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Abstract
We extend the algebraic techniques of Brand and Pratt (ICALP’21) for deterministic detection of
k-multilinear monomials in a given polynomial with non-negative coefficients to the more general
situation of detecting colored k-multilinear monomials that satisfy additional constraints on the
multiplicities of the colors appearing in them. Our techniques can be viewed as a characteristic-zero
generalization of the algebraic tools developed by Guillemot and Sikora (MFCS’10) and Björklund,
Kaski and Kowalik (STACS’13)

As applications, we recover the state-of-the-art deterministic algorithms for the Graph Motif
problem due to Pinter, Schachnai and Zehavi (MFCS’14), and give new deterministic algorithms for
generalizations of certain questions on colored directed spanning trees or bipartite planar matchings
running in deterministic time O∗(4k), studied originally by Gutin, Reidl, Wahlström and Zehavi (J.
Comp. Sys. Sci. 95, ’18). Finally, we give improved randomized algorithms for intersecting three
and four matroids of rank k in characteristic zero, improving the record bounds of Brand and Pratt
(ICALP’21) from O∗(64k) and O∗(256k), respectively, to O∗(4k).
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1 Introduction

The area of fixed-parameter algorithms, sprung from the seminal work of Downey and Fellows
(see e.g. their monograph [11]), has produced an enormous amount of tools and techniques
to facilitate the design of algorithms that can solve NP-hard problems in running times
of the form f(k) · poly(n), where n is the input size and k is some parameter that can be
interpreted to quantify the difficulty of the instance at hand.

Two prominent and highly successful techniques contributing to this toolbox are, on
the one hand, of algebraic nature, focusing on formulations of combinatorial problems
in the language of polynomials, and then employing mathematical means to solve these
reformulations. On the other hand, one of the earliest approaches known to produce fixed-
parameter algorithms is the combinatorial method of representative families, with their first
algorithmic applications dating back at least to work of Monien [25].
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25:2 Deterministic Constrained Multilinear Detection

Both the algebraic as well as the representative-family based approach have received a
considerable amount of attention in recent years, often focusing on the same application
problems. This has resulted in a flurry of competing results on variants of e.g., the notorious
longest path problem, subgraph isomorphism, set packing, network design as well as matroid
problems, to name a few.

An important variation on the basic combinatorial problems studied in these lines of
research concerns colored variants of the problems. One of the most well-studied problems
of this kind is the graph motif problem, which was originally motivated from the analysis
of biological networks, and has since been the subject of many parameterized algorithmic
studies. As with the uncolored variants of these problems, the colored counterparts attracted
attention from researchers from both the perspective of representative families, as well as
the algebraic point of view, with both techniques contributing methods that have remained
the state-of-the-art within their respective regime. A possibly sweeping generalization of the
results that together form this body of work might perhaps conclude that algebraic methods
seem more adapted to produce fast randomized algorithms, whereas the representative
families tend to yield record bounds for deterministic algorithms.

On the side of algebraic algorithms, in the uncolored regime, a common technique for all
of the combinatorial problems above is to formulate them as so-called multilinear monomial
detection problems. In these problems, one is given an arithmetic circuit computing a
polynomial, and the task is to decide whether this polynomial contains a product of k variables
that are all pairwise distinct, and k is the parameter. Similarly, in the colored variants, these
detection problems are generalized to so-called constrained multilinear monomial detection,
where additional coloring constraints are imposed on the products of variables to be detected.
This is also the technique that is considered in the present article.

1.1 Related Work
For general background on fixed-parameter algorithms, we refer the reader to the snapshot
of the state-of-the-art of the field as captured by e.g. the textbook of Cygan et al. [9], in
particular Chapters 10 and 12, where diverse applications of the tools mentioned above are
developed.

Algebraic Algorithms

One of the seminal works for algebraic methods in parameterized and exact algorithms is
the work by Björklund et al. [2] on fast subset convolutions and its application for the
parameterized Steiner tree problem. More specifically, for the problems considered in this
article, the algorithms by Koutis and Williams on multilinear detection were highly influential
[20, 22, 29]. These methods were first transported to the setting of constrained multilinear
detection by Guillemot and Sikora [17] and subsequently improved by Koutis [21] as well
as Björklund, Kowalik and Kaski [4, 5]. It is important to note that all their methods are
inherently randomized, because they resort to a use of the DeMillo-Lipton-Schwartz-Zippel
Lemma, which makes it seem hard to derandomize them in a black-box manner.

