obtained. 
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It will be seen in the following chapter that this technique of 

uncoupling of a structure into components is the basis of Kron's 

eigenvalue procedure. The determination of eigenvectors is covered 

in this method. 

In Weinstein's method for infinite systems [15, Ch. 7] it is 

significant that a finite number of constraints is employed in lieu 

of an infinite number to obtain lower bounds on the lower exact 

eigenvalues. The general concept of choosing constraints so as to 

produce the maximum raising of eigenvalues has strong computational 

advantages, especially where the lower eigenspectrum is of interest, as 

is generally the case in structural dynamics. This aspect is 

investigated in Section 6.4. as a means of introducing approximations 

into the Kron procedure. 
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CHAPTER 4 

COMPONENT SYNTHESIS METHODS 

4.1. INTRODUCTION  
In this chapter, the general class of methods involving the 

eigenvalue analysis of structures via components is developed in a 

unified manner. In particular, Kron's method and Hurty's component 

mode method are established. 

The underlying principle is the avoidance of the need to use the 

assembled mass and stiffness matrices of the structure. In addition, 

repetition within the structure may be utilised to reduce computer 

effort enabling larger problems to be solved. 

The structure is considered to be built up from a number of 

component parts, also termed substructures, branches or sub-systems. 

Analysis of the components is initially performed, and the results 

used to synthesise the properties of the composite system. 

Although this report is concerned with finite freedom problems, 

mention is made of infinite freedom problems both for completeness and 

in connection with the solution of non-algebraic eigenproblems. 

Two basic approaches are identified, the component connection 

technique, which leads to Kron's method, and the component release 

technique. A group of approximate methods is then introduced, which 

contains Hurty's method. 

4.2. THE COMPONENT CONNECTION TECHNIQUE 

4.2.1. Introduction  

The basic philosophy of this technique, as propounded by Kron E143, 
is the 'tearing' of the composite system into several completely 

unconnected components. This constitutes the 'base' system. The 

properties of each component are expressed at its connection coordinates, 

and conditions of compatability and equilibrium invoked along the 

connection boundaries between components to obtain a frequency equation 

for the composite system. The order of this equation is usually 

substantially smaller than the fully assembled problem order. 

4.2.2. 1122AmicSt e Approaches  

Discretisation by a displacement method is assumed. The undamped 
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equation of motion for a typical component of Order no, which could, 

for example; be an assembly of finite elements, may be written as 

( K0  - XM0  ) X0 	Xo 	w2 	 (4.2.1) 

Let complete set of normalised eigenvectors be 	moo, and 

associated diagonal matrix of eigenvalues be A. The displacement 

vector may be partitioned according to: 

1° x i 0 X 

whereX 	contains the set of n
o 

connectionconnection coordinates 
c 

and oX  contains the set of no 
(= n

o 
- n

o 
) internal coordinates. 

1 

The problem of expressing the properties of each component in terms 

of its connection coordinates may be approached in two ways: 

(1) By the use of S
o 
= (IC

o 
- XM

o), 
the component dynamic stiffness 

matrix. 

(2) By the use of Ft o = E;
-1, the component receptance matrix. 

This choice determines the conditions required to couple the components 

together, and the nature of the frequency determinant obtained. The 

following sections give concise parallel developments of the dual 

approaches to highlight the essential differences. It must be noted that 

all S, R and D type matrices are functions of X. Kron's method 
utilises the receptance approach for reasons that become clear. 
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4.2.3. The Base System 	 .ons of Motion 
• 

DYNAMIC 	STIliNESS  RECEPTANCE 

Component e. of. m. $0  x0  = 	X 0 	(4.2.2) R 	X0  .--... 	X 0 	(1+.2.3) 0 

Normal forms: 
So = 	0

-t 
D 0

-1 
R o = 	0 D

-1
0

t 

Partitioned 
e. of. m. 

o 0  . o s  . 
"711 	-lc 

o o 
Sci  S cc 

'-o 
Xi 

o
x c  

_ 	_ 

= 
°Xi 
o 
Xc  

_ 

o
Rii

oR ic 
o o 

R ci  R cc  
- 	L 	_ 

°X . 
o 

X c 
_ 

= 
o 

i 
0 

x c  
_ 

"Condensed" e. of. 
m. 

w.r.t. 	Xc 0 
(AssumeX.=0 ) 1 

o ScoX c = 
o

X c 

...•■■•I 

o R c
o 
 X c  =

o
x c 

Condensed 

Component 

Matrices 

oSe= o o -lo l 
- S 	S. cc 	c 	S.i 	ii 	cj 

(4.2.4) 

a 
R c = 

a
R cc 

Normal form of 
Condensed Matrices 

. 

1 0
0 	

cannot be partitioned.  

No normal form exists. 

Ob. Partition 	0 - 	1 0 	0 
- [3 c_ 

o
R c = 

o 
0 D 

-lo 	t 
c 	o 	0 c  

(4.2.5) 

ose and 
o Re have 

poles coincident 

with: 

Eigenvalues of component 

with its connection co- 

ordinates fixed. 

(RESTRAINED COMPONENT) 

Eigenvalues of component 

with its connection co-

ordinates free. 

(UNRESTRAINED COMPONENT) 

Gather together 

all condensed com-

ponent e. of. m's 

in supermatrix 

equations. 

Sc  xc  = 	X c 	(4.2.6) 

R c X 	= 	x c c 
(4.2.7) 

1 	t 
R c = 	4)c D 	4)c 
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Hence: 

F-1 ' 	
S 	

j S
c 
	q 

	

c c 
	

$ c i 

Rc = I
-1R  2R  

	

c c 
	iR 	 

	

c 	q  R c  ..] 

X c 
= j 1 x

c 
 2 x  	i 

1 	c 	X c  I 

	

X c 	
q 

X
c 	

J 1X 
c 
 2X 
 c''  
.....jv' 

c
.— 	q)(0  1 

where there are q components in the structure. 

In addition, the normal form of R
c 
is available with 

	

D 1  = r D-1  D21 	 13-1 	 D
q

1  

 

r 1 2  
c 	c 

	q
4)c I 

	

0 0 	 

c, Sc and Rc  are termed composite diagonal matrices, while D
-1 
 is 

purely diagonal. 

Let the order of the complete base system displacement vector 

Xc  X. } be nt where 

q 
n
t = 	E n

o3  j = 1 

and similarly let X c 	be of order ric  and 11- respectively. 

4.2.4. Transformation to the Composite System 

Let there be m equations of composite system compatability with the 

simpleformx..-r.x..A. transformation may be defined: 

x c = T y c c (4.2.8) 

= 

where y
c 
contains a set of 2 connection freedoms in the composite 
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system. Where several component connection freedoms of the same sense 

coalesce, Only one is carried into yc, hence 
/ C m. Internal 

freedoms are unchanged by the coupling up process and for completeness 

we may write 

x i  = yi 	 (4.2.9) 

The order of the composite system is thus given by n = (nt  - m). 

Equation (4.2.8) may be used to directly transform the dynamic 

stiffness equation (4.2.6): 

lrcSs Tc Yc = 	Kc = Yc 	
(4.2.10) 

where Nr
c 
is the set of forces at the composite system connection 

freedoms. The COMPOSITE SYSTEM CONDENSED DYNAMIC STI.LbNESS MATRIX of 

order 2 is defined by 

S = Tt  S c c T  c 
(4.2.11) 

For free vibrations of the composite system, we require the two 

conditions to be satisfied: 

	

S yc  = 0 	 (4.2.12) 

T
t 
X 	= 0 	

(4.2.13) 
c c 

The latter implies that forces at the component connection freedoms must 

be internal, while the former provides a frequency determinental 

equation. 

The force transformation contained in equation (4.2.10) cannot be 

used as it stands to transform the receptance equation (4.2.7). As 

shown in Section 5.2.2., a set of forces which satisfies the 'internal' 

condition is defined by a new transformation: 

Xc 
= P c 
	 (4.2.14) 

P
C 
is termed here the CONSTRAINT FORCE MATRIX,f6r each of the m columns 
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of P
c 
defines an internal set of forces in a constraint, the 

corresponding element in C (m x 1) being an undetermined multiplier. 

Furthermore it may be shown that the displacement compatability 

relation may be rewritten in the form 

Pc  Xc  = 0 	 (4.2.15) 

Utilising the above 2 equations, equation (4.2.7) may be transformed 

to yield 

P Re  Pc  c = R e = 0 
	

(4.2.16) 

where R is the COMPOSITE SYSTEM CONDENSED RECEPTANCE MATRIX 

corresponding to the set of m "constraint forces" in C . 

A summary of this section is shown in the following table. In 

particular, the canonical form of R is given. 

DYNAMIC 	STDIVESS RECEPTANCE 	(KRON) 

Transform to 
composite 

system matrices 
S = 	T

t 
Sc  Tc 	(4.2.17) c = R 	P

t 
Rc  Pc 	(4-2.18) 0  

Normal formsof 

S and R No normal form t 	
-1 	t 

P 47 	D 0 	Pc 	c 	o 	c 

(4.2.19) 

Composite system 
unknowns 

A connection 
displacements in 	ye  

m connection forces 
in C 

Frequency equation Sc y= 0 R C = 0 

Conditions for 
free vibration 

either 	y C 	= 	0 

or 	I $ 1 	= 	0 	• 

either 	C = 	0 

or 	1 R 1 	. 	0 
_.... 

Poles of 
frequency deter- 
minant coincide 

with 

eigenvalues of restrained 
components 

, 	eigenvalues of 
unrestrained components 
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4.3. THE COMPONENT LE ASE T EC H NI DE 

4.3.1. Introduction 

The basic philosophy of this technique is to suppress the 

connection coordinates of the fully assembled 'composite', system to,  

generate independent restrained components. The composite system is 

regained by the release of these applied constraints. 

The dual approaches of dynamic stiffness and receptance are 

'again developed in parallel. 
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4.3.2. The Technique Formulation 

DYNAMIC 	STIFFNRS 	• RECEPTANCE 

Assembled e. of. m 

in partitioned 

form 

(composite system) 

S. 

	

i i 	ac 
t 	s  

	

Sic 	cc 	
_ 

	

(N.B. 	Sii 

X. i 

Irc 

& Ft ii 

= 

are 

X. i 

Vc 
-- 

(4.3.1) 

comp. 

(4.3.2)  

R. 
ii 1c 
t 

R
ic 

Rcc 
_ 

diag. matrices) 

Yc = 

Xi 
y c 

Set 	y
e 	

= 0 to 

obtain base 

	

e. of 	m.- 

system 

 

S
i 
Xi 	= 	X i. 

(4.3.3) 
where w 

S 	= 	S. S . 	II 

where  

R 	X. 	= 	xi i 	1 
(4.3.4) 

-1 R. 	( R. 	-R. 	R 	R. 	) 

	

li 	1c 	cc 	1c 

(4.3.5) 

Normal forms of 
base 

system matrices 

= 	i 	D.I  0.1 

(N.B. 	0.  is comp. diag., 

-1 cre
It ..,.. 	0

1  . D.1 -  

is diagonal) 

Condense compo-
site system e. of 
m by assuming 
Xi  = 0 

and eliminating 
X. 

S 	y e 	= 	Y'C (4.3.6) 
where 

t 	-1 
S = E S 	Sic  - 	S.. S. J cc 	 c 	Ia. 	lc 

k 	(4.3.7) 

R 	Y 	. 	y e  cc 	c 
(4.3.8) 

Normal forms of 

S and R cc 
t 	-1 t S. EScci  -S c 	0. 1  D. 0.Sic 3 

(4.3.9) 

Rcc cannot be expressed 

in terms of the 

normal form of 	Ft i  

Set 	Yc = 	for 

free vibration 

either 	Y c 	= 	0 

or 	1 S I 	= 	0 

	

either Y c 	= 	0 

or 	1 	R 	1 	= 	OD 
CC 

Poles of I S I are at res- 
trained component eigen- 

values. 

Zeros of 1 	R 
cc

I are at 

restrained component 

eigenvalues. 

(Clearly R= 
cc 
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4.4. COMPARISON FOR FINITE SYSTEMS 

Provided m and I are much less than n , the techniques described in 

the previous two sections have substantially reduced the effective order 

of the problem with no reduction in the number of freedoms and thus no 

inherent loss of accuracy. The penalty for this is that the final 

eigenvalue problem is no longer of the usual algebraic form. The 

determinants of S , R 	R 
cc 
 are in general polynomial quotients in 

X. The composite system equations of motion are non-algebraic 

eigenproblems to which the standard techniques of Chapter 2 are 

inapplicable. Instead, some form of frequency scan is required to locate 

values of X satisfying these equations, involving the setting up of the 

above matrices for a succession of trial values of X. 

From a consideration of the formulations of the two previous 

sections, it is clear that the 'natural' approach in the case of 

unrestrained components is receptance, and in the case of restrained 

components, dynamic stiffness. In both cases, the formation of the 

matrices R and S utilises the component eigenreduction6, thus both 

speeding up the matrix set up for a given X, and identifying the poles 

of the determinant. For finite system the remaining two approaches may 

be discarded as "misfits". 

Although the size of S will often be smaller than that of R , 
where more than two connection coordinates of the same sense 

coalesce at one point, the form of R (equation 4.2.19) is far more 
suitable for frequency scanning than that of S (equation 4.2.9) as in 
the latter Scc 

 and Sic are still functions of X. The receptance 
approach is thus to be preferred, except when A <<m, and forms a 

powerful method for handling large structures in the minimum of core 

space without inherent loss of accuracy. The approach forms the basis 

of Kron's method, which is developed in detail in Chapter 5. 

Returning to a more general view, the component connection technique 

involves the application of constraints to unrestrained components. 

Assuming the constraints to be applied sequentially, several 

intermediate systems are formed, and it is clear from Rayleigh's 

theorem that the eigenvalues of these systems converge monatonically 

towards those of the composite system from below (cf. Weinstein's 

method). 

The component release technique on the other hand involves a 
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series of constraint releases and thus eigenvalues of the intermediate 

systems converge from above in monotonic fashion (cf. Rayleigh Ritz). 

It is evident that both dynamic stiffness approaches reach the 

same composite system equation. In the component connection 

technique the process is essentially 

(1) eliminate internal freedoms of component, 

(2) assemble condensed component dynamic stiffness matrices. 

While in the component release method, the condensation process is 

carried out effectively on the assembled matrices. 

4.5. INFINITE SYSTEMS 

4.5.1. Comparison  of Approaches 

For completeness, it is useful to briefly discuss the case of 

infinite freedom systems. Such systems usually comprise structural 

elements which have, dynamic stiffness or receptance terms as closed 

form functions of A. Assembly is carried out by means of a finite 

set of displacement coordinates. Thus the resulting dynamic stiffness 

or receptance matrices constitute non-algebraic eigenproblems, as an 

infinite number of internal coordinates have implicitly been eliminated. 

The implication of this is that determinant scanning methods are 

immediately necessary. Furthermore, the eigenreduction of the 

components is not a simple algebraic eigenproblem, and any finite set 

of modes used to represent the component would involve 

considerable effort and in any case are incomplete. The 'normal form' 

advantage of Kron's method is lost, and the dynamic stiffness 

formulation appears slightly superior in view of the possibility of 

smaller frequency determinants. 

Simpson and Tabarrok (1968) [48] gave an example of an infinite 

freedom system analysed by the component connection dynamic stiffness 

approach. The natural frequencies were obtained by direct scanning 

of 1 S 1. It is interesting to note that their theoretical 

frequencies were lower than the experimental ones, the result expected 

when seen in the context of applying a finite set of constraints to 

couple an infinite freedom system. 

The dynamic stiffness component release method has been developed 

extensively by Wittrick and Williams C497  for vibration and stability 

analysis of infinite systems. 



X 0 

X c  

1 

y c 

S.. $ 
11 	IC 

0 S 
(4.4.2) 
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The fundamental problem is to obtain frequencies which satisfy the 

non-algebraic eigenproblem 
■.■ 

SF XF = (4.4.1) 

where XF = .[X y c 	(using the existing notation), and S F  is the 
corresponding dynamic stiffness matrix. The straightforward scanning 

procedure involves triangulation at each trial X value to obtain the 

determinant of S F. After Gaussian triangulation of the first n. 
columns, the'following form is obtained: 

Clearly triangulation is implicit in the condensation of S to S , 

and triangulation of each column corresponds to the release*of a 

coordinate. The advantage, in introducing the concept of components here 

is that the work involved in each factorisation may be reduced in the 

event of repeated components [50]. In addition, connection coordinates 

may be eliminated as "internal coordinates" of a new larger component, 

thus enabling the size of the working matrix to be kept small. This 

successive condensation process is identical to the well-known use of 

SUB-STRUCTURES in the efficient solution of static problems [12]. 

4.5.2. The Extended Sturm Sequence Algorithm  

Of central importance to the development of the last method 

was the extension of the Sturm sequence scanning method (Section 2.3.3) 

to the non-algebraic eigenproblem by Wittrick and Williams [19].,  In, 

essence, the number of eigenvalues exceeded, J, by a given trial X id 

given by 

J = Jo  = s[ S F( X)] 	(4.4.3) 

where Jo 
is the number exceeded in the system with X F  = 0 , and s 

indicates 'sign count' as defined in Section 2.3.3. The algorithm is of 

great importance in Kron's method for scanning the matrix 	R (X) 



60 

(Section 5.5.5). While a full derivation is contained in the 

above reference, the algorithm is considered here for the case of the 

condensed finite freedom dynamic stiffness matrix, S (X). 

Consider 	S F
(X) to be the dynamic stiffness matrix corresponding 

to a complete, finite, set of displacements X F. From the Sturm 

sequence property, s[SF(X)J equals the number of eigenvalues exceeded 

by X. From equation (4.4.2), the number of eigenvalues exceeded in the base 

system defined by y = 0 is clearly sES..]. Release of the nc 
coordinates in 	y c yields the fully factorised form 

NJ 	1 - 
ii 

S 
is 

and clearly 

sE:3001 = sE S.. (X)] + BE SW] 
11 

(4.4.4) 

For a finite system, 

S. = 007t  D. 071  i 	i 

henceJoinequation iseivellby"'")J, and we have 

J = sE Di( X)] + sE SW] 	 (4.4.5) 

4.6. APPROXIMATE COMPONENT METHODS (COMPONENT MODE METHODS) 

4.6.1. Introduction  

The methods discussed so far in this chapter have been exact in 

the sense that there is no approximation introduced other than the 

initial structural idealisation. 

There is, however, a class of methods, known under the general 

title of component mode methods where the order of the problem is reduced 

by a Rayleigh - Ritz type approximation. In general, freedoms corresponding 

to high frequency component normal modes are discarded, and a set of 
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cc 

(4.6.1) 
11 

K t. Ic K 

le 

cc 
- x  

M.. 
11 

t.  
le 

freedoms retained to give an approximate representation of the low 

frequency behaviour of the structure. The advantage of the approach is 

that the 'reduced' problem is expressed in the usual algebraic 

form, thus enabling standard algorithms to be employed. 

The various methods, of which those due to Gladwell and Hurty 

are best known are a natural extension of the elimination method of 

Section 2.6. as shown in the following sub-section. 

One of the methods, due to Craig and Hampton [55], is described 

in detail in APPENDIX 2, together with a computer program to 

efficiently implement the theory. This program is used to enable com-

parison of the component mode method with the forms of Kron's method 

developed in this report. 

4.6.2. Elimination of Variables in Component Form  

The assembled dynamic stiffness equation of motion (4.3.1) may be 

written in the form: 

Withy c identifiedas'masterfreedoms'andX.as internal 1 
freedoms, equation (4.6.1) is synonymous with equation (2.6.1). The 

assumption that the interior freedoms follow the static displacement 

patterns defined by the boundary freedom leads to the elimination method 

reducing transformation matrix ir: 

  

1 .. 	K. —K la. 	1c 

I 

 

Xi  

Ye 

 

Yc 	T Y 	(4.6.2)o c 

    

No freedoms are carried forward from the internal coordinates. The 

"interior" eigenvalue problem: 

( I(11  .. — M.. ) X i  . 	0 11  (4.6.3) 

is clearly the set of restrained component eigenproblems, with K
ii 

 



=Ma 

q . 
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and M 	composite diagonal matrices. The convergence condition for
ii 

the first-order approximation (equation (2.6.10)) is now that the 

required composite system frequency must be less than the lowest 

natural frequency of all the restrained components. 

The methods now briefly discussed are extensions of this basic 

approach, and may be characterised by their 'reducing transformation', 

which containsthe essential Rayleigh - Ritz approximation. 

4.6.3. The Partial Orthogonalisation Technique [54] 

In this simple method, a few of the lowest normal modes of each 
OM/ 

restrained 	 10 rained component are calculated and gathered together in, 	i  

withgeneralisedcoordinatesq..These coordinates are used to 

describe the displacements of the internal coordinates, and the 

reducing transformation is given by 

cl) 0 
(4.6.4) 

0 I 

X. 
. 

Ye 

The approximation is reasonable provided the normal modes can represent 

the composite system modes to a high degree. This is more likely for 

structures which are very rigid in the regions of the y c 
coordinates. 

4.6.4. The Branch Mode Method  

Gladwell's branch mode method relies, as the name implies, on the 

structure having a branchlike topological configuration. Again, the 

lowest modes from, each branch are calculated, but here a branch normally 

consists of several components, one of which is free to distort, while 

the others are assumed either fixed or rigid; physical intuition is 

used to determine the better assumption. The reducing transformation may 

be written as: 

   

X. 

Yc  

q 

(4.6.5) 
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where q contains the amplitudes in the modes. In the special case 

where all bi-anch modes are chosen so that 1 component vibrates while all 

the others are fixed, the transformation is.equivalent to that of 

equation(4.6.Wwithoraythecl.freedoms included. This highlights 

the fact that the branch mode method implicitly assumes that the 

connection coordinates between any pair of components are rigid relative 

to each other. 

4.6.5. 	 eC2nmerbMojt2tTi tt.21 

This group of methods is essentially the elimination method with a 

few low frequency restrained component normal modes includes from each " 

component (4'.). The reducing transformation is of the form: 

(4.6.6) 

     

  

MOO 

  

   

  

q 

 

0 I 

  

     

     

     

where the 4>
c are termed 'constraint modes' are e particularly 

important in the case of flexible boundaries. These modes are 

normally defined by the static approximation 

4) c 	K —1  K 
11 is (4.6.7) 

• 
Originally proposed by Hurty (1965) [52], rigid body modes were 

treated separately in the case of free-free components, with constraint 

modes calculated for redundant connection coordinates only. However, 

Craig and Bampton (1968) [55] utilised constraint modes for every 

connection freedom thus implicitly including any rigid freedoms. It 

is important to note that while the number of normal modes included is 

arbitrary, the number of constraint modes is fixed by the number of 

connection coordinates. 

Goldman (1969) [56] reported a variant utilising free-free normal 

modes and rigid body modes only. Like the branch mode method, a rigid 

boundary is assumed and application is limited to situations where this 

is a reasonable assumption. 

Generalised methods utilising both restrained and unrestrained 

component modes have been developed by MacNeal (1971) [57] and Benfield and 
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and Hruda (1971) [58]. These methods however are rather more 

complicated both to program and to use and involve a degree of 

intuition in the choosing of modes. 

In all these methods, accuracy drops off sharply for higher 

composite system modes, and it is not in general easy to say whether a 

frequency is accurate (e.g. to within 1%) or not. Hurty (1965) [53] 

produced a formula for estimating the error involved in each mode 

due to the truncation of higher modes, but it is of little practical 

help. 

i The component mode technique has found use particularly in the 

design of aerospace structures where modular configurations are 

commonplace. 

4.7. SUMMARY OF COMPONENT METHODS 

Component methods in general offer a means of economically handling 

large finite structures as a series of reasonably sized eigenproblems. 

In particular, use may be made of repeated components to reduce the work. 

A common need is also the synthesis of composite system characteristics 

from the results of practical vibration tests on component parts. 

Provided all the component modes are used, Kron's method provides 

an excellent way of handling large systems with no inherent loss of 

accuracy. The computational application of the method, and its 

advantages are investigated fully in this thesis. 

Where only the low frequency composite system eigenspectrum is of 

interest, the component mode approach offers a convenient means of 

eliminating unwanted freedoms, so reducing the problem to manageable size. 

However, it would appear from the literature that intuition must be used 

to decide when accuracy is likely to deteriorate 

The question of introducing approximations into Kron's method has 

not been reported in the literature, and is investigated in this thesis. 

