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a b s t r a c t

A strategy concerning mesh refinements for thin shells computation is presented. The geometry of the
shell is given only by the reduced information consisting in nodes and normals on its middle surface cor-
responding to a coarse mesh. The new point is that the mesh refinements are defined from several crite-
ria, including the transverse shear forces which do not appear in the mechanical energy of the applied
shell formulation. Another important point is to be able to construct the unknown middle surface at each
step of the refinement. For this, an interpolation method by edges, coupled with a triangle bisection algo-
rithm, is applied. This strategy is illustrated on various geometries and mechanical problems.

1. Introduction

The problem of adaptive mesh refinements on shells remains a
seldom studied subject. Compared with more classical models like
plates or bidimensional elasticity problems, one has to deal with an
additional difficulty which is that the mesh to refine is not plane.
For instance, the center of mass of a triangle or of a quadrangle
is generally not on the middle surface of the shell even if the nodes
are on it. It is the reason why it is often assumed that the exact
shell geometry is known, analytically or from a computer aided de-
sign program. For example, in [1–4], the exact mapping defining
the shell geometry is supposed to be known and a completely
new mesh, based on spatial distribution of new element sizes, is
defined at each step of the refinement procedure. In another
way, it is suggested in [5] to create a new mesh by moving the ver-
tices of the previous one, while isogeometric formulations used in
[6], assumes that the geometry is exactly known from NURBS. This
enables one to construct a mesh of ‘‘NURBS elements”, which is
easy to refine by reindexation of the parametric space. Despite
their interest, these two approaches also need the knowledge of
the exact geometry of the shell surface. Finally, in the case of shell
structures, [7] is one of the very few papers in which the initial
mesh is the basis of the next one, in the sense that some of its ele-
ments are divided in order to obtain the new mesh. But again,

these authors assume that the exact shell geometry is known. In
fact, they introduce in their numerical experiments the idea of
quality of the geometry approximation as a refinement criteria.
This one is expressed as a function of the errors on the added nodes
position and the unit normal vectors at these points.

In this paper, a new approach is suggested. A refinement strat-
egy is introduced in association with an approximation of the mid-
dle surface of the shell. It is only assumed that (1) the positions of
the vertices of a set of flat triangular elements approximating the
middle surface and (2) the normal vectors at these vertices, are
known from a coarse mesh of the middle surface of the shell. Then,
following a methodology developed in [8], it is possible to build
new vertices for each element which are closer to the middle sur-
face than the middle of the element edges.

Concerning the choice of the refinement criteria, let us make
few remarks. The usual estimators, such as those of Zhu and
Zienkiewicz (see [9,10]) for example, are appropriate for a global er-
ror control. Nevertheless, in some papers (see for example [11,12]),
the concept of variable of interest is introduced in the definition of
the error indicator. In the case of thin structures, such as plates and
shells, transverse shear forces are such obvious quantities of inter-
est. By the way, among Kirchhoff–Love assumptions, one is the nul-
lity of the transverse shear strains (but not the shear forces).
Moreover, the transverse shear forces are considered as neglectible
in front of the inplane stresses in the constitutive relationship. But,
it is precisely the stress component which is necessary in order to
satisfy the three-dimensional equilibrium equation through the
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thickness of the shell. So, it can be pointwise very different from
zero (it can be a mathematical measure). Obviously, this phenom-
enon should be taken into account in the refinement criteria. It is
the basic point in the definition of the error indicator described
hereafter.

The plan of this paper is the following one. In Section 2, few
notations related to shells are introduced. The finite element for-
mulation used is described in Section 3, while Section 4 concerns
the mesh refinement strategy. In Section 5, the mesh refinement
criteria is introduced and, finally, various numerical examples are
presented in the last section.

