1,143 research outputs found

    Analysis of interplanetary solar sail trajectories with attitude dynamics

    Get PDF
    We present a new approach to the problem of optimal control of solar sails for low-thrust trajectory optimization. The objective was to find the required control torque magnitudes in order to steer a solar sail in interplanetary space. A new steering strategy, controlling the solar sail with generic torques applied about the spacecraft body axes, is integrated into the existing low-thrust trajectory optimization software InTrance. This software combines artificial neural networks and evolutionary algorithms to find steering strategies close to the global optimum without an initial guess. Furthermore, we implement a three rotational degree-of-freedom rigid-body attitude dynamics model to represent the solar sail in space. Two interplanetary transfers to Mars and Neptune are chosen to represent typical future solar sail mission scenarios. The results found with the new steering strategy are compared to the existing reference trajectories without attitude dynamics. The resulting control torques required to accomplish the missions are investigated, as they pose the primary requirements to a real on-board attitude control system

    Launch and Assembly Reliability Analysis for Human Space Exploration Missions

    Get PDF
    NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success

    Space applications of Automation, Robotics And Machine Intelligence Systems (ARAMIS). Volume 3, phase 2: Executive summary

    Get PDF
    The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program leading to an operational telepresence servicer is presented

    Ground verification of the feasibility of telepresent on-orbit servicing

    Get PDF
    In an ideal case telepresence achieves a state in which a human operator can no longer differentiate between an interaction with a real environment and a technical mediated one. This state is called transparent telepresence. The applicability of telepresence to on-orbit servicing (OOS), i.e., an unmanned servicing operation in space, teleoperated from ground in real time, is verified in this paper. For this purpose, a communication test environment was set up on the ground, which involved the Institute of Astronautics (LRT) ground station in Garching, Germany, and the European Space Agency (ESA) ground station in Redu, Belgium. Both were connected via the geostationary ESA data relay satellite ARTEMIS. Utilizing the data relay satellite, a teleoperation was accomplished in which the human operator as well as the (space) teleoperator was located on the ground. The feasibility of telepresent OOS was evaluated, using an OOS test bed at the Institute of Mechatronics and Robotics at the German Aerospace Center (DLR). The manipulation task was representative for OOS and supported real-time feedback from the haptic-visual workspace. The tests showed that complex manipulation tasks can be fulfilled by utilizing geostationary data relay satellites. For verifying the feasibility of telepresent OOS, different evaluation methods were used. The properties of the space link were measured and related to subjective perceptions of participants, who had to fulfill manipulation tasks. An evaluation of the transparency of the system, including the data relay satellite, was accomplished as well

    A Survey on Formation Control of Small Satellites

    Get PDF

    NASA Automated Rendezvous and Capture Review. Executive summary

    Get PDF
    In support of the Cargo Transfer Vehicle (CTV) Definition Studies in FY-92, the Advanced Program Development division of the Office of Space Flight at NASA Headquarters conducted an evaluation and review of the United States capabilities and state-of-the-art in Automated Rendezvous and Capture (AR&C). This review was held in Williamsburg, Virginia on 19-21 Nov. 1991 and included over 120 attendees from U.S. government organizations, industries, and universities. One hundred abstracts were submitted to the organizing committee for consideration. Forty-two were selected for presentation. The review was structured to include five technical sessions. Forty-two papers addressed topics in the five categories below: (1) hardware systems and components; (2) software systems; (3) integrated systems; (4) operations; and (5) supporting infrastructure

    Design of low-thrust missions to asteroids with analysis of the missed-thrust problem