As a result, useful approximate methods for the description of the low 

frequency composite system are formulated and illustrated. 
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CHAPTER 5 

KRON'S METHOD 

5.1. INTRODUCTION  

In the previous Chapter, Kron's method was introduced as the 

receptance approach in the component connection method. Here, the 

method is developed in detail. The displacement and force transformations 

are discussed and the Kron determinant examined. The calculation of 

el envalues and eigenvectors is discussed and the computational merits of 

th method outlined. 

As originally proposed [143, Kron's method was couched in rather 

obscure electrical terminology. Simpson and Taborrok (1968) C48] gave 
a clear receptance formulation as indicated in the previous Chapter - 

and suggested a Newton's method algorithm for locating composite 

system eigenvalues. Brameller and Lo (1970) [59] utilised the 
escalator method for the eigenvalues. Simpson (1972) [60] gave a 

Lagrangian formulation together with a powerful eigenvalue algorithm 

based on the one proposed by Wittrick and Williams [19]. 

Further papers by Simpson have considered 

(1) a Lagrangian derivation together with an alternative dual approach 

in which the frequency determinant unknowns are displacements [61]; 

(2) the extension of the original formulation to the non-

-proportionaly damped eigenproblem [62]. 

These extensions are not considered in the present work. 

5.2. THE CONSTRAINT TRANSFORMATION 

5.2.1. The Displacement Transformation 

The transformation of equation (4.2.8) of section 4.2.4. may be 

written: 

      

X X
c 1 
x c2 

 

T1  
T 
2 

- Y C (5.2.1) 

      

      

      

where 
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= the set of 2 connection displacements to be carried through 

.Co the composite system. 

(DOMINANT DISPLACEMENTS) 

X c  = the set of m connection displacements not carried into 

(DISCARDED DISPLACEMENTS) 

In general, T (1 x A) may be constructed square non-singular, with 

T 2  Cm x A) rectangular with m > A. 

'Constraintsoftheformx.=x.are here termed SIMPLE CONSTRAINTS. 
1 

ppropriate arrangement we may write 

	

X Cl 	
X c 

so that 

T1  — I 1 — 

and lr
2 
will also be a boolean matrix. If only 2 displacements coalesce 

at any point, Xwill be of length 2, and by appropriate arrangement c2  

T2 = I 

(For further discussion of the transformation, see [48]). 
y c may be eliminated in equation (5.2.1) to give an equation of 

the form 

	

Pt xc 	0 	 (5.2.2) 

where 

Pt = [— T2 T11  3 I 

may be defined for 1.1 
non-singular. P t is a (m x nc) matrix, nc is 

the length of X. Each row represents one linearly independant 

holonomic constraint between the elements of the X vector, i.e. 

p x 0 c. c 

2 the composite system. 

we may write 
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5.2.2. The Force Transformation 

For free vibration of the composite system (Section 4.2.4) the 
condition was obtained: 

T
t 
X = 0 c c (5.2.3) 

It may be readily verified that a set of forces satisfying this is given 

by: 

     

     

X X
cl  

X 
c2 

 

-Tit T  t 
 2 

I 

C = P C (5.2.4) 

     

     

where X
c is partitioned comformably with {-X 

c1 
X
c }. Equation (5.2.4) 

expresses a force,transformation. Each column 	in 2 	
c is a set of 

forces in a particular constraint satisfying equilibrium, and the 

corresponding element in C (m x 1) is a 'generalised force 

coordinate' (or Lagrangian multiplier). Equation (5.2.3) implied that 

the forces in each constraint are internal, or self-equilibrating. 

5.3. KRON'S DETERMINANT 

Application of equations (5.2.1) and (5.2.4) to the base system 

receptance equation (4.2.7): 

	

Ic D
.-1

(X) (13
t

XC  = X 
	

(5.3.1) 

leads to 

	

R (A)c = 0 	 (5.3.2) 

where 

R ( X) = 	P 	c 	D (X) 14) 	P c 	c 	c 	c 

(m x m) 	(m x nc) 	(nt x nt) 	(n x m) 

(nc x nt) 	(nt x nc) 

(5.3.3) 



For non-trivial C vector, we obtain the frequency equation 

R (X) 	= 0 	 (5.3.4) 

known as the KRON DETERMINANT (of order m). 

5.3.1. The Form of Kron's Determinant 

Equation (5.3.3) may be re-written in the form . 

R ( X) = Gt  D-1( X) G 	 (5.3.5) 

kh re G is an (n
t 

x m) matrix defined by 

G = (1)  Pc  

Each element in G is given by; 

t 
gkj = 	(1) ck pcj)  

(5.3.6) 

(5.3.7) 

Indeed the jth. column of G is the 'resolution' of the jth. 

constraint vector in terms of the base system eigenvectors. 

Recalling that D-1(X) has the simple diagonal form with kth. term 

dkk = ( xi - x)-1  

where X°, k=1, nt 
are the base system eigenvalues, the general term 

in Kron's determinant is given by 

nt  ( 4)
ck

p
ei

)( doc
k

pc) 	
. E 	kj 	(5.3.8) 

n
t g g 

r. = E 
ij k=1 	(A - X) 	k=1 (A - A) 

Clearly R(X) is a symmetric (m x m) matrix, and in general a 

quotient of two polynomials in X, the denominator being 
nt Tr ( - 	 (5.3.9) 
k=1 

6 8 



In general, poles of ROO coincide with base system eigenvalues, 
while zeros of R (X) coincide with composite system eigenvalues 
according to equation (5.3.4). Algorithms for locating composite system 

eigenvalues 	are considered in Section 5.5. 

5.3.2. Equivalence to the Weinstein Determinant 

By retaining the full eigenvectors 4) and extending 	P c to 
correspond to the full X vector, the constraints may be written as 

6,9 

0 (5.3.10) 

X c 

and the general term in G becomesg
ki 
 = (4)k t p.). By using this 

definition in equation (5.3.8), it is evident that the Kron determinant 

is identical to the finite freedom Weinstein determinant (see equation 

(3.3.12)). The properties of Section 3.3.4 thus apply equally to either. 

5.4. THE CALCULATION OF EIGENVECTORS  

5.4.1. Persistent Ei envalues and Vectors 

It is convenient to consider first the general case of a composite 

system eigenvalue X_ equal to a base system eigenvalue X. Clearly 

R (A1) is not defined, but slightly perturbed arguments i.e. 
X.-1-C,X.-1-€4,10where- e<<X.would enable the limiting value to be 

ascertained. 

In general, it will be a superposition of zeros and poles which 

may be treated separately. 

The multiplicity of the pole is equal to the number of base 

system eigenvalues 'lost' through application of the constraints. 

If the base system multiplicity of )1/4 was pk, then by Rayleigh's 

theorem and ignoring any 'arrivals' from below X::;, the 

PERSISTENTIAULTIPLICMofX.is given by 

Pi ?' Pk m 	(p 1 > 0) 

Such PERSISTENT EIGENVALUES correspond to an'infinite value of 
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Iii(X.1
)1 and hence imply the condition: 

C = 0 	 (5.4.1) 

This in turn implies that the imposition of the constraints 

have no effect on the component modes corresponding to Xic, and that 

eigenvectors of persistent eigenvalues are simple linear combinations 

of the component modes corresponding to XI°, such that the displacement 

transformation of equation 5.2.1. is satisfied. 

5.4.2. Gained Eienva 

Eigenvalues corresponding to roots of the numerator of R (X), 
whether equal to a base system eigenvalue or not are termed here 

GAINED EIGENVALUES. The multiplicity of the eigenvalue is merely that of the 

of the root (p. ),,hence the total multiplicity of 1, is in general 
IG 	 1 

given by 

1G 

where pi  = 0 always for X t X°1.c  

CorrespondingtoeachgainedeigenvalueX.,there will be p. 1G 
non-trivial linearly independent, C vectors. R (hi) will be 

p. -fold degenerate, and equation (5.3.2) may be partitioned: 
IG  

R 11 	R 12 

F1, 21 	Ft 22 

C' 

I 

0 

0 (5.4.3 ) 

L 

where R is non-singular and R 	is of order PI  
. . There are thus 

11 	
an 	

22 	G 

C. Eca.  c 	cj....3 2  c;} 

Pi  = Pi  + p- (5.4.2) 

.columns in C where 
PIG 

From the first set in equation (5.4.3), 	is the solution to the 
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R11 C' = 	R12 (5.4.4) 
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thus enabling C to be formed. Each column of C may then be used 

to generate the full eigenvector from the relation: 

x is 	CD D 1(X.)CDt P I 	c j (5.4.5) 

1 
 THE CALCULATION OF EIGENVALUES 

5.5.1. Introduction  

As Kron's determinant is a non-linear function of X, algebraic 

eigenvalue algorithms are inappropriate. Instead, frequency scanning 

must be used involving the evaluation of IR(X)I for a succession of 

trial values of X. 

From Rayleigh's theorem, application of 1 constraint to the base 

system produces bounds on the constrained system eigenvalues of 

X? 	X°  
-**" 	i+1 (5.5.1) 

and poles and zeros alternate along the X axis. However application 

of m (> 1) constraints yields the wide bounds 

1+M (5.5.2) 

and there is no set ordering of zeros and poles. A simple frequency 

scan of IFt(X)I would require a fine mesh to reduce the risk of 

missing roots. The large number of determinant evaluations required 

would almost certainly lead to unacceptably long computer times. 

5.5.2. Scalar Scanning 

Proposed by Simpson and Tabarrok (1968) [483, the method involves 

partitioning equation (5.3.2) along its last row and column to give: 

r 

r  ss 	sm 

Ft 	r sm cm 

0 

0 
(5.5.3) 



72 

Eliminating 	C
s 
leads to 

where 

r c 	= .0 
m m 

rm 	(r 	- r r-1 r ) mm 	sm ss sm 

(5.5.4) 

(5.5.5) 

is a scalar function of X whose zeros are identical in general to those 

of IR(X)I. The poles of rm coincide with the zeros of I 
r
ss 

 I, i.e. 

the eigenvalues of the composite system with 1 constraint 

released. By equation (5.5.1) poles and zeros alternate, implying that 

the latter appear as simple roots. It is shown [48] that the 

component eigenvalues correspond to 'computational poles'. At the cost 

of inverting an (s x s) matrix (where s = m - 1) for each trial X, a simple 
dr  

expression for ( dXra) enables Newton convergence on the roots of rm. 

Clearly, the poles of rm  are not known 'a priori' and a 

preliminary scan is advised. A further difficulty occurs when a simple 

pole and a zero of r4  coincide, for example where the mth. constraint causes 

"zero raising" of an eigenvalue. A finite non-zero value results, and 
the eigenvalue must be detected by an auxiliary scan of I r 

ss
I. The 

algorithm is thus not entirely reliable. 

5.5.3. The Escalator Method  

The escalator method [63] was introduced for the solution of the 

algebraic eigenproblem, but is ineffident compared with more modern 

algorithms. 

Brameller and Lo [59] proposed its use in conjunction with the Kron 

determinant. One constraint is applied to the base system and the 

leading (1 x 1) sub-determinent of ROO scanned enabling the 
calculation of the complete set of (nt  - 1) eigenvalues and vectors. 

These are then considered to form a new base problem, and a new determinent 

of order 1 is defined involving the second constraint. 

The attraction of the approach is that the problem is reduced to a 

succession of simple '1 constraint scans' which all enjoy the property 

of alternating zeros and poles. However an enormous amount of useless 

'intermediate' information is clearly generated. In addition, the 

complete set of vectors (which in contrast to the super-diagonal form of 
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the initial base system set are in general full) are required to 

be held in backing store at each stage. The algorithm is thus 

wastefull both in time and core. 

5.5.4. The Step-by-step Method  

Developed by the present author, this method was used to calculate 

composite system eigenvalues and to study the "eigenvalue raising" 

effects of constraints. 

The m constraints are applied sequentially, the intermediate 

systems being characterised by successively larger leading sub-determinants 

of 	R (X). The eigenvalues of the rth. system (i.e. r constraints 
applied) are determined from the (r x r) leading sub-matrix with the 

eigenvalues of the (r - 1)th. system providing bounds according to 

equation (5.5.1). Thus 

(i) any new eigenvalue must appear as a simple zero. 

(ii) the multiplicity of an existing eigenvalue must satisfy 

,r-1 	„r „r-1 1  
vi  (5.5.6) 

The procedure may be made selfchecking so that it is impossible to 

miss an eigenvalue. However, the process is inefficient in that the inter- 

mediate system eigenvalues are in general of no interest. Computational 

experiments have shown that for even very low m values, the 

procedure of the following section is far more economical in time, and 

is thus to be preferred except where eigenvalue raising is to be 

studied. 

5.5.5. The Extended Sturm Sequence Algorithm  

Simpson (1972) Egg has proposed a modified form of Wittrick and 

Williams 'extended Sturm sequence algorithm' which was introduced 

in Section 4.5.2.. The arguments of that section may be conveniently 

extended to Kron's determinant. 

The base system, corresponding to C = 0 , is characterised by 

R (X) infinite, and from equation (5.3.5), the number of eigenvalues 
exceeded by a given X in the base system is s[0(X)], where s indicates 

the SIGN COUNT. 

As each element in C is released, a constraint is applied to the 

base system, and as a direct consequence of Rayleigh's theorem, there is 
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a possibility of one less eigenvalue being exceeded by X. The loss 

of an eigenvalue is indicated by a change in sign between two 

consecutive principal minors of R (X), hence the total number of 

eigenvalues lost on application of m constraints is sEFI(X)3. 

The actual number of eigenvalues exceeded by A is thus given by 

J( X) = s[ D( X)] - sr R(A)] 
	

(5.5.7) 

A full proof is given in Simpson [60J. In addition, he proposes a 

Newton algorithm for location of the roots of a scalar function of A 

as /defined in Section (5.5.2). The algorithm involves inversion of a 

matrix of order (m-1) for each trial A and may thus be expensive in 

computer effort for large m values. - 

This algorithm is not utilised in this work. Instead, a 

procedure for directly scanning IFI(X)1 has been developed, and is 

described in Section A1.3.3. It has been found far superior to the 

methods of the previous sections and is incorporated in the Kron's 

method programs. 

In conclusion, the extended Sturm sequence algorithm is an extremely 

efficient way of solving the non-algebraic eigenproblem, and is the 

major reason why Kron's method is now highly competitive with other 

techniques for large structures. 

5.6. CORE SPACE REQUIREMENTS  

The principal advantage of Kron's method in the context of large 

problems is its relatively low demands on core space, thus allowing 

very large problems to be handled "in-core". The size of the composite 

system frequency matrix R (A) is governed by the number of constraints 

m and not by the order of the base system nt. There is thus no 

implicit need to reduce the number of freedoms, hence very 

accurate results may be obtained; equivalent in fact to an analysis of the 

fully assembled structure with all freedoms retained. In this section, 

an approximate expression for the core space requirement is obtained, and 

the optimum way of defining the ROO matrix evolved. 

The Kron determinant is fully defined'by the matrices G and D 

according to equation (5.3.5). The general term (equation 5.3.8) may 

be written 



E a  
j E 

gkigki 

ri = E  	E 

k=1 (AZ - X) 	k=1 (AZ - X) 
(5.6.1) 
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The components may be analysed sequentially with contributions 

to G and R stored on disc, thus space for one component only is re-

quired. With a typical component order of no, and assuming that a 

transformation method is required to obtain the complete 

eigenreduction, the core required is approximately n2 locations. 

Provided m 	no (approx.) these locations are available for the 

fo rmation of the R (X) matrix. In addition, storage must be available 

for the D matrix (nt locations) and the G matrix, the requirement 

for which is not immediately obvious. 

The formation of the G matrix is indicated in equation (5.6.2) 

below. 

gg2- 

0 c 1 

0c2 2 pc pc
pc ... Pc  
2 	m 

(5.6.2) 

' t 41) 
Cm 

(nt x m) 	(nt x nc
) 	(nc 

x m) 

Assuming all constraints only involve one coordinate from each of two 

adjacent component, then each constraint 	p
c. 

will only have 

products with 0 (2no) 
eigenvectors. Thus in each column g 

will be 2no 
non-zero entries, and the total number of non-zero 

G is 2n0 
m. 

Each term in R (A) represents the "linking" between two 

`constraints, and will be non-zero only if the constraints refer to a 

common component. This determines the number of non-zero terms in each 

series for r.j  as indicated in Fig. 5.1. An appropriate figure for 
thetotalnumberofnon-zeroallj terms (equation 5.6.1) involved in R (A) 

may be obtained by assuming that each location in the lower triangle of 

li(A)hasno.Thisgives(nom2V2non-zeroaij terms as against 

non-zero 

, there 

entries in 

• • g m  

  

  

j 
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LITIEE_ILL 

ILLUSTRATION OF THE DEPENDENCY OF CONSTRAINT LOCATION 

ON THE NUMBER OF NON-ZERO TERMS IN 

EACH ELEMENT OF Ft(X)  

(1) Constraints i and j refer to the same components 

P. 

A 

  

D  

B 

Qt...aseoemeareaareveralmmeasse. 

C 

Pi  

Non-zero gki  and gkj  terms coincide - maximum of 2n
o 
non-zero 

terms in series for r. 13 

(2) Constraints i and j refer to one common component 

A 

7•••■•■•11.....smelleaboanse 

C 

IINIIII■ommamed1.1=1••••••01.0 

Its•mexewerw000soissetraraevemarec 

D 

4wroxiamme 	 

Non-zero gki  and g,
j 
 coincide only when k relates to component 

B, hence maximum of no  non-zero terms in series forr.  . . lj 

(3) Constraints 	have no common component 

A 

p 

B 

All gki  x gkj  products will be zero, so rij  = O. 
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(2nom) non-zero g,. terms. Thus for m > 4, storage of the g-terms 

requires les core and is preferred, even though slightly more work 

is involved in the formation of 	R (X) for each trial X. 

approximate total core requirement is given by 

The, 

CKRON = 
2 
no 	2nt 4- 	2n m  

(5.6.3) 

I 
Component 	Base 	Non-zero terms 
eigenreduction 	System and 	in G 

R(X) composite 
system 
eigenvalues 

Clearly the minimisation of no  will have a favourable effect on 

COON but will inevitably lead to a larger m value. It must be 

remembered that the effort involved in the full solution of 	R (X) 

is greater than for an algebraic eigenproblem of the same size. 

The optimum subdivision of the composite structure will often be 

governed by the obvious advantages of repeated components. The question 

of how to take full advantage of repetition both in terms of components, 

and within the G matrix is discussed in Chapter 7. 

In the following Chapter, techniques which greatly reduce the 

above core requirement are introduced. 

5.7. A SIMPLE EXAMPTR  

A simple spring-mass system comprising 3 components is shown in 

Fig. 5.2. This example is selected to demonstrate the theory of 

Kron's method including the special case of persistent eigenvalues. 

The masses and spring stiffnesses are as indicated in the figure. 

The component eigenreduction may be verified as 



(a) THE COMPOSITE SYSTEM  

(LI 

8 

(b) THE 'BASE' SYSTEM COMPONENTS A,B,C)  

B 
X2 	 X 3 	 X 4 

A 
1—> X 1—> X5 	X 6 
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B 

A A= 

= 

I-0 2i 

WE.  
145 

1/A/2-  

1/vi 

B  

= 

= 

I—  o 

1/2 

1/2 

1 	I 

-1/2 

5 = 

= 

r 0 	3/2 I 

1/Nr3 	AT- #1-5 

_ 14)5' 	 "5/2N5 

helce 

D (x) = r o- x, 2-x, o_x, l_x, 0-x, 3/2 j 

and 

0 	=r 
 A0  330  o il, j  

The two constraints are x
2 
= x

3 
and x4 - - x5 ' hence defining 

X c1 

X 
c2 	

x3  x5  

equation (5.2.1) is written as 

x2 1 	0 Y2 

X 
ci x4 0 	1 y3 

T1  

X c2  
x3  1 	0 T 2 

x5  0 	1 

Thus T1 	T
2 
 = I in this case and we have 
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each column involving  the set of internal forces in that constraint. 

The G matrix is then calculated from equation (5.3.6): 

= 40c 	x 

4/ 

o 

0 

0 

0 

0  

0  

1 
2 

1 
2 

0 

0 

0 

1 
2 

1 
2 

0 

0 

00 

0 

0 

-1-- 

- 

o 

1 

- 1 

G 

	

- 1 	0 

1 0 

	

1 	1 

	

2 	2 

	

1 	1 

	

2 	2 

	

0 	1 
13-  

R (X) = Gt  Li-1(X) G may be verified to be two 2 x 2 matrix 

-X 	1-X 	2 	!XJ 	
(SYMM) 

14  I 
o - x 	- xJ [ 	

7I1  2 	 313 1 

I_ - X + 0- X + 3/2 - Xi 

R (X) = 

(r11 x r
22 

- r21) (i.e. both constraints applied) are shown in fig. 5.3. 
The eigenvalues of the intermediate and composite systems are 

tabulated below, emphasising  Rayleigh's theorem: 

Rough plots of r11 (i.e. one constraint applied) and 
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1/3  
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FIGURE 5.3. 
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(b) PLOT OFIRNIVERSUS ?■ (NOT TO SCALE) 

s [D(A)] 3 3 4 5 6 

s [R(q 2 1 1 1 2 
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BASE SYSTEM 	0 	0 	0 	1 	3 
2 

INTERMEDIATE SYSTEM 	0 	0* 	23 	
3
2 	

32* 
2 

COMPOSITE SYSTEM 	0 	13 	1 

2 

  

* Component C is unaffected by the first constraint and so its 

eigenvalues are merely carried through. 

Note that in Fig. 5.3(b), the double pole at X = 0 indicates the loss 

of 2 eigenvalues (from the base system), while the finite non-zero values at 

A = 1 and X= 32  indicate 'no change', being the superposition of one 

pole and one zero. The s[Fi(X)] values in the table below this figure 

may be readily checked, confirming the operation of equation (5.5.?). 

A single "zeroing" term is encountered on the leading diagonal of 

the factored form of each of 	R (13), R (1 + e) and 	F1(32  

confirming the eigenvalues to be "gained". The corresponding 

eigenvectors are-thus calculated by the equation (5.4.5) as: 

A 13 1 3
2 

Y1 1 -1 1 

Y2 23 0 -i 

Y _ 1
3 1 14' 

Y4 
-1 -1 -18 

As expected from Rayleighs principle, a perturbation of e = 10 

produced an error in the vector in the fifth decimal place. 

However, no "zeroing" term is encountered using R (0 + e) 

indicating a "persistent" eigenvalue. Clearly a linear combination of 

the 3 component rigid body modes satisfying the constraint 

transformation is 	1 	1 	1 	1 } i.e. the composite system 

rigid body mode. 
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CHAPTER 

APPROXIMATIONS IN KRON'S METHOD 

6.1. INTRODUCTION 

Kron's method, as established in Chapters 4 and 5, involves the 
application of m constraints to a base system comprising nt  degrees of 

freedom. Provided all the constraints are applied, and the full square 

set of eigenvectors and associated eigenvalues are employed from each 

co ponent, results obtainable from an analysis of the Kron determinant 

wi I be 'exact', that-is equivalent to an analysis of the fully 

assembled problem. In other words, the procedure involves no 

inherent loss of accuracy. This approach is termed the FULL KRON METHOD. 

However, in most practical situations, only the lower composite 

system eigenspectrum is of interest, and it would clearly be 

advantageous to be able to obtain, approximate results in this range 

with good savings in computer time and core space. 

In this Chapter, methods of introducing approximations into Kron's 

method are developed, and their effect on the accuracy of the 

subsequent solutions discussed. Simple beam and plate bending examples 

provide numerical illustrations. 

Two forms of approximation are introduced 

(1) Reduction in the number of modal freedoms used to 

represent each component, 

(2) Reduction in the number of constraints applied to 

couple the components. 

The former is of the Rayleigh-Ritz type, resulting in the stiffness of 

each component being overestimated. The latter may be termed a 

Weinstein type approximation which tends to underestimate the stiffness 

at the component boundaries. When used simultaneously, a hybrid method 

results in which the opposing effects tend to cancel each other out. 

It is emphasised that these approximate methods are intended to 

compliment the full Kron method and to further utilise the implicit low 

core space demands of the approach. 

Finally, an economisation procedure in connection with the scanning 

of the Kron determinant, whether full or approximate, is introduced. 

The computational advantages of these methods are discussed in 

detail in Chapter 8. 



° R = [ °4)c1°0,2  0 

o -1 
0 	D2  

o cot 
Cl  

o 

c2 
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6.2. REDUCTION IN THE NUMBER OF COMPONENT MODELS  

6.2.1. Introduction 

The effect of including a reduced number of component modes while 

still applying the full set of m constraints is now considered. The 

approximation is of the Rayleigh-Ritz type in that the composite system 

is constrained to vibrate with a reduced set of freedoms. Eigenvalues 

obtained are thus upper bounds on the 'full-solution' eigenvalues. 

