FINAL REPORT
PART I. GUIDANCE AND NAVIGATION STUDIES

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER

UNCERTAINTIES ON COMET AND ASTERTS OF
ENCOUNTER AND CONTAC
REQUIREMENTS. PART 1: GUIAMC
lauburn Unival 27 p HC $\$ 4.50$ AND

ENGINEERING
\square

Aerospace Engineering Department
 Auburn University
 Auburn, Alabama 36830

STUDY OF EFFECTS OF UNCERTAINTIES ON COMET AND ASTEROID ENCOUNTER AND CONTACT

GUIDANCE REQUIREMENTS

FINAL REPORT

PART I. GUIDANCE AND NAVIGATION STUDIES

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GEORGE C. MARSHALL SPACE FLIGHT CENTER

Under Contract NAS8-27664

December 15, 1973

Arthur G. Bennett, Associate Professor Project Director

Robert G. Pitts, Professor and Head
Department of Aerospace Engineering

STUDY OF EFFECTS OF UNCERTAINTIES ON COMET

AND ASTEROID ENCOUNTER AND CONTACTT
GUIDANCE REQUIREMENTS

NAS8-27664

PROJECT SUMMARY

At the start of our work in June 1971, three principal tasks were assigned. Slightly restated, these tasks were:
(i) Develop a deterministic algorithm for guidance to rendezvous with comets and asteroids that can handle expected large target ephemeris errors.
(ii) Define the problem of determination of rotational state of a tumbling asteroid or cometary nucleus and develop possible schemes for this determination.
(iii) Investigate possibie contact rendezvous schemes including the "harpoon" technique.

During the first year, a detailed investigation of a rendezvous guidance technique based on "encounter theory" was conducted. The definition and formulation of the tumbling problem was made and several possible algorithms phrased. A first investigation of the harpoon problem was conducted and frequencies and acceleration levels identified.

Early in the second year work, a successful deterministic rendezvous guidance algorithm based on optimal control theory was developed. The altorithm was considered sufficiently importent that, with agreement of NASA, more emphasis was placed on the rendezvous investigation. To accommodate this work, the harpoon study was set aside. An effort was initiated on the rendezvous navigation problem wherein measurements are made and statistically processed onboard the spacecraft to provide the relative state information required
for input to the guidance algorithm. Expenditures on the contract were low enough so that in June 1972 a no-cost extension of the work to September 1973 was possible. At this time the changes in objective were formalized and principal tasks were restated to include the navigation work (and elimInate the contact-rendezvous and harpoon investigation).

In September 1973, delays caused by installation of a new computing machine at the University prevented generation of final data. The contract completion date was again extended, at no cost, to December 15, 1973, to allow time for this data generation and report preparation.

The final report of our work is presented in two volumes:

Part I. Guidance and Navigation Studies
Part II. Tumbling Problem Studies
Each of these volumes presents the technical details of the analyses conducted, the principal conclusions made, and listing of the computer programs employed, including descriptions of the operation of the programs. Technical abstracts of the work are included in each volume. In Part I, the body of the report reproduces a paper prepared for the AIAA 10th Electric Propulsion Conference entitled "Solar Electric Propulsion for Terminal Flight to Rendezvous with Comets and Asteroids." (AIAA Paper No. 73-1062). The title was changed for inclusion in this report and a few typographical errors were corrected.

STUDY OF EFFECTS OF UNCERTAINTIES ON COMET AND ASTEROID ENCOUNTER AND CONTACT GUIDANCE REQUIREMENTS

TABLE OF CONTENTS

PART I. GUIDANCE AND NAVIGATION STUDIES 1
Abstract 1
Introduction 1
The Guidance Algorithm 1
Navigation Scheme 3
Guidance and Navigation Evaluation Procedure 4
Results 5
Conclusions 6
References 7
APPENDIX - COMPUTER PROGRAM GANDER 8
General Program Descriptions 8
Subroutine Names and Descriptions 8
Variable Nemes and Descriptions 8
Input Data 9
Subroutine Initialization Entries 9
GANDER Program Listing 10
MAIN 10
CYCLE 10
TARGET 11
RUNKUTI 12
DOFX\$ 13
GOFX\$ 14
FILTER 15
OBSERV 19
GRAND 20
URAND 20
BLK DATA 20
CYCLOT 21
MINV 23

STUDY OF EFFECTS OF UNCERTAINTIES ON COMET AND
 ASTEROID ENCOUNTER AND CONTACT GUIDANCE REQUIREMENTS

Part I. guidance and navigation studies

Abstract

A guidance algorithm that provides precise rendezvous in the deterministic case while requiring only relative state information is developed. A navigation scheme employing only onboard relative measurements is built around a Kalman filter set in measurement coordinates. The overall guidance and navigation procedure is evaluated in the face of measurement errors by a detailed numerical simulation. Results indicate that onboard guidance and navigation for the terminal phase of rendezvous is. possible with reasonable limits on measurement errors.

I. Introduction

Solar electric propulsion (SEP) has been identified as the most promising means of attaining the high dynamical energies that are required for missions to comets and asteroids. However, the continuous nature of SEP complicates trajectory dynamics and introduces difficulties in guidance and navigation of the spacecraft. Handling these difficulties will require formulations that are different from those used for the impulsively corrected ballistic trajectories employed for planetary missions to date. Errors in SEP level and direction will be an important concern also because the errors occur over the whole trajectory and will be difficult or impossible to determine in advance or by direct measurement during flight.