Graph Problems

These randomized algebraic methods allow to design the state-of-the-art algorithms for
e.g. the maximum graph motif problem, running time 2k · poly(n) [4, 5]. On the side of
deterministic algorithms, which is the focus of this article, the relevant techniques are more
combinatorial in nature. Indeed, the method of representative families was first considered



C. Brand, V. Korchemna, and M. Skotnica 25:3

explicitly in the context of fixed-parameter algorithms by Marx [24] and has since been
extended into a most intricate machinery, in particular in the works of Fomin et al. [15, 16].
These methods were then refined by Pinter, Shachnai and Zehavi and applied to design the
state-of-the-art deterministic algorithms for the graph motif problem [26], running in time
2ωk · poly(n).

Matroid Problems

Another area in which representative-families based methods have proven fruitful is the realm
of matroid problems. In this article, we consider the problem of matroid intersection: Given
q (representations of) matroids of rank k, decide whether they share a single common basis.
This is a classic problem in combinatorial optimization, and the polynomial-time solvable
special case of intersecting q = 2 matroids is famously treated by Edmonds [13]. More
generally, intersecting q > 2 matroids becomes NP -hard, and fixed-parameter algorithms for
this problem were given first (without using this term) by Barvinok [1]. In a later development,
Marx [24] revived the interest in this problem by giving the first single-exponential (in q and
k) algorithm using representative families, which was superseded by the work of Fomin et
al. [15]. The current state-of-the-art is 4qk [8]. A recent manuscript of Eiben, Koana and
Wahlström [14] shows that this can be improved to 4(q−2)k using different algebraic methods.

Our Contribution
The contribution of this paper is three-fold. First, we show how to extend the (deterministic)
algebraic machinery of Brand and Pratt to the colored, that is, constrained-multilinear
setting. This is noteworthy insofar as until now, the only known algebraic tools for this
task were inherently randomized, and the only deterministic algorithms for the respective
combinatorial application problems were of decidedly combinatorial nature.

Secondly, we show how to use these adapted methods to, on the one hand, reproduce the
deterministic state-of-the-art for the graph motif problem without any additional problem-
specific adaptation as a generic application of the algebraic methodology laid out here.
In addition, we provide examples of natural colorful extensions of several combinatorial
problems, involving e.g. spanning trees and planar perfect matchings, that are not known to
admit deterministic algorithms by using only the known combinatorial techniques.

Finally, we improve the state-of-the-art for matroid intersection in the case q ≤ 4 by
giving specialized polynomial formulations of these cases. It is worth noting that the speedup
over the generic state-of-the-art technique is by a factor of 16 (or 4 with respect to [14]) in
the exponential base.

Organization

We continue with a formal introduction of notation and all problems considered in the
article. We then prove our main theorem about constrained multilinear detection and give
our applications for graph problems. We then conclude with the improved algorithms for
matroid problems.

2 Preliminaries

Generally, we denote the set of integers {1, . . . , t} by [t], and use [t]0 as a shorthand for
[t] ∪ {0}. We denote by N the set of natural numbers excluding zero, and by Q the set of
rational numbers.

MFCS 2023



25:4 Deterministic Constrained Multilinear Detection

Matrices and Matroids

Let A be a matrix with row set X and column set Y , and let X0 and Y0 be subsets of X

and Y correspondingly. We denote by A[X0, Y0] the submatrix of A restricted to the rows in
X0 and the columns in Y0 (while in A[Y0] the restriction is applied to columns alone). In
particular, A[X, Y ] = A[Y ] = A. For two matrices A and B, we denote their direct sum by
A ⊕ B. For an arbitrary sequence r1, . . . , rN ∈ Q, we write Vandk(r1, . . . , rN ) for the k × N

Vandermonde matrix defined through

Vandk(r1, . . . , rN )l,j = rl
j , l ∈ [k − 1]0, j ∈ [N ].

By convention, we let 00 = 1 in this definition, and we say Vandk(r1, . . . , rN ) is the Vander-
monde matrix of the sequence r1, . . . , rN .

A finite matroid M is a pair (E, I), where E is a finite set (called the ground set) and I
is a family of subsets of E (called the independent sets) satisfying so-called independence
axioms. In this article we only work with finite matroids that can be represented by matrices
as follows. Any matrix M with entries in Q gives rise to a matroid M with the ground set
being its set of columns. The independent sets of the matroid are those subsets of columns
that are linearly independent as vectors. In particular, size of any base (i.e., maximal with
respect to inclusion independent set) of M is equal to the rank of M . We say that such a
matroid M is represented by M .