2. Geometrical aspects for shells

Let us recall that a shell is a three-dimensional structure for
which one dimension, called the thickness, is very small compared
to the other dimensions (maximum length or local radius of curva-
ture). In this paper, the middle surface of the shell will be denoted
by x while half the thickness will be e. Finally, as a shell formula-
tion is used, even if it is a mixed one, let us introduce now some
basic elements of differential geometry. For more details see [13],
for example.

So, it is assumed that there exists a mapping, say /, from an
open set x̂ onto the middle surface x which is at least C3ðx̂Þ.
The plane R2 containing x̂ will be referred to coordinates ðn1; n2Þ
while the space R3 is referred to an orthonormal system of coordi-
nates ðO; e1; e2; e3Þ. Then, one has

x ¼ fm 2 R3 j m ¼ /ðn1; n2Þ; ðn1; n2Þ 2 x̂g:

Corresponding to the mapping /, a curvilinear system of coordi-
nates is defined on x such that, at any point m ¼ /ðn1; n2Þ of x,
the tangent vectors are (see Fig. 1)

a1 ¼ /;1 �
o/

on1 ; a2 ¼ /;2 �
o/

on2 :

Let us assume that the vectors a1 and a2 are linearly independent
and span the tangent plane at each point m of x. The unit normal
vector at point m is then defined by

N ¼ a1 ^ a2

ka1 ^ a2k
:

For the sake of brevity, in the following, Greek indices are assumed
to belong to the set {1, 2} and the implicit summation convention
over repeated indices is adopted.

Let us now define several quantities, which are necessary for
the definition of the shell model. The first fundamental form on
surface x is given by

gab ¼ aa � ab; ð1Þ

where ‘‘�” stands for the euclidian scalar product. This tensor is also
called the metric tensor. Its determinant is jgj ¼ g11g22 � g2

12 and its
inverse is such that

gab ¼ aa � ab; ð2Þ

where faag, called the dual basis of faag, is defined with the vectors
aa such that: aa � ab ¼ da

b (Kronecker’s symbol). Then, let us intro-
duce aa;b, which is the partial derivative of aa with respect to nb.
One can write this vector in the basis ða1; a2;NÞ and obtain
aa;b ¼ Cc

abac þ babN, where Cc
ab are the Christoffel’s symbols. bab is

the second fundamental form on x, also called the curvature. One
has

bab ¼ N � aa;b; Cc
ab ¼ ac � aa;b: ð3Þ

3. A mixed variational formulation for the Koiter’s shell model

3.1. The Koiter’s shell model

The Koiter’s shell model is used (see [14,15]). It is formulated
using the two following strain tensors. The first one represents
the change of metric on the surface x due to a displacement. It
is denoted by cab. The second one, named qab, is the change of cur-
vature suggested by Budiansky and Sanders [15]. If v is a displace-
ment vector field on the surface x, expressed in local coordinates
by v ¼ vaaa þ v3N, then cabðvÞ and qabðvÞ are, respectively, given by

cabðvÞ ¼ 1
2 ðvajb þ vbjaÞ � babv3;

qabðvÞ ¼ 1
2 ðhajb þ hbjaÞ þ 1

2 ðb
k
avbjk þ bk

bvajkÞ � bk
abkbv3

(
ð4Þ

with bk
a ¼ gkbbba and vajb ¼ va;b � Cc

abvk (covariant derivative). Final-
ly, the transverse section rotations ha can be expressed through the
Kirchhoff–Love kinematical relation by

ha ¼ �bk
avk � v3;a: ð5Þ

An important point to be noticed is that the expression of qabðvÞ
requires the derivatives of ha, then those of bk

a. As bk
a depends on

the second derivatives of the mapping / (see (3)), such a model
needs the third derivatives of /.

Hence, the classical shell model consists in finding a displace-
ment field u belonging to the set V of the admissible displacement
fields, and such that for all v 2 V ,Z

x
RMabklcabðuÞcklðvÞ þ

e2

3

Z
x

RFabklqabðuÞqklðvÞ ¼ lðvÞ; ð6Þ

where RMabkl and RFabkl are, respectively, the membrane and the
bending stiffness tensors. In the particular case of an homogeneous
and isotropic material,

RMabkl ¼ RFabkl ¼ Ee
1� m2 ðð1� mÞðgakgbl þ galgbkÞ þ 2mgklgabÞ;

where E is the Young’s modulus and m the Poisson’s ratio. Finally,
lðvÞ stands for the mechanical loading.