6.2.2. Truncation of Receptance Series 

Initially, the approximation is discussed in terms of truncating 

the receptance series for each component. 

Considering a typical component of order no, the modal matrix at 

the connection coordinates is partitioned according to 

= L cpc1 "c2 
	 (6.2.1) 

where 04)ci The full 

,(Chapter 4, 

contains the lowest .n modes and 
o
(0c2 

contains the remainder. 
ol 

receptance matrix at 	the no 	
connection coordinates 

equation (4.2.5)) is 

—10 t 
c  o (P Do  400c 

and introdubing the partition of equation (6.2.1): 

0 Rc 

o o 
D 	 D2  
-lo 	o 	o -lo(t) 

= ci) 	± cb 
cl 1 c1 	c2 

	2 

- 
where 

o  D1
1  involves the lowest n

ol 
eigenvalues. 

Each term in 
oc 

 is given by 

(6.2.2) 



no  on( otx 
7""pk.  qk r 	= 

Pq 	k=1 (°Nk  - X) 
(6.2.3) 
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where the component eigenvalues oXk  are arranged in ascending order. 

Inclusion of the lowest n
o component modes yields the approximate 

receptance matrix 	1 

oR= o
cD 

 o —lo 
D croc  c  

	

Cl 	1 1 1 

with each term a truncated receptance series (BK64, p. 215) 

n 
01 °O °O o

r 	= E 	pk qk  

	

Pql 	k=1 (°X.k  - X) 

with associated error 

n 4:36, oo  
vpk qk 

	

Pql 	k=n
o +1 (°Xk  - A) 
l 

 

(6.2.4) 

(6.2.5) 

(6.2.6) 

This approximation is reasonable provided 
o
ePql << rPq , and clearly 

the number of terms that must be included in 	
l 

o
r 	depends upon the convergence of the series in equation (6.2.3). 
Pql 

Errors will be larger in general for diagonal terms, as all the terms 

in the series for 
oe 	will be additive. 
PP 1  

The terms includea are intended to represent the component at low 

frequencies, thus A may be confined to the low end of the spectrum. If 

non-normalised eigenvectors 00  are employed, the modal mass term 

appears explicitly in the receptance series: 

no Pk13ok  o
r = E 
Pq 	k=1 0mk(0Xk  - A) 

(6.2.7 ) 
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hence for Xk  >> X, the denominator may be approximated to 
o 

 mk
o 
 X -k' 

which is equal to °k,, the generalised stiffness. Convergence thus 

depends on the growth of the generalised stiffness terms, and the 

customary decrease in eigenvector amplitudes in the higher modes. 

However, it is known that receptance series for beams and plates in 

particular converge slowly for 'slopes' and higher order freedoms 

[64, Ch. 5]. 

In general, the generalised stiffness increases  in a manner not 

too far removed from that of the eigenvalues. Hence a possible criteria 

woi4ld be to discard component modes corresponding to eigenvalues 

sa4sfying 

xicic > XRA x 10 
	 (6.2.8) 

where X-. is the maximum frequency square of interest. mAX 
Continuing with the Kron formulation, the matrices E)

1 and 
0 4)c 

may be gathered for all components into the composite diagonal 

matrices D
1 

and 0 , so that the approximate composite system 
1 

receptance matrix is 	given by 

- = pt co cci cot _ t 1 
c c1 1 c1 pc 	G 1 D1 G 1 

Each term in R 1  is a truncated series: 

1 	
n
1 gkigkj  

r.. = E ( o ij 	
k=1 	(Xic  - 

(6.2.9) 

(6.2.10) 

where there are n1 
base system 

constraints, each term in R 1 
two adjacent components, e.g., 

satisfy a convergence criteria 

eigenvalues Xic  in ()1
. For simple 

is a sum of receptance series from 
(ar  

Pql + 

b
rstl). 

 Each series may 

separately, but it is quite possible 

for the included parts to cancel to some extent whereas the errors 
a 

best ( e
Pql  + 
	) do not. The combined error may appear large. 

1 
In short, the extent of the effect of a reduction in modal freedoms 

when viewed in terms of truncating component receptance series is 

unpredicable. 
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6.2.3. Effects of Truncation in Beam Examples 

Two simple beam examples (Fig. 6.1), each comprising 2 components, 

were used to test the effect of truncation of receptance series.* 

Both examples involve the two constraints:- 

x7  = x9 	. (lateral displacement continuity) 

x8 = x10 
	(slope continuity) 

The natural frequencies of the components are shown in TABLE 6.1, 

while the first 4 composite system natural frequencies with all modes 

in luded are given in TABLE 6.2. The resulting percentage errors 

in the first 4 composite system natural frequencies for increasing 

degrees of truncation (starting with the highest mode) is shown in 

Fig. 6.2 for both examples. 

In the case of the fixed-fixed beam, the loss in accuracy for 

frequencies f
2 
 and f

4 
 is quite reasonable. For example, the error 

in f
2 
(= 97.67 Hz) only exceeds 1% when component modes at 776 Hz 

and above are omitted. However the accuracy of f1  and f3  decreases 

disasterously, even on the omission of component modes with frequency 

2 orders of magnitude greater. 

A similar pattern is evident with the cantilever beam, but here it 

is the second and fourth frequencies which lose accuracy extremely 

rapidly. 

It is thus clear that in certain situations, omission of even one 

or two component modes can lead to unacceptable errors, and that 

truncation on the basis of equation 6.2.8 appears impracticable. 

6.2.4. The Cause of Large Errors  

An investigation into the cantilever beam example illustrates the 

mechanism behind the large errors reported in the previous sub-section. 

Here, the frequency determinant is given by 

  

= (r r 	
r21) 
) 11 22 	21 

(6.2.11) I R 	1 = rll r21 

r21 r22 

    

the elements rij  also being functions of A. The roots of 1 R 1 at Al  

and X3  involve the expression in equation (6.2.11) zeroing with r11,  r22 

2 dimensional, 4 degree of freedom beam finite elements were employed 
(APPENDIX 5). 
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FIGURE 6.1.  

SIMPLE COMPONENT BEAM EXAMPLES 

(a) FIXED-FIXED BEAM (8 ELEM-ZEIL 

1  
COMPOSITE SYSTEM 

q 	 

)(ci 
t 

X11 
t 

X13 

I) I) r) 1) 
X to x12 X 1i+ X16 

COMPONENT A COMPONENT B 

BASE SYSTEM 

.(b) CANTILEVER BEAM (8 ELEMENTS)  

I 	. 	I  

COMPOSITE SYSTEM 

COMPONENT C 

BASE SYSTEM 

	I 

In both examples 

1 = 3.0" 	E = 107 lb/in2  
t = 0.1" 	v = * 
Unit breadth. e 	0.27 lb/in3 



TABLE 6.1. 

COMPONENT NATURAL FREQUENCIES 

(BEAM EXAMPLES) 	(Hz) 

A and B 

1 22.26 0.0 

2 139.66 0.0 

3 393.61 141.79 

4 776.51 392.86 

5 1444.26 771.46 
6 2319.5o 1413.59 
7 3677.17 2213.35 
8 6033.46 3432.74 

9. 5716.37 
10 6311.20 

I 

TABLE 6.2.  

EXACT COMPOSITE SYSTEM NATURAL 

FREQUENCIES 	(Hz) 

FIXED-FIXED 
BEAM CANTILEVER BEAM 

1 35.41 5.56 

2 97.67 34.88 

3 191.81 97.71 

4 318.29 191.79 

89 
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and r21 of comparable magnitude. However, the roots at A2 
and A

4 
result principally from the term r

22 
zeroing, with r

21 
small. This 

indicates that the slope continuity constraint is highly active, physically 

implying that a high bending moment is involved in the formation of 

the composite system mode. A high internal moment implies high 

curvatures in the region of the component junction. However, the 

component normal modes in Kronsmethod are calculated with free, 

unloaded connection coordinates, and thus such high curvatures will 

only be present in high component modes. Truncation of these modes 

seriously affects the ability of the components to represent the 

composite system mode. 

As an illustration of this point, fig. 6.3 shows the first 4 

composite system modes for the full number of component modes and for 

a truncation case. Note how the curvature in the region of the junction 

is reduced in the approximate modes corresponding to A2  and A4. 

Numerically, the effect may be explained by examining the series 

for the r
22 

terms at A2: 
2 

nt
2 
gk2  

r
22 

= 
k=1 (Xl° - A2) ' 

(6.2.12) 

where ?C, (k = 1, n
t
) are the base system eigenvalues arranged in 

ascending magnitude order. If there are s base system eigenvalues 

less than A
2
: 

2 	2 
gk2 	gk2  

k=1 (A2 - X) 	k=s+1 (Xi(  - X2) 
(6.2.13 ) 

Fig. 6.4(a) illustrates the variation in the magnitude of the terms in the 

series for r
22 

with X
2 
= 0.480 x 105  (cf. exact 0.48017 x 105), while 

Fig. 6.4(b) plots the successive partial series summations against 

increasing number of terms included. It is clear that the series does 

not converge decisively, and with the cancelling out of the low 

frequency terms, even omission of the last 3 terms seriously affects 

the value of r
22. 

In such a case, the resulting value of r22 
is 

negative, implying that a larger iralue of X2  is required to restore the- 



FIGURE 6.  

CANTITRVER BEAM MODE SHAPES (FIRST 4 MODES) 

(not to scale) 
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fl . 5.56 Hz 

flA= 5.66 Hz 

(MODES IDENTICAL) 

f2 = 34.88 Hz 

f2A= 38.14 Hz 

f
3 
= 97.71 Hz 

f5A= 97.84 Hz 

(MODES IDENTICAL) 

f
4 	

191.79 Hz 

f= 212.23 Hz 

o 	 EXACT MODES 	---- APPROXIMATE MODES 

The fiA frequencies, and associated mode shapes 
(dotted lines) are for the approximate system with the 
lowest 5 modes included from component A, and the 
lowest 6 modes from component C. 
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balance in equation (6.2.13), as demanded by the Rayleigh-Ritz principle. 

To summarise, significant errors may be introduced by truncation 

where large internal connection forces arise, for example where a 

connection boundary between components is very flexible. 

Goldman (1969) [56] reported a form of component mode method utilising 

rigid body modes and unrestrained component modes and remarked, 

without any details, that "quite large errors could be introduced in 

certain ill-conditioned circumstances". 

satisfies n
g 
 << no. Finally, the series for each term in the o 

Kron determinant would be reduced, thus speeding up scanning. 

The problem is to define extra modes in addition to the lowest few 

component normal modes to provide the 'higher frequency freedom' associated 

with large constraint forces. This may be achieved by using static modes 

corresponding to unit forces in turn at the connection coordinates of the 

components, all other forces being zero. Hence for a component without 

rigid freedoms, the stiffness matrix is non-singular and the no  constraint 

modes 
oc 

 are 	calculated for X= 0 by 

K Zo  = X 0 	 (6.3.1) 

where 

1.0  xi° x 	{o 

The duality of this approach with the component mode method is again 

evident in that the latter uses constraint modes which correspond to unit 

Jisbl12emtnts. 

For a component with rigid body freedoms, the situation is a little 

more complicated. Three possibilities for forming constraint modes are: 

6. . USE OF STATIC MODES IN MODAL REDUCTION 

6.3.1. Static Constraint Modes  

The attraction in being able to successfully utilise a much reduced 

number of component modes is three-fold. Firstly, the necessity to 

calculate the complete set of component modes is removed. Secondly, 

the core requirement for the matrix G (2nom locations) walId be 
greatly reduced where the reduced number of component freedoms n

go 



(i) use of NIo in equation (6.3.1) in place of K o 
(i0 combination of forces at connection coordinates to 

form self-equilibrating force systems 

(iii) use of (Ko - ) (non-singular) in place of K 

The first alternative, although used successfully, generated very 

'high frequency' constraint modes with the result that extra normal modes 

are in general required. The second is undesirable in that it is not 

easily generalised, indeed it is impossible for the cantilever beam 

example unless additional 'dummy' connection coordinates are specified. 

I
The final alternative has been used with complete success in the 

examples tried. The simultaneous iteration technique (S.I.) is 

employed for the few lowest component normal modes (see sub-section 

7.3.1.). If i eigenvalues are so found, the additional trial vectors 

which are always used in S.I. yield approximate values for Xi4.1  and 

etc.. A suitable choice for p has been found to be 

X. + X 
1 	i+1 

- 	2 
(6.3.2) 

thus guaranteeing that ( K o A) is non-singular. 

It may be noted that the amount of work involved in the formation 

of the constraint modes is considerably less than for the same number 

of additional narmal modes. 

6.3.2. Orthogonalisation of Constraint Modes  

The component receptance series must be formed from a set of 

orthogonal vectors, thus the no constraint modes °Z.
c 
must be 

orthogonalised w.r.t. the set 	of nn 
normal modes included 

o411n. 

This is carried out at 'zero frequency', hence the resulting 

ortho-normal constraint modes may be termed static modes irrespective 

of the method by which they were generated. The Gramm-Schmidt process 

[46] is employed as indicated below. 

The first constraint mode may be expressed as a linear combination 

of the complete set of component eigenvectors
k' 
 k = 1, no. 

n
o 
	n  

= E ak  4k  = E cxk  4k  + z 
cl 	k=1 	k=1 

(6.3.3) 

(The superscript o is dropped here for convenience.) 

35 
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The orthogonality conditions 

t 
k Ko z c . 0, k=a, n

n 1 
(6.3.4) 

are introduced, and with equation (6.3.3) yield the coefficients 

1 	t = 4) kKozc  
1 

(6.3.5) 

(Note that in the case where 4 k  is a rigid body mode, the 

orthogonality condition must refer to M o). Hence cl 
is 

calculated from equation (6.3.3) and normalised such that 

— t 
z Ma c z 	1 	 (6.3.6) cl 	1 

Finally, the "pseudo-eigenvalue" for the mode is calculated from 

—t z K c 0 c 1 
(6.3.7) 

Subsequently, Z c  is treated as an additional normal mode and the 

process repeated fo
1  
r 	Z 

c2
. 

The process is 	reasonably fast, involving simple matrix 

operations. An advantage is that unnecessary constraint modes may be 

automatically discarded, further reducing the number of freedoms. The 

initial work done is calculated from 

c1 = z K z c. 0 c. 

and the work done after orthogonalisation from 

t 

	

2 =  zc 	cKz o 	. 

c
2 Clearly if 	 < 1, the initial constraint mode contains a high 
cry 

proportion 	of of modes included so far, and is less likely to be of 

importance in the description of the component. 



The n
c 

orthogonalised constraint modes are gathered togetheW 

c, 
and 

o  the component modal matrix is now given by 

cpo  = C °I)n° Zc 

The total number of component modal freedoms is denoted by 

= n
no 

+ n
co 	

(6.3.8) 
go ' 

where n
no 

<< n
o 
(usually) and n

co 
<: n

oc
. 

The total number of modal freedoms in the base system is denoted by 

q 	• 
ng  = E n 

1=1 go 

and for a worthwhile effective condensation of freedoms we require 

n <<n 
t. 

It would seem sensible, on physical grounds, to include component 

normal modes up to a given reference X value for all components. If the 

maximum normal mode eigenvalue from each component is placed in a set S, 

the minimum and maximum of this set are designated min  and  max 
respectively. Thus min and max should ideally be close. An additional 

useful parameter is 
Xcmin, 

 the minimum constraint mode pseudo- 

eigenvalue in the base 	system. 

The technique described in this section is designated the MODAL 

APPROXIMATE KRON METHOD. 

6.3.3. The Skew-Vector Effect  

In general, the staticly orthogonalised constraint modes of the 

previous section violate the component mass matrix orthogonality condition 

i.e. 

z M 4)k  c. o 	
0 	i k 	i = 1, nc  

1 
(6.3.9) 

k = 1, n
go 

9'7 



Away from X = 0, the constraint modes form a skew set of vectors 

in the space spanned by the strictly orthogonal set of no  component 

normal modes. Clearly the receptance series orthogonality condition 

is violated, and the eigenvalues obtained from an analysis of the 

Kron determinant will correspond to a different base problem. 

Let 	M 	be that part of the component mass matrix 
A 

responsible for the coupling terms (assumed small) in the modal mass 

matrix. It may be shown that the first order change in an 

eigenvalueX.due to M o , and assuming no change in eigenvector, 

is given by 

X.- X . 	M 	. A 	oA  (6.3.10) 

It is thus not possible to say in what sense the zero of the Kron 

determinant will be altered. However, the effect should be small 

provided 	X << X
c . This effect is in addition to the Rayleigh- 
min 

-Ritz effect, which with consistent mass formulation yields 

eigenvalues which are upper bounds. 

9 8 



Fortunately, the eigenvector subsequently calculated includes 

only the Rayleigh-Ritz effect and the Rayleigh quotient obtained froth 

the generalised stiffness and mass terms X.,0.  will always be an 

upper bound. 

The magnitude of the skew-vector effect may thus be investigated 

by defining  the VARIATION NUMBER for each composite system eigenvalue 

by 

(c:, 	XRQi  ) 
V - 	 x 100 

XRQi  
(6.3.11) 

6.3.4. Beam Examples  

The importance of including  constraint modes is illustrated with 

reference to the beam examples of Section 6.2. The composite system 

natural frequencies were calculated for 4 test cases, a, b, c, d 
corresponding to. the inclusion of an increasing  number of component 

normal modes. Details of these cases appear in,TABLE 6.3. fiva  

relates to the maximum component normal mode frequency 'included while 

f
c 	

relates to lowest constraint mode pseudo-frequency. Natural 
in 

fr
m
equencies above this latter datum were found to be extremely 

inaccurate and are not presented. 

On physical grounds, it is desirable to include component normal 

modes up to a common 'cutt-off' frequency, hence the choice of normal 

mode inclusions in the cantilever beam case (see TABU', 6.1). 

The results are presented in Figures 6.5 and 6.6 to illustrate 

the convergence of natural frequency with increase in normal modes 

included. The locations of fmax 
and f

c 	
are indicated for each 

case. Convergence to the lower frequennis is extremely good, and 

takes place in order of ascending frequency monatonically from 

above as expected. In both examples, all approximate natural 

frequencies below the relevant max 
are within 1% of the full solutions, 

while accuracy drops away between fmax 
and f

cmin
. 

Figure 6.7 gives plots of frequency 	error and variation 

number for the 4 cases in the cantilever beam example. Comparison 

with figure 6.2(b) emphasises the importance of constraint modes in 

this example. Variation numbers are within + 0.24 for natural 

frequencies below fmax. It would thus appear that 'zeros' of the Kron 

determinant may be safely used below the relevant max. At higher 

99 
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TABLE 6.3.  

BEAM EXAMPIES - TEST CASE SPECIFICATIONS 

EXAMPLE: Fixed-Fixed Beam Cantilever Beam 

CASE: a b c d a b c d 

No. of 
Normal Modes 

No. of 
Constraint Modes 

fMAX 	(Hz) 

f 	(Hz) 
cMIN  

(1,1) 

(1,1) 

22.26 

194-.9 

(2,2) 

(1,1) 

139.7 

632.6 

(3,3) 

(1,1) 

393.6 

1365.4 

(4,4) 

(1,1) 

776.5 

2460.5 

(1,2) 

(1,2) 

22.26 

159.2 

(2,3) 

(1,2) 

141.8 

391.1 

(3,4) 

(1,2) 

393.6 

914.3 

(4,5) 

(1,2) 

776.5 

1690.3 

First number in above 
brackets refers to 
component A, second to 
component B. 

First number in above 
brackets refers to 
component A, second to 
component C. 

Full solution 
involves: 

(8,8) Normal modes (8,10) Normal modes 
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CANTILEVER BEAM EXAMPLE - PLOT OF COMPOSITE SYSTEM NATURAL 
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0 INDICATES VARIATION NO. (%) 



104 

frequencies, the "skew-vector" effect is more important, and much 

larger variation numbers are observed. 

It may be noted that the 'unit shear force' constraint mode was 

omitted from the representation of component A in all cases as its 
c
2 ratio was 0(10 4). Inclusion of this mode was found to yield 

marginal improvement in accuracy. 

6.3.5. Plate Bending Example No. 1  

The plate bending example in Figure 6.8 was used to further 

investigate the accuracy obtainable using constraint modes, and the 

extent of the skew-vector error. The example comprises 2 cantilever 

plate components to be coupled along the line XX. Conforming plate 

bending elements having 4 nodes and 4 freedoms per node were employed 
(APPENDIX 5). The base system thus comprises 96 freedoms, and connection 

involves 12 simple constraints. No use of symmetry was made in this 

illustrative example. 

TABLE 6.4 gives the specifications of the test cases carried out. 

In cases A through E, all 12 constraint modes were included, while in F, 
apparently less important constraint modes were cut out, according to 
c, 

<< 10-2  (Section 6.3.2). 

The 'full solution' eigenvalues were established via the full Kron 

method and a direct assembly method. Tests were then carried out reducing 

the number of modal freedoms without constraint mode compensations. Loss 

of accuracy on a similar scale to that experienced with the beam 

examples of Section 6.2.3 resulted. 

The results of the test cases of TABLE 6.4 are presented in 
TABU, 6.5 include 

(i) up to 8 composite system eigenvalues (as calculated 
by the Rayleigh quotient) 

(ii) percentage eigenvalue error (w.r.t. full solutions) 

(iii) variation number (%) 

The value and 'location' of the maximum component normal mode eigenvalue 

max) and the minimum component constraint mode pseudo-eigenvalues 
. ) are also given. min 
For cases A through E, the eigenvalue errors and variation numbers 

are in general within 1% below max, while between max and Ac  
accuracy rapidly deteriorates and variation numbers can become ve

in  ry large. 

Cl  
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FianELLL 
PLATE BENDING EXAMPLE NO.1 

15 
	

14- 	13 

x 	 X 

COMPONENT 2 

Oyerall size of coupled plate 2' x 8' 

Component orders 	n01  = no2 = 48 

Plate bending element dimensions 12" x 12" x 0.1" 

E = 107 lb/in2, 	-1/ = 	0.27 lb/in3 

Order of base system 	96 

Number of constraints 	= 	12 

Order of composite system 	84 
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TABLE 6.4. 

PLATE BENDING EXAMPLE NO. 1  

SPECIFICATION OF TEST CASES 

ASE 
FOR 	EACH COMPONENT 

NO. OF NORMAL 
MODES INCLUDED 

NO. OF CONSTRAINT 
MODES INCLUDED 

TOTAL NO. OF 
COMPONENT FREEDOMS 

A 1 12 13 

B .2 12 14 

C 3 12 15 

D 4 12 16 

E 5 12 17 

F 4 9* 13 

* c 
CONSTRAINT MODES EXCLUDED 	IF 2 -- < 10 2 C1 



TABLE 6.5.  

PLATE BENDING EXAMPLE NO. 1  - RESULTS OF TEST CASES  

CASE A B C D 	E 
11 	

F FULL 
SOLUTION 

EIGENVALUE 
NO. Eigenvalues 	(determined to 5 places) 	(Calculated from R.Q.) 

1 
2 
3 
4 
5 
6 
7 
8 

 7/+.975 
586.77 

 74.979 
-541.$0  - 
586.76 
2505.6 

-- 7510.3 

74.934 
541.80 

	

568.87 	_ 
- 	22f0.--4 

2455.0
6439.7 

17646.0 

74.934 
541.80 
568.86 
2220.4 
2400.3 

- .6-26-4.-6-  
 6477.7 

13822.0 __ 

74.933 
541.80 
568.84 
2205.4 
2400.3 
6113.6 
6264.6 

1378T.b - 

74.937 
541.80 
576.28 
2220.4 

- 2511.2 
.gf6ti-. 8-  - 
10215.0 
21866.0 

74.931 
541.80 
568.84 
2204.9 
2389.6 
6111.4 
6257.3 

13247.0 

E'•-nv. u- er or 	% r-lative to full solu ion 
1 
2
3 
4 
5 	. 
6 
7 
8 

0.1564 - 
___ 8.30 
_ - 

0.064 
-- --6.-0--  

3.15 
___. 	13.64 -  

214.3 

V.••••••■■•••■•■••oommml■ 

0.004 
o.o 
0.005 
0.703 
2.74 
5.37 

182.0 - - - - 

0.004 
o.o 
0.004 
0.703 
0.448_ 
-2.51 
3
4.
.
3
5
4
2 
- - - 

0.003 
o.o 
0.0 
0.023 
o.448 
0.036 

_ _ - _04.1
2
3
717 _ 

0.008 
o.o 
1.310 
0.703 
5.090 

- - -- 2.51 
63.25 
65.06 

Variation no 

1 
2 
3 
4 
5 
6 
7 
8 

- I-. IW 
44.123 

1.215 _ 
:: 0.075 
46.551 
4.054 

- 40.604 

0.045 
0.005 
0.120 
2.-453--  

24.281 
55.441 
12.171 ___ _ 

0.052 
- 	0.004 

0.141 
2.860 
0.421  

- 	0.218 
63.928 
20.074 

0.004 
0.001 
0.014 
0.143 
0.631 
0.360 
0.241 

- --1.-45-Z 

0.052 
- 0.003 

0.039 
2.863 

- 0.077 
- 70.18.  - 
29.542 - 3.039 

1 
	• ? viAx(  - - -) 

-  
XcmiN (-- -) 

29.734 

1226.6 
533.93 
4460.4 

1151.4 
19792.0 

5727.0 
27049.0 

9184.4 
51525.0 

5727.0 
41741.0 
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108 FIGURE 6.9.  