Another problem is that the ephemerides of asteroids, and especially comets; are not as well known as those for the planets. Advance knowledge of the position of a comet such as Encke may be in error by $100,000 \mathrm{~km}$. or more. One reas on for this is that comets and asteroids are not observed over their full orbits or in as much detail as are planetary bodies. And the orbits of comets and asteroids of interest are more complex than those of the planets because of perturbative effects along their extended, eccentric orbits. Also, comets are acted upon by non-gravitational solar radiation pressure and electromagnetic force.

The spacecraft may proceed along a nominal path for many months or a few years and when the target can be viewed, it is found that the target is not where it is expected to be. Assuming sufficient control authority to correct for this error, there is then the navigation problem of determining the relative position and velocity of the spacecraft
and target for the generation of terminal guidance commands. While transponders allow the spacecraf't to be tracked from the earth with good accuracy, the accuracy of earth-based tracking of the target is much less accurate and relative state cannot be determined with sufficient precision by differencing such earth-based data. It will be necessary to make relative measurements of some kind from onboard the spacecraft to insure successful rendezvous.

So, a central problem is determination of types of onboard measurements that can or need be made. But, this problem is tied to the details of the guidance and navigation algorithms to be used and the two questions must be handled together.

Our investigations have led to a terminal guidance algorithm that gives accurate rendezvous in the deterministic case while employing a knowledge of relative state only. With sufficiently accurate relative state estimation and control, rendezvous is possible without use of ground based measurements. And if onboard systems that fit accuracy, weight, power, and cost requirements are available, a fully autonomous guidance and navigation system is possible. Such a system would eliminate signal delay for deep space targets or time-critical terminal maneuvers and relieve a heavy work load for ground based tracking systems. Very frequent measurements would be available and the accuracy of attainment of terminal conditions improved. There is, of course, the important question of availability of necessary onboard measurement and computation systems. Preliminary considerations indicate that required equipment is probably within the capabilities of present technology. A more definitive answer to this question can be given after evaluation of possible guidance and navigation schemes has been made and specific system requirements identified.

The objective of this paper is to present an approach to the onboard terminal guidance and navigation problem and some first results that indicate the approach does not require unreasonable onboard equipment.

II. The Guidance Algorithm

Simplicity is a first criteria for an onboard guidance scheme. And second, for comet and asteroid missions, the scheme must be broadly adaptable to off-nominal situations because of expected
ephemeris errors. It would be desirable if the scheme is not based on linearization about a nominal, but could proceed from any state point to the desired terminal conditions.

Fig, 1. Rendezvous Geometry.
The geometry and variables used to phrase the rendezvous problem are defined in Figure 1. The mass of most asteroids and certainly of comets is so small that it can be neglected in approach to rendezvous. Appropriate to onboard guidance, the equations of motion are set in coordinates relative to the target:

$$
\begin{equation*}
\vec{R}=\bar{F}+G M\left(\frac{\bar{S}}{S^{3}}-\frac{\bar{D}}{D^{3}}\right) \tag{1}
\end{equation*}
$$

where \bar{F} is the SEP thrust acceleration and G is the universal gravitational constant. The problem is to determine \bar{F} given the state of the spacecraft and target. An important simplification would be had if \bar{F} could be specified knowing only the relative state of spacecraft and target. Of course, the dynamics of the problem are not fully specified by just relative state, but as will be found, this simplification is possible in a practical sense. The size of the sun's gradient effect as expressed in the second term on the right of Eq. (I) is the critical factor. In general, this term is larger the farther the spacecraft is from the target and the closer the target is to the sun. If we consider a target position of about 1 to 1.5 a.u. from the sun and a spacecraft position of 1.5×10^{6} to 2.0×10^{6} km . from the target at rendezvous, then the gradient force is of order 10^{-5} to $10^{-6} \mathrm{~g}$'s. Expected maximum SEP levels are about $10^{-4} \mathrm{~g}$'s. So. it is not unreasonable to ignore the gradient effect as a first approximation. The gradient effect could, of course, be included as a thrust separately calculated from approximate knowledge of the target ephemeris. In either case. the guidance problem reduces to free space and can be
handled by a number of available mathematical approaches. These ideas are not new, having been previously employed by Cherry for lunar orbits.(${ }^{(3)}$

Written out in rectangular coordinates centered at the rendezvous point, the equations of motion are

$$
\begin{align*}
& \dot{x}_{1}=x_{4} \\
& \dot{x}_{2}=x_{5} \\
& \dot{x}_{3}=x_{6} \\
& \dot{x}_{4}=F_{1}+\frac{G M}{s^{3}}\left[S_{1}-D_{1}(S / D)^{3}\right] \tag{2}\\
& \dot{X}_{5}=F_{2}+\frac{G M}{S^{3}}\left[S_{2}-D_{2}(S / D)^{3}\right] \\
& \dot{x}_{6}=F_{3}+\frac{G M}{S^{3}}\left[S_{3}-D_{3}(S / D)^{3}\right]
\end{align*}
$$

where the subscripts indicate components in the corresponding coordinate directions. M is the mass of the sun. In the spirit of approximation discussed above, the gravitational gradient terms on the right of the last three of Eqs. (2) are dropped. The remaining equations are linear, describing just a free space motion under the action of controls F_{1}, F_{2}, F_{3}. With SEP thrust, a most meaningful criteria for choosing these controls is to minimize their time integrated square.