Polynomials

Let R be a commutative ring, and let x1, . . . , xn be formal indeterminates. Then R[x1, . . . , xn]
is the ring of polynomials in x1, . . . , xn with coefficients in R, and we call the latter the
coefficient ring of the polynomial ring.

Every polynomial f can be represented uniquely as a weighted, finite sum of monomials,
that is, products of variables. We may therefore write

f =
∑

a1,...,an∈N
ca1,...,an

xa1
1 · · · xan

n ,

where only finitely many of the coefficients ca1,...,an
∈ R are non-zero. When all monomials

appearing in fM are of degree k, we call f itself homogeneous of degree k. Furthermore,
if for some choice of a1, . . . , an ≤ 1 there is a coefficient ca1,...,an ≠ 0, we say that f has a
multilinear monomial xa1

1 · · · xan
n .

Our algorithms are based on the algebraic techniques found in [8]. In this approach, as
with similar algebraic methods [20], the combinatorial objects (matroid bases, subgraphs,
subsets, and so on) over a universe of size n are modeled using (rational) multivariate
polynomials over the indeterminates x1, . . . , xn. The crux of the approach in [8] is then to
write down a polynomial whose coefficients encode some information about the combinatorial
problem at hand, and evaluate algebraically some linear functional over this polynomial that
reveals some sought-after combinatorial answers.

This functional is defined via the following inner product: Let f and g be any two such
polynomials that are homogeneous of degree k, and say that f is as above and

g =
∑

a1,...,an∈N
da1,...,anxa1

1 · · · xan
n .



C. Brand, V. Korchemna, and M. Skotnica 25:5

Then we define their apolar inner product ⟨f, g⟩ in an almost entirely straightforward way, by

⟨f, g⟩ =
∑

a1,...,an∈N
a1! · a2! · · · an! · ca1,...,an

· da1,...,an
. (1)

Including the product of factorials serves the purpose of normalization, which allows to
connect ⟨f, g⟩ with the partial derivatives of f and g.

As an inner product, this mapping can be intuitively interpreted as a measure of similarity
between f and g. In particular, when fixing g (or, equivalently, f) to, for example, the k-th
elementary symmetric polynomial

ek(x1, . . . , xn) =
∑

S⊆[n]
|S|=k

∏
s∈S

xs,

which has all, and only, multilinear monomials with coefficient one, it is easy to see that
f 7→ ⟨f, ek⟩ is a linear functional that yields the sum of coefficients of multilinear monomials
of degree k of f . If f maps to a non-zero value under this functional, we may conclude that
f has a multilinear monomial. As shown in [8], the complexity of evaluating this functional
depends on certain algebraic properties of f and ek (or g, in general).

Arithmetic Circuits

Even before these algebraic properties, the complexity of this evaluation depends on the
encoding of f and g. Indeed, if f and g are given by their list of coefficients, then all
questions treated in this article become trivial. However, this would imply inputs that
are of exponential size in n, making this sparse encoding a poor choice for polynomials
enumerating e.g. combinatorial objects, as an algebraic analog to brute-force search. Instead,
polynomials are encoded using arithmetic circuits, which are directed acyclic graphs with a
single sink, labeled as follows: Every vertex of in-degree zero (inputs) is labeled with either an
indeterminate or a constant from the coefficient ring. Every vertex with non-zero in-degree
is labeled either + or ×. The labeled nodes of the arithmetic circuit are referred to as gates.
An arithmetic circuit computes a polynomial in the obvious inductive manner. Finally, we
call an arithmetic circuit skew if every ×-gate has at most one edge coming from a non-input
gate.

Constrained Monomials

In the context of this article, mutlilinear monomials that are not only multilinear, but satisfy
additional constraints are relevant. More precisely, suppose C = {1, . . . , q} is a set of q

colors with multiplicities µ1, . . . , µq ∈ N, and χ : [n] → C is a coloring of [n]. A multilinear
monomial xa1

1 · · · xan
n is called well-colored if

∑
i:χ(i)=c ai ≤ µc for all colors c ∈ C, that is,

every color appears at most µc times in the monomial.

Problem Statements

Let us now formally introduce the problems studied in this article. The most prominent
one, which will be used to reduce the combinatorial application problems to, is the following
algebraic problem.