3.2. Continuous mixed variational formulation

The main ideas of the mixed formulation, introduced in [16], are
the following. First of all, the transverse section rotations ha are

Fig. 1. Definition of surface x. Fig. 2. Approximation of the middle surface geometry.



introduced as new unknowns. This is very usual in plate and shell
theories. Second, the Kirchhoff–Love relationship (5) is prescribed
by means of a Lagrange multiplier. Let us observe that this multi-
plier has the physical meaning of the resultant transverse shear
forces vector, which will be useful for the definition of refinement
criteria.

Let us now be more precise. We introduce the membrane forces
tensor nab ¼ RMabklcklðuÞ, the bending moments tensor mab ¼
RFabklqklðuÞ, where cklðuÞ and qklðuÞ are given in (4), and the resul-
tant transverse shear forces vector, say q ¼ qaaa. The basic point of
the method is to split q into the sum of the gradient of a scalar
function and the rotational of another one (Helmholtz decomposi-
tion), like

q ¼ grad uþ rot w ¼ gabu;baa þ
1ffiffiffiffiffiffi
jgj

p ð�w;2a1 þ w;1a2Þ: ð7Þ

So, starting from the equilibrium relationships and writing (7) in a
variational form, the global mixed formulation reads

find ðK;XÞ 2M�V such that
8Y 2V; AðX;YÞ þ BðK;YÞ ¼ LðYÞ;
8N 2M; BðN;XÞ ¼ 0;

8><>: ð8Þ

where the unknowns are X ¼ ðua;u3; haÞ and K ¼ ðu;wÞ associated
with the virtual fields Y ¼ ðva; v3;laÞ and N. Let us remark that,
from now on, ua;u3 and ha are considered as independent variables.
Moreover, LðYÞ is the natural extension of the linear form lðvÞ
appearing in (6). The bilinear form A reads

AðX;YÞ ¼
Z

x
RMabklcabðXÞcklðYÞ þ

e2

3

Z
x

RFabklqabðXÞqklðYÞ

¼
Z

x
nabðXÞcabðYÞ þ

e2

3

Z
x

mabðXÞqabðYÞ ð9Þ

and gives the elastic energy of the shell while B, expressed by

BðK;YÞ ¼ e2

3

Z
x

gaku;kðla þ bb
avb þ v3;aÞ

�
�
Z

x

wffiffiffiffiffiffi
jgj

p ðl2;1 � l1;2 þ ðb
b
2vbÞ;1 � ðb

b
1vbÞ;2Þ

#
; ð10Þ

ensures the Kirchhoff–Love constraint (5). As a matter of fact, dis-
placement fields X such that BðN;XÞ ¼ 0 for all N 2M, are precisely
Kirchhoff–Love displacement fields. Finally, the functional spaces
are defined by

V ¼ Vt � V �Wt ; M ¼ V � L2
0ðxÞ

with

Vt ¼ fvt ¼ vaaa j va 2 H1ðxÞ; va ¼ 0 on c0 [ c1g;
V ¼ fv 2 H1ðxÞ j v¼ 0 on c0 [ c1g;
L2

0ðxÞ ¼ fw 2 L2ðxÞ j
R
x w¼ 0g;

Wt ¼ fl¼ laaa j la 2 H1ðxÞ;la ¼ 0 on c0;lt ¼ 0 on c1g;

8>>>><>>>>:
where lt stands for the tangential component along the edge.
Moreover, to make the boundary conditions more precise, c0 and
c1 are two parts of the boundary c of x, where the shell is assumed
to be clamped and simply supported, respectively. The remainder of
the boundary of x is free.