$$
\begin{equation*}
J=\int_{T_{0}}^{T_{f}}\left(F_{1}^{2}+F_{2}^{2}+F_{3}^{2}\right) d t=\text { minimum } \tag{3}
\end{equation*}
$$

With this starting point, the solution was determined by Abercrombie. (${ }^{4}$) The method was essentially the same as employed by several others on related problems, and is a standard procedure from optimal control theory. ${ }^{5}$) The result is

$$
\begin{align*}
& F_{1}=\left[\frac{6}{\tau_{0}^{2}}\left(1-\frac{2 \tau}{\tau_{0}}\right)\right] x_{10}+\left[\frac{2}{\tau_{0}}\left(1-\frac{3 \tau}{\tau_{0}}\right)\right] x_{40} \\
& F_{2}=\left[\frac{6}{\tau_{0}^{2}}\left(1-\frac{2 \tau}{\tau_{0}}\right)\right] x_{20}+\left[\frac{2}{\tau_{0}}\left(1-\frac{3 \tau}{\tau_{0}}\right)\right] x_{50} \tag{4}\\
& F_{3}=\left[\frac{6}{\tau_{0}^{2}}\left(1-\frac{2 \tau}{\tau_{0}}\right)\right] x_{30}+\left[\frac{2}{\tau_{0}}\left(1-\frac{3 \tau}{\tau_{0}}\right)\right] x_{60}
\end{align*}
$$

where the X_{10}, etc., are the initial conditions and $\tau=T_{f}-T$ is the time to go. Note that the thrust components vary in a simple linear way with time.

The guidance algorithm expressed in Eq. (4) was evaluated with double precision digital simulation. Assuming a deterministic situation in which state is known initially, the full equations of motion, Eqs. (2), were integrated for a period (the guidance interval) with controls specified by Eq. (4). Because of the approximations made in obtaining the free space equations, the true state differs from the free space solution. At the end of the
guidance interval, perfect navigation is assumed, the algorithm is updated with the new, true state, and another period flown. This procedure is repeated until rendezvous is obtained or the path diverges. Simulations were run for typlcal missions to comets Encke, D'Arrest, and Kopff. Initial conditions were taken from mission studies made by Friedlander.(6) Update periods from continuous to 5 days were employed. The singularity in the algorithm when time to go becomes zero was aroided by pushing time to go ahead two guidance intervals at the end of the trajectory. The time to go push was continued after rendezvous in the case of Encke to examine station-keeping properties of the algorithm. The initial conditions were varied over ranges of 10 degrees in direction of relative velocity, 10 percent in magnitude of relative velocity, and $100,000 \mathrm{~km}$. in position to represent initial target ephemeris errors.

In no case was divergence of the trajectory found, The trajectories were essentially straight line approaches to the rendezvous point. Because of the crude time to go push, there were overshoots of the rendezvous points, but accurate rendezvous was obtained within one or two days of the prespecified time (40 days). In later computer runs, the overshoot has been completely eliminated by reduction of the guidance interval to 0.1 day and the time to go push to one such guidance interval. The spacecraft then performed small oscillations about the rendezvous point that increased slightly as target periapsis was approached and decreased after periapsis. For Encke, with a guidance update of 0.5 days, an overshoot of about 40 km . was obtained for a rendezvous standoff distance of 100 km , in each coordinate direction. After 40 days from guidance initiation, slow oscillations of a few meters amplitude near the rendezvous point occurred. The amplitude increased to somewhat less than 500 meters near periapsis at 100 days and decreased to a few meters by 165 days. Better time to so management would improve these results. The thrust levels during station keeping were extremely low; smaller than $0.5 \times 10^{-8} \mathrm{~g}$'s. Fig. 2 shows typical thrust histories for the approach phase for the three comets. It was concluded that the free space optimal control algorithm performed well enough deterministically to warrant investigation with simulation of a realistic navigation scheme.

III. Navigation Scheme

A Kalman filter was chosen for forming state eatimates from onboard measurements. Among the difficulties of practical use of the Kalman filter are two problems that arise because of the linear nature of the Kalman formulation. First, linearization of the system equations leads to a modeling error and it is possible that the first estimate of a new state based on linear propagation from a previous state may not be good enough for the procedure to find a good statistical correction to the first estimate. Second, the formulation requires a linear relation between the physical quantities measured and the system state. Such linear relation is not the usual case and direct Inearization of the true relations can lead to serious errors especially when state is not close to estimated values. Either of these problems can produce unsatisfactory performance or divergence of the filter. The problems have been discussed extensively in the literature and there are many ways of handling them. (7, ${ }^{(7,}$) We will focus on an approach that is simple from the computational point of view.