MFCS 2023



25:6 Deterministic Constrained Multilinear Detection

Constrained k-Multilinear Detection
Input: A number k, an arithmetic circuit computing a polynomial f , a coloring of the

variables of f , together with multiplicity constraints on each color.
Question: Does f have a well-colored multilinear monomial of degree k?

In our algorithms, we will encounter the restriction that the computed polynomial f (but
not necessarily the circuit itself) have non-negative coefficients in order to make them
deterministic. This is a natural restriction when dealing with combinatorial problems in
many cases.

Graph Problems

In analogy to the definition of well-colored monomials, the notion of a vertex or edge coloring
includes those mappings that are not necessarily proper colorings, that is, two neighboring
vertices in a graph, or two edges sharing a vertex, may very well receive the same color. To
be precise, given a coloring χ : V (G) → {1, . . . , q}, or analogously χ : E(G) → {1, . . . , q},
and multiplicites µ1, . . . , µq, we call a set S of vertices (or edges, respectively) well-colored
if χ−1(i) ∩ S ≤ µi for all i = 1, . . . , q. With this in mind, the following problems can be
defined:

Maximum Graph Motif
Input: A vertex-colored undirected graph G together with multiplicity constraints on each

color.
Question: Does G have a well-colored set of k vertices that induce a connected subgraph of

G?

In algebraic terms, Maximum Graph Motif, while amenable to our techniques, doesn’t
showcase their full strength, for reasons explained in the article. In contrast, the following
problems share the important property that they can be expressed succinctly by computations
of certain determinants, which allows us to give the first fixed-parameter algorithms for them
that are probably hard to come by using other approaches. These are made in analogy to
the non-well-colored graph problems studied by Gutin et al. [18].

Well-Colored Spanning Tree
Input: A number k and an edge-colored directed graph G together with multiplicity

constraints on each color.
Question: Does G have a well-colored subset of k edges that can be extended to a directed

spanning tree of G?

Well-Colored Planar Perfect Matching
Input: A number k and an edge-colored planar graph G together with multiplicity con-

straints on each color.
Question: Does G have a well-colored subset of k edges that can be extended to a perfect

matching?

Internally Well-Colored Spanning Tree
Input: A number k and a vertex-colored planar graph G together with multiplicity con-

straints on each color.
Question: Does G have a spanning tree such that its internal vertices contain a well-colored

subset of at least k vertices?
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3 Constrained Multilinear Detection

For any multiplicities µ = (µ1, . . . , µq) and natural numbers n, k, consider the polynomial
ring Q[y1,1, . . . , y1,n, . . . , yq,1, . . . , yq,n] in nq variables. Following the nomenclature from
randomized algebraic methods by Björklund, Kaski and Kowalik [4, 5], we refer to the
variables yi,1, . . . , yi,n as the shades of the color i. We call a multilinear monomial of degree
k in y-variables well-colored if for every color i, at most µi shades of the color i appear in
the monomial. Furthermore, we associate with every subset M of [nq] of size k a multilinear
monomial yM of degree k in the obvious manner.

▶ Lemma 1. There is an algorithm that, given µ, constructs in time poly(n, k, q) a skew
arithmetic circuit computing a polynomial χµ =

∑
M⊆[nq], |M |=k cM yM such that cM ≥ 0 for

all M , and strict inequality holds if and only if yM is well-colored.

Proof. For every i ∈ [q], let

µ≤i =
i∑

j=1
µj

be the i-th partial sum of µ. We set µ≤0 = 0. Then, we define a matrix S ∈ Qk×nq as follows:
S = (S1|S2| . . . |Sq) is the concatenation of q blocks S1, . . . , Sq ∈ Qk×n, one for each color.
Each block Si is in turn defined as Si = Ui · Vi, where Ui ∈ Qk×µi is the a Vandermonde
matrix of dimension k × µi, and Vi ∈ Qµi×n is a Vandermonde matrix of dimension µi × n,
namely

Ui = Vandk(µ≤i−1 + 1, µ≤i−1 + 2, . . . , µ≤i),
Vi = Vandµi(1, . . . , n).

For a subset M ⊆ [nq] of size k, let σM = det(S[M ]). We claim that σM ≥ 0 holds, which
can be seen as follows. Let m = µ≤q, and consider the auxiliary matrices

U = (U1|U2| . . . |Uq) = Vandk(1, . . . , m) ∈ Qk×m,

V = V1 ⊕ . . . ⊕ Vq ∈ Qm×nq.