PLATE BENDING EXAMPLE NO. 1  

CONVERGENCE OF COMPOSITE SYSTEM EIGENVALUES (5 TEST CASES)  

P1121OLEIGENVAL ERRORS VS. EIGENVALUE NUMBER)  
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+ CASE B 
6 CAM C 
X CASE D 
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	2 	3 
	

5 
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7 

COMPOSITE SYSTEM EIGENVALuE NUMBER (IN ASCENDING ORDER) '  
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In case B, the first eigenvalue to exceedX
c . was calculated to 

illustrate the total loss of accuracy expect/SKI  The excellent 

convergence of low composite system eigenvalues for increasing 

number of component freedoms is illustrated in Figure 6.9. A general 

accuracy criteria might be that 

"component normal modes should be included up to the 

highest composite system X value of interest". 

The results for case F, where only 9 out of the possible 12 
constraint modes are included (omitted modes correspond to the 3 lateral 
displacements at the connection boundary nodes) show that while some 

composite system eigenvalues are unaltered, others are affected appreciably. 

Care must thus be taken when excluding constraint modes. 

Finally, it is noted that there is no consistant correlation 

between variation number and eigenvalue error. 

6.4. REDUCTION IN THE NUMBER OF CONSTRAINTS 

6.4.1. Introduction  

In this section, a technique is presented which allows, in certain 

circumstances, a reduced set of constraints to be employed to connect 

components in Kron's method, while approximately retaining the low 

frequency composite system characteristics. 

The attraction in being able to reduce the number of constraints 

which have to be applied is not only that the core requirement for 

G ( = 2n
om) is reduced but also that the size of 

R is reduced. 

While the saving in core for G is roughly linear in m, the 

saving in core space for R , and in the computer effort required for 

the frequency scanning of R vary as m2. Very significant savings may thus 

be made. 

If constraints are applied sequentially to the base system, a 

series of intermediate systems are formed. By Rayleigh's theorem, 

application of each constraint raises, or at least does not lower, the 

eigenvalues of the current intermediate system. 

With 'simple' constraints, the pattern of "raising" of any eigenvalue 

is generally unpredicable, as indicated in Fig. 6.10(a). The principle 

of the technique is to express the m simple constraints in generalised form  

by utilising ideas from Weinstein's method (Chapter 3), such that 

application of the first few generalised constraints produces the 

maximum raising of the lower eigenvalues (Fig. 6.10(b)). 



number of 
constraints 
applied 

A02 
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FIGURE 6.10. 

'TYPICAL EIGENVALUE RAISING. PATTERN  
WITH SIMPLE CONSTRAINTS  

(b) 	DESIRED EIGENVALUE RAISING PATTERN 
' FOR A 'LOW' EIGMTVALUE  

number of 
constraints 
applied 

(c) 	LOCATION OF 'FIRST ZERO' !1 
IN PLOT OF ri,( -x  
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The technique is essentially limited to situations where a number 

of simple constraints link two adjacent components, that is where 

the value of m is likely to be large anyway. A two-component plate 

bending example is included to illustrate the efficiency of the 

technique. 

It is assumed at this stage that the full set of component modes is 

employed. Hence the approximate eigenvalues obtained will be lower 

bounds on the exact ones. 

6.4.2. Generalisation of Constraints  

Assuming simple constraints, the composite system frequency 

equation in Kron's Method is given by 

	

R c = Pc
t 	D 1  4)c

t 
 Pc  c = 0 
	 (6.4.1) 

whereeachcolumninPc e.q.p.defines a set of internal forces 

in the jth. constraint. The technique involves the definition of a 

transformation, 

c = 	U 	C 	 (6.4.2) 

(mxl) (nnci ) (m 
g
xl) 
 

where U defines m
g 
 independant linear combinations of the m simple 

constraints. Clearly m
g 
 ■5 m. Hence a set of m

g 
 generalised constraints 

are defined by 

Pc = Pc U 

and the 'reduced' Kron equation is defined by 

-  
Rc = P 

t  
c  41,c  D 

1 
 00c
t 
	= 0 

(6.4.3) 

(6.4.4) 
WON 

The problem is thus to define the mg  generalised constraints in P 

such that the desired eigenvalue raising effect of Fig. 6.10(b) is 

produced. 

6.4.3. Natural Constraints  

In Weinstein's method for infinite systems (Section 3.4) a finite 
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series of constraints is applied in lieu of an infinite series to 

obtain accurate lower bounds on the final system eigenvalues. This 

suggests the possibility of obtaining the same effect in finite systems 

having large numbers of constraints. 

The  basis of this method for defining generalised constraints is 

the important result (Section 3.3.3) that "if the first constraint is 
taken as the lowest eigenvector of the base problem, then the lowest 

eigenvalue is completely raised". 

If the-first constraint is defined by p 1  the Kron determinental 

equation is given by 

n t .2 
k  t (1) ry 

= 0 	(6.4.5) 
X=1 (X - X) 

From Weinstein, complete raising will occur if 

41 P1  # 

kt  P 	= 0 	(k = 2, n) 	(6.4.6) 

Here, p 1 represents a set of internal constraint forces, hence 

equation (6.4.6) may be given a physical interpretation: 

"For complete raising of Xo)  no work shall be done 

by the set of force p1 over the base system 
modes + k'  (k = 2, n)".  

alternatively 	• 

"For complete raising of X7, 11  must do the 

maximum amount of work over p l". 
This condition is clearly satisfied by p1  = 41. The choice of 

132  = 421 P3  = 43 then defines the series of constraints to be taken. 
In our situation, p 1 is almost certainly restricted to a subspace 

of the total space defined by thent base system freedoms, 

corresponding to the connection coordinates. Hence the Kron equation is 

nt  ( 4)t p )2 

ck Cl 	0 	6.4.7) k=1 (x: _ x) 
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The set of n
t 
partial eigenvectors 	are linearly dependent to 

degree (nc.  m), hence it is not possible in general to choose a 

p vector to satisfy the equivalent of equation 6.4.6. and produce 
cl 

 

complete raising. Instead, Xi  satisfies 

and is defined by (see Fig. 6.10(c)) 

( 
4tc pc )2 	nt ( 4't  P 2  1 1 	ck  Cl

c  

A
l 0 - E 0 - x0 	k=2 	X.1  

(6.4.8) 

By inspection of this equation, it may be seen that choosing p c toto 

do the maximum amount of work over cdo 	will permit a near 

1 	
c
I 

maximum value of,Xl. Hence choose 

= th 
	

(6.4.9) c1 

= 
c

2 

etc. Although 

for an orthogonal set of 

Additional constraints are then defined by p 
not strictly necessary,-  it is convenient to 

constraints by the Gramm-Schmidt scheme as 

initially by 

t = 1 p 
ci '1 

Then 

(6.4.10) 

follows: Normalise pcl 

Pc
2 

= 
P + a1 

1  p  c
1 

	 (6.4.11) 

Utilising the condition 

P _ p 	0 
cl c2 

yields 

t a1 = Pc1 Pc
2 

(6.4.12) 
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Hence 	p
c 

is calculated from equation (6.4.11) and normalised by 
t 	

etc.. P P 	3 1, and the process extended for p 
c2  c2 	 c

3  
The advantage of this orthogonalisation is that less important 

constraints where the ratio of post-orthogonalisation 

vector magnitude to that before orthogonalisation is less than a given 

tolerance may be cut out. 

It is, of course, possible to generate a complete set of m 

generalised constraints, however the intention is to stop short of this 

and use a reduced number of constraints. Such generalised constraints 

are here termed NATURAL CONSTRAINTS. This theory is one possible way of 

defining a reduced set of constraints which approximately 

represent the force patterns between components at low frequencies. 

The technique has been developed here in general terms. An example 

is now given to illustrate the practical construction and effectiveness 

of natural constraints. 

6.4.4. Plate Bending Example No. 2  

The example (Fig. 6.11(a)) consists of 2 cantilever plate components 

to be connected along the line XX. The situation differs from that of plate 

example No. 1 in- that there are a relatively large number of simple 

constraints (m = 24) coupling the components. The same 16 degree of 

freedom plate bending elements were employed, and the base system 

comprises 144 freedoms. 

A set of m ( < m) natural constraints P N  is defined using the 
partial eigenvectors of component A. The same set of constraints are 

applied to component B, hence the G matrix is defined by 

GA 
 

cl)A 0 ON 

F  

4)  A PN 
C 

G 0 
C 

- 4)B p N 
B 

L 	 - 

(6.4.13) 

If orthogonal natural constraints are used, certain terms in G A 

will be zero. In this example, component B's eigenvector are merely a 

mirror image of those of component A, so the zeros will appear in ci 

also. The natural frequencies of the components of course coincide. 
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A 
Although the partial eigenvectors 4, 	may be used directly, it c. 

is physically better to partition according lo 

A ^ A A 	
{  c. = 	4)c. 

 
where 	

A 	A corresponds to SYMMETRIC connection displacements and 4:1 
9P  ci 	 ci  

corresponds to ANTI-SYMMETRIC ones. If a mirror is considered to be 
aw  

placed along the line XX, symmetric displacements (here w, .37) do 

not Rnpear to change sign in the mirror image, while anti-symmetric ones 
2 aw ' a 
a 

t
bx xa 

w 
y ----) do. Each partial eigenvector thus produces 2 natural '  

constraints in general (Fig. 6.11(b)). 

The lowest 6 composite system natural frequencies were determined 

on application of 1, 2, 3,.&...,12 natural constraints, while the full 

set of 24 constraints were used to generate exact frequencies. 

The effect of the constraint applications on system natural 

frequencies is shown in (Fig. 6.12). As expected convergence is 

monotonic from below, and all frequencies are obtained to within 

accuracy after 6 constraints. Convergence to composite system eigenvalues 

became progressively slower as frequency increased. As a result of the 

mirror imaged base system components, the base system natural frequencies 

are of multiplicity 2. One of these frequencies must in each case 

remain unchanged on application of the first constraint by Rayleigh's 

theorem. 

To emphasise the advantages of a reduced number of constraints 

the core requirement and scanning tune for the R matrix are compared 

for the cases of 6 natural constraints and 24 simple constraints. The 

lower triangle of R (fully populated) required 21 and 300 locations 

respectively, while the former's scanning time for the first 6 frequencies 

was a factor of 11.3 shorter. The time spent in generating the natural 

constraints was minimal. 

6.4.5. Further Discussion  

It is anticipated that the generalisation of constraints by the 

method Of natural constraints is limited to situations where a large 

number of simple constraints perform the same topological 

connection. Each constraint set in the base system may be treated 

separately with the possibility of a reduction from mo  simple.  

constraints to m
g 

generalised constraints. 
o 
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Although the above example uses components which are merely 

mirror images of each other, the technique is immediately extendable to 

the coupling of unlike components. 

Where the partial.eigenvector shapes from all components to 

be joined along a given boundary are reasonably similar, then natural 

constraints may be generated with reference to either components. 

Alternatively, natural constraints could be generated for all 

components and a procedure devised to form.an orthogonal set using the 

"lowest" few constraints from each. However, where a flexible component 

is to be attached to a relatively stiff component, for example the 

connection of an aircraft wing to the fuselage, it is essential to use 

the modes from the flexible component. 

6.5. THE HYBRID APPROXIMATION METHOD 

6.5.1. The Hybrid Method  

The approximation techniques of Sections 6.3 and 6.4 may be used 

simultaneously to produce THE HYBRID KRON APPROXIMATE METHOD for 

representation of the low composite system eigenspectrum. The 

reduction in component mode numbers implies an incomplete 

description of displacement over the components, while the reduction 

in the number of constraints implies an incomplete description of the 

forces linking the components. 

The resulting approximate eigenvalues must lie between those of the 

constituent approximations. Consider a base system comprising full sets 

ofnt 
modal freedoms and m constraints, and let the hybrid approximation 

model be described by n(<:n
t 

modal.freedoms and m (< m) constraints. 
g t'm 	

g ng,m nt,mg  
If X. 	are the full solution eigenvalues, and 	X. 	

' X 
	are 

1  
respectively, solutions with the modal approximation only and the 

constraint approximation only then we have 

n ,m 	n ,m 	n ,m x t g 	t 	xg (6.5.1) 
n ,m 

According to Rayleight.s theorem, the hybrid solutions X g g  must 

satisfy 

n
t'
m 	n ,m 
g X. 	X.6 g 

1 
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as a reduction in modal freedoms is involved. Equally, they must 

satisfy 

n m 	n ,m 
X gg 	X g  
1 	1 

as a reduction in the number of constraints is involved. Hence the 

desired result 

n m 	n m 	n m 
X.
t' g 	

X.g g 	X.g'  (6.5.2) 

is obtained. The hybrid solution is thus no worse than the least 

accurate of the constituent approximate results. Indeed, the effect 

of the constituent approximation is opposite, and thus tends to 

cancel out. However, convergence will no longer in general be 

monatonic and it is impossible to say whether the resulting eigenvalues 

are an upper or lower bound on the full solution eigenvalue. 

In practical terms, the combination of the constituent approximations 

is intuitive, and enables the core space and time savings of both methods 

to be utilised. The procedure is indicated in Fig. 6.13 for a 

component of order no  with a connection boundary involving mo  constraints. 

Initially n, normal modes are obtained where usually n 	<< n
o
. 

"o 
Natural constraints are formed using all (or a subset) of 	these 

modes,numberm,(<: m
o
) usually. These natural constraints specify the force 5.0  

patterns at the component boundary, hence it is logical to determine 

constraint modes which correspond to these patterns. Hence n 
co 

constraint modes are formed where nco < m
go 

 . This has the 

advantage that the number of constraint 	modes is minimised. 

The possibility then exists of utilising the constraint modes to 

define further natural constraints. Such constraints, when orthogonalised 

w.r.t. the existing natural constraints will be in general of high order, 

and the resulting increase in the number of constraints has not been found 

to justify the increase in accuracy obtained. 

6.5.2. Application to Plate Bending Example No. 2 

The hybrid method was employed to calculate the lowest 5 frequencies 
and modes of plate bending example no. 2 (Figure 6.11(a)) for various 

numbers of component modes as indicated in TABTg 
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FIG. 6.13 

THE ORGANIZATION  OF THE HYBRID APPROXIMATION METHOD 

(Procedure For A Typical Component/Constraint Set) 
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TABLE 6.6 

1 
APPROXIMATION 

CASE 

FOR EACH COMPONENT 

NO. OF NORMAL 
MODES 

n
no 

NO. OF NATURAL 
CONSTRAINTS 

m 
go 

NO. OF 
CONSTRAINT 

MODES 
n

co 

TOTAL NO. OF  
DISPLACEMENT 

FREEDOMS 
n 
g 

=n 
n 

+n 
c o 	o 	o 

A 2 4 4 6 

B 3 6 6 9 

C 4 8 8 12 

D 5 10 10 15 

E 6 12 12 18 

FULL SOLUTION 72 
24 SIMPLE 

CONSTRAINTS 0 72 
_. 

The convergence of the frequencies with increasing numbers of 

modal freedoms and constraints is indicated in Fig. 6.14. It may be 

seen that the first 5 frequencies are determined to within + 2% in case 

C which utilises 12 out of 72 component freedoms and 8 out of'24 constraints. 

All frequencies obtained were greater or equal to those of Section 6.4.4 

which correspond to the constraint approximation only. 

The possibility of convergence from above and below is indicated, 

and indeed an increase in the number of modal freedoms/constraints may 

even cause a slight deterioration in accuracy (cf. mode 5, cases B and 

C). In this example, 4 out of 5 frequencies are "low" in case E, 

indicating that the constraint approximation is the more serious one. 

The computational implications of the method are fully discussed 

in Chapter 8. However, it may be noted here that while the G matrix for 

the full solution of this example is of dimensions (144 x 24), 

i.e. 3456 locations, the case C here utilises a G matrix of size 

(24 x 8), or 192 locations. The run time for case C is approximately 

one-fifth of that for the full solution. 
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6.6. THE CONSTANT PART APPROXIMATION 

This  technique is a device for speeding up the scanning of 

1 Fi(X)! when X is restricted to a low eigenvalue range, say 
0 	X ‘, A l  It is applicable to either the full or approximate 

Kron methods. 

Each term in R (X) is given by 

n 
g g g . ki kj 

 

(6.6.1) ij k=1 Ak - X 

The terms in this series for which X >> Al  will remain essentially 

constant as X varies over the range defined above. Hence the series may 

bedividedintoacmstantpartr..and a variable partrij  where 

n
1 g g ki ki 	c 	 g 	gkigki ( 

r. . = 	E 	(6.6.2) 
k=1 (XI° - A) 	ij 	k=n1  +1 X 

and 
v 

ri  r + . j 	ij 	
rlj 

The terms included in r.. are those which satisfy lj  

where, for example, A 	may be defined by 

= Xix 102  

In this case the maximum error induced in any term in r j 
 is 1%. For 

i 
a given A, a constant part of the R matrix may be formed for all time 

as R. Thus 

R (X) = Rv(X) 	R c  

and for each trial A value, only R v(X) need by evaluated. However 
storage will be required for R c  in addition to that for R (A). 
Clearly the saving in time for each set up of Fla) depends on the 
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n1/ 
factor 	in  

The effect of this "numerical" approximation will in general 

be to raise the composite system eigenvalue. The worst error may be 

assumed to lie in diagonal terms 	as all terms therein are positive, 

hence the errors are additive. With - 0, rii  will be an under-estimate 

of the true sum, hence the effect is analogous to a small truncation 

of the series (see Section 6.2). 

A numerical illustration of the approximation is given in 

Section 8.5. 
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CHAPTER 7 

THE COMPUTATIONAL IMPLEMENTATION OF KRON'S METHOD 
A 

7.1. SYSTEM ORGANISATION 

7.1.1. The Systems EIG1 and EIG2  

In this chapter, computational systems to implement both the full 

and approximate Kron methods, designated EIG1 and EIG2 respectively, 

are briefly described. Both systems comprise an essentially similar 

suite of programs written in FORTRAN 4 and developed on the CDC 6400 
computer at Imperial College, London University. 

A detailed description of the systems, with particular emphasis 

on data supplied by the user and core space requirements, is contained 

in APPENDIX 1. Discussion in this chapter is thus limited to the overall 

system organisation and the major concepts and procedures used. The 

use of computer Program symbols is limited to the appendix, where a 

reference list is included. 

The computational efficiency of the systems is investigated in the 

following chapter. 

7.1.2. System Features 

The fundamental aim in the application of the theory was the minimi- 

sation of central memory requirements to permit as large a problem as possible 

to be handled effectively 'in core'. This philosophy requires that all 

major computing operations e.g., factorisation, matrix multiplication 

should be carried out 'in core', and that transfers to and from backing 

store should be minimised. Two major features are directed towards this 

aim. 

Firstly, the attraction of Kron's method is perhaps greatest when the 

base system contains repetition, both in terms of components and 

linking constraints. In Section 7.2 the concept of a 'minimum data 

set' for the description of the base system is introduced. The 

computational systems are designed to use this minimum data set 

efficiently, in particular with respect to the formation,of the R (X) 
matrix. 

Secondly, the nature of the technique allows the total process to 

be conveniently divided into four parts: 
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Part 1 - The analysis of the base system 

Part 2 - Calculation of composite system eigenvalues 

Part 3 - Calculation of composite system eigenvectors 

Part 4 - Calculation of composite system generalised 

mass and stiffness terms 

This sub-division allows each part to be 'overlayed', that is, the 

program for each part is located in the same core area. The re-use of 

storage arrays for different purposes in each part further reduces 

overall core requirements. To facilitate this last feature, data 

pro uces by each part is written to disc store and only read back into 

core when required by subsequent parts. The basic system organisation 

and disc transfers for EIG1/EIG2 are shown in Figure 7.1. 

7.1.3. The Overlay Structure 

The overlay structure for EIGVEIG2 is shown in Figure 7.2. 

The main overlay is resident in core throughout, and serves to call the 

primary overlays, record overall timings, and to control how far a given 

run proceeds. For example, if only natural frequencies are of interest, 

the systems may be terminated automatically after the completion of part 2. 

The four primary overlays correspond to the four parts defined in the 

previous section. Once a primary overlay is completed, the following 

primary overlay and associated subroutines are loaded into the same core 

area. In addition, the first primary overlay calls upon two secondary 

overlays. 

An important advantage of this subdivision is that it is simple to 

run each part as a self contained program with data transfers via permanent 

files. This may well be advantageous for large jobs and is a feature not 

so readily available with many other eigenvalue techniques. 

7.2. STRUCTURAL SYSTEM CONCEPTS  

7.2.1. The Minimum Data Set (M.D.S.)  

The efficiency of Kron's method often depends largely on identifying 

a base system with repetition. This repetition is made use of in the 
computational systems by defining a 'minimum data set', necessary for the 

definition of the R(X) matrix. 
The base system may be thought of in schematic terms, as in figure 7.3(a); 

boxes represent components while arrows represent Constraint sets. A 
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constraint set is taken to be any number of constraints performing the 

same topological connection. However, to accommodate generalised 

constraints, a set should be further restricted to refer to one particular 

boundary region for each component involved. 

It is inevitable that in any practical computer implementation, 

restrictions must be made. It is here assumed that all constraints are 

expressibleassimpleconstraintsinitiall .(or x. = 0). 

This restriction still enables a large class of problems to be handled. 

Each component is assigned a unique identification (Cl, C2 etc.), and 

likewise each constraint set (S1, S2 etc.). In the example of 

Figure 7.3(a), there are three unique components, in the sense that the -

remaining components are simply these translated and/or rotated in space. 

Each unique component selected is termed a PRIMARY COMPONENT (P.C.) and 

denoted by PC1, PC2, PC3 (Figure 7.3(b)). 

The R (X) matrix is defined by the equatiOn 

R (X) = G.t  D71(X) G 	 (7.2.1) 

Clearly, the eigenvalues obtained from the primary component eigenreductions 

will be sufficient to fully define 0(X). 

Each constraint set, in general, refers to two components, and 

defines a set of columns in the G matrix. For a Bet of simple 

constraints connecting two components A and B, these columns are defined by 

      

GA 
 

(4B 

 

-A 't 
c 	' 

t 
0 

B 
 4)c 

 

-I (7.2.2) 

      

      

The sub-matrix GA 
 corresponds to the linking to the constraint set with 

-  
component A, and is identified as a PARTIAL CONSTRAINT SET (P.C.S.). Thus 

each constraint set in Figure 7.3(a) may be divided into two constituent 

partial constraint sets, and the unique set of these G sub-matrices 

defined by PS1, PS2 etc. 

Figure 7.3(b) is now the schematic for the MINIMUM DATA SET (M.D.S.) 

required to define R (X). Each primary component contributes a set of 

eigenvalues for the definition of D (X) and has at least one partial 

constraint set derived from its eigenvectors. EaCh partial constraint set . 
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FIGURE 7,Z 
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contributes a unique sub-matrix of G (Figure 7.3(c)). 

In general, each component will have some coordinate transformation 

to be applied to the partial constraint set matrices. In the interests 

of simplicity, this facility is not included in the current work. 

7.2.2. A Simple Beam Example 

To illustrate the procedure for defining the minimum data set, 

Figure 7.4(a) shows a simple free beam comprising four 

two-dimensional beam elements. 

The first step is to break the composite system into components 

(Figure 7.4(b)). In the example, each element is considered to be a 

component, hence the four components are identical. To reconstitute the 

composite system, constraints are laid between the components. With the 

numbering system of Figure 7.4(b), these constraints are 

x3 . x5  
( 7 . 2.3) 

x4 = x6 

between the two left-hand component etc.. 

Figure 7.4(c) shows this base system in schematic form. Thus the 

components are identified Cl, C2, C3, C4, and each of the constraint 

sets Sl,'S2, S3 comprises two constraints each. Those for S1 are given 

above in Equation (7.2.3). 

