13,177 research outputs found

    Consistent Computation of First- and Second-Order Differential Quantities for Surface Meshes

    Full text link
    Differential quantities, including normals, curvatures, principal directions, and associated matrices, play a fundamental role in geometric processing and physics-based modeling. Computing these differential quantities consistently on surface meshes is important and challenging, and some existing methods often produce inconsistent results and require ad hoc fixes. In this paper, we show that the computation of the gradient and Hessian of a height function provides the foundation for consistently computing the differential quantities. We derive simple, explicit formulas for the transformations between the first- and second-order differential quantities (i.e., normal vector and principal curvature tensor) of a smooth surface and the first- and second-order derivatives (i.e., gradient and Hessian) of its corresponding height function. We then investigate a general, flexible numerical framework to estimate the derivatives of the height function based on local polynomial fittings formulated as weighted least squares approximations. We also propose an iterative fitting scheme to improve accuracy. This framework generalizes polynomial fitting and addresses some of its accuracy and stability issues, as demonstrated by our theoretical analysis as well as experimental results.Comment: 12 pages, 12 figures, ACM Solid and Physical Modeling Symposium, June 200

    Simulation of inviscid compressible multi-phase flow with condensation

    Get PDF
    Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting flow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries

    Physics Of Eclipsing Binaries. II. Towards the Increased Model Fidelity

    Full text link
    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures and luminosities), yet the models are not capable of reproducing observed data well either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but were not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light time travel effect, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes photon-weighted mode, enhanced limb darkening treatment, better reflection treatment and Doppler boosting. Here we present the concepts on which PHOEBE is built on and proofs of concept that demonstrate the increased model fidelity.Comment: 60 pages, 15 figures, published in ApJS; accompanied by the release of PHOEBE 2.0 on http://phoebe-project.or

    Adaptive mesh refinements for thin shells whose middle surface is not exactly known

    Get PDF
    A strategy concerning mesh refinements for thin shells computation is presented. The geometry of the shell is given only by the reduced information consisting in nodes and normals on its middle surface corresponding to a coarse mesh. The new point is that the mesh refinements are defined from several criteria, including the transverse shear forces which do not appear in the mechanical energy of the applied shell formulation. Another important point is to be able to construct the unknown middle surface at each step of the refinement. For this, an interpolation method by edges, coupled with a triangle bisection algorithm, is applied. This strategy is illustrated on various geometries and mechanical problems

    Subdivision Directional Fields

    Full text link
    We present a novel linear subdivision scheme for face-based tangent directional fields on triangle meshes. Our subdivision scheme is based on a novel coordinate-free representation of directional fields as halfedge-based scalar quantities, bridging the finite-element representation with discrete exterior calculus. By commuting with differential operators, our subdivision is structure-preserving: it reproduces curl-free fields precisely, and reproduces divergence-free fields in the weak sense. Moreover, our subdivision scheme directly extends to directional fields with several vectors per face by working on the branched covering space. Finally, we demonstrate how our scheme can be applied to directional-field design, advection, and robust earth mover's distance computation, for efficient and robust computation

    An Entropy Stable Nodal Discontinuous Galerkin Method for the Two Dimensional Shallow Water Equations on Unstructured Curvilinear Meshes with Discontinuous Bathymetry

    Full text link
    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the nonlinear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretisation exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretisation of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem

    A Nitsche-based cut finite element method for a fluid--structure interaction problem

    Full text link
    We present a new composite mesh finite element method for fluid--structure interaction problems. The method is based on surrounding the structure by a boundary-fitted fluid mesh which is embedded into a fixed background fluid mesh. The embedding allows for an arbitrary overlap of the fluid meshes. The coupling between the embedded and background fluid meshes is enforced using a stabilized Nitsche formulation which allows us to establish stability and optimal order \emph{a priori} error estimates, see~\cite{MassingLarsonLoggEtAl2013}. We consider here a steady state fluid--structure interaction problem where a hyperelastic structure interacts with a viscous fluid modeled by the Stokes equations. We evaluate an iterative solution procedure based on splitting and present three-dimensional numerical examples.Comment: Revised version, 18 pages, 7 figures. Accepted for publication in CAMCo
    corecore