Then per definition, we have S = UV , and moreover S[M ] = U · V [M ]. Therefore, by the
Cauchy-Binet formula,

σM =
∑

L⊆[m]
|L|=k

det(U [L]) · det(V [L, M ]). (2)

Note now that U [L] is a Vandermonde matrix of an increasing sequence, hence det(U [L]) is
strictly positive, as witnessed by the well-known formula for the Vandermonde determinant:

det(Vandk(r1, . . . , rN )) =
∏

1≤i<j≤N

(rj − ri).

On the other hand, we observe that V [L, M ] is either a direct sum of submatrices of
Vandermonde matrices of positive increasing sequences, or has determinant zero. In the
former case, det(V [L, M ]) is the product of the determinants of these submatrices. It is also
well-known that Vandermonde matrices of positive, increasing sequences are totally positive,
that is, all their minors, not just maximal minors, are positive. Hence, the determinant of

MFCS 2023



25:8 Deterministic Constrained Multilinear Detection

each submatrix is positive, and so is their product, i.e., det(V [L, M ]) > 0. Consequently, since
we already argued that det(U [L]) > 0 holds, we have shown that det(V [L, M ]) ·det(U [L]) ≥ 0
holds for all L in (2), and thus in particular σM ≥ 0.

Furthermore, if M contains more than µi indices that belong to the i-th block of S, then
σM = 0: The i-th block of S is defined as Si = UiVi with Ui ∈ Qk×µi and Vi ∈ Qµi×n.
Hence, Si is of rank at most µi, and any set of more than µi columns from Si will necessarily
be linearly dependent. Conversely, if M contains ρi ≤ µi indices belonging to the i-th block
of S for each i, pick arbitrary subset L of rows of V containing precisely ρi rows from each Vi.
Then V [L, M ] is a direct sum of square submatrices of Vandermonde matrices of increasing
sequences, which makes the corresponding term det(U [L]) det(V [L, M ]) strictly positive.
Since we have just argued that all summands in (2) are non-negative, this proves that in this
case, σM > 0.

Overall, we have shown that σM ̸= 0 if and only if M contains no more than µi indices
from the same block of S, which is equivalent to the corresponding monomial yM being
well-colored. Another application of Cauchy-Binet then provides us with the saught circuit:
Letting Y be the matrix with diagonal entries y1,1, y1,2, . . . , yn,q, we observe that

det(S · Y · ST ) =
∑

M⊆[nq], |M |=k

σ2
M · yM .

By the preceding argument, this polynomial has the desired properties demanded in the
statement, and the witnessing skew circuit can be written down in polynomial time, using
the known constructions for skew determinant circuits [23]. ◀

▶ Remark 2. The proof of the preceding Lemma can also be seen as constructing an explicit
representation of the k-truncation of the partition matroid corresponding to µ.

▶ Theorem 3. There is a deterministic algorithm that, given an n-variate homogeneous
polynomial f of degree k with non-negative coefficients, represented as an arithmetic circuit of
size s, as well as multiplicities µ, decides in time 2ωk · poly(n, k, s) whether or not f contains
a multilinear monomial that is well-colored with respect to µ. Here ω < 2.373 denotes the
exponent of matrix multiplication. This running time can be reduced to 4k · poly(n, k, s) if
the circuit computing f is skew.

Proof. We invoke [8, Theorem 25] with f and χµ to compute ⟨f, χµ⟩. Since both f (by
assumption) and χµ (by Lemma 1) have non-negative coefficients, this inner product is zero
if and only if no well-colored multilinear monomial exists in f , and positive otherwise. The
claim on the improved running time follows from [8, Theorem 7] and the fact that χµ is a
determinant polynomial. ◀

4 Graph Problems

This theorem allows us to recover the best known bounds for deterministic detection of
maximum graph motifs using an entirely different approach.

▶ Corollary 4 ([26]). There is a deterministic algorithm for Maximum Graph Motif
running in time 2ωkpoly(n, k).

Proof. All that is needed is a polynomial representation of the set of all k-vertex connected
subgraphs of the input graph. This is possible due to a construction first employed by
Guillemot and Sikora [17] on so-called branching walks. Consider the following sequence of
polynomials: Pi,0 = 1 for all i, and
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Pi,s = xi

∑
j∈NG(i)

∑
t1+t2=s−1

Pi,t1 · Pj,t2 .