The user is now in a position to extract the minimum data set 

schematic (Figure 7.4(d)) which in this case comprises one primary 

component and two partial constraint sets, the first of which refers to 

local component displacements x3  and x4, and the second to x1  and x2. 

Figure 7.4(e) finally gives a diagrammatic representation of the 

M.D.S. storage requirements. 

7.2.3. The Formation of the 	Ft ( X) Matrix 

The use of the minimum data set in the formation of the 	Ft(X) 

matrix is illustrated by reference to the beam example of the previous 

section. 

Assuming that the eigenvalues of PC1 are contained in E)1(X), 

and that the G sub-matrices corresponding to PS1 and PS2 are given by 

G1 
and G 

2 
respectively, by reference to the.base system schematic 
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FIGURE 7.4.  
EXAMPLE OF THE PlUMION OF THE MINIMUM DATA SET 

REPEATED BEAM EXAMPLE 
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of Figure 7.4(c) it may be verified that: 

1 	 1   D-  = 	1 Di  D11 1 j 

and 

G1  0 0 (7.2.4) 

-G2 G1 0 

0 -G2  Gi  
0 0 -G 

2 _ 

Forming the Fl(h) matrix according to equation (7.2.1), a further 

advantage emerges. The R (A) matrix is formed from a small number of 

sub-matrices or 'blocks' of the form GiDk-1  Gj. Thus 

R(x) = (Al + A 2) -A3 0 

-A3 (A1 + A2) -A3  

0 -A3 .(A1 + A2) 

where 

t -1 Al = 

A 2 = G2  E 1  -1G 2 
t -1 

A3  = G1 131  G2  

(N.B. All the A i matrices, like the 	E)k matrices are functions of 

X). 
As the 	R (A) matrix must be constructed for every trial A 

during frequency scanning, it is highly desirable to make this process 

as efficient as possible. The identification of repeated blocks clearly 

reduces computer effort. The form of the R (A) is fixed by the 

configuration of constraint sets in the base system, as each non-zero 

sub-matrix in Ft(X) represents the linking between two constraint 

sets. Thus, once data describing the base system is specified, the 

form* of R(A) may be established for all time. The numbering of the 
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base system constraint sets, i.e. SI, S2 should be chosen to produce 

the minimum band in 	R (X) to further reduce core requirements. 

7.3. PRINCIPAL PROGRAM FEATURES 

7.3.1. Faretl-Analsisoftl ionAl.2). 

Part 1 of the systems are responsible for forming 

and storing the information required for the M.D.S.. The user directly 

supplies details of the primary components and their associated partial 

constraint sets. Both systems access a library of finite elements. 

In EIG1, the full lower triangles of the primary component mass 

an stiffness matrices are stored to enable the extended Jacobi method 

to be used. The complete set of eigenvalues and eigenvectors are 

calculated,andtheformer,togetherwiththeG.matrices are stored 

on disc. 

In EIG2, the variable bandwidth scheMe is used for the primary 

component mass and stiffness matrices, and simultaneous iteration is 

employed to calculate the lowest nn  normal modes. This; method is highly 

suitable in that the mass matrix is°  left in tact while the 

factorisation of the stiffness matrix is required anyway for the 

calculation of constraint modes. The user may reduce the number of 

constraints in any partial constraint set by converting to natural 

constraints. Subsequently, constraint modes corresponding to the 

constraints included, will be calculated and orthogonalised. 

Tolerances within the program control the cutting out of unwanted natural 

constraints or constraint modes. The parameters min,  
, X 	and Ac  

are 	
max 	c 

are set automatically within hiG2. 	
min 

The principal core space requirement in part I corresponds to the 

component mass and stiffness matrices.. Although this will be less in the 

case of EIG2, additional space for the normal and constraint modes is 

required. 

7.3.2. Part 2 - Calculation of Com osite S stem Ei envalues 

(Section A1.3)  

Essentially, Part 2 is responsible for the formation and 

scanning of I R (X)1. The M.D.S. information is loaded into core from 
disc and the data describing the base system in terms of primary components 

and partial constraint sets is read in. This information is all that is 
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required for the definition of the form of R (X), and data is then 
constructed for the economical set up of this matrix, which is held 

in variable bandwidth form. 

A list of unique base system eigenvalues in ascending order is 

constructed and the composite system eigenvalues determined by use of the 

extended Sturm sequence algorithm (Section 4.5.2). This involves 

forming R (X) for each trial value of ,X and obtaining its sign 
count via Choleski factorisation. The scanning procedure is fully 

described in Section A1.3.3 of APPENDIX 1. Essentially, the multiplicity 

at each unique base system eigenvalue is determined, and the range 

between 2 adjacent base system eigenvalues investigated. Composite 

system eigenvalues in this range must appear as roots of I R (A) j. 
Bisection is used to isolate simple- zeros whence more powerful algorithms 

may be used to home in on the root. The modified successive linear 

interpolation algorithm of Brent [65] has been used for this purpose 

(Section A.1.3.4). 

The facility exists to calculate all composite system eigenvalues 

(in the case of EIG1), the lowest n
r 

eigenvalues, or just those in a 

given range Al 	A 	A2. The 'constant part' approximation may also 

be specified. In EIG1, A is read in, while in EIG2 it is set equal to 

Xmax so that the terms in the 'constant part' correspond only to constraint 
mode eigenvalues. 

In EIG2 scanning is automatically halted once Xmax is exceeded while 

in EIG1, the 'constant part' approximation is cancelled (if in use) if 

the current trial A comes within an order of A. 
The principal core requirement in Part 2 is for the R (X) matrix 

(stored in the same locations as the component mass and stiffness 

matrices), the 'minimum data set', and the lists of unique base system 

eigenvalues and multiplicities. 

7.3.3. Part 3 - Calculation of Compositejyst2mfigenvectors 

(Section A1.4)  

It is convenient from a system organisation point of view to 

calculate all the eigenvalues required and then to proceed to the 

vector calculations. The user may then obtain those eigenvectors which 

appear of interest. 

Part 3 essentially implements the theory of Section 5.4 for the 

calculation of eigenvectors of both persistant and gained eigenvalues. 
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Multiple eigenvectors corresponding to the same eigenvalue are 

calculated.' 

The primary component modes are recalled from disc to enable 

conversion of the modal eigenvector to physical displacements, the core 

space used for the ROO matrix being reused. Additional core space is 

required only for a pair of modal and physical eigenvectors. 

7.3.4. Part 4 - Calculation of Generalised Mass and Stiffness  

Terms 

The calculation of the generalised terms corresponding to each 

composite system eigenvector is straightforward, the primary component - 

mass and stiffness matrices being recalled from disc. 

The ratio of generalised stiffness to generalised mass yields XRQ  

for that mode, and the variation number (Section 6.3.3.) is automatically 

calculated in the case of EIG2. 
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CHAPTER 

THE COMPUTATIONAL EFFICIENCY OF KRCV'S METHOD 

8.1. INTRODUCTION 

In this chapter, the full and approximate Kron methods are reviewed 

and their computational efficiency' investigated. Comparisons are made 

with direct assembly methods and with the component mode method 

described in APPENDIX 2. 

The capability of Kron's method to economically analyse 

repetitive structures and to conveniently handle displacement boundary 

conditions is illustrated with reference to a stiffened plate example. 

8.2. THE FULL KRON METHOD 

8.2.1. General Review 

Where accurate eigenvalues are required over .a wide range of X, 

methods involving no inherent approximation, save that due to the 

initial discretisation, are necessary. For large order systems, 

transformation methods are unsuitable and possible techniques remaining 

include 

(i) Gupta's sturm sequence method [22] (Section 2.3.4) 

(ii) The Full Kron Method (Chapter 5) 

The full Kron method is the only practical technique for handling large 

structures in the piecewise manner, yet retaining full accuracy. There 

is no need to assemble the complete structural mass or stiffness matrices, 

and provided the number of constraints, m, required to couple the 

components is much less than the assembled problem size, the technique 

places relatively low demands on core space (Section 5.6). The composite 

system eigenvalue problem is non-algebraic, but may be conveniently 

solved via the extended Sturm sequence algorithm, (Section 5.5.5). The 

approach is thus competitive computer time-wise. 

The piecewise approach allows the recognition of repeated components 

and constraint sets. The effort involved in the analysis of the 

components, and of the composite system frequency matrix may thus be 

minimised (Section 7.2). 

8.2.2. Computational Requirements  

The efficiency of a particular method may be judged on the basis of 
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computer time and core space requirements. For the former, it is 

usually sufficient to obtain an estimate of the number of multiplication 

operations involved. 

The convenient implementation of the Kron method has been discussed 

in general terms in Chapter 7, and individual core requirements are 

formulated in APPENDIX 1. These core requirements are summarised here 

in TABLE 8.2(a). All symbols may be referenced in the glossary. The 

difficulty whereby core space is reused for several purposes is overcome 

by the specification of three major areas, C1, 
C
2 
and C

3. 
The overall 

maximum requirement; established in equation (8.2.1), is highly 

dependent on no  (here taken to be the maximum component order). However 

it is independent of r, the number of composite system eigenvalues/ 

eigenvectors required. The minimisation of m 
Ps

, the number of partial 
 

constraint sets, is particularly beneficial. The 	Ft(X) matrix is 

stored in variable bandwidth form, and the expression for CR  utilises 

an 'average semi-bandwidth d'. The requirements of the extended Jacobi 

transformation method are contained in TABLE 8.1. 

Expressions for the number of multiplications involved are shown 

in TABLE 8.2(b) . The expression for the scanning of 	R(X) deserves 

comment. Assuming n
o 
non-zero terms in each series for rij, the 

number of multiplications per matrix formation is 2mdno. Factorisation 

of R (X) involves a further md2 multiplication.- As 2no > d 
usually, the set up time exceeds factorisation time. Recognition of 

repeated blocks within R (X) (Section 7.2.3) and the 'constant 
part approximation' (Section 6.6) are techniques by which the time 
taken for this operation may be greatly reduced and a factor of 12  

is included here in view of these features. The major effort is in the 

component eigenreductions (proportional to no and to npc 
 ) and in the 

scanning of the FI(X) matrix (proportional to m and r). The work 

involved in the formation of the G matrix terms is ignored. 

8.2.3. Comparison with Gupta's Method  

A theoretical comparison of computational requirements between 

Kron's method and Gupta's method is given for the 2-dimensional frame 

structure,of figure 8.1(a). Each member -is considered to comprise 

2 axial-flexural beam elements possessing six freedoms each. The fully 

t In all such expression, the effort involved in forming mass and stif-
fness matrices is neglected. 
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TABLE 8.i. 

COMPUTATIONAL REQUIREMENTS FOR DIRECT 

ASSEMBLY METHODS 

METHOD 

APPROXIMATE 
CORE 

REQUIREMENTS 
(WORDS) 

APPROXIMATE 
NUMBER OF 

MULTIPLICATIONS 
COMMENTS 

EJacobi
xtended 

Transformation 
Method 

= (n24.2n) 
 cJ  

(8.1.1) 

= 60n3  

(8.1.2) 

Unsuitable for 
n 	> 	150 

c=No. of iterations.  
(typically c = 6) 

Produces complete set 
of eigenvalues and 

eigenvectors 

Gupta's 
Sturm 

Sequence 
Method 

c 	= 5nb 

(8.1.3) 

m 	= 25nb2r 

- 
(8.1.4) 

2nb2 multiplications 
for examining each 

trial 	X. 
Average of 12 trial 

X's per 
root located. 

Simultaneous 
Iteration 

c51 = 

2nb+3nt+2t 

(8.1.5) 

mSI = 2
nb2 + 

[3nbt+52nt2+16t3ic 

(8.1.6) 

= No. of trial 
vectors 

c = No. of iterations 
Typically 

t = r + 3 
c = 7 
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TABLE 8.2.  

COMPUTATIONAL REQUIREMENTS OF THE FULL KRON METHOD 

(a) Core Space  

AREA 
LOCAL 
SYMBOL 

NO. OF LOCATIONS 
(WORDS) 

USE 

PART 1 c1  cKM  (not  + no
) 

Full lower triangular storage of 
component 	K0, h10. 	Eigenvectors 

occupy same space. 

PART 2 

cl  

c 
2 

3 

cR 
c MDS 
cE 

2md 

n 	n +m 	m n- 
pc 0 	ps o o 

3nt 

R matrix (+ constant part space) 
Minimum data set. 
List of unique eigenvalues, 
multiplicities, base multiplicities 

PART 3 

cl  

c
2 
c3  

Ric KM 
cMDS  
c V 2nt  

R matrix/component eigenvectors 
C vector, modal and physical 
composite system eigenvector. 

PART 4 
Component 	Ko, 	Mo 

Current composite system eigen-
vector + gen. mass and stiffness 

terms. 

OVERALL 
MAXIMUM 

REQUIREMENT 

Where 

cK 	= 

choice 

F 
 

(n2  + no) o 
or 
2md 

exists, the larger 

• 
+ [npcno  + mpsmond + tint] 	(8.2.1) 

requirement must be used. 

-.....--.. 
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TABLE 8. (Continued) 

  

(b) Number of Multiplications 

kamoommoaraloarlwasersmawatro 

PART 1 

SYMBOL 
p. 

NUMBER OF MULTS. COMMENT 

m1 (6cn 3)n 
o Pc 

Eigenreduction of each primary 
component by extended 
Jacobi 	method 

PART 2 m
2 

md2) 12r(mdno + md
2) 

Formation and factorisation of 
each 	WV. (Average of 

12 trial X's per root assumed) 

PART 3 m3 3 

r(mdn 	+ md
2  + and 

+ + 2nmo + ntno 

Formation, factorisation and 
deflation of Ft(X.) 

for C 	
i 

Formation of eigenvector Xi 

PART 4 m4 2rn (n 	+ 1)q o o 
Formation of generalised mass 

and stiffness terms 
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(a) 2-DIMENSIONAL FRAME STRUCTURE 

(b) THE BASE SYSTEM '1' (KRON S METHOD (nt = 198, m = 18) 

no  = 63 	bo  = 17 	no  = 72 	bo  = 17 

Base System Schematic  
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(c) JMN'S METHOD BASE SYSTEM N0.2 	(nt = 225, m = 45) 

                  

                  

     

	• 

           

                

                 

                  

no  = 36 
bo  = 10 

no = 45 
bo=lo 

Base System Schematic 

n = 2 
Pe 

= 3 

nc  = 6 

ms  5 
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assembled structural matrices used in Gupta's method are of order 

180, with'a semi-bandwidth of 20. No use of symmetry is made in this 

illustrative example. The general requirements for Gupta's method 

are contained in TABLE 8.1. 

Two possible base systems are shown for use in Kron's method. 

The first (Figure 8.1(b)) utilises two large primary components 

while the value of m is kept low. The second (Figure 8.1(c)) 

utilises two small primary components, however the value of m is 

somewhat larger. Base system schematics are shown for both cases. 

TABLE 8.3(a) summarises the approximate core requirements of 

Gupta's method and the two Kron systems. The core advantages of the 

latter are clear, and in particular, the second Kron system demonstrates 

the -advantage of keeping down the component size. Indeed with the 

core space allocation scheme of TABLE 8.2(a), the minimum core space 

is roughly obtained for m 2no. The low core requirements for the 

minimum data sets emphasise 	the advantages of recognising 

repetition in the base system. It may be noted that the core required 

for part 2, i.e. scanning of R (X) is respectively 2.84K and 3.34K. 
This program stage may thus be efficiently executed in a small core 

-partition. 

The number of multiplications required by the methods are summarised 

in TABIN 8.3(b), r being left as a parameter. Figure 8.2 shows a 

plot of multiplications versus r for the 3 cases considered. The 

Kron method clearly does a good deal of work once and for all 

at the component eigenreduction stage, while the work in Gupta's method 

varies linearly with r. Thus if r < 5, Gupta is faster, but for 
r > 5, 'Kron plus base system 2' is superior. If r ?;-36, then the 
greater amount of initial work in 'Kron plus base system l' pays off 

via the scanning of a smaller R(X) matrix. 

8.2.4. General Conclusions 

To summarise, the- core requirements of Kron's method are 

certainly less than those of Gupta, while the time requirements may also 

be. There is no essential difference in the accuracy attainable by 

the two methods. However, the accuracy of the composite 

system representation in Kron's method is clearly controlled by the 

accuracy of the component eigenreductions. Although a detailed error 

analysis is not attempted in the current work, it may be that with 
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TABU; 8.3.  

COMPUTATIONAL RE 	EMENTS FOR FULL KRON STURM SEQUENCE METHODS 

(a) Core Requirements 

FULL KRON METHOD GUPTA'S S.S. METHOD 
Base System 1 Base System 2 

5.256 K * 2.070 K * 

- 18.0 K CGUPTA - 

cR 	(c) 

(c cMDS 

cE 	(c) 

0.324 K 

1.917 K * 

0.594 K * 

1.530 K 

1.134 K * 

0.675 K * 

cKRON 6.174 K 3.879 K 

Indicates Contribution to Maximum Space Demand 

(b) Number of Multiplications 

FULL KRON METHOD 
GUPTA'S S.S. METHOD 

Base System 1 Base System 

ml  

m3 

22,438 K 

146 rK 

16 rK 

5,781 K 

569 rK 

61 rK  
- 1 800 rK mGUPTA = 	' 

* 

mKRON (22,438+162r)K (5,781x630r)K 
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repetition, the accumulation of roundoff error is less in Kron's method 

when compared with the large order matrix factorisations required in 

Gupta's method. 

There is no inherent topological restriction in Kron's method, however 

care must be taken to choose a base system to suit requirements. If 

a large number of composite system eigenvalues are required, keep m low, 

while if only a few are required, keep the component size small. A 

physically sensible choice of components will help avoid any possible ill-

-conditioning. 

A practical example of the use of the full Kron method is given in 

Section 8.4. 

8.3. THE APPROXIMATE KRON METHODS (A.K.M.)  

8.3.1. General Review 

Where only the lower eigenspectrum of a structure is of interest, 

the approximate Kron methods introduced in Chapter 6 may be used. The 
advantages of the full Kron method (Section 8.2) are retained, while 

approximate results may be obtained with large savings in computer 

resources. 

The MODAL APPROXIMATE KRON METHOD involves the use of a small number 

of component normal modes plus constraint modes to represent the component. 

Simultaneous iteration for these normal modes is fast and utilises 

banding in the component mass and stiffness matrices. The size of the 

minimum data set is reduced, and likewise the effort in forming the 

corresponding R (X) matrix. 
Where components are to be connected along continuous boundaries, 

the possibility exists of reducing the number of constraints along a 

that boundary, in addition to the above approximation; the HYBRID 

APPROXIMATE KRON METHOD resulting. The core required for the minimum data 

set is further reduced both due to the reduced number of 

generalized constraints and the reduced number of constraint modes 

(Section 6.5). However, of greatest importance is the reduction in order 

of the ROO matrix implying a considerable decrease in scanning effort. 

8.3.2. Computational Requirements  

Approximate expressions for core space requirements and numbers of 

multiplications are given in TABLE 8.4 for the approximate Kron methods. 

Provision is made for a reduced number of component modal freedoms, 



148 

TABLE 8. . 

COMPUTATIONAL REQUIREMENTS OF THE APPROXIMATE KRON 

METHOD 

(a) Core Space 

AREA 
LOCAL 
SYMBOL NO. OF LOCATIONS USE 

PART 1 

e1 

c
2 

c3  

c KM 

c M 

c W 

2n b o o 

n on go 

(working space) 

K o' Mc) matrices  

Normal and constraint modes 

Interaction matrix/generalised 
constraint sets etc. 

PART 2 

e1 

c2  

c3  

cR 

cmps 

cE 

2m 
g  dg  

n
pc
n
go
+m
pc
m
go
n
go 

311
g  

R matrix (+ constant part) 

Minimum data set 

Unique eigenvalues, multiplicities 
base multiplicities 

--- 

PART 3 

el  

c2  

c
3  

/ eR cm  

cmps  

cV  2nt 

R matrix/component modes 

(as part 2) 

Cvector/modal eigenvector/ 
physical eigenvector 

PART 4 
cl  

c3 

cKM  

cV 

(as part 1) 

Current composite system eigen-
vector + generalised mass and 

stiffness terms 

OVERALL 
MAXIMUM 

REQUIREMENT 

_ 
c 	- K - 

Where 

2n b 
o o 
or 
2m d 
g g 

choice 

+ 

exists, 

n
pc
n
go
+m
ps
m
go
n
go 

	

or 	

.- 

- 	
non  go 	- 

the larger requirement 

t 
+ [ 	or 	

_ 

3ng _A 

must 

(8.3.1) 

be used 

- 



149 

TABLE 8.4. (Continued) 

(b) Number of Multiplications 

SYMBOL NUMBER OF MULTIPLICATIONS COMMENT 
------ 

PART 1 

n
pc 

[n ob2  + 

(3n b t+52n t2+16t3)c o o 	o 

+ 8m
go
n
o
b
o
]  

Factorisation of K
o 

Simult. Iteration 

Solution for and 
orthogonalisation of 

constraint modes 

For each 

primary 

component 

PART 2 12r(m g  d  g  n  go  +m  g d2)g  As for full Kron 

PART 3 

r(m d n 	+m d2 g.g go 	g g 

+ 2m d 
g g 

+ 2ngmgo + ntngo) 

As for full Kron 

PART 4 m4  2rno  (n o+1)q 
As for full Kron 
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< n
o, and a reduced number of constraints in constraint sets, 

mg 
goo 

< m: The order of the R (X) matrix is given by in 	m) with 

semi-bandwidth dg. The component mass and stiffness matrices are 

assumed to have semi-bandwidth b
o. The work required to form any 

generalised constraints is neglected. The general requirements for 

Simultaneous iteration E273 are recorded in TABLE 8.1. 

8.3.3. The 2-D Frame Example  

TABLE 8.5 sets out the theoretical requirements of the MODAL 

APPROXIMATE KRON METHOD applied to the 2-dimensional frame introduced in 

Section 8.2.3. It is assumed that five component normal modes are used 

in all components and that all constraint modes are included. Thus 

primary component 1 in base system 1 requires storage for five normal 

modes and 18 constraint modes. 

Here, base system 1 is probably a better choice in that the total 

number of generalised freedoms retained (n g) is 51 out of a total 

base system order (nt) of 198. In base system 2, the respective 

figures are 120 and 225, due to the large number of constraint modes being 

carried. 

The savings. in core and computing effort compared with the full 

Kron method (TABLE 8.3) are evident, the overall core requirements being 

reduced by about one third. Note that with base system 1, the 

scanning of R (X) may be carried out in just over 1K words of core, 
compared to 2.8K for a full Kron method. The savings associated with 

the minimum data set are most marked. 

Comparison of the figures for M, in TABLES 8.3 and 8.5 

illustrates the enormous savings in not having to form a complete component 

.eigenreduction. Thus for base system 2 and r = 10, the total effort is 

reduced by a factor of 10 on using the approximate method. 

Simultaneous iteration (S.I.) (Section 2.4.3) is a fast 

convenient method for obtaining the lowest eigenvalues of large order 

matrices with no inherent loss of accuracy. The requirements of S.I. 

for the frame are included in TABIE 8.5 for r = 5 and r 10 to permit 

general comparisons. 

While the core space advantages of the Kron approach are again 

exemplified, the effort involved is comparable for low r. Thus provided 

the core is available for S.I., the superior accuracy makes this approach 

more attractive. However, the effort involved in S.I. increases more 



TABLE 8. 2• 

2-D FRAME EXAMPLE 

POMPUTATIONAL REgUIREMENTS FOR APPROXIMATE KRON/DIRECT 

SIMULTANEOUS ITERATION METHODS 

(a) Core, Requirements 

APPROXIMATE KRON METHOD 
SIMULTANEOUS ITERATION 

BASE SYSTEH 1 BASE SYSTEM 2 -

c1 cKM 2.488K * O.900K 

~2 cM 1.449K * 0.828K * 

C S I=:[ 7 • 5+ 0 • 52 (r+ 3) ] K 

c1 cR 0.324K 1·530K * 

c
2 

cMDS 0.577K 0·577K For r =: 5 

c
3 

cE O.lllK O.ll1K cS1 =: 11.52K 

0.396K * O.450K * For r =: 10 
c
3 

Cv 
csi =: 13.96K 

cKRON 4. 29:2K 2.808K 

* Indicates Contribution to Maximum Core Space Demand 

(b) Number of Multiplications 

MODAL APPROX. KRON METHOD SIMULTANEOUS 

BASE SYSTEM 1 BASE SYSTEM 2 ITERATION 

ml 741 K 287 K Assume c =: 7 

m
2 

51 rK 141 rK For r =: 5(t =: 8) 

8 rK 19 rK ttlSI =: 842 K 
m3' 

For r =: lO(t =: 13) 

mKRON (741 + 59r) K (287 + 160r)K mSI =: 1221 K 

For r =: 5 
mKRON =: 1, 036K m

KROW 
=: 1, 087K 

For r =: 10 
mKRON =: 1,331K mKRON =: 1, 887K 

151 
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than linearly with r, as does the core requirement. Hence for very 

large structures with a good degree of repetition, and where r is 

reasonably large, the approximate Kron method would, in all 

likelihood, offer far more economical approximate solutions. 