To conclude this section, let us emphasize an advantage of this
formulation. We have observed that the classical variational for-
mulation needs the use of the third-order derivatives of the map-
ping / describing x. Here, these derivatives should appear in the
bilinear form B. But a simple calculus leads to the relation

ðbb
2vbÞ;1 � ðb

b
1vbÞ;2 ¼ bb

2vb;1 � bb
1vb;2 þ ðCb

l2bl
1 � Cb

l1bl
2 Þvb;

and the third-order derivatives disappear. This point will be of
importance when the geometry of the shell is not exactly known
and an approximation of it has to be constructed.

3.3. Numerical discretization

In the case of classical variational formulations, such as (6), the
main condition, which ensures existence and uniqueness of a solu-
tion, is the ellipticity of the bilinear form. So, when a conformal fi-
nite element approximation is used, which means that the discrete
space is contained in the continuous one, this ellipticity property is
kept and the discrete model has also one and only one solution (see
[17]). Unfortunately, this condition of conformity of the discrete
spaces is not sufficient in the case of mixed formulations. This

Fig. 3. First refinement of a triangle.

Fig. 4. Next refinements of a triangle to obtain conformity.

Fig. 5. Approximation of the middle surface in the plane P.

Table 1
Settings for the cylinder under uniform pressure and the cracked cylindrical shell

Length Thickness Radius Young’s modulus Poisson’s ratio Pressure

L ¼ 100 2e ¼ 1 R ¼ 100 E ¼ 3� 109 m ¼ 0:3 P ¼ 3� 105

4791



problem is well-known in fluid mechanics and is due to the incom-
pressibility condition. A long time ago (for example, see [18]), effi-
cient numerical schemes were suggested to overcome this
difficulty. In this case, where the main unknowns are velocity
and pressure, the idea is to enrich the velocity. We follow this idea,
keeping in mind that the field which takes the place of velocity is
the transverse section rotations ha vector.

Practically, first-order degree polynomials are used for each un-
known ua;u3; ha;u and w. But, in order to stabilize the numerical
scheme, the rotations ha are enriched with internal degrees of free-
dom. More precisely, if triangular elements are used, which is the
case in the following of this paper, a ‘‘bubble” function is added

for each rotation ha. With this scheme, it can be proved that the er-
ror estimate between the exact solution and the discrete one is of
order OðhÞ, if h stands for the small parameter linked to the mesh
size (see [19]).

4. Approximation of the middle surface of the shell and
refinement strategy

4.1. Approximation of the middle surface

Now, it is assumed that the middle surface x of the shell is
approximated by flat triangular elements, the vertices of which
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Fig. 6. Cylinder under uniform pressure ða ¼ 0:25Þ – deflection along the axis direction.
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Fig. 7. Cylinder under uniform pressure ða ¼ 0:25Þ – membrane force n1
1 along the axis direction.



are on x. Moreover, it is assumed that the normal vectors to x at
these vertices are exactly known (see Fig. 2). Then, it is possible to
build a local basis, i.e. depending on the element, of the tangent
plane at each vertex of the mesh. From an interpolation of these
‘‘nodal” bases, one can obtain an approximation of the geometrical
tensors (1)–(3), which are needed in the shell model. And it can be
proved that the error, due to this approximation, is also of order
OðhÞ in energy norm, which is the same as the error due to the fi-
nite element interpolation (see [20]).

4.2. Mesh refinement: basic aspects

Let us begin with the technical aspects of the mesh refinement,
recalling that we use meshes only made of triangles. In order to re-
fine these meshes, an algorithm proposed by Rivara is used (see
[21]). Its main ideas are the following ones. In a first time, each tri-
angle which has to be refined, is divided into four sub-triangles, in
the following manner (see Fig. 3): the middle point of the longest
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Fig. 8. Cylinder under uniform pressure ða ¼ 0:25Þ – bending moment m1
1 along the axis direction.
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Fig. 9. Cylinder under uniform pressure ða ¼ 0:25Þ – transverse shear force q2 along the axis direction.



side is connected with its opposite vertex and with the middle
points of the two other sides.