The multilinear monomials in βk =
∑

i∈V Pi,k can be shown to correspond bijectively to
k-vertex connected subgraphs, and clearly all coefficients are non-negative. Hence, given a
coloring χ : [n] → C, it suffices to evaluate βk with xj = yc,j for all j such that χ(j) = c, for
all colors c ∈ C. Invoking Theorem 3 then answers whether or not there is a graph motif as
sought. ◀

▶ Remark 5. If one were able to design a skew circuit computing βk, the running time in
the preceding theorem would drop immediately to 4k. From the perspective of algebraic
complexity, it is an interesting problem whether such skew circuits for βk exist, or whether
one can rule out their existence under common complexity-theoretic assumptions. The latter
could be accomplished e.g. by a completeness proof of βk for the algebraic complexity class
V P . However, despite heavy research efforts in the past (see e.g. [12] and references therein),
very few natural V P -complete polynomials are known, and the family βk is not among them.
One conspicuous property of the polynomial βk is that its computation is monotone, that is,
no cancellations can arise during its computation. However, the method desribed here is able
to deal also with such cases where cancellations due to negations occur (but the resulting final
coefficients are still non-negative). Indeed, this distinction is subtle but crucial: for instance,
the determinant can only be computed without using cancellations by circuits of exponential
size [19], whereas it is well-known to admit general arithmetic circuits with cancellations of
polynomial size. A large number of polynomials that enumerate combinatorial objects can
be expressed as determinants, which makes this situation particularly relevant. Moreover,
determinants are the prototypical example for polynomials computable by skew circuits,
which allows to use the faster running time mentioned in Theorem 3. For instance, this
allows us to solve e.g. the following problems in deterministic time O∗(4k):

▶ Theorem 6. There are deterministic algorithms running in time 4k · poly(n, k) for each
of the following problems:

Well-Colored Spanning Tree,
Well-Colored Planar Perfect Matching, and
Internally Well-Colored Spanning Tree.

Proof. The algorithms for these three problems all follow the same basic principle and build
upon the algorithms for the variants where well-colored monomials are replaced by monomials
with at least k distinct colors, which is the special case of having multiplicities µi = 1 for all
i. The core idea is to make use of determinantal generating functions for the sought objects
in each case. These generating functions are provided by the directed Matrix-Tree theorem
and the Pfaffian of planar graphs. Details on these formulations can be found in [6] and [3].
Once these generating functions are available, all that remains to check is that by a standard
trick of substituting xi 7→ (1 + xi) for every variable, these become generating functions for
all subsets of solutions (that is, all subsets of edges of spanning trees, all subsets of perfects
matching, etc.), and the claim follows by applying Theorem 3. ◀

5 Intersecting Four Matroids

The general method for intersecting q matroids shown in [8] exploits a well-known connection
to matroid parity, and solves the latter problem instead. Indeed, given q matroids each of
rank k represented by matrices with entries in Q, the algorithm in [8] runs in randomized
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time O∗(4kq). In particular, for the cases q = 3, 4, this specializes to algorithms running in
time O∗(64k) and O∗(256k), respectively, and [14] improve this to O∗(4k) and O∗(16k) (and
O∗(4k(q−2)) in general). We will now show how to obtain a running time of O∗(4k) in both
cases, and examine the conditions under which the algorithms can be made deterministic.
First, we define an extension of the apolar inner product to tensor products of polynomial rings,
that is, polynomial rings that have themselves as a coefficient rings another ring of polynomials.
For instance, consider f ∈ Q[x1, . . . , xn] ⊗ Q[y1, . . . , yn] ∼= Q[x1, . . . , xn][y1, . . . , yn]. In
general, f has the form

f =
∑

a1,...,an∈N

∑
b1,...,bn∈N

cb1,...,bn
a1,...,an

· xa1
1 · · · xan

n · yb1
1 · · · ybn

n ,

with only finitely many of the cb1,...,bn
a1,...,an

non-zero. Moreover, for fixed a1, . . . , an, we can
collect all the corresponding terms into a single polynomial ĉa1,...,an ∈ Q[y1, . . . , yn] via

ĉa1,...,an =
∑

b1,...,bn∈N
cb1,...,bn

a1,...,an
· yb1

1 · · · ybn
n ,

and then recover the familiar

f =
∑

a1,...,an∈N
ĉa1,...,an

xa1
1 · · · xan

n .