8.3.4. Comparison with the Component Mode Method (C.M.M.) 

A convenient implementation of a form of the component mode method 

(System EIG3) is described in APPENDIX 2. 

A detailed theoretical comparison with. the approximate Kron method 

is difficult as the choice of base system and number of component modes 

in luded will depend on the particular problem circumstances. However -

they are both component-wise methods for reducing the number of freedoms 

in large eigenvalue problems. The computational requirements will be 

largely similar, and both may utilise repetition in some form. 

Whereas the number of connection freedoms may often be less than 

the number of constraints, the additional normal mode freedoms used in 

the component mode method can lead to composite system matrices of 

larger order. However, if component normal modes are to be included 

up to a pre-determined cut-off value, then fewer 'higher frequency' fixed 

constraint normal modes in the C.M.M. will in general be required. 

Furthermore, the component eigenproblem is of smaller order. 

Physically, the fixed constraint component normal modes of the 

C.M.M. may be expected to well represent composite system behaviour 

when connection boundaries are stiff, for example when m is large. 

By the same token, the free connection coordinate normal modes utilised 

in the Kron approach will be superior where boundaries are flexible, 

for example when m is small. However the hybrid approximate Kron method 

• may be used in situations where m is large to good advantage. 

A practical comparison of the methods is given in the example 

of the following section. 

8.4. A STIFFENED PLATE EXAMPLE 

8.4.1. Introduction  

The stiffening of plate structures via the attachment of ribs is 

common practice in many engineering branches. With regard to vibrations, 

the stiffening may be employed to raise the lowest structural frequencies, 

or indeed to ensure that there are no natural frequencies close to a 

higher known forcing frequency. 
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As the main intention is to provide a practical comparison 

of methods described in this theSis, the example is kept particularly 

simple. The structure comprises a cantilever plate with beam 

supports at regular intervals. The beams are of solid cross section, 

and have stiffness only in the lateral plate direction. This 

stiffness is kept low to avoid frequency bunching (Figure 8.3). 

The arrangement permits the use of repetition to be illustrated. 

The structure has an axis of symmetry XX. Here the half- 
614 2  

-problem is analysed for symmetric modes, that is with 	and v.; 

constrained along XX. A further feature of interest is the way in which 

these boundary conditions are handled by the Kron method approach. 

The problem is then briefly reconsidered assuming a simply 

supported end YY, destroying symmetry. The advantages of Kron's method 

are further exemplified. 

The methods considered in the following discussion are 

(i) The Full Kron Method (Program EIG1) 

(ii) The Approximate Kron Method (Hybrid version) (Program EIG2) 

(iii) The Component Mode Method (Program aq3), 

8.4.2. Half-Structure Base System Specifications 

Kron's Method  

Details of the base system for use with both the full and 

approximate Kron methods are contained in Figure 8.4. 

Leaving aside the symmetric boundary conditions to be applied along 

XX, the half-structure may be torn along the beam centre-lines to produce 

three identical components. The one primary component PC1 and associated 

partial constraint sets PSI to PS4 are indicated in Figure 8.4(a). 

The division of the constraints into symmetric and anti-symmetric sets is 

not only a pre-requiSite for defining generalised constraints. For it 

is an important feature of Kron's method that boundary conditions, 

such as those along XX, may be treated as constraints applied to the 

base system. Thus in the base system schematic of Figure 8.4(b), 
Ow 

constraint set S5 embodies constraints of the form by — = 0 etc.. 

In the full Kron method, a full eigenreduction of a 64-freedom 

component is required, and with each constraint set comprising 8 

constraints, the order of the composite system frequency matrix is 40. 

Utilising the Hybrid Approximate Kron Method; use of 4 component . 
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FIGURE 8.h. (Continued) 

(o) Base System Data 
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normal modes (for example) will generate 4 generalised constraints in 

each set, and a total of 16 static constraint modes for the primary 

component. The order of the composite system frequency matrix will thus 

be reduced to 20. In such a case, the symmetric boundary condition, 

like component continuity, will only be approximately satisfied. 

Component Mode Method  

The base system for the component mode method is indicated in 

Figure 8.5. In contrast with 'the Kron approach, boundary conditions must be 

incorporated prior to component analysis. Thus all three components must 

be analysed for normal and constraint modes. However, use of the 

IR parameter in program EIG3 (Section A2.4) avoids having to 

re-set up the mass and stiffness matrices for component 2. 

With the numbers of fixed constraint normal modes taken from the 

components as 3, 2, 2 respectively, the total order of the composite 
system problem is given by 

32 (boundary freedoms) 7 (normal mode freedoms) = 39 

8.4.3. Symmetric Modes - Test Cases  

The basic Set of 7 test cases, identified A through I, are 
detailed in TABLE 8.6. The first relates to the full Kron method, 

while the last two relate to the component mode method. 

The first five symmetric modes were evaluated in each case. The 

eigenvalues from run A, validated by a direct assembly eigensolution, are 

here taken to be the 'exact' solution. Percentage eigenvalue errors are 

given for the remaining test cases. The mode shapes are indicated in 

Figure 8.6. 
The conputational requirements of each case are also indicated in 

TABLE 8.7, as are comparative core requirements for Gupta's Sturm 

sequence and Jenning's simultaneous iteration methods. 

8.4.4. Symmetric Modes - Results  

The Full Kron Method (Run A)  

Although the lowest five symmetric modes were computed, there is of 

course no 'low frequency' restriction with program E1G1. The maximum 

core requirement of 7K words compares favourably with the 17K required 

by Gupta. 

The eigenvalues were determined to five places by simple bisection 



TABLE 8.6 • 

. , 
STIFFENED PLATE EXAMPLE - SYMMETRIC MODES (HALF STRUCTURE) 

PROGRAM: EIGI EIG2 EIG3 . 

CASE: A B C D E F G 

n = 64 n = 2 n = 3 n = 4 n = 5 n = 2/1/1 n = 3/212 
0 no no no no no no 

DETAILS: m = 40 n = 4 n = 6 n = 8 n = 10 n' = 36 n' = 39 co co co co 

m = 10 m = 15 m = 20 m = 25 g g g g 
-

" 
'EXACT EIGENVALUES' 

EIGEN- 1. 331.64 -3·543 -3·531 -3.054 -1.197 0.154 0.0 
VALUE 2. 458.98 -1·573 -1.364 -1.23:? -0.804 0.176 0.041 
ERRORS 

. 
3· 1146.6 -1.631 -0.863 -0.794 -0.689 0.087 0.070 r-----------

(%) 4. 3525·2 -4.465 -2.806 -2.235 -1.110 4.64 0.238 ----------
5· 6251.1 +46.1 -0.822 .. -0.637 -0.499 7.71 3.82 

VARIATION 1. -0.003 -0.003 -0.002 -0.003 
NOS. (%) 2. -0.007 0.026 0.011 -0.003 
(EIG2 3· -0.212 !oo----------- 0.184 0.317 -0.035 

ONLY) 4. -3.708 __ :!!!±~2 __ -0.756 -0.461 

5· -6,.,627 0.020 0.156 -0.055 

-------- Indicates Location of Highest Component Mode Eigenvalue 



TABLE 8.7 • 

• I 

STIFFENED PLATE EXAMPLE - SYMMETRIC MODES (HALF STRUC'l'URE) - COMPUTATIONAL REQUIREMENTS 

. 
CASE A B C D E F G 

CP Time (6600 secs.) 

PART 1 47.0 5·1 7.3 12.1 15·7 . 14.0 17.0 
PART 2 41·3 1.1 2.7 4.9 8.9 3.2 5·4 
PART 3 4.1 0.9 0.9 1.1 1·5 2·5 2.7 
PART 4 3.8 0.7 0.7 0.7 0.8 1.1 1·5 

TOTAL 96.2 7.8 11.6 18.8 26.9 20.8 26.6 

Core Requirements (K words) 

.. cKM 4.288 * cKM 2.240 * 2.240 * 2.240 * 2.240 * 2.240 * 2.240 * cKM 
cMDS 2.112 * cM 0.640 * 0.960 * 1.280 * 1.600 * 0.252 0.263 cv' 
cR 0.692 cMDS 0.090 0.195 0·340 0·525 1.160 1·324 cKM ' 
Cv 0·576 * cR 0.047 0.102 0.178 0.275 0.900 * 0.951 * Cv 

Cv 0.384 * 0.384 * 0.38l.j. * 0.384 * 

MAXIMUM 6.976 3.264 3.584 3.904 4.224 3.140 3.191 REQUIREMENT 

. cGUPTA = 17.48 cSI = 11.184 (for 7 trial vectors) 

* Indicates Contribution to Maximum Core Requirement 
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root location, an average of 13 bisections being required. 

The Hybrid Approximate Kron Method (Runs B, C, D, E)  

The four test cases here correspond to an increasing number of 

component normal modes (nn  ) included. In the hybrid 

method this reflects itsel? in increasing numbers of constraint modes 

and generalised constraints. Elgenvalue convergence is fairly slow, 

however with n
no 
 5, errors are within about 1%. Variation numbers 

below X 
ax 

 are small. As observed in the example of Section 6.5, accuracy m 
deteriorates rapidly once max is exceeded. It is interesting to note 

that convergence is from below, that is, the approximation due to 

generalised constraints is dominant. 

The core space and computer time predictions of Section 8.3 are 
borne out. The very low time demands of runs B and C suggest that the 

technique may be used for fast prediction of rough frequencies. 

As in Run A, eigenvalues were determined to 5 places by an average 
of 13 simple bisections. 

2/2-2gaR1111LIIILiktILILSEEEEL2/ 
These two cases correspond to the inclusion of 2, 1, 1 and 3, 2, 2 

component normal modes respectively. The accuracy obtained 

for the lowest modes is superior to that from the hybrid approximate 

Kron method, possibly because with stiff connection boundaries it is the 

better suited method in this situation. The computational requirements 

are generally similar to that of the previous method. 

8.5. IMPROVED SCANNING EFFICIENCY IN KRON'S METHOD 

Two methods of reducing the total effort involved in scanning the 

ROO matrix, evaluated with reference to the stiffened plate example, 
are 

(i) use of Brent's linear interpolation root location 

algorithm (Section A1.3.4) 
(ii) use of the 'constant part' approximation (Section 6.6). 

8.5.1. The Full Kron Method  

In Part 2 of run A (TABLE 8.7), a total of 77 formation/ 

factorisations of the matrix R (X) were required in the location of the 
first. five symmetric mode eigenvalues. Out of these, 13 were used prior 
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to locating ranges containing simple zeros. The location of the 

zeros within these ranges then took an average of an additional 

13 each. 

Use of Brent's linear interpolation algorithm reduced this average 

to 9, and the time taken for part 2 was reduced from 41.3 secs to 
31.5 secs, a saving of 24%. Identical eigenvalues (to 5 places) were 

obtained. 

The constant part approximation reduces the formation time for 

R (X), although eigenvalue accuracy suffers. With A= 105, only the 
lowest 8 component eigenvalues remained 'active', yet the loss of 

accuracy as indicated below was extremely small: 

Eigenvalue No. % Eigenvalue Error * 

1 0.0 

2 0.002 	. 

3 0.026 

4 0.579 

5 0.029 

w.r.t. values obtained in run A. 

The corresponding loss in eigenvector accuracy is likewise small. As 

predicted in Section 6.6, the approximate eigenvalues obtained are 

consistently high . The time saving obtained is impressive. Using 

the linear interpolation algorithm, the part 2 time was reduced from 

31.5 secs to 12.8 secs, a saving of 59%.t  

However, it must be remembered that while the linear interpolation 

algorithm may be used at all times, the advantages of the constant part 

approximation recedes as the range of interest of A rises. 

8.5.2. The Approximate Kron Method  

The above techniques were implemented for the case D in TABLE 8.6. 

Again, use of the linear interpolation algorithm reduced the average 

number of formation/factorisations of the R (A) matrix from 13 to 9 

for each root location. The time taken for part 2 in this case was 

reduced from 14.9 secs to 13.9 secs, a saving of 20.4%.  
t The total time for all 4 parts is thus reduced by 29.6% to 67.7 secs. 
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Use of the constant part approximation, with 3: automatically 

set to twice the highest component normal mode eigenvalue, 

ax, produced significant savings with small (additional) loss in 

eigenvalue accuracy. The time of 3.9 secs was reduced to 2.3 secs, a saving 
of 41%, while the percentage change in eigenvalues w.r.t. those 

obtained in run D are as follows: 

Eigenvalue No. % Eigenvalue Change 

1 0.006 

2 0.051.  

3 1.060 

If 1.649 
5 0.714 

The overall run time was reduced by 13.8% to 16.2 seconds. As a range 

of interest of X is always to be confined below X ax  in practice, use of max  
the constant part approximation thus appears very attractive. 

8.6. ANALYSIS OF THE COMPLETE STI.P.bENED PLATE 

To further illustrate the advantages of repetition in Kron's 

method, the problem of the stiffened plate is reconsidered with 

the end YY (Figure 8.3) simple supported. Symmetry is thus destroyed, and 

analysis of the full structure (300 freedoms) is required. 

The base system adopted for Kron's method is shown in Figure 8.7 

Again, only one primary component is defined. The simple support 

boundary condition is handled by defining an additional partial 

constraint set, PS5, corresponding to the 'w' freedoms along side 2 

of the primary component (Figure 8.4a). [In the case of the full Kron 

method, the set PS1 could simply be split into 2 sets comprising 'w' 

and -57c- freedoms respectively]. 

8.6.1. The Full Kron Method  

Run H (TABLE 8.8) relates to the full Kron method with linear 
interpolation and the constant part approximation a = 105). The total 

number of constraints involved is 84. The first 5 eigenvalues were 
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FIGURE 8.7. 

ANALYSIS OF FULL STRUCTURE (SIMPLY SUPPORTED END)  

IDEALISATION OF SYSTEM FOR KRON'S METHOD 

(a) Base System Schematic 	(b) Base System Data 

COMPONENT CORRESPONDING 
PRIMARY COMPONENT 

Cl 
02 
C3 
C4 
C5 
C6 

PCI 
PC1 
PC1 
PC1 
PC1 
PC1 

CONSTRAINT PARTIAL CONSTRAINT SETS 

..—fZ...—.—.2---.—....;.--2.— 

Si PS1 PS3 
S2 PS2 PS4 
S3 PS1 PS3 
S4 PS2 PS4 
S5 PS1 PS3 
S6 PS2 PS4 
S7 PS1 PS3 
S8 PS2 PS4 
S9 PS1 PS3 
S10 PS2 PS4 
Sll PS5 - 
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TABLE 8.8 

ANALYSIS - OF THE COMPT,ETE  STInhNED PLATE 

H I 

FULL KRON METHOD 

T .-. 105 

m . 84 

HYBRID APPROXIMATE 
KRON METHOD 
nno = 4 
n co . 8  
m 	= 44 
g 

EIGENVALUES 	 % ERROR 

1.  338.20 328.40 	(-2.90) 

2.  399.71 391.45 	(-2.07) 
3.  565.82 559.24 	(-1.16) 
4.  927.70 919.31 	(-0.90) 

5.  1633.6 1615.1 	(-1.13) 

CORE REQUIREMENT 	(K words) 

cKM 	= 4.288 * cKM 	. 2.240 * 

cMDS . 2.368 * cm 	= 1.536  * 
cR 	= 1.778 cMDS = 0.420  
cv 	= 1.152 * cR 	= 0.478 

cif 	= 0.768 * 

cKRON = 7.808 cKRON = 4.544 

CP TIME 	(6600 seconds) 

PART 	1 47.7 13.3 
PART 	2 30.5 9.4 
PART 	3 8.3 2.4 
PART 	4 7.4 1.5 

TOTAL 93.9 26.6 

* INDICATES CONTRIBUTION TO MAXIMUM REQUIREMENT 

Uses linear 
Interpolation 

YES NO 

Uses the C.P. 
Approximation YES NO 
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obtained. Direct solution verified that the eigenvalue error induced 

by the constant part approximation was in all cases less than 0.1%. 

Clearly the doubling of the problem size had a relatively small 

effect on computational requirements. Core required was 7.218K words 

(cf. 6.976 in run A of TABLE 8.7) while CP time required was 

93.9 seconds (cf. 67.7 seconds in section 8.5.1). In contrast, the 
requirements of Gupta's method would have been roughly doubled. 

8.6.2. The Hybrid Approximate Kron Method  

Use of the hybrid approximate Kron method to obtain fast' 

eigenvalue estimates was tested by means of run I in 

TABLE 8.8. Four component normal modes were included. Linear 

interpolation and the constant part were not used, thus comparison may 

be made directly with run D of TABLE 8.7. While the partial constraint 

sets PS1 to PS4 were expressed in generalised form, the four constraints 

in PS5 were retained as simple constraints so that the simply supported 

boundary condition was enforced in full. The total number.of constraints 

involved was thus 44. 

Again, the computational requirements do not greatly exceed those 

for the half-problem. The core is increased from about 3.9K words to 

4.544K words, while the time is increased from 18.8 secs to 26.6 secs. 

The eigenvalues and mode shapes obtained are reasonable guides as to 

the 'exact' system properties, although additional constraints are 

probably required to reduce the error on the two lowest eigenvalues. 

As with Gupta's method, the requirement of direct simultaneous 

iteration would roughly double for the full problem. 

A possible base system for the component mode method is shown in 

Figure 8.8. It is interesting to note that with either 

3 or 2 normal modes per component, the order of the composite system 

matrices is 94, that is more than twice the 44 'constraint freedoms' 

utilised in run I. 

In general terms,- it is thus clear that the larger the degree of 

repetition, the more attractive both the full and approximate Kron methods 

become. 



Connection 
coordinate 
freedoms 

Normal 
mode 

freedoms 

3 IREP = 0 

16 

2 IREP 1 

.16 

2 IREP = 2 

16 

2 IREP . 2 

16 

2 IREP = 2 

16 

3 	 IREP 

169 

FIGURE 8.8.  

ANALYSIS OF FULL STRUCTURE SIMPLY SUPPORTED  END) -  

IDEALISATION OF SYSTEM FOR COMPONENT MODE METHOD  

. 	_ 
nb = 80 , na = 14 

Total order 
of composite 

system n = 94 
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CHAPTER 9 

CONCLUSIONS AND FURTHER RESEARCH 

9.1.- THE FULL KRON METHOD  

Hitherto, Kron's method had received scant attention in the field 

of structural eigenvalue problems. However, the recent publicity 

given to the method by Simpson, and in particular his proposition of 

the extended sturm sequence algorithm for scanning has opened the door 

1 

f r its establishment as a competitive algorithm. 

In this work, the basic approach is paralleled with the above 

work, and the practical implementation on a digital computer and use 

thereof has been successfully investigated. 

It has been established that Kron's method is particularly 

suitable where 

(i) the value of m is small 

(ii) repeated components and constraint sets may be identified. 

The tremendous core space advantages of the approach enable 

maximum use to be made of computing resources, either to solve extremely 

large problems efficiently 'in-core',-or to confine middle range 

problems to a relatively small partition, a useful feature in a time 

sharing environment. 

In assessing the role that Kron's method should play in the field 

of eigenvalue algorithms, several facts stand out. The effort 

involved in implementing the method is probably greater than for direct 

assembly techniques. User effort is greater in that the components and 

connection data must be specified, but this is a light task compared 

to the initial structural idealisation. The technique is particularly 

suitable when a large number of composite system eigenvalues/eigen-

vectors are required, and of course when relatively high frequencies are 

of interest. Finally, the ability to carry out the analysis in several 

stages, with the possibility of checking and restarting after each 

stage, is an additional attraction when analysing extremely large order 

structures. 

9.2. THE APPROXIMATE KRON METHOD  

A major original contribution of the current research has been to 

establish techniques which further utilise the advantages inherent in 
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Kron's method to economically obtain approximate low frequency composite 

system eigenvalues and eigenvectors. 

A degree of judgement is required on behalf of the user, however 

the approaches developed are extremely versatile. Where few connection 

coordinates are involved, relatively few static constraint modes will be 

required to compensate for the excluded component modal freedoms. A 

Rayleigh-Ritz type approximation is thus introduced so that the 

resulting eigenvalues are upper bounds. Where many connection coordinates 

are involved along a stiff boundary, more component normal modes may 

be required but alternative economies are available via a reduced set of 

generalised constraints and associated static constraint modes. In this 

hybrid approach, the error induced by the modal freedom approximation 

and the constraint approximation tends to cancel out. 

As it is often only the lowest modes of very large order structures 

that are required, the economical approximate implementation of the Kron 

method would thus appear attractive for many practical situations. 

9.3. FURTHER RESEARCH 

In many ways, the research carried out for this thesis has been a 

preliminary study. There is scope for further detailed analysis of the 

mathematical basis for the approximate techniques introduced and for 

improved methods for selecting generalised constraints. Also, any 

piece of numerical analysis should ultimately be underwritten by error 

analysis. 

A particularly desirable development would be a means of 

establishing bounds on the results obtained from the approximate methods. 

The approach described in Section 2.6.5 is inapplicable in the case of 

component techniques in that the fully assembled structural stiffness 

matrix is at no stage formed, and alternative methods must be derived. 

The computer programs developed, while far from optimum do form a 

basis for the efficient implementation of Kron's method. Algorithms for 

the efficient location of the roots of the Ft(X) matrix will be just 
one area deserving further attention. 

It is, however, in the field of applications that the author 

feels the most exciting prospects to lie. The various techniques have 

been tested here on limited examples, and a full evaluation on truly large 

problems is of the highest priority. 
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9.4. SOME APPLICATIONS 

9.4.1. Typical Structures 

The global dynamic analysis of aircraft structures is perhaps the 

classic example of a component structure. With the main fuselage, tail 

section and wings identified as principal components, it is clear 

that the value of m may be kept low. Component modes and frequencies 

are often available from practical vibration tests. It will be 

particularly important to include constraint modes for the wings if only 

a few free-free wing modes are included. 

A common natural frequency problem is that of turbo-generator 

foundations. Such structures often embody a high degree of repetition, 

again permitting Kron's method to be used to advantage. 

9.4.2. Sophisticated Constraints 

There is no theoretical restriction on the form of the constraints 

relating to component displacements, provided that a non-singular 

ir1 matrix (Section 5.2.1) may be formed. A general constraint 

connecting components A and B may be written as 

nA 	nB 
E 	 A 

c.
A 
 x. + 	E c.

B 
 x.
B  
 = 0 

. i=1 	j=1 3 3, 

where x.A 
B  

, x. are displacement freedoms and cA., c
B 
 are coefficients. 1. 	 1 	j 

A useful application of the above form of constraint occurs where 

there is a displacement freedom mismatch between components, perhaps due 

to a different form of idealisation. A simple illustration is indicated 

in Figure 9.1, a possible constraint equation being 

1 
	

x3  + (1 - A 
	

(9.4.1) 

  

e^ 

 

   

L 

 

x2 

    

FIGURE .1 



173 

9.4.3. Modification Analysis 
An important advantage of any component-wise technique is that the 

effect of small modifications to the structure may be evaluated 

efficiently. Only those components altered need to be re-analysed, 

and provided modifications are small, the original normal modes may 

be used for example as input to the simultaneous iteration routine to 

rapidly converge to the new ones. 

Again, assuming small or local modifications, the- effect on the 

overall structure modes and frequencies are likely to be minor. It 

would not seem a difficult task to arrange for the original eigenvalues 

to be used as first approximations to the roots of the new 	R(X) 

matrix to minimise scanning effort. 

Finally, it is the authors belief that with the trend to larger 

and more complex structural systems, Kron's method of piecewise eigenvalue 

analysis will take its place in the ever growing field of eigenvalue 

algorithms. 
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APPENDIX 1  

THE COMPUTATIONAL SYSTEMS EIG1 AND EIG2 (KRON'S METHOD) 

A1.1. INTRODUCTION 

In this appendix, the systems EIG1 and EIG2 for the implementation 

of the full and approximate Kron methods respectively are described. 

Particular emphasis is placed on the user supplied data and principal 

core storage requirements. Sections A1.2 to A1.5 deal with the four 

constituent parts. 

The major computer program symbols (capital letters) necessary 

for general understanding and use of the systems are recorded at the 

end of this appendix in three reference tables: 

TABTR A1.1 	List of input data, 

TABLE A1.2 	Major program variables 

TABU'. A1.3 	Fixed parameters. 