Once this first refinement is achieved, a second one is done to
ensure the conformity of the new mesh. So, two cases may occur.
If a new node is added on the longest side of a triangle, it is
connected with it opposite vertex. If not, it is connected with the
middle point of the triangle longest side (see Fig. 4). This process
is repeated until total conformity is obtained, which practically
occurs after a few iterations. Finally, let us emphasize a major
advantage of this technique: during the successive refinements,
the final mesh has angles which remain bounded away from zero
(see [21]).

4.3. Mesh refinement: case of shell structures

As far as refinement is concerned, we have to deal now with the
fact that the mesh to refine is not plane. Thus, the middle point of a
triangle edge is generally not on the surface. So, we shall use a
methodology developed by one of the authors and a coworker
(see [8]). For autonomy of this paper, let us describe this strategy
hereafter.

Let A and B be two vertices of the mesh, which are then on the
middle surface x, and NðAÞ and NðBÞ the corresponding unit nor-
mal vectors. Points A;B and the vector c � NðAÞ þ NðBÞ define a
plane P which cuts x along a curve, say AB

_

, that we are aiming

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

 5.5 6  6.5 7  7.5 8  8.5 9

qu
ad

ra
tic

 m
ea

ns
 o

f t
he

 in
di

ca
to

rs
 a

nd
 th

e 
er

ro
rs

 (
lo

ga
rit

hm
ic

 s
ca

le
)

number of elements (logarithmic scale)

indicators - refined meshes
errors - refined meshes
errors - uniform meshes

Fig. 10. Cylinder under uniform pressure ða ¼ 0Þ – quadratic means of the error indicators and the ‘‘true” errors.
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at defining an interpolation. First, setting U ¼ AB
kABk, a direct ortho-

normal basis ðU;VÞ of P is defined. Then, two vectors TðAÞ and
TðBÞ are introduced, which belong to plane P, and are, respectively,
orthogonal to NðAÞ and NðBÞ, in such a way that the two vectors T
and N define a direct orthonormal basis (see Fig. 5). So, they are
tangent to the curve we are trying to construct an interpolation.
Now, let k be the euclidian norm of vector AB. We build the
third-order polynomial function, say P3, from ½0; k� into R, such that
its curve in P contains A and B, and has TðAÞ and TðBÞ as tangent
vectors at these points. In other words,

P3ð0Þ ¼ P3ðkÞ ¼ 0; P03ð0Þ ¼
TvðAÞ
TuðAÞ

� a; P03ðkÞ ¼
TvðBÞ
TuðBÞ

� b;

where Tu and Tv stand for the components of vector T in the basis
ðU;VÞ. Then, it is easy to calculate P3 as

P3ðxÞ ¼ ax� 2aþ b
k

x2 þ aþ b

k2 x3:

Finally, the new node C is introduced by

AC ¼ k
2

U þ P3
k
2

� �
V ¼ k

2
U þ k

8
ða� bÞV : ð11Þ

Remark. In general, the two vertices A and B, and the two normal
vectors NðAÞ and NðBÞ are not in the same plane. So, in Fig. 5, eNðAÞ
and eNðBÞ stand for the projection of the exact normal vectors on

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

 5.5 6  6.5 7  7.5 8  8.5 9

qu
ad

ra
tic

 m
ea

ns
 o

f t
he

 in
di

ca
to

rs
 a

nd
 th

e 
er

ro
rs

 (
lo

ga
rit

hm
ic

 s
ca

le
)

number of elements (logarithmic scale)

indicators - refined meshes
errors - refined meshes
errors - uniform meshes

Fig. 12. Cylinder under uniform pressure ða ¼ 0:5Þ – quadratic means of the error indicators and the ‘‘true” errors.
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Fig. 13. Cylinder under uniform pressure ða ¼ 0:75Þ – quadratic means of the error indicators and the ‘‘true” errors.
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the plane P and are given only for the understanding of the Figure.
They are useless for building the function P3.