While it is true that

Q[x1, . . . , xn][y1, . . . , yn] ∼= Q[x1, . . . , xn, y1, . . . , yn],

it is important that we distinguish these two ways of looking at f . In particular, there is
nothing new to say about the inner product on the latter polynomial ring, which is well-defined
already through Eq. (1). However, for our purposes, we extend the definition Eq. (1) to
f, g ∈ Q[x1, . . . , xn][y1, . . . , yn], where f is as above and g =

∑
a1,...,an∈N d̂a1,...,an

xa1
1 · · · xan

n ,
with d̂a1...,an

∈ Q[y1, . . . , yn] defined analogously to ĉa1,...,an
. Then, we set

α(f, g) :=
∑

a1,...,an∈N
a1! · a2! · · · an! · ĉa1,...,an

· d̂a1,...,an
∈ Q[y1, . . . , yn].

Note that such a mapping cannot possibly be an inner product anymore (after all, its
codomain is not the field Q, but Q[y1, . . . , yn]), and thus the need for a separate treatment
arises. In particular, the algorithms for computing the apolar inner product from [8] do not
extend, at least not within the same running time bound, to the case where ⟨·, ·⟩ is replaced
by α. However, we can use their results to obtain the following:

▶ Lemma 7. Let f = det(M1) and g = det(M2), where Mi for i = 1, 2 are matrices
of dimension k × k having bilinear polynomials in x1, . . . , xn and y1, . . . , yn as entries.
Then, there is an algorithm that, given ȳ1, . . . , ȳn ∈ Q, evaluates the polynomial α(f, g) ∈
Q[y1, . . . , yn] at ȳ1, . . . , ȳn in O∗(4k) arithmetic operations over Q. Moreover, if the evaluation
points ȳ1, . . . , ȳn can be encoded using O∗(1) bits, then α(f, g) can be evaluated in time O∗(4k).

Proof. By substituting ȳ1, . . . , ȳn into M1 and M2 and using the fact that evaluation of
polynomials at a fixed point is a homomorphism, we find that ⟨f(ȳ1, . . . , ȳn), g(ȳ1, . . . , ȳn)⟩ =
α(f, g)(ȳ1, . . . , ȳn) for all ȳ1, . . . , ȳn. Since the determinant is well-known to have skew cir-
cuits [23], we are in position to apply [8, Theorem 7] to evaluate ⟨f(ȳ1, . . . , ȳn), g(ȳ1, . . . , ȳn)⟩
in the required time bound. ◀
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▶ Theorem 8. Let M1, M2, M3, M4 be four matroids over a common ground set E of size
n, each represented by a matrix Ri ∈ Qk×n. Then, we can decide in randomized time O∗(4k)
whether these four matroids share a common basis.

Proof. First, let us assume that E = [n] without loss of generality. We then begin by
introducing n fresh indeterminates y1, . . . , yn. Let then Y be the diagonal matrix of dimension
n×n having yi in its i-th diagonal entry. Observe that R̂i := RiY is the matrix Ri where the
i-th column was scaled by a factor of yi. Moreover, for any set S ⊂ [n] of k column indices,
the maximal minor of R̂i corresponding to S, that is, the determinant of the matrix R̂i[S]
obtained from R̂i by restricting to the columns in S, is a polynomial in y1, . . . , yn. Indeed,
since the determinant is a multilinear functional in its columns, we have

det(R̂i[S]) =
∏
s∈S

ys · det(Ri[S]). (3)

In analogy to Y , let X be the diagonal matrix having xi in its i-th diagonal entry. Now,
the Cauchy-Binet formula gives the following expression for the determinant of the product
R̂i · X · RT

j , with a similar reasoning as in Eq. (3):

det(R̂i · X · RT
j ) =∑

S⊆[n],|S|=k

det(R̂i[S]) · det(Rj [S]) ·
∏
s∈S

xs =

∑
S⊆[n],|S|=k

(∏
s∈S

ys · det(Ri[S]) · det(Rj [S])
)

·
∏
s∈S

xs.