The question of modeling error was first examined. A filter in which the measurements were taken as the state variables themselves was programed for digital computation. Numerical simulation exhibited strong divergence. This was attributed to the usual fact that the filter rapidly reduces the state covariances and thus essentially ignores new measurements as they are made. At this point, one standard fix is to insert noise into the basic system equations. We took an even simpler approach and froze the state covariance matrix after 5 to 10 guidance cycles. This technique worked extremely well. Starting with gross initial errors of 10 percent of the relative state elements $(200,000 \mathrm{~km}$, and 150 $\mathrm{m} / \mathrm{sec}$.$) , rendezvous was attained with position$ errors of about 5 km . and velocity errors of about $0.1 \mathrm{~m} /$ sec. This was accomplished with the previous, crude, two-step time-to-go push. We concluded modeling error would be manageable even if requiring a more sophisticated approach in a final formulation.

A method of Mahra ${ }^{9}$) was chosen to handle the state-measurement relation problem. In his approach, the filtering process is carried out directly in what. we term measurement variables. The system state is transformed from the rectangular coordinates used for the guidance problem to new variables, some of which are the measurement quantities themselves, A one-to-one relation between state description and measurements then exists. However, this approach does, as we will see, introduce certain other approximations into the statistics, but, as results show, these are not critical.

The measurement variables vector is taken as $y=(R \quad u v \cdot \dot{R} \dot{u} \dot{v}) T$, where u and v are the direction cosines for X_{1} and X_{2}. The transformation from state variables $y=g(X)$ is

Fig. 2. Rendezvous thrust histories.

$$
\begin{align*}
& R=\left[\left(x_{1}+C_{1}\right)+\left(x_{2}+C_{2}\right)+\left(x_{3}+C_{3}\right)\right]^{\frac{1}{2}} \\
& u=\left(x_{1}+C_{1}\right) / R \\
& v=\left(x_{2}+C_{2}\right) / R \tag{4}\\
& \dot{R}=\left[\left(x_{1}+C_{1}\right) x_{1}+\left(x_{2}+C_{2}\right) x_{5}+\left(x_{3}+C_{3}\right) x_{6}\right] / R \\
& \dot{u}=\left(x_{4}-\dot{R u}\right) / R \\
& \dot{v}=\left(x_{5}-\dot{R v}\right) / R
\end{align*}
$$

The inverse transformation $X=\ell(y)$ is

$$
\begin{align*}
& x_{1}=u R-c_{1} \\
& x_{2}=v R-c_{2} \\
& x_{3}=w R-c_{3} \tag{5}\\
& x_{4}=\dot{R u}+\dot{H} u \\
& x_{5}=\dot{R} \dot{v}+\dot{R} v \\
& x_{6}=\dot{v} \dot{w}+\dot{R} w
\end{align*}
$$

where, $w^{2}=1-u^{2}-v^{2}$
Any desirable subset of y can be chosen as the actual measurements: range R ; direction cosines u and v; range rate R, etc. The filter process then proceeds as follows. Starting with a best state estimate \hat{X}_{k} at time T_{k}, a first estimate X^{\dagger} at time $\mathrm{T}_{\mathrm{k}+1}$ is formed by a linear extrapolation through the state transition matrix ϕ for the linearized system

$$
\begin{equation*}
\mathrm{x}_{\mathrm{k}+1}^{\dagger}=\phi_{\mathrm{k}} \hat{\mathrm{x}}_{\mathrm{k}} \tag{6}
\end{equation*}
$$

where,

$$
\phi_{k}=\left[\begin{array}{llllll}
\alpha_{k} & 0 & 0 & \beta_{k} & 0 & 0 \\
0 & \alpha_{k} & 0 & 0 & \beta_{k} & 0 \\
0 & 0 & \alpha_{k} & 0 & 0 & \beta_{k} \\
\gamma_{k} & 0 & 0 & \delta_{u} & 0 & 0 \\
0 & \gamma_{k} & 0 & 0 & \delta_{k} & 0 \\
0 & 0 & \gamma_{k} & 0 & 0 & \delta_{k}
\end{array}\right]
$$

and

$$
\begin{align*}
& \alpha_{k}=\frac{\tau_{k+1}}{\tau_{k}}\left[3\left(\frac{\tau_{k+1}}{\tau_{k}}\right)-2\left(\frac{\tau_{k+1}}{\tau_{k}}\right)^{2}\right] \\
& \beta_{k}=\tau_{k+1}\left[\left(\frac{\tau_{k+1}}{\tau_{k}}\right)-\left(\frac{\tau_{k+1}}{\tau_{k}}\right)^{2}\right] \tag{8}\\
& \gamma_{k}=-\frac{6}{\tau_{k}}\left[\left(\frac{{ }^{\tau} k+1}{\tau_{k}}\right)-\left(\frac{\tau_{k+1}}{\tau_{k}}\right)^{2}\right] \\
& \delta_{k}=3\left(\frac{\tau_{k+1}}{\tau_{k}}\right)^{2}-2\left(\frac{\tau_{k+1}}{\tau_{k}}\right)
\end{align*}
$$

with the time to go given by

$$
\begin{equation*}
\tau_{k}=T_{F}-T_{k}, \tau_{k+1}=T_{F}-T_{k+1} \tag{9}
\end{equation*}
$$