The input data is classified as either 'data' (D) or 'parameters' (P), 

the latter being used to define or control a process. Program variables 

are set within the systems and record information about the problem 

being processed. Fixed parameters are defined in DATA statements in 

the main overlay and are not normally varied. They include tolerances 

and iteration limits. 

Large parts of the systems are identical and in general, discussion 

relates to the more complex system EIG2. To indicate differences, the 

following symbols are used: 

t applies to EIG1 only 

* applies to EIG2 only. 

A1.2. PART 1 - THE ANALYSIS OF THE BASE SYSTEM  

A1.2.1. PROGRAM'COMPNT (OVERLAY 1,0)  

This program is responsible for the analysis of the base system 

and the writing to disc` tore of the M.D.S. information. A flowchart 

is shown in Figure A1.1. *9' 

The run title, together with the parameter IMOD and the number 

of primary components NPC are read in, and the two secondary overlays 

called in sequence for each P.C.. On completion of the analysis of 

each P.C., information concerning it is stored and the variables NTP 

** All flowcharts appear at the end of this appendix. 
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and NGP are updated. 

A1.2.2. PROGRAM SETKM (OVERLAY 111)  

Responsible for forming the primary component mass and stiffness 

matrices, the flowchart is shown in Figure A1.2. The data describing 

the primary component is read in including NO, the order, and in the case.  

of EIG2 the parameter ITYP. 

In EIG1, the component mass and stiffness matrices are stored in 

full lower triangular form while the variable bandwidth scheme is used 

in EIG2. The respective core requirements are thus 

1C
1  _

.., NO * (NO + 1) 2 C1 	3* NO + 2* BO* NO 

(A1.1) 

where BO is an average semi-bandwidth. 

Both version,access a small library of finite elements 

FELIB, but may be easily modified to accept any particular element or 

library. 

A1.2.3. PROGRAM MODES (OVERLAY 1,2) (EIG1 Version) 

This program is responsible for eigenreducing the component matrices 

and storing the M.D.S. information on disc. A flowchart is shown in 

Figure A1.3. 

The extended Jacobi method (the routine DIAG, APPENDIX )) is used 

to form the complete set of NO modes and eigenvalues for the primary 

component which are located in the area previously used for the mass and 

stiffness matrices. 

The number of partial constraint sets, MCS, relating to the current 

P.C. is then read in. For each P.C.S., the MO connection coordinates 

are read as local displacement numbers, and the CIi 
matrix, which is 

simply the appropriate eigenvector partition is stored on disc 10 together 

with the eigenvalues. The dimensions of each C;i 
matrix is NO by MO, 

hence for a total of NPC primary components and MPS partial constraint 

sets the M.D.S. core requirement is given by: 

1c
3 = 	E No, + 	NO. * MO. 

k=1 K 
1=1 	1 

(eigenValUeS) i matrices) 

NPC 	MPS 
(A1.2) 
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This core space is not infact required until Part 2. 

On completion of each P.C.S. information concerning it is stored, 

and the variable M is updated. 

A1.2.4. PROGRAM MODES (OVERLAY 1,2) (EIG2 Version).  

The EIG2 version of PROGRAM MODES (figure A1.4) is considerably 

more complex than the EIG1 version in that it contains facilities for 

calculating constraint modes and generalised constraints, thus permitting 

a reduction in the number of component freedoms and/or linking 

co straints. 

Simultaneous iteration (the routine SIMULT, APPENDIX 3) is 

used to calculate the first NN normal modes of the primary component. 

In the case of a free component, a multiple of 	M o  is added on to 
K o prior to factorisation. 

SUBROUTINE CSTRNT reads MCS and the data concerning each P.C.S. 

i.e. MO, MGO, ICST and ISET. Any new natural constraint sets are 

calculated, as are constraint modes corresponding to all constraints. 

On completion of each P.C.S. the variables M and MG are updated. 

Where natural constraints are requested by ICST = 2 SUBROUTINE 

GOON is called. The number and nature of the nodal freedoms involved 

must be identical along the connection boundary, and the 'normal' and 

'tangential' freedoms must be specified by the user at a typical node. 

The magnitude ratio of each orthogonalised constraint is calculated and 

if less than TLN, the natural constraint is discarded. 

SUBROUTINE CMODE forms an ortho-normal set of NM constraint modes 

and calculates their associated pseudo-eigenvalues. The total 

number of freedoms for the current P.C. is given by NGO = NN + NM. The 

set of NGO modes must be stored in addition to the component mass 

and stiffness matrices,and require a space of 

2C
2 

= NO* NGO 
	 (A1.3) 

Further space for the interaction matrix (S.I.) and any natural 

constraint sets may be neglected. 

Finally, SUBROUTINE GTERMS forms and-stores the G i  matrices for 

each P.C.S.. Here the size of each G is NGO* MGO, hence the M.D.S. 

core requirement is given by 
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NPC 	MPS 
2C =E NGO. + E NGO. *MO. 

3 	1=1 	1 j=1 
(A1.4) 

(eigenvalues) 
	

( G. matrices) 

The parameters EMIN, EMAX corresponding to Xmin, 
Amax 
 are updated 

during SUBROUTINE MODES. 

A1.2.5: Core Requirements for Part 1  

The total requirement for EIG1 is given by (1C1) while for 

EIG2 it is (2C1  + 2C
2
) (Equations A1.1, A1.3). With NO large 

(e.g. > 100), the latter requirement can show good savings over the 

former. 

A1.3. PART 2 - CALCULATION OF THE COMPOSITE SYSTEM EIGENVALUES  

A1.3.1. PROGRAM EIGVAL (Overlay 2,0) 

The flowchart for this program is shown in Figure A1.5. Initially, 

the parameters IVAL and ICON plus any associated data are read in. 

IVAL controls the number of eigenvalues located i.e. either the NR 

lowest or those in the range El < X < E2. ICON controls whether 

the 'constant part' approximation is used. If it is, A is set equal 

to 2 x EMAX in EIG2 while 5■ must be specified by the user in EIG1. 

Termsinthe'constantpart'arethusdefinedbyX.>5:. 

SUBROUTINE INPUT reads the M.D.S. information from disc store 

in the core space previously used for K e  and hie in part 1. The 

data describing the base system in terms of P.C.'s and P.C.S.'s is then 

read in, allowing SUBROUTINE SETUP to establish the form of R (A) 

and data to facilitate its economical automated formation. 

The variables MM and L axe set here. MM is the order of R (A) 

and is equal to the number of constraints applied to the base system. 

The variable bandwidth storage scheme is used for R (A), hence L is 

the length of the vector containing the off-diagonal terms. The core 

space required for R (A) is given by 

C = 3*mm + 2* L 
	

(A1.5) 

the additional set of diagonal and off-diagonal arrays being required 
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for storage of the 'constant part' of ROO. The arrays used to 

store K o. and M o  in Part 1 are re-used for this purpose thus 

allowing a value of MM close to the maximum allowable NO value. 

SUBROUTINE EARRAY utilises the base system data to construct an 

ordered list of unique base system eigenvalues and associated multip-

licities for the primary component eigenvalues over the range of interest 

of X. 

Control is finally passed to SUBROUTINE SVAL which locates the 

composite system eigenvalues by use of the extended Sturm sequence scanning 

algorithm (See Section A1.3.3.). 

A1.3.2. The Description of the Base System  

The data description of the base system components and constraint 

sets is listed in TABLE A1.1. It is important to note that the unique 

identification- number assigned to each component (e.g. Cl, C2,...) is 

given by the location in the ITC array. Similarly the first set of 

entries in the arrays IDA, MTA, IDB, MTB correspond to constraint set 

S1 etc. 

The simple beam example of Section 7.2.2. is here used to illustrate 

the data required (derived from Figure 7.4(c)). 

SYMBOL VALUES COMMENTS 

NC 4 No. of components 

ITC(NC) 1 1 	1 	1 	1. 1 P.C. types 

(C1) 	(C2) 	(C3) 	(C4) Identifiers 

MS 3 No. of constraint sets 

IDA(MS) { 1 	2 	31 Component ident. nos. 

MTA(MS) { 1 	1 	1 } P.C.S. types 

IDB(MS) 
{ 
2 	3 	4 1 Component ident. nos. 

MTB(MS) 1 2 	2 	2 } P.C.S. types 

(Si) 	(S2) 	(53) ' Identifiers 
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A1.3.3. SUBROUTINE SVAL 

This routine implements the extended Sturm sequence 

scanning algorithm (Section 4.6.4), which essentially enables the number 

of eigenvalues exceeded by any given X to be established, thus allowing 

any or all of the eigenvalues to be converged upon. 

For, a given argument, X, the number of eigenvalues exceeded 

is obtained by calling SUBROUTINE KOUNT which in turn calls 

SUBROUTINE RTERMS to form FI(X), and SUBROUTINE TRIAD to form the 

Cholesky decomposition of 	R (X). 
SUBROUTINE SVAL is thus primarily concerned with the scanning 

procedure, and a flowchart is shown in Figure A1.6. 

FI(X) is singular at any base system (primary) eigenvalue 

X, hence to establish the composite system multiplicity, it is necessary 

to evaluate the number of eigenvalues exceeded at X(3:).  - e and i)  Xc  + e, 

where e is a small perturbation. 

Between each pair of primary eigenvalues is deemed to lie an 

a 'principal range', for example: 

X? + e 	X 	X? 	e 
4 1  

(see Figure Al.7a). 

Composite system eigenvalues occurring within a principal range must 

appear as roots of 	Fl(A). (Secondary eigenvalues). 

The scanning starts as the lowest primary eigenvalue and the 

procedure 

(1) establish multiplicity at a primary eigenvalue 

(2) locate roots in following principal range 

is repeated henceforth. 

Each principal range is repeatedly bisected, thus producing several 

sub-ranges, until a root of order unity is isolated in a sub-range. In 

this event, control is passed to SUBROUTINE ZERO where interpolation 

methods may be used to speed convergence (see Section A1.3.4). Care is 

taken to recognise convergence to a multiple root. 

The bounds for other sub-ranges produced by the bisection are stored 

in a working table, provided that there are roots within the upper sub-

-range. This procedure, which is illustrated in Figure A.1.7(b) ensures 

that the information obtained by each trial A evaluation is not 

wasted. 

In EIG2, scanning is halted once an eigenvalue is located which 
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(a) TYPICALIFIWPLOT INDICATING PRINCIPAL RANGES 

► 
► 

AL 6  
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PRINCIPAL RANGES 

(b) PROCEDURE FOR LOCATION OF ROOTS IN PRINCIPAL RANGE 

WORKING TABLE ARGUMENTS 

`Bisect 	1XL 	XM 	XU 

Save XM. Redefine limit 	XL 	XU 

Bisect 	 XM 	XU 

Save XM. Redefine limit 	XL 	XU 

Single root isolated - call ZERO - locates k 

Move up to next sub-range 	XL 	XU 

Repeated bisection converges to a multiple root -Ai + I 
No addition to the working table 

Move up to next sub-range 	XL, 	XU 

Single root isolated - call ZERO - locates 7 	+ 
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X2) 

X ) 1 
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Move up to next sub-range — Principal range completed. 

  

  

t Indicates sub-range 
under examination 
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exceeds EMAX, and a warning message is printed out. 

In EIG1, the 'constant part' approximation corresponding to 

ICON=1 is discontinued-(if in use) by simply setting ICON=0 when an 

upper limit on a principal range is encountered which satisfieS 

EU > EBAR/10.0. 

A1.5.4. The Location of Simple Roots 

The well-known technique of simple bisection was utilised 

throughout most of the developed work, principally because it is a 

'safe' algorithm to use. 

However, investigations into more efficient algorithms were made 

at a late stage with attention focussing on the technique of modified 

successive linear interpolation as proposed by Peters and Wilkinson 

[203. In essence, the value of 1 R (X)! is evaluated at each 
trial X (involving just a little more work than that required for 

establishing a sign count) enabling linear interpolation to be used for 

the new root estimate. Unacceptable iterates and slow convergence are 

avoided by combining linear interpolation with bisection. 

In the practical tests discussed in Chapter 8 however, a similar 

algorithm due to Brent [65] was incorporated into the computational 

systems. 

A1.4. PART 3 - CALCULATION OF COMPOSITE SYSTEM EIGENVECTORS 

The flowchart for the controlling PROGRAM EIGVEC is shown in 

Fig. A1.8. 

SUBROUTINE SET assigns unique displacement and modal freedom numbers 

to the base system components, and sets the variables NT and NG. 

For each unique eigenvalue of interest X., multiplicity p., R (X.) 
is formed. SUBROUTINE TRIAD now simultaneously factorises this matrix 

and removes row/columns corresponding to a "zero" diagonal term. The 

resulting factorisation is thus of the non-singular matrix R 11. 
The number of "zeros" encountered is equal to the 'gain multiplicity', 

MZ. 

Eigenvectors corresponding to persistent eigenvalues are calculated 

by SUBROUTINE PVEC, with the 'persistent multiplicity' given by 

MP = pi  - MZ. 

Each eigenvector corresponding to a gained eigenvalue is calculated' 
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by the sequence of routines: 

(i) RHS - forms a column of the R 12  matrix 
(ii) SLVE -- forward and backward substitution for d".. 

(iii) FILL - forms complete C vector 

(iv) RVEC - forms physical eigenvector X . 

(involves re-reading component modes 

from disc store). 

Completed eigenvectors are written to disc 10. 

The component eigenvectors are stored in place of 	R (1. ), thus 

the only additional core requirements over and above that for Part 2 

is for the modal and physical eigenvectors: 

lc5 . 2*NT 	 = NT + NG 
	(A1.6) 

A1.5. PART 4 - CALCULATION OF GENERALISED MASS AND STI.KNESS TERMS 

The flowchart for PROGRAM GENKM is shown in Figure A1.9. The 

contribution to the generalised mass and stiffness terms is calculated 

for each component individually, and added in to the accumulating 

terms. The ratio of generalised stiffness to generalised mass yields 

the (Rayleigh quotient) eigenvalue for that mode. 

Program listings for the computational systems described in this 

appendix are to be incorporated in an Aeronautical Structures• Departmental 

Report. 



CALL OVERLAY (1,1) 

(PROGRAM SETKM) 

CALL OVERLAY (1,2) 

(PROGRAM MODES) 

STORE 
PRIMARY 
COMPONENT 

INFORMATION 
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FIGURE A1.1 

PART 1 - OVERLAY (1 0) - PROGRAM COMPNT 

    

    

START 

INITIALISE 
VARIABLES 

READ 
TITLE, 
IMOD, 
NPC 

DO FOR EACH PRIMARY COMPONENT 

\4211•17110. 	 

UPDATE NTP, NGP 
NTP = NTP + NO 
NGP = NGP + NGO: 

RETURN 
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NO 

YES 

RETURN 

FIGURE  A1.2 

PART 1 - OVERLAY (1 1) PROGRAM SETKM 

START  

READ 
COMPONENT 

INFORMATION 

DO FOR EACH ELEMENT 

CALL ELEMENT 

ACCESS FINITE 
ELEMENT LIBRARY, 

FORM ELEMENT 
K , M 

CALL ASSEM 

ASSEMBLE K e, M 

INTO K u M uo  

READ NO. 
OF DISPLACEMENTS 
TO BE SUPPRESSED 

(NBC) 

t Different Subroutine 
Versions for EIG1 

CALL BC 

CONSTRAIN 
u u 

K°, M°  

STORE K , M ON 
DISe 8 ° 

V  

INITIALISE 
MASS & STIFFNESS 
ARRAYS TO ZERO 
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FIGURE A113 

PART 1 - OVERLAY (2 1) - PROGRAM MODES (EIG1) 

(Called for each primary component) 

START 

CALL DIAG 

CALCULATE SET 
OF EIGENVALUES 
EIGENVECTORE 

READ 
MCS 

( 

	------ % 
STORE EIGENVALUES / 
AND EIGENVECTORS f 

ON DISC 8 	I 
v  

( STORE MCS AND 
EIGENVALUES ON 

DISC 10 

DO FOR EACH PARTIAL CONSTRAINT SET 

MPS = MPS + 1 

READ MO AND SET 
OF MO 

CONNECTION CO-
ORD. NOS. 

V  

CALL GTERMS 

STOREG.SUB- 
1 

MATRIX TERMS 
ON DISC 10 

UPDATE 

RETURN 
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FIGURE A1.4 

PART 1 OVERLAY (2 1) - PROGRAM MODES (EIG2)  

RE-READ 
Ko FROM 

DISC 8 

PRINT SET 
OF NGO 
GENVALUES 

AND MODES 

( STORE 14) 
EIGENVALUES 
AND MODES ON 

DISC 8 

FACTORISE 
K 

0 

YES l RE-READ Ko FROM 

DISC 8 

FORM 
K. 	M 
0 0 0 

FACTORISE 
K  
1 	 

CALL CSTRNT 

READ PARTIAL 
CONSTRAINT 
SET DATA. 

FORM 
GENERALISED 
CONSTRAINTS. 
SOLVE FOR 
CONSTRAINT 
MODES 

STORE NGO, 
EIGENVALUES 

( 	 ) 

AND MCS ON 
DISC 10 

( RETURN 

CALL CMODE 

FORM ORTHO-
NORMAL SET OF 
NC CONSTR. 

MODES 

NGO=NN + NC 

CALL GTERMS 

FORM AND STORE 
G MATRIX TERMS 

ON DISC 10 



IV = 0 
El = 0.0 
E2 = 102° 

( 	READ 
PARAMETERS 
IVAL, ICON 

READ 	 READ 
NR 	 El E2 

READ EBAR (RTG1) 
SET EBAR=2*EMAX 

(EIG2) 
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FIGURE A1.5 

PART 2 - OVERLAY (2 0) - PROGRAM EIGVAL 

START 

  

WRITE 
HEADINGS, 

PARAMETERS 

     

       

       

         

         

         

  

CALL INPUT 

  

CALL EARRAY 

 

  

READ M.S.D. 
INFO FROM 
DISC,10 INTO 

IN-CORE ARRAYS 

  

FORM ORDERED 
LIST OF BASE 
SYSTEM 

EIGENVALUES & 
MULTIPLICITIES 

 

       

1  

(I 

 READ DATA ON 
COMPONENTS 

AND CONSTR-
AINT SETS 

   

   

       

       

       

       

       

       

  

CALL SVAL 

 

  

LOCATE COMPO-
SITE SYSTEM 
EIGENVALUES BY 
EXTENDED STURM 
SEQUENCE 

METHOD 

 

  

CALL SETUP 

   

       

  

Sal' DATA FOR 
FAST SETUP 
OF R MATRIX 

   

         

         

         

         

           

    

RETURN 

 

         



FIGURE Al.6 

SUBROUTINE SVAL 

(Extended Sturm Sequence Scanning Algorithm) 

START 

YES r-;;-: CONSTANT' 

A~ > EBAR 
l 1 

PAHT OF' R FOR 

1-_______ x::J =-. 

DO FOR EACH PRINCIPAi~§ ] 

t 

SET RANGE 
LIMITS 

EL::: 
EU ::: 

ESTABLISH NO. 
OF 

EIGENVALUES 
EXCEEDED BY 

EL 

SET 
MULTIPLICITY 

AT 

ESTABLISH NUMBER OF 

(i.e. EL ~ X ~ EU) 

(= KEL) 

(::: KEL - KEU) 

EIGENVALUES EXCEEDED (= KEU) 
BY EO 

YES 
ICON::: 0 

YES (No roots in principal range) 
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FIGURE A1.6 ( Continued )  

STORE 
EL, KEL 
EU, KEU 

IN WORKING 
TABLE 

ANALYSE 
PRINCIPAL 

RANGE 
(See separate 

flowchart) 

ESTABLISH NO. 
OF EIGEN-
VALUES EXCE-
EDED BY 
EL= 	+ c 

SET 
MULTIPLICITY 
AT 

(= ICES) 

(= KEL-KEU) 

PRINT 
'EMAX EXCE-
EDED' WARNING, 

/ Calculate \\ 
Multiplicity 
at Highest 
Primary 

Eigenvalue 

r 

L L 

EDIT LIST OF 
EIGENVALUES 

( 	PRINT 
COMPOSITE 

SYSTEM 
EIGENVALUES 



SET NO. OF ROOTS 
IN SUB=RANGE 
KS = KU - KL 

(i.e. XL < X XU) 

(Convergence to ) STORE EIGENVALUE 

1 	 

( 
YES ka multiple root  AND MULTIPLICITY 

IN MAIN LIST 

ESTABLISH NO. OF 
EIGENVALUES 	(= KM) 
EXCEEDED BY XM 

SET NO. OF ROOTS 
IN 'LOWER' SUB-
RANGE KS=KM-KL 

LOWER SUB-
RANGE IS 
BARE. SET 
XL = XM 
KL = KM 

ShI NO. OF ROOTS 
IN 'UPPER' SUB= 
RANGE KS&KU-KM 

NO 

YES  
EXAMINE 
I  LOWER' SUB-
RANGE. SET 

XU = XM 
KU = KM 

SET WORKING TABLE 
POINTERS FOR NEXT 

SUB-RANGE 

NO 

DIVIDE SUB-RANGE 
XM=(XU XL)/2 

DEEINE SUB-RANGE DATA 
FROM WORKING TABLE 

J XL, KL 
1 XU, KU 

'STORE XM, KM 
IN WORKING TABLE 
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FIGURE A1.6 (Continued)  

The Analysis of a Principal 
Range  



CALL FILL 

FORM C 

CALL RVEC 

CALCULATE 
PHYSICAL 

EIGENVECTOR 

.4 DO FOR EACH UNIQUE EIGENVALUE 

3E1 
	 PERTURBATED 

ARGUMENT 

CALCULATE 
PERSISTANT 
MULTIPLICITY 

t  MP = p - MZ 

CALL PVEC 

CALCULATEIPERSISTANTI  
EIGENVECTORS 	Q 

CALL TRIAD 

FACTORISE 
AND DEYLATE 

R (Ai) 

RETURN 
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FIGURE A1.8 

PART 3 - OVERLAY (3,0) - PROGRAM EIGVEC 

START 

( READ IVEC ) 

(2) 



[ REWIND 10 

■•••■■•■•• 111(.•••••••••■•••••■••••••91ILVT 

INITIALISE 
GEN. MASS AND 

STIFFNESS ARRAYS 
	•■•••1•11■51114 

READ 
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EIVENVECTOR 

FROM DISC 10 
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OF EIGENVECTOR 
RELATING TO 
COMPNT.

o) 

RE-CALCULATE 
EIGENVALUES FROM 

GEN. TERMS 

FORM XtK x 
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APPROPRIATE 
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STIFFNESS TERMS 

( 	RETURN  
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( WRITE OUT 
GEN. TERMS 
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FIGURE A1.9 

PART 4 - OVERLAY (4,0)  - PROGRAM GENKM 

START 



1 9 3 

TABLE A1.1 

LIST OF INPUT DATA 

COMMENT PROGRAM 
SYMBOL CLASS USE/MEANING 

PART 1 TITLE D Title of job 

IMOD P No. of parts to be executed 
(= 1, 2, 3, or 4) 

NPC D No. of primary components 

Data to describe component. 	First card always contains 

NO D 	Primary component order 

* ITYP P = 0 (fixed component) = 1 (free 
component) 

* NN D No. of Component normal modes 

required 

FOR 
MCS D No. of partial constraint sets for 

current P.C. 

EACH MO D No. of connection freedoms in current 

P.C. P.C.S. 

* MGO D No. of generalised connection 
freedoms required 

FOR 

EACH 

ICST P P.C.S. type 0 = normal, 1 = gener-
alised constraints (read in), 
2 = natural constraints 

P.C.S. ISET P G.C.S. identifier.= 0 implies a new 
set 

MA(M0) D Local connect. coord. nos for P.C.S. 

PART 2 IVAL P Control parameter for comp. system 
eigenvalue 

NR D Calculation = 0 calculates all 

El D = 1 lowest NR calculated 

E2 D = 2 El ...1. X 	E2 calcld. 