In the last line, we grouped the products in order to highlight that we consider this expression
foremost as a polynomial in the variables xi, that is, an element of Q[y1, . . . , yn][x1, . . . , xn].
Of course, the analogous expression holds for det(Ri · X · RT

j ) (note the missing hat on Ri),
namely

det(Ri · X · RT
j ) =

∑
S⊆[n],|S|=k

det(Ri[S]) · det(Rj [S]) ·
∏
s∈S

xs,

which is a polynomial from Q[x1, . . . , xn] ⊂ Q[y1, . . . , yn][x1, . . . , xn].
Since by assumption, det(Ri[S]) ̸= 0 if and only if S is a basis of Mi, it follows from the

definition of α(·, ·) (and noting that all the xi have exponent zero or one) that

α(det(R̂1 · X · RT
2 ), det(R3 · X · RT

4 )) = (4)∑
S⊆[n],|S|=k

(det(R1[S]) · det(R2[S])) ·

(∏
s∈S

ys · det(R3[S]) · det(R4[S])
)

= (5)

∑
S basis of
M1,...,M4

det(R1[S]R2[S]R3[S]R4[S])︸ ︷︷ ︸
̸=0

·
∏
s∈S

ys. (6)

As witnessed in the last line of the preceding calculation, α(det(R̂1 ·X ·RT
2 ), det(R3 ·X ·RT

4 ))
is the zero polynomial if and only if the four input matroids share no common basis. Therefore,
all that remains is to test the polynomial α(det(R̂1 · X · RT

2 ), det(R3 · X · RT
4 )) for zero,

using the DeMillo–Lipton–Schwartz–Zippel Lemma [10, 30, 28] in combination with Lemma
7, we obtain the desired randomized algorithm: Choosing random evaluation points, we
can ensure that α(det(R̂1 · X · RT

2 ), det(R3 · X · RT
4 )) evaluates to a non-zero value, in case

MFCS 2023
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it truly is non-zero, with constant probability. Of course, if the polynomial is identically
zero, so is every evaluation, and the algorithm will always correctly recognize this. As usual,
repeating this procedure a polynomial number of times allows us to decrease the one-sided
error probability exponentially. ◀

▶ Corollary 9. Given three matroids M1, M2, M3 as in Theorem 8, we can decide in
randomized time O∗(4k) whether they share a common basis.

Proof. This follows from choosing M1 = M2 in Theorem 8. ◀

▶ Remark 1. During the preparation of the present article, a manuscript by Eiben, Koana
and Wahlström [14] appeared, where they give a different algebraic approach to some of the
matroid problems considered here. In particular, their Theorem 4.6 coincides with Corollary
9, and they show how to use this as a base case to obtain an algorithm for intersecting
q rank-k matroids, running in time 4k(q−2) · poly(n). It would be interesting to see if our
Theorem 8 can be expedited in a similar manner to obtain a running time of 4k(q−3) · poly(n).
Their techniques are based on exterior algebra, which is related to the methods used in this
article through a general algebraic connection [7].

5.1 Intersecting Positroids
Using the same strategy as for general matroids, we obtain deterministic algorithms for the
following important class of matroids:
▶ Definition 10. Let k ≤ n, and let M be a matroid over a ground set of size n of rank k.
Suppose M is represented by a matrix M such that for each submatrix M [S] with S ⊂ [n]
and |S| = k it holds that the corresponding maximal minor satisfies det(M [S]) ≥ 0. In this
case, M is called a positroid.
It is worth pointing out that while these objects seem not to have made any significant
algorithmic appearances so far, they are of great importance in geometry, where they
correspond to the so-called totally non-negative Graßmannian. They have many desirable
properties that general matroids are lacking, most notably a beautiful combinatorial
correspondence with certain planar bicolored (or plabic) graphs. We refer the reader to
Postnikov’s groundbreaking work on the subject [27].1

Let us furthermore remark that the following results will only apply to the situation where
the input matroids are promised to be positroids, since there doesn’t seem to be a way to
decide efficiently whether a given matroid representation does indeed only have non-negative
minors. While the aforementioned correspondence with plabic graphs does in principle allow
for a full-fledged decision problem (by taking as an input not the matrix of the positroid,
but its corresponding plabic graph, and then computing a representation from this graph),
this is beyond the scope of the present article.

▶ Theorem 11. Let M1, M2, M3, M4 be four positroids over a common ground set E of
size n, each represented by a matrix Ri ∈ Qk×n with non-negative minors. Then, we can
decide in deterministic time O∗(4k) whether these four matroids share a common basis.

Proof. The proof relies on the fact that all determinants in Eq. (6) are not only non-zero, but
in fact positive. Therefore, it is not necessary to include the variables yi in the calculation,
and a direct application of [8, Theorem 7] to ⟨det(R1 · X · RT

2 ), det(R3 · X · RT
4 ) is already

enough. The resulting value is non-zero if and only if the four positroids share a common
basis, and the running time bound follows directly from [8]. ◀

1 This particular manuscript, despite being cited hundreds of times, didn’t appear in a journal.
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