We then trangfer to the measurement variables with Eq. (4) in the form

$$
\begin{equation*}
y^{\dagger}=g\left(x^{\dagger}\right), \text { (nonlinear) } \tag{10}
\end{equation*}
$$

The best estimate of the state at T_{k+1} is then given by Kalman's relation

$$
\begin{equation*}
\hat{y}_{k+1}=y_{k+1}^{\dagger}+K_{k+1}\left(z_{k+1}-H y_{k+1}^{\dagger}\right) \tag{11}
\end{equation*}
$$

where z_{k+1} are the actual measurements, H is a rectangular matrix of ones and zeros that picks from the y_{k+1}^{+}vector those elements that correspond to the actual measurements, and K_{k+1} is the Kalman gain (yet to be calculated). We then transform back to the state variables with Eq. (5) in the form

$$
\begin{equation*}
\hat{x}_{k+1}=\ell\left(\hat{y}_{k+1}\right), \quad \text { (nonlinear) } \tag{12}
\end{equation*}
$$

The Kalman gain is calculated by

$$
\begin{equation*}
K_{k+1}=M_{k+1 / K} H^{T}\left(H_{k+1 / k} H^{T}+N\right)^{-1} \tag{13}
\end{equation*}
$$

where N is a diagonal square matrix of the variances of the measurement errors and $M_{k+1 / k}$ Is the transferred covariance matrix of measurement variables calculated by

$$
\begin{equation*}
M_{k+1 / k}=\psi_{k} M_{k / k} \psi_{k}^{T} \tag{14}
\end{equation*}
$$

where, ψ_{k} is the state transition matrix for the measurement variables and $M_{k / k}$ is the measurement variables covariance matrix at \mathbb{T}_{k}. (Note that no state disturbance has been included) It is here in the construction of ψ_{k} that approximations are made. Mahra observed that

$$
\psi_{k}=\left(\frac{\partial y_{k+1}}{\partial y_{k}}\right)\left(\frac{\partial y_{k}}{\partial x_{k}}\right)\left(\frac{\partial x_{k}}{\partial y_{k+1}}\right)
$$

or,

$$
\begin{equation*}
\psi_{k}=\left(\frac{\partial g}{\partial x}\right)_{k+1} \Phi_{k}\left(\frac{\partial \ell}{\partial y}\right)_{k} \tag{15}
\end{equation*}
$$

The matrices (al/ay) and Φ_{k} are available from the best estimate of state at T_{k}. To form $(\partial g / \partial x)_{k+1}$, we use the first estimates at T_{k+1} obtained by linear extrapolation from T_{k}. The matrices ($\partial \ell / \partial y$) and ($\partial g / \partial \mathrm{x}$) are not written out here. They can be found in Mahra's paper. $\left({ }^{9}\right.$) All that remains is to propagate the covariances to the next time and this is done with the usual relation

$$
\begin{equation*}
M_{k+1 / k+1}=\left(I-K_{k+1} H\right) M_{k+1 / k} \tag{16}
\end{equation*}
$$

IV. Guidance and Navigation Evaluation Procedure

Performance evaluation of the overall guidance and navigation scheme requires accurate numerical simulation. A covariance analysis alone will not suffice because of the nonlinearities of the basic dynamics. Fig. 3 is a schematic of the procedure
employed. Starting at a time T_{k}, an estimate of the state \hat{x}_{k} is presumed available. For evaluation, the exact state x_{k} is also specified at this time. The estimate $\hat{\mathrm{x}}_{\mathrm{k}}$ is put into the guidance law

Fig. 3. Evaluation Scheme
to generate the SEP thrusting to be used. The equations of motion including the full effect of the sun and Keplerian motion of the target are then integrated accurately (fourth-order Runge-Kutta) to a time $\mathrm{T}_{\mathrm{k}+1}$ when measurements wili be available. The integrated state x_{k+1} is then transformed to measurement variables and appropriate noise added to simulate actual measurements $\mathrm{z}_{\mathrm{k}+1}$. To represent the onboard computations, the state $\hat{\mathrm{x}}_{k}$ is propagated to time T_{k+1} through the transition matrix Φ_{k}. The nonlinear transformation $g(x)$ to measurement variables is then made to give a first estimate y^{\dagger}. The Kalman gain is then calculated with Eqs. (13), (14), (15). The filtered estimate $\hat{\mathrm{y}}_{\mathrm{k}+1}$ is then made with Eq. (11). This estimate is then transformed nonlinearly with $\ell(y)$ to obtain the new state estimate $\hat{\mathrm{x}}_{\mathrm{k}+1}$. And so on. The computer program for these computations has been given the acronym GANDER for Guidance and Navigation Development and Evaluation Routine.

V. Results

The computations for deterministic evaluation of the guidance algorithm were initiated at ranges as large as $2 \times 10^{6} \mathrm{~km}$. However, such ranges are not possible for onboard range and range rate measurement with equipment that fits reasonable weight or power requirements. We could find no information that gives specific distance and accuracy limits for various weight and power allotments except at ranges less than 2000 km . (${ }^{10}$) Several discussions led us to believe that 50,000 km . range and 10 measurements per day are conservative limits. At $50,000 \mathrm{~km}$., optimal trajectory studies (${ }^{6}$) and our deterministic investigations indicate relative velocity of $20,000 \mathrm{~km} /$ day is appropriate. The $50,000 \mathrm{~km}$. range and 20,000 $\mathrm{km} /$ day relative velocity correspond to a point in time about 5 days before rendezvous.

