193 research outputs found

    Deterministic Constrained Multilinear Detection

    Get PDF

    Directed Hamiltonicity and Out-Branchings via Generalized Laplacians

    Get PDF
    We are motivated by a tantalizing open question in exact algorithms: can we detect whether an nn-vertex directed graph GG has a Hamiltonian cycle in time significantly less than 2n2^n? We present new randomized algorithms that improve upon several previous works: 1. We show that for any constant 0<λ<10<\lambda<1 and prime pp we can count the Hamiltonian cycles modulo p⌊(1−λ)n3p⌋p^{\lfloor (1-\lambda)\frac{n}{3p}\rfloor} in expected time less than cnc^n for a constant c<2c<2 that depends only on pp and λ\lambda. Such an algorithm was previously known only for the case of counting modulo two [Bj\"orklund and Husfeldt, FOCS 2013]. 2. We show that we can detect a Hamiltonian cycle in O∗(3n−α(G))O^*(3^{n-\alpha(G)}) time and polynomial space, where α(G)\alpha(G) is the size of the maximum independent set in GG. In particular, this yields an O∗(3n/2)O^*(3^{n/2}) time algorithm for bipartite directed graphs, which is faster than the exponential-space algorithm in [Cygan et al., STOC 2013]. Our algorithms are based on the algebraic combinatorics of "incidence assignments" that we can capture through evaluation of determinants of Laplacian-like matrices, inspired by the Matrix--Tree Theorem for directed graphs. In addition to the novel algorithms for directed Hamiltonicity, we use the Matrix--Tree Theorem to derive simple algebraic algorithms for detecting out-branchings. Specifically, we give an O∗(2k)O^*(2^k)-time randomized algorithm for detecting out-branchings with at least kk internal vertices, improving upon the algorithms of [Zehavi, ESA 2015] and [Bj\"orklund et al., ICALP 2015]. We also present an algebraic algorithm for the directed kk-Leaf problem, based on a non-standard monomial detection problem

    The Graph Motif problem parameterized by the structure of the input graph

    Full text link
    The Graph Motif problem was introduced in 2006 in the context of biological networks. It consists of deciding whether or not a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Graph Motif has been mostly analyzed from the standpoint of parameterized complexity. The main parameters which came into consideration were the size of the multiset and the number of colors. Though, in the many applications of Graph Motif, the input graph originates from real-life and has structure. Motivated by this prosaic observation, we systematically study its complexity relatively to graph structural parameters. For a wide range of parameters, we give new or improved FPT algorithms, or show that the problem remains intractable. For the FPT cases, we also give some kernelization lower bounds as well as some ETH-based lower bounds on the worst case running time. Interestingly, we establish that Graph Motif is W[1]-hard (while in W[P]) for parameter max leaf number, which is, to the best of our knowledge, the first problem to behave this way.Comment: 24 pages, accepted in DAM, conference version in IPEC 201

    Univariate Ideal Membership Parameterized by Rank, Degree, and Number of Generators

    Get PDF
    Let F[X] be the polynomial ring over the variables X={x_1,x_2, ..., x_n}. An ideal I= generated by univariate polynomials {p_i(x_i)}_{i=1}^n is a univariate ideal. We study the ideal membership problem for the univariate ideals and show the following results. - Let f(X) in F[l_1, ..., l_r] be a (low rank) polynomial given by an arithmetic circuit where l_i : 1 be a univariate ideal. Given alpha in F^n, the (unique) remainder f(X) mod I can be evaluated at alpha in deterministic time d^{O(r)} * poly(n), where d=max {deg(f),deg(p_1)...,deg(p_n)}. This yields a randomized n^{O(r)} algorithm for minimum vertex cover in graphs with rank-r adjacency matrices. It also yields an n^{O(r)} algorithm for evaluating the permanent of a n x n matrix of rank r, over any field F. Over Q, an algorithm of similar run time for low rank permanent is due to Barvinok [Barvinok, 1996] via a different technique. - Let f(X)in F[X] be given by an arithmetic circuit of degree k (k treated as fixed parameter) and I=. We show that in the special case when I=, we obtain a randomized O^*(4.08^k) algorithm that uses poly(n,k) space. - Given f(X)in F[X] by an arithmetic circuit and I=, membership testing is W[1]-hard, parameterized by k. The problem is MINI[1]-hard in the special case when I=
    • …
    corecore