Let us now assume that the exact curve AB
_

can be described by a
mapping f, which is assumed to be C4ð½0; k�Þ. Then, the previous
interpolation procedure is reduced to the well-known Hermite
interpolation, for which the error is classical. For all x 2 ½0; k�, there
exists nx 2�0; k½ such that

f ðxÞ � P3ðxÞ ¼
x2ðx� kÞ2

24
f ð4ÞðnxÞ:

Therefore, if M is a general node of AB
_

and Mh the node obtained by
the above interpolation, the two nodes being of same abscissa in
ðA; U;VÞ, one has

kMMhkL1ð½0;k�Þ 6 gkk4
;

where gk is a constant independent on k but depending on the max-
imum value of j f ð4Þ j on ½0; k� (f ð4Þ is the fourth-order derivative of f).
So, when we choose for M the node of abscissa k=2, we have
kMCk 6 gkk4. Finally, introducing the mesh parameter h, which is
the maximum length of the edges in the mesh, and assuming that
the mapping is sufficiently smooth, we can conclude that there ex-
ists a strictly positive constant g, independent on h and such that,
on the whole mesh

kMCk 6 gh4
;

where C stands for the added nodes corresponding to the ‘‘exact”
nodes M.
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Fig. 14. Cylinder under uniform pressure ða ¼ 1Þ – quadratic means of the error indicators and the ‘‘true” errors.
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Nevertheless, the geometrical approximation needs also the use
of the normal vector. So, a unit normal vector to x at node C has to
be constructed. For this, the classical linear interpolation is used
and the vector that has been obtained is normalized:

NðCÞ ¼ NðAÞ þ NðBÞ
kNðAÞ þ NðBÞk : ð12Þ

In order to obtain an error estimate between NðCÞ and the exact
normal vector NðMÞ (M is again the node of abscissa k=2, previously
introduced), let us recall a classical interpolation estimate, applied
to our case:

kN � pNkL1ðxÞ 6 ch2 j NjW2;1ðxÞ; ð13Þ

if p stands for the linear interpolation operator, under classical reg-
ularity assumptions on the mesh and if the components of N be-
longs to W2;1ðxÞ (see [17]). N represents the unit normal vector.
It is homogeneous to the first-order derivatives of the mapping /.
Therefore, it is smooth enough because the mapping which defines
the surface x has been assumed to be C3ðx̂Þ. Let us also note that
the normal vector is defined everywhere on the middle surface x,
because the two tangent vectors have been assumed to be linearly
independent at each point of the surface x. The definition of M
(‘‘middle” point of AB

_

) leads to
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pNðMÞ ¼ NðAÞ þ NðBÞ
2

:

Therefore

kpNðMÞk ¼kNðMÞ � NðMÞ þ pNðMÞk
PkNðMÞk � kNðMÞ � pNðMÞk
PkNðMÞk � kN � pNkL1ðxÞ

P1� ch2 j NjW2;1ðxÞ

or else

1� kpNðMÞk 6 ch2 j NjW2;1ðxÞ: ð14Þ

Moreover, one has

kNðMÞ � NðCÞk 6kNðMÞ � pNðMÞk þ kpNðMÞ � NðCÞk
6kN � pNkL1ðxÞ þ kpNðMÞ � NðCÞk:

Let us remark now that

kpNðMÞ � NðCÞk ¼ pNðMÞ � pNðMÞ
kpNðMÞk

���� ����
¼ j kpNðMÞk � 1 j¼ 1� kpNðMÞk;

as

kpNðMÞk ¼ kNðAÞ þ NðBÞk
2

6 1;

because the normal vectors are unitary. Finally, using (14), we
obtain

kNðMÞ � NðCÞk 6 2ch2 j NjW2;1ðxÞ:

The previous method was applied on various surfaces, and the
numerical results corroborate the above estimates (see [8]).