Since specific accuracies could not be identified, we condicted evaluations with two assumed
measurement error sets representing accurate and rough measurements. Angular measurements from onboard science TV gives accuracies of about 20 arc seconds. $(1,2)$ To allow for onboard implementation, we. chose twice this level of error for the angular measurements (. 0002 radians or 41.3 arc sec). This and other error levels used are shown in Table 1.

Table 1. Measurement error sets

STANDARD DEVIACTON	SET I	SET II
Angular Error	41.3 arc sec	41.3 arc sec
Range Error	.002 Range	.03 Range
Range Rate Error	$4.63 \mathrm{~cm} / \mathrm{sec}$	$1.15 \mathrm{~m} / \mathrm{sec}$

The remaining information necessary before evaluations can be made is the error in relative state information between spacecraft and target. It is obvious if final phase of terminal guidance is initiated at $50,000 \mathrm{~km}$., that an ephemeris error of $100,000 \mathrm{~km}$. (such as for Encke) cannot be tolerated. A preliminary study of onboard prefinal phase orbit determination indicates an improvement of relative position knowledge by as much as a factor of 20 by use of onboard relative angular measurements only. This resuit was obtained on the basis that the principal error in target ephemeris is time of periapsis passage. We assumed half of the estimated improvement and used $10,000 \mathrm{~km}$. error in each position component. An error of $1000 \mathrm{~km} / \mathrm{day}$ ($11.5 \mathrm{~m} / \mathrm{sec}$) was assumed in each velocity component. The initial state covariance was constructed using these values as the standard deviations.

In initial computer runs, a gross filter divergence was found as expected. The divergence is obviously due to the modeling error introdued by approximations in the system dynamics. The covariance matrix rapidly decreased in size and new measurements were not weighted enough. One method of handling this problem is to introduce process noise directly into the differential equations. This has worked quite successfully before (1,2) but does introduce additional complexity in filter computations. A constant or adjustable matrix could also be added to the covariance matrix to control size of the principal elements. A nearly equivalent procedure was decided upon. After several guidance cycles, the covariance matrix had reduced in size considerably and we simply "froze" the matrix at this point. Results showed that a "freeze" after 10 guidance cycles or one day gave reasonable results. Certainly, this procedure is conservative. Of course, a procedure for better management should be developed for any actual system. But, our objective is a first evaluation and if reasonable results can be obtained with the crude freeze, then only improvement can be expected with further development.

The navigation errors for the two data sets are shown in Figs. 4 and 5. A standard computer routine was used to generate noise to simulate
actual measurements. Different error sequences were used for each data type. Three different groups of the two runs for the accurate and rough data sets were investigated. There were no great differences in the results for the three groups. All groups were targeted at a point 100 km . in each coordinate from the target.

Fig. 4. Navigation Errors for Data Set I

Fig. 5. Navigation Errors for Data Set II

For the accurate data set I, the terminal rendezvous errors were about 58 km . and $50 \mathrm{~km} / \mathrm{day}$ $(0.58 \mathrm{~m} / \mathrm{sec})$. For the rough data Set $I I$, the corresponding numbers were 280 km . and $860 \mathrm{~km} / \mathrm{day}$ ($10.0 \mathrm{~m} / \mathrm{sec}$). An exemination of the error histories indicates, however, that much better results could be obtained with better statistical management. After initiation of the procedure at 5 days time to go, there is a rapid decrease in error from the initial values of $17,320 \mathrm{~km}$. and $1732 \mathrm{~km} /$ day. It would seem that a better freeze time than 1 day could have been chosen. But, again, we were not interested in forcing the results. By a time of about one day before rendezvous, the errors settled down to about 15 km . and $25 \mathrm{~km} /$ day for the accurate Set I and to about 100 km . and $100 \mathrm{~km} /$ day for the rough sat $I I$. After this time there is what appears to be a filter divergence to the final values. Examination of the differences in the
extrapolated first state values and the filtered estimates confirm this is the case. No serious attempt was made to correct this divergence since the freezing procedure would probably not be used in any actual implementation.

The SEP thrust accelerations required for the two data sets are given in Fig. 6. The levels do not exceed values that are reasonable for proposed SEP systems. For the accurate Set I, the thrust is essentially constant over the whole period with deviations of only about the 5% error that may be expected from the SEP thrustors. For the rough SET II the deviations are larger but not extreme. The initial lower value arises because on the first few guidance cycles the vehicle does not know where it is. The increase during the last half day also

Fi\&. 6. Thrust Histories
arises because of navigation error. Examination of the detailed trajectories shows that the vehicle is on track to rendezvous. The filter problem near rendezvous discussed in the previous paragraph is the cause of thrust increase. In the sample data form in which the guidance equations are written, there is no numerical singularity except at rendezvous. In the case of the rough data set II, fixing the thrust at a constant velue of about 5.5×10^{-6} actually leads to more accurate rendezvous than following the incorrect filter estimates during the last half day, indicating the terminal point control problems may be helped by reducing frequency of guidance updates near the end of the trajectory so as to avoid smail corrections in very small time. The nearly constant SEP level over most of the path also indicates a reduced guidance update frequency may be possible or desirable there as well.