ICON 

EBAR 

P 

D 

Constant part approximation control 

parameter = 0 no approximation 
= 1 V! > EBAR defines 

constant part 
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TABLE A1.1  (Continued) 

COMMENT PROGRAM 
SYMBOL 

CLASS USE/MEANING 

PART 	(contd) NC 

ITC(NC) 

MS 

IDA(MS) 

MTA(MS) 

D 

D 

D 

D 

D 

D 

D 

 No. of components in base 

P.C. type for each component 

No. of constraint sets 
system 

Component ident. nos 

P.C.S. types 

Component ident. nos 

P.C.S. types 

system 

in base 

Dominant 
half 

Discarded 
half 

PART 3 IVEC No. of eigenvectors required 
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TABLE A1.2 

LIST OF MAIN  PROGRAM VARIABLES  

COMMENT NAME 
SET 	IN 
ROUTINE USE/MEANING 

PART 1: 

* 

* 

* 

* 

* 

* 

* 

NIP 

NGP 

NGO 

EMIN 

EMAX 

M 

MG 

MPS 

MGS 

NM 

NLG 

COMPNT 

COMPNT 

MODES 

MODES 

MODES 

CSTRNT 

CSTRNT 

CSTRNT 

GCON 

CMODE 

GTERMS 

Sum of P.C. displacement freedoms 

Sum of P.C. generalised freedoms 

P.C. generalised order 

Of the set comprising the highest 
normal mode eigenvalues from all 
P.C.'s, EMIN is the minimum, EMAX is 
the maximum 

Total no. of connection coords 
specified for all P.C.S.'s 

Total no. of generalised constraints 
specified for all P.C.S.'s 

Total no. of P.C.S.'s 

Total no. of G.C.S.'s specified 

No. of ortho-normal constraint modes 
included for a given P.C. 

Total no. of 	G terms written to disc, 
hence defines length of array required 
to store them in-core in part 2. 

PART 2: MM 

L 

NE 

NV 

SETUP 

SETUP 

EARRAY 

EARRAY 

Order of the matrix 	R (X) 
Length of vector containing off-diagon- 
al terms for 	R (X) 

Total no. of entries in the lists of 
unique eigenvalues and associated 
multiplicities 

Total no. of eigenvalues contained in 
above list 

PART 3: SET 

SET 

Total no. of displmt. freedoms in base 
system 

Total no. of generalised freedoms in 
base system 
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TABLE A1.3 

LIST OF FIXED PARAMETERS 

The fixed parameters relating to the routine SIMULT (S.I.) in 

EIG2, and to the routine DIAG (E.J.) in EIG1 are describ0 along with 

these routines in APPENDICES 3 and 4.respectively. 

COMMENT NAME 
ROUTINE 
USED IN 

--- 

MEANING/USE TYPICAL 
VALUE 

* FAG MODES Used to provide a non-singu- 
lar stiffness matrix for the 

103  

S.I. process in the case of 
a free component by 
. 	H:0  = ( K0 +PAC *DA

0
) 

* TOL TRIAK Tolerance for recognising a 
zero diagonal term on factor-
isation 

106  

* TLM CMODE Tolerance for inclusion test- 
ing of constraint modes 

10-2  

* TLN GOON Tolerance for inclusion test- 
ing'of generalised constraints 

10 2  

TLU EARRAY Tolerance for separation of 
close eigenvalues 

10-4  

TLX SVAL 
ZERO 
EIGVEC 

Tolerance for use in setting 
scanning algorithm arguments, 
location of roots, perturbat-
ion of primary eigenvalue 
arguments 

10-4  

TLZ TRIAD Tolerance for recognising 
zero diagonal terms on tri-
angulation 

107  

MIN ZERO Minimum no. of simple bisec- 
tions 

7 

MAX ZERO Maximum no. of bisections + 
interpolation steps 

15 
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APPENDIX 2 

THE COMPONENT MODE METHOD AND SYSTEM hiG,  

A2.1. GENERAL DESCRIPTION  

The Component Mode Method has been discussed in a general context ' 

in Section 4.6.5. 

Here, the method of Craig and Bampton [55], requiring the calculation 

of fixed constraint normal modes and constraint modes for each 

component is extended to a non-diagonal mass matrix. 

Use of the simultaneous iteration technique both for component 

normal modes and composite system normal modes enables the procedure 

to be programmed in an extremely concise way. Details of the 

program EIG3 are included in this Appendix. 

Numerical results obtained are compared with results from Kron's 

method in Chapter '6. 

A reference list of nomenclature is contained in TABLE A2.2. 

A2.2. THE COMPONENT ANALYSIS 

Initially the structure is subdivided into components by 

restraining the connection freedoms along component boundaries. Each 

component may however be considered separately from the rest of the 

structure. A typical component is now considered. 

Let the full displacement vector be partitioned into connection 

freedoms 	Xc andinternalfreedomsX.,and the undamped equation of 

motion partitioned accordingly: 

        

        

        

 

K K 
ii 	ic 

K ci K cc 
x 

M M 
ii ic 

M M 
ci 	CC -, 

 

X 

X X c 
(A2.2.1) 

       

       

        

        

        

A2.2.1. Normal Modes 

The 'fixed constraint' normal modes are found for X = 0 and 

Xi  = 0 , that is by the eigenreduction of: 

(K. 	) = 0 
11 

(A2.2.2) 
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In general only the few lowest modes are found; 	40 N  with generalised 

coordinates q N. 

A2.2.2. Constraint Modes 

Constraint modes are found by imposing a unit displacement in turn 

at the connection coordinates while all other connection coordinates are 

fixed. Static modes are used, hence with X = 0, the first set of 

equation (A2.2.1) gives 

K K. x. + K. 	x 	0 	 (A2.2.3) ii 1 	C 

If the set of imposed connection coordinate displacement patterns are 

gathered together in the unit matrix I , the corresponding constraint 

modes 	40 are obtained by the solution to the equation: 

40 	— K 
ii C 	is (A2.2.4) 

It may be noted here that the number of normal modes nn is 

arbitrary while the number of constraint modes nc 
is fixed. 

A2.2.3. The Component Coordinate Transformation  

The transformation to generalised coordinates is defined by 

     

   

N 
 

 

X x. 

 

= T q 	(A2.2.5) 

 

X 
C 

 

X 
C 

 

      

      

and utilising this to transform the equation (A2.2.1) results in 

(K — AMA) q = Q 
	

(A2.2.6) 

where 

K C = T t K  o 

= M c 

CI = T t X0 
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For non-diagonal 	Ko and 	M o  (component stiffness and mass matrices), 
the form of K and 	M is identical - here shown for 	K cc 

(4) t K 4) ) N 	N 

t t 
( t K 	+ K 	) 	K + 0Kci + K 	+K 	) N 	ci N 	cc 	ci c 0 c 	c 

(A2.2.7) 

By virtue of the orthogonality of the normal modes, and with suitable 

normalisation: 

t K 	A N 	N 

tM N = I 
N  

where A N  is the diagonal matrix of normal mode eigenvalues. 

However, by equation (A2.2.4), the off diagonal block in 	K
c 

is zero, and the second diagonal block simplifies -so that equation (A2.2.6) 

may be written as 

r 
A 
N 

0 

o 	Rcc  - X 
I 	t A cN 
M cN M  cc 

L 

• 

where 

Kcc = K + K cc 	ci c (A2.2.9) 

— M + hi40 + 	t  + —tM..  (A2.2.1.0) 
cc 	cc 	ci c 	c ci 

Ot  M cN  = 	c 
M 4) 

N 	frici4)N (A2.2.11) 

  

1 
CIN 

X 
c 

  

    

  

0 

X c 
(A2.2.8) 
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A2.2.4. Use of Simultaneous Iteration 

The usual method for solving equation (A2.2.4) is to form the 

Cholesky factorisation of K.., and to perform forward and backward 

substitution for each R.H.S.. 

The factorised stiffness matrix is thus readily available for 

use in a simultaneous iteration process for the normal modes. S.I. is 

thus very convenient, involving forward and backward substitution again 

and matrix products with the mass matrix M ii, provided only a small 

fraction of the normal modes are required. 

A2 3. ASSEMBLY AND SOLUTION 

A2.3.1. The Assembled Composite System Matrices 

A consideration of two components, A and B, is sufficient to 

indicate the assembled system matrices. Component normal coordinates 

are carried through as independent freedoms, while the connection 

coordinates are related to the global set of connection coordinates by 

a boolean transformation, ensuring displacement compatibility between 

components. 

Considering 
A 
 X
c 

= B  X
c 
= X 

c
, the composite system matrix 

eigenvalue equation is 

An 

N 	SYMM. 

0 	
A
AN  

B 
0 	0(

A 
 Ke 	K c 	cc 

x 

as follows: ( 

I 

I 

A McN 
B11cN 

c = 

(B 

0 ) 

SYMM. 

cc +
B 

14 cc 

A 
q N 

B 
" N 
X c 

0 

0 

(A2.2.12) 

Provided only a fraction of the normal modes from each 

component is included, the order of the above eigenvalue problem is 

considerably smaller than the fully assembled problem. In addition, 

the partitioning and general form of equation(A2.2.12) indicates that 

a variable bandwidth storage method would,place relatively low demands on 

core. 

The general composite system eigenvalue equation is denoted by 

( 	04') q' = 0 	 (A2.2.13) 
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A2.3.2. Solution of the Composite System Eigenproblem  

The composite system eigenproblem is of 'algebraic' form and may 

be solved by standard method, however transformation methods would 

greatly increase the core requirement. Equation (A2.2.12) describes 

an approximate system in which higher mode freedoms are not 

included, thus only the lower eigenspectrum is of practical interest. 

Clearly, the factorisation of the stiffness matrix K
/ 
 is a very light 

task and so simultaneous iteration is again highly suited. 

In a situation where a fair number of eigenvalues are required 

ir 

to good accuracy, or just intermediate ones, the Sturm sequence method 

ma be used. Clearly, only factorisation of the lastnt  rows of 

( K. - X M ) is required for each trial X (where nb  is the number of 

global connection coordinates). The sign count so obtained is added 

to the number of component normal mode eigenvalues exceeded by A to 

obtain the full sign count. 

A2.3.3. Eigenvector Calculation  

The full composite system eigenvectors are obtained from the 

generalised eigenvectors by application of equation (A2.2.5) for each 

component, thus'obtaining the displacement at the internal freedoms. 

A2.4. THE COMPUTATIONAL SYSTEM EIG3 

The theory of the previous sections is applied in the program system 

EIG3. The three part organisation and use of disc storage is 

indicated in Fig. A2.1, while the overlay structure is shown in Fig. A2.2. 

Table. A2.3 	lists 	the input data and other principal 

program symbols respectively at the end of this appendix. 

The three constituent parts are now briefly discussed. 

A2.4.1. Part 1 - The Analysis of the Components  

The flowchart for PROGRAM COMPNT is shown in Fig. A2.3. No attempt 

is made to define a minimum data set as in EIG2, however the parameter 

IREP (see Table A2.3) is introduced to save work in cases where there 

is a form of repetition between components. 

PROGRAM SETKM, responsible for forming It o and M o  is 
identical to that of EIG2, using variable bandwidth storage. 

PROGRAM MODES is flowcharted in Fig. A2.4. `K 0  and M 0  are 
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first partitioned conformably with 	X0  = {X 1  . x } , and the 

last NC rows are held in full, where NC is the dimension of 	Xc. 

The spaces containing I(a and M are useful in the subsequent ci 
computation of 	R 

cc 1 	EA cc  and 	NIcN once the normal and 
constraint modes have been calculated. 

Where suppression of the connection freedoms does not render K 
non-singular, additional internal freedoms may be designated 

connection freedoms to remove rigid modes. 

A2.4.2. EaLL2-...:_211eCP°m'si nalsis 
The flowchart for PROGRAM VALVEC is shown in Fig. A2.5. The 

various component matrices are read back from disc where they were 

stored during part 1, and assembled into composite system matrices of the 

general form: 

ii 

 

A 1 	gmm. 
- A2\ 

0 \A 
CS  

0 	K cc  

  

SYMM. 

K = 

 

I 
0 I 

 

  

-r 	 

McN1McN2 M  cN 	Mcc NCS 

   

   

     

• 

The dimension NB is read in at the start of the run, while NA is calculated 

during part 1. Variable bandwidth storage enables large problems to be 

held in a reasonable core space, provided NB is not too large. The 

storage areas used for 	PCo and hio in part 1 are reused for 

K and M . Similarly, the routines for factorisation, S.1., mass 
matrix multiplication etc., used during part 1 are simply reused during 

part 2. 

A2.4.3. Part 3 - Full Eigenvectors. Generalised Mass and  

Stiffness Terms  

The flowchart for PROGRAM CMPVEC is shown in Fig. A2.6. For each 

component in turn, the local eigenvector is calculated, and the contribution 

towards the composite system generalised terms calculated. 
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A2.5. APPLICATION TO PLATE BENDING EXAMPLE (NO.1) 

The program hiG3 was tested using the plate bending example 

introduced in Section 6.3.5. The results obtained by including 2, 3 
and 4 'fixed constraint' normal modes (cases A, B, C respectively) from 
each component are shown in TABLE A2.1. 12 'unit displacement' 

constraint modes are included in all cases. Hence the orders of the 

composite systems are given by 

Case A 2 2 12 = 16 

Case B 3 + 3 4. 12 = 18 

Case C 4 + 4 + 12 = 20 

The lowest six eigenvalues, obtained to five places, are presented 

together with percentage error with respect to the full solution. 

The results validate the operation of the program and indicate 

the excellent representation of the low composite system eigenspectrum. 

It was noted that, in general, accuracy dropped off rapidly once the 

highest component normal mode eigenvaiue had been exceeded. 

These results may be compared with those obtained by the approximate 

Kron method (TABLE 6.5). While accuracy of the lowest eigenvalues is 

generally better with the latter approach, the accuracy fall-off 

occurs earlier. This is expected as the 'fixed constraint' normal modes 

extend to a higher X value than an equivalent number of 'free connection 

coordinate modes' as used in Kron's method. 
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TABLE A2.1 

PLATE BENDING EXAMPLE (NO. 1) 

RESULTS FROM TEST CASES  

A B 	I_ 	C FULL 
••=.4..........4.■ 

Composite System Eigenvalues SOLUTION 

1 75.046 74.947 74.947 74.931 

2 544.41 544.26 542.22 541.80 

3 570.24 568.94 568.88 568.84 

4 2323.3 2238.5 2222.4 2204.9 

5 2398.0 2394.0 2391.4 2389.6 

6 6909.1 6258.3 6184.7 6111.4 

% Errors w.r.t. full solution 

1 0.153 0.021 0.021 

2 0.482 0.454 0.077 

3 0.246 0.018 0.007 
_ 

4 5.41 1.52 0.794 

5 0.352 0.184 0.075 

6 13.05 2.40 1.20 

. 

0 

First 4 'fixed constraint' component eigenvalues are 
,-- 

1 1228.5 

2 3205.4 

3 9478.5 

4 f 17159.0 
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FIGURE A2.1.  
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FIGURE  A2.4. 	FIGURE A2.5.  
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FIGURE A2.6.  
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TABLE A2.2 

THEORY NOMENCLATURE 

SYMBOL 	• DIMENSION MEANING 

. K o 
n x n 

Component stiffness matrix 

fti o 
0 	o 

 Component mass matrix 

Xo o Component (full) displacement vector 

X
i n. Vector of component internal freedoms 

X c 
n
c Vector of component connection 

freedoms 

)(o Vector of component forces (full) 

4)
c 

(no x nc) Matrix of constraint modes 

41)
N (no  x nn

) Matrix of normal modes 

q (nc + nn) Component generalised displacement 
vector 

(IN (n
n
) Component normal mode coordinate 

vector 

I(c (nc 
+ n

n
)x Condensed component stiffness matrix 

hic (nc + nn
) Condensed component mass matrix 

K
CC (n

c x nc
) 

MCC (n
c
x n

c
) Submatrices in 	14:

c 
	M and 	

C 

McN (n
c 
x nn) 

AN (nn x nn
) Diagonal matrix of normal mode 

eigenvalues 

le Composite system stiffness matrix 
, 

M 
n x n 

Composite system mass matrix 

q n Composite system displacement vector 

no Typical component order 

nc 

n. i 

nn 

Number of component connection 
freedoms 

Number of component internal freedoms 

Number of component normal modes 

n 	' Order of composite system 

na 
Number of normal mode freedoms in 

composite system 
nb  Number of connection coordinates 

in composite system 



211 

TABLE A2.3 

COMPUTER PROGRAM NOMENCLATURE FOR )TG3 

LIST OF INPUT DATA 

COMMENT 
PROGRAM 
SYMBOL  

READ IN BY USE/MEANING 

TIG(6) COMPNT Title of run  

IMOD COMPNT "Overall control" parameter 	
. 

(as per EIG1/2) 

NCS COMPNT No. of components 
• 

NB COMPNT Total no. of connection freedoms 
in composite structure 

IREP COMPNT "Repeated component" parameter. 
IREP=0 normal. 

F 
0 

IREP=1 	and 	are as for previous 
component 

R 

E 

IREP=2 only change from previous 
component is new global con-
nection coordinates 

A 
C t Data to describe component 	- 	first card always contains: 
H NO SETKM Component order 

C * NN MODES No. of component normal modes 
0 
M 

required 

P * NC MODES y No. of component connection freedoms 
0 
N 
E 
N 

* NGC(NC) MODES Local displacement nos. of the 
connection freedoms 

T 
NGC(NC) MODES Global displacement nos. of the 

connection freedoms 

NR VALVEC No. of composite structure normal 
modes required 

OTHER 
NA COMPNT Sum of all the component normal 

modes 
PRINCIPAL 
PROGRAM NI PART Order of 	14:

ii
(= NO - NC) 

SYMBOLS 
N VALVEC Order of le, te (- NA + NB) 

(t not required if IREP = 1) 
(* not required if IREP = 2) 
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APPENDIX  

SUBROUTINE SIMULT (SIMULTANEOUS ITERATION MEIHOD) 

A3.1. SUBROUTINE SIMULT 

The theory of simultaneous iteration has been dealt with in 

Section 2.3. A flowchart of the routine SIMULT is shown here in 

Figure A3.1. 

The three fixed parameters used by the routine are as follows: 

NAV = number of additional trial vectors to be used above 

NN (typically 3) 

LIM = the maximum number of iterations permissible 

(typically 10) 

TLS = a tolerance for convergence testing (typically 10 5) 

The stiffness matrix is factorised prior to entering SIMULT. The 

interaction analysis utilises the off-diagonal terms in the interaction 

matrix to provide a measure of the coupling between trial vectors. 

Convergence is obtained when all the first NN diagonal terms in the 

interaction matrix are within a small tolerance of the previous 

iteration's values. This tolerance is given by the latest diagonal 

term x TLS. 
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V 
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FIGURE A3.1.  
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MATRIX 
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APPENDIX 4 

SUBROUTINE DIAG (EXTENDED JACOBI METHOD)  

At+.1. BASIC THEORY 

The extended Jacobi method involves the conversion of the structure 

mass 'and stiffness matrices simultaneously to diagonal form via a 

series of similarity transformations: 

I 	 pt 	 p 

rg‘ 
v 

 r-1 r 	K r 	Kr -4 k (diag) as r 	OD 

(A4.1) 

PrMr-1 P r 	M rr 	113 (diag) as r 	co 

The technique is useful where a complete set of eigenvalues and eigen-

vectors are required for fairly small problems. 

Each transformation step zeros a pair of off-diagonal lower triangle 

terms : e.g., for the (i,j) terms (non-zero terms in Pr  indicated). 

Symm. 

k . . 
J3 

1J 	JJ  

1 

J 

The condition that k. = m. = 0 enables p1 and p2 
to be calculated by 

1j 	1j 

where 

- bb2-4ac)  
p1 2a 

a = 	- m 
JJ 	jJ 

b = k.Jm. - m..k. 
jj 	jj 11 

c = k..m. - m. .k.  Ij 

(A4.2) 

F 
1 k11 
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whence 
(kil  + plkli) a 
(k1. + p2  ki j. .) 	P 

(A4.3) 

The minus sign is used consistently in the numerator of equation A4.2. 

Care must be taken to recognise ill-conditioning in this numerator. 

The following special cases are also recognised 

pl = 	b 

if , a = b = 0 	p
1 

is indeterminate 

if 	= 0, an alternative expression for equation 

(A4.3) involving mass terms should be used. 

The procedure adopted is to work through the off-diagonal terms in 

a columnwise manner. In general, however, previously zeroed locations 

are disturbed by subsequent transformation, and several 'passes' are 

required until all the off-diagonal terms are within some acceptable 

tolerance. The transformed mass and stiffness matrices remain symmetric 

at each stage. Both zero and coincident eigenvalues and associated 

vectors are obtained by the technique. 

If the total number of transformations used to obtain a 'converged' 

state is s, the eigenvalues are given by hi  = k../m..11 
 while the eigen- 

11 
vectors are formed from the transformation matrices by 

40 = T Pr 
r=1 

(A4.4) 

A normalisation procedure is incorporated on each transformation. 

If p
1 or p2 

exceed unity modulus, the appropriate column of Pr 
is factored by - 

1  
-- or - 1  . At each stage it is thus only necessary to 

save the terms 
pl 
 p1, P2  p2, p3, p4  where p3  and p4  are the diagonal 

terms in the columns containing p2  and p1  respectively. 

A4.2. SUBROUTINE DIAG  

SUBROUTINE DIAG and associated subroutines are responsible for 

carrying out the theory of the previous section. DIAL initially reads 

in the control parameters listed below: 

if 	a = 0 
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TOL 	tolerance for off-diagonal term testing 

	

MAXK 	maximum number of complete 'passes' allowable 

(typically 8 - convergence usually obtained 

in 5 or 6) 

	

IC 	a write parameter -- used as a debugging aid 

(normally 0) 

	

IN 	eigenvector normalisation parameter 

= 0 no normalisation 

= 1 w.r.t. largest term 

= 2 such that 	4)4). 	= 
it = 3 such that 	" 4)2.  

IW 	number of eigenvalues and eigenvectors required 

as printed output (starting with the lowest). 

DIAG accesses the structure mass and stiffness matrices and the 

problem order via COMMON blocks. The matrices must be stored in 

triangular columnwise form. The transformations are then carried out, the 

values pl, p2, p3, pit  being stored on a scratch disc file. A test for 

convergence is made at the end of each 'pass', the criteria being that all 

off-diagonal terms must be less than a tolerance based on the smallest 

diagonal terms. As a zeroing leading diagonal stiffness matrix term 

is possible, a minimum diagonal term is set within the program. At 

convergence, the eigenvalues are calculated. 

Control is passed to SUBROUTINE MULT which recovers the pi  terms 

from disc store and forms up the eigenvector matrix in the same core 

locations as utilised by the input mass and stiffness matrices. 

Finally SUBROUTINE WRIT prints the eigenvalues and eigenvectors in 

ascending order. 
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APPENDIX 5 

BEAM AND PLATE FINITE ELEMENTS 

Brief details of the beam and plate bending finite elements 

utilised in conjunction with the computational systemsare included in 

this appendix. 

A5.1. 2-DIMENSIONAL BEAM ELEMENT 

The beam element used included flexural stiffness in one plane 

only and is rigid in extension (Figure A5.1(a)). Hermitian polynomials 

corresponding to the four element freedoms and expressed in terms of the 

local coordinate q define the displacement interpolation functions: 

w1 = -11-4(2 - 3q 	q3) 

w
2 

= (- q q2  q3) 

143  = 4(2 3q - q3) 

Ar w4  = -87,k- 	- q 	q2 	q3) 

Ignoring the effect of shear flexibility, there is one non-zero 

shear component i.e., ex. Assuming linear elasticity with Youngs 

modulus E, and density per unit volume p, straightforward application 

of the displacement method produces an element stiffness matrix given 

by 
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12 	Symm. 

62 422  

-12 -62 12 

6L 2A2 ..61 412 

I = 
12 

   

and ignoring rotary inertia, a kinematically consistent mass matrix 

given by 

m — 
420 

156
g 

	

222 	422  

	

54 	131, 

—13A —3A2  

156 

-222  422  

  

(assuming unit depth). 

A5.2. RECTANGULAR PLATE BENDING ELEMENT 

Initial tests were carried out using a 12 degree of freedom 

unconforming rectangular plate bending element (see for example [66]). 
aw aw 

Possessing w, ax' ay — freedoms at each node, the total number of freedoms 

is insufficient to define a complete cubic displacement polynomial over 

the element, and normal slope continuity between adjacent elements is 

not enforced. This non-confirming property leads to erratic convergence 

as grid size is refined. 

Such behaviour was observed in some of the test examples, and it was 

decided to employ a 16 degree of freedom conforming element instead [67] 

The conforming properties assure that convergence to the exact 

. natural frequency is monatonically from above [68]. 
d2w 

The element is shown in Figure A5.2, the twist (3Ei) being the 

additional freedom included at each of the four nodes. The element was 

programmed utilizing Hermitian polynomials,in terms of local coordinates 

q1, qv
and Gaussian integration. Constant thickness is assumed. 

Both elements employed were validated against documented test case. 

Symm 
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FIGURE  

2-DIMENSIONAL BEAM ELEMENT 
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