Remark. Let us observe that this procedure only requires data
which are connected to the element edge (coordinates of the two
vertices and the two associated normal vectors). It does not depend
on the fact that the element is a triangle or a quadrangle. So, it
could be applied exactly in the same way for refining meshes made
of quadrangles.

5. Mesh refinement criteria

Let us now explain how we choose to refine the mesh. To make
it short, the method is based on the smoothing of the elastic energy
of the shell. So, a first step is to build new fields of stresses which
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Fig. 19. Settings for the pinched cylinder.



are supposed to give a better approximation of the true ones than
the finite element ones. Then, a first part of an error indicator can
be obtained thanks to the difference between smoothed and finite
element fields. Nevertheless, as shell models are concerned, we
have chosen to introduce in our indicator the transverse shear
force as a quantity of interest, in a way which is described in the
following. On the other hand, though it could certainly be interest-
ing in the framework of shells, in the present paper, we have not
introduced an indicator linked with the quality of the geometry
approximation, as it is suggested in [7]. Nevertheless, as it will ap-
pear further, in most of our test cases, the effect of this approxima-
tion has been studied.

5.1. Stress smoothing

First of all, let us notice that the finite element membrane forces
tensor nh and bending moments tensor mh are constant on each tri-
angle, as first-order polynomial functions are used for the displace-
ments. Moreover, as they are given in a local basis which depends
on the element, they have to be expressed in the same global basis

ðe1; e2; e3Þ before being smoothed. Then, let us denote by nh
klðKÞ and

mh
klðKÞ the values which are taken on triangle K by any component

of nh and mh, respectively. Then, at any vertex S of the mesh, we de-
fine for any component k and l

nh
klðSÞ ¼

P
TS
j K j nh

klðKÞP
TS
j K j ; mh

klðSÞ ¼
P

TS
j K j mh

klðKÞP
TS
j K j ; ð15Þ

where TS denotes the patch of S, which means the set of elements K
which contain the vertex S. Then, the smoothed membrane forcesenh

K and the smoothed bending moments ~mh
K are defined as the ten-

sors any component of which is the first-order polynomial functions
given on each triangle K by

enK
kl ¼

P3
i¼1

nh
klðSiÞkK

i ;

~mK
kl ¼

P3
i¼1

mh
klðSiÞkK

i ;

8>>><>>>: ð16Þ

where kK
i stands for the ith first-order nodal function of K.

Fig. 20. Successive refinements of the pinched cylinder – a ¼ 0:25.



Remark. The values given by (15) are solution of

min
f2R

Z
TS

ðf � fKðXÞÞ2 dX;

where fKðXÞ is a generic function, which is constant on each ele-
ment, as in the case of nh and mh. Thus, our approach presents sev-
eral analogies with the one developed by Zhu and Zienkiewicz
[9,10]. Let us note yet that we minimize among constants while
these authors use first-order degree polynomials.

5.2. Error indication

Let us first recall some basic aspects on the elastic energy J of a
general shell model. Let f be the linearised strain tensor and r the
stress tensor. The three-dimensional elastic energy reads

J ¼ 1
2

Z
X
r : f: ð17Þ

Now, the tensors r and f can be splitted into tangential and normal
components, such as

f ¼ ft þ fs � N þ N � fs þ fnN � N;

and a similar equation for r. Then, the following decomposition of
the elastic energy is derived

J ¼ Jt þ Js þ Jn ð18Þ

with

Jt ¼
1
2

Z
X
rt : ft ; Js ¼

Z
X
rs � fs; Jn ¼

1
2

Z
X
rnfn:

The two first quantities are, respectively, the inplane and the trans-
verse shear energies.