VI. Conclusions

The filtering procedure used was certainly not the best that can be envisioned. Addition of process noise, or a basic improvement in the extrapolation of estimated state would give major improvement of results. Also, the study did not include errors in the SEP thrust level. But thrust level changes due to navigation errors were as large or larger than the 5% expected with the SEP thrustors. Of course, the SEP errors must be included in any more detailed analysis. We
conclude that onboard navigation is possible without unreasonable accuracy requirements for onboard measuring equipment. But further investigation is clearly necessary to obtain definitive results.

For further study we suggest that the following be done:

1. Investigate methods of reducing modeling error with emphasis on ease of onboard implementation.
2. Include SEP thrust errors and a constraint for constant thrust level and direction rather than the linearly varying model now employed. Errors may be handled as noise or periaps estimated as new state variables in the filtering process.
3. Investigate methods of thrust level control not only at the end point, but during the whole terminal phase. While excessive thrust was never encountered in our investigation, other missions may have to contend with gross off-nominal conditions that can call for excessive thrust unless an automatic control is incorporated in the procedure.
4. Investigate onboard methods of target orbit determination that will reduce the target ephemeris uncertainties.
5. Investigate the possibility of dispensing with some of the measurements used here with the objective of simplifying onboard systems.
6. Determine instrument capabilities, power requirements, weight, etc., for onboard measurements up to ranges of at least $50,000 \mathrm{~km}$. and further, if possible.

References

1. Gardner, J. A., "Solar Electric Propulsion System Integration Technology (SEPSIT), Final Report," JPL Technical Memo 33-583, Vol. ITI, Nov. 1972.
2. Jacobson, R. A., "A Constrained Discrete Optimal Guidance Strategy for Low-Thrust Space Flight." Presented at AAS/AIAA Astrodynamics Conference, Vail, Colorado, July 16-18, 1973.
3. Cherry, G. W., "A Unified Explicit Technique Performing Orbital Insertion, Soft Landing, and Rendezvous with a Throttleable Rocket-Propelled Space Vehicle," MIT Instrumentation Laboratory Report R-417, MIT, Cambridge, August 1963.
4. Abercrombie, G. E., "Two Guidance Algorithms for Rendezvous Missions to Comets and Asteroids," Prepared under Contract NAS8-27664, Auburn University, December 1972.
5. Bryson, A. E., and Ho, Yu-Chi, Applied Optimal Control, Guin and Co., Waltham, Mass. (1969).
6. Friedlander, A. L., private communication.
T. Schlec, F..H.g.Standish, C. J., and Toda, N. F., "Divergence of the Kalman Filter," ATAA Journal, Vol. 5, No. 6, June 1967, pp. 1114-1120.
7. Jazwinski, A. H., Stochastic Processes and Filtering Theory, Academic Press, New York (1970), pp. 301-305.
8. Mehra, R. K., "A Comparison of Several Nonlinear Filters for Reentry Vehicle Tracking," IEEE Trans. on Auto. Control, Vol. AC-16, No. 4, August 1971, pp. 307319.
9. Hung, J. C., "Autonomous Target Relative Navigation," Systiems Research Group, Dept. of Electrical Engineering, University of Tennessee, Sci. Report S-24, January 31, 1973.

General Progrem Description

The GANDER Progrem is written in FORTRAN IV and used with the TBM 370/155. The program is a research tool, not a developed production routine. The steps in the simulation and the names of the subroutines that carry out these steps are as follows.

A fourth order funge-Kutta subroutine, RUNKUT, is used to integrate the dynamic forces in GOFZ $\$$ over subintervals of length DT, at each time step (DELT), observations are taken in OBSERV and the filter is used to predict the state in FILIER. The information generated is then put out on Unit 6 and terminal conditions are checked in CYCLOT. Program sequencing and execution is controlled by subroutine CYCLE. Subroutine TARGET is used to generate the comet's position. The name, NOTSE, is a dummy name for the functions URAKD (Uniformly distributed random numbers) and GRAND (Gaussian distributed random numbers). Ten (10). independent noise channels are shared by these two functions.

Subroutine Names and Descriptions
MAIN - Reads in system data and calls CYCLE.

> CYCLE

- Controls sequence of operation and transfer of data between XP and SP.
RUNKUP' • Fourth Order Kunge-Kutta Integrator. Dynamics are provided by DOFX guidance by corrx\$. Called by CYCLE. Performs N integrations of step size DT at each call.
- Entries:

RKINIT called by CYCLE.
Initialize internal variables and read in XT .
DOFX\$ - Compute contribution of dynamics to \dot{X}. J is the index of the components of XT.

Entries: DOFX\$: Compute data to be used by all components.
DOFX: Compute each component.
DXINIT: Initialize intermal constants and read in comet data.
SPECIAL - Calls target for comet position.
GOFX $\$$. Same as DOFX $\$$ except XP is used as variable. May call GRAND.
FILIER * User supplied algorithm to calculate XP. (Basic Kalman filter used in present listing)

- Entries:

FLINIT: Used to initialize arrays.