    Get PDF
    Small bodies in the Solar System, such as asteroids and dwarf planets, are ideal targets for electric propulsion missions because of the high delta-V required to rendezvous with these targets. We study trajectories to the asteroid belt, including a human mission to Ceres and a sample return mission to (216) Kleopatra, along with trajectories to the Jupiter Trojan asteroids. For the human mission to Ceres, payload masses of 75 Mg are achievable with a 11.7 MW nuclear electric propulsion system and an initial mass in LEO of 289 Mg. For low-thrust sample return missions to the main belt asteroid Kleopatra, Mars and Earth are useful gravity assist bodies, with payload masses of 950-1150 kg possible using a 20 kW solar electric propulsion system. A mission to the Jupiter Trojan asteroids would be well-served by visiting two objects. The pair 1986 TS6 and Hektor stand out as ideal targets to visit for launch dates between 2020 and 2040, with missions possible using the off-the-shelf BPT-4000 Hall thruster and power levels in the 30-40 kW range. During a low-thrust mission, there is a significant possibility of an event which causes the spacecraft to miss some portion of a thrust arc. These missed thrust events can be overcome for reasonable propellant margins of 5--15\%, with higher margins required for higher power levels. Gravity-assist trajectories should feature a coast arc leading up to the flyby. If not, the mission may be lost if a missed-thrust event occurs during a thrust arc prior to the gravity assist

    Model predictive control system design and implementation for spacecraft rendezvous

    Get PDF
    This paper presents the design and implementation of a model predictive control (MPC) system to guide and control a chasing spacecraft during rendezvous with a passive target spacecraft in an elliptical or circular orbit, from the point of target detection all the way to capture. To achieve an efficient system design, the rendezvous manoeuvre has been partitioned into three main phases based on the range of operation, plus a collision-avoidance manoeuvre to be used in event of a fault. Each has its own associated MPC controller. Linear time-varying models are used to enable trajectory predictions in elliptical orbits, whilst a variable prediction horizon is used to achieve finite-time completion of manoeuvres, and a 1-norm cost on velocity change minimises propellant consumption. Constraints are imposed to ensure that trajectories do not collide with the target. A key feature of the design is the implementation of non-convex constraints as switched convex constraints, enabling the use of convex linear and quadratic programming. The system is implemented using commercial-off-the-shelf tools with deployment using automatic code generation in mind, and validated by closed-loop simulation. A significant reduction in total propellant consumption in comparison with a baseline benchmark solution is observed

    Guidance and Control in Autonomous Debris Removal Space Missions via Adaptive Nonlinear Model Predictive Control

    Get PDF
    Space debris orbiting around the Earth are becoming a major problem that could impair the future of space exploration. Among the different approaches to this problem that have been proposed in recent years, this work focuses on a possible innovative solution, consisting in an autonomous spacecraft that performs a rendezvous maneuver, collects a debris of unknown mass and then moves to a parking orbit. When the spacecraft collects a debris of unknown mass, the dynamics of the system may change substantially, and this may affect the control stability and performance of the spacecraft. In this paper, a control system is designed, capable of handling situations with time-varying and uncertain parameters, as it occurs in space debris removal missions. A control strategy based on an Adaptive Nonlinear Model Predictive Control (ANMPC) is considered. The unknown mass of the debris is treated as an uncertain parameter and is estimated by means of two different methods (Recursive Average and Extended Kalman Filter (EKF)). Then, the estimated mass is used to update the internal model of the ANMPC, which later solves an on-line optimization problem, providing an optimal trajectory and control action for reaching the debris and then the parking orbit. The simulations carried out show that the proposed control system is able to effectively accomplish the requested task

    Study of effects of uncertainties on comet and asteroid encounter and contact guidance requirements. Part 1: Guidance and navigation studies

    Get PDF
    A guidance algorithm that provides precise rendezvous in the deterministic case while requiring only relative state information is developed. A navigation scheme employing only onboard relative measurements is built around a Kalman filter set in measurement coordinates. The overall guidance and navigation procedure is evaluated in the face of measurement errors by a detailed numerical simulation. Results indicate that onboard guidance and navigation for the terminal phase of rendezvous is possible with reasonable limits on measurement errors
    • …
    corecore