SPECLAL: Variable ICNT is used to bypass covariance update section after preselected number of cycles. Calls MINV

OBSERV - Generates ZT; may call GRAND.
CYCLOT - Outputs data and checks for end of run.

- Entries:

CYCLOT: Output data
TERRMIN: Check for end conditions satisfied.
RECAP: If end conditions satisfied; output minimum normed distance, velocity and associated times.
CYINTT: Initialize internal constants.

TARGEI - Comet's position by solution of Kepler's Equation.
MINV - Gaussian elimination inversion routine.
SPECIAL writes square (nxn) matrix as a vector of length n^{2}. (Modified TBM SSP)
GRAND - Generates Gaussian distributed random noise with given mean (RMEAN) and standard deviation (STDDEV).
LSCNT - Noise channel number. Calls URAND.
URAND - Generateb random numbers over the interval $[0,1]$. (Modified IBM SSP).
BLOCK DATA initializes seed numbers for URAND

Variable Names and Definitions

XT True state vector.
$\mathrm{XP} \quad$ Predicted state vector (loaded in GXINIT)
XE $\quad \mathrm{XI}-\mathrm{XP}$ error in state
True observations
Predicted observations
ZT-ZP error in observations (RESIDUALS)
L\$L One BYTE logical array used to control sequencing of simulator (partially implemented).
L\$E One BYTE logical array for use by error monitor (Experimantel program control, not implemented).
DT Integration stepsize (true position).
DELT Guidance update stepsize (predicted position) must be an INPEGRAL multiple of DT.

FORTRAN IV G LEVEL ZL TARGET

FORTRAN IV G LEVEL	21 RUNKUT	
0001	Subroutine runkut	
0002	IMPLICIT REAL* 8 ($A-H, 0-2)$	
0003	LOGICAL*I L\$L,LSE,LMON,LF,LT	
0004	LOGICAL*1 LSI,LS2	
0005	CUMMON/VSRBLETXT(6), XP(6), XE(6),Z7(6), ZP(6), 2E(6)	
0006	COMMON/TSMER/DELT, DT, TIME,TI, TF, N, ISLEN, IOLEN	
0007	COYMON/SYSTEM/LSL(40).LSE(10)	
0008	COYMON/MSNI TR/LMON(20)	
0009	COMMON/NOISE/IRAN(10), DG(10),RFRAF16)	
0010	COYMON/OFFSET/C(3)	
0011	CIMENSION XINT(6), OUM (6)	
0012	CATA LF,LT/F,T/	
0013		
0014	DO 1 ICYCLE $=1, \mathrm{~N}$	
0015	CO $33 \mathrm{I}=1$, ISLEN	
0016	SUM (I) $=0.000$	
0017	LSLT10) $=$ LT	
0018	CO $10 \quad 11=1,4$	
0019	LSI $=11 . E Q .2$. OR.II.EQ. 3	
0020	LS2 $=11 . E 0.4$	
0021	LSL(11) $=11 . \mathrm{EQ.}^{3}$	
0022	$F=F 1$	
0023	FS FF5	
0024	IFILS1)F=F2	
0025	1FILSIIFS =F3	
0026	IFILS2)FS $=$ F4	
0027	TS=TIME+DT*FS	
0028	D0 $201=1$, ISLEN	
0029	XIVTTIEXTTIT+FS\$XINTTT	
0030	CO $31 \mathrm{I}=1, \mathrm{NP} 1$	
0031	$J=1-1$	
00-2	IFIJ.GT.0) GO TO 2	
0033	CUM $=$ DOFX $\$(\mathrm{~J}, \mathrm{TS}$)	
0034	CUY $=$ GOFX $\mathrm{S}(\mathrm{J}, \mathrm{TS}$)	
0035	LSL(12) $=$ LF	
0036	G0 TO 31 '	
00372	XIVT(J)=DT* (DOFX(J)+GOFX(J))	
0038	$\operatorname{SUM}(\mathrm{J})=\operatorname{SUM}(\mathrm{J})+\mathrm{F} * \operatorname{XINT}(\mathrm{~J})$	
0039 - 31	COVTINUE	
0040	LS $\mathrm{L}(10)=\mathrm{LF}$	
0041	COVTINUE	
0042	$T I M E=T I M E+D T$	
0043	DO $111=1$ I I SLEN	
0044	XTI 1$)=$ XT(I) +SUM(I)	
0045 I	covtinue	
0046	RETURN	
5047	ENTRY RKINIT	
0048	REAO(5,501)(XT(I), I $=1$, I SLEN)	
0049	WRITE (6,601)(XT(I), $\mathrm{I}=1, \mathrm{I}$ SLEN)	
0050 S01	FORMAT (8F10.0)	
0051601	FORMAT (1H0, 1P8012.5)	
0052	$\mathrm{Fl}=1.000 / 6.000$	
0053	F2 $=2.000$ *F1	
0054	$F 5=1.000 / 2.000$	
0055	F4 $=1.000$	
0056	$F 5=0.000$	
0057	TIME=TI	
0058	NP1 = 1 SLEN+1	

FORTRAN IV G LEVEL 21 . RUNKUT

0059	DO $32 \quad 1=1, I S L E N$
0060	$32 \times I V T(I)=X T(I)$
0061	RETURN
0062	END