In order to recover error indicators homogeneous to an energy,
the next step we consider is to express some terms of the decom-
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position (18) using the forces we are dealing with. Let us first no-
tice that the kinematical hypothesis of the Koiter’s shell model
leads to

ft ¼ cþ x3q; ð19Þ

x3 being the coordinate along the normal direction to the middle
surface. Let us recall that c and q are, respectively, the change of
metric and the change of curvature tensors previously defined in
(4). Then, we get for the inplane strain energy, which is the global
elastic energy for our shell,

Jt ¼
1
2

Z
x

n : ðRMÞ�1 : nþ e2

6

Z
x

m : ðRFÞ�1 : m: ð20Þ

Such an expression is appropriate for the smoothing strategy pre-
sented in the previous section, and leads naturally to a global error
control. But here, we have also chosen to enrich our error indicator
with the transverse shear forces. By the way, because of Kirchhoff–
Love assumptions, there is no transverse shear energy for the Koiter’s
or/and Budiansky–Sanders’s models. This is due to the fact that the
transverse shear strain is zero. Let us observe that Kirchhoff–Love
assumptions can be justified thanks to asymptotic methods. It
means that the most the shell is thin, the most the transverse shear
energy is close to zero. Hence, introducing an energy for the trans-
verse shear in the framework of Kirchhoff–Love’s model could ap-
pear as not justified in a first time. Nevertheless, first, the ‘‘real”
thickness of the shells on which engineers work, does not go to zero.
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The thickness can be very small but is not null. And second, in our
model, the expression of the Lagrange multiplier can be used to give
an indicator on the transverse shear energy. This quantity is of
importance when the transverse shear forces take locally big val-
ues: it is a way to mean that the shell model becomes questionable
and a manner to overcome this, is to refine the mesh locally there.
So, from a three-dimensional constitutive law, a resultant trans-
verse energy is defined by

IðKÞ ¼ 1þ m
2Ee

kgrad uþ rot wk2
L2ðKÞ �

1þ m
2Ee

kqhk2
L2ðKÞ; ð21Þ

where u and w are the two potential functions used in the definition
of the transverse shear forces (see (7)).

The previous considerations lead us to define error indicators
for each type of forces by

gnðKÞ ¼
ffiffiffiffiffiffiffiffi
1�m2

2Ee

q
kenh � nhkL2ðKÞ;

gmðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
eð1�m2Þ

6E

q
k ~mh �mhkL2ðKÞ;

gqðKÞ ¼
ffiffiffiffiffiffiffiffiffi
IðKÞ

p
:

8>>>><>>>>: ð22Þ

In order to define a relative error indicator, the following quantity is
introduced

J0 ¼
X

K2T0

1� m2

2Ee
kenhk2

L2ðKÞ

�
þ eð1� m2Þ

6E
k ~mhk2

L2ðKÞ þ
1þ m
2Ee

kqhk2
L2ðKÞ

�
;
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where T0 is the mesh used for the initial computation. The local er-
ror indicator then reads

gðKÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

nðKÞ þ g2
mðKÞ þ g2

qðKÞ
J0

s
: ð23Þ

Finally, the refinement of a triangle K is effective when one has, for a
given positive or null a,

gðKÞ > gmean þ as; ð24Þ

where gmean and s stand, respectively, for the arithmetic mean and
standard deviation of error indicators. In general, the larger is a,
the more concentrated will be mesh refinement. In fact, the values
of this parameter influence the decrease of the global estimation
during the refinement process, as shown later.

6. Numerical experiments

Some numerical results testing the approach previously de-
scribed, are presented now. Among them are classical shell prob-
lems, for which reference solutions are described in the literature
(see e.g., [22]). They allow us to check the computation accuracy

when the number of elements increases while refining the mesh.
In particular, the following points, which we found interesting in
our approach, will be examined.

� What is the effect of the geometry approximation on the computa-
tion accuracy after a few refinement iterations?
Thus, when it is possible, it will be worthwhile to consider the
case of the exact interpolation in order to compare the results
with the approximated interpolation ones.

� Are the error indicators of the different stresses such that each of
them can play a role in the refinement process?
If it is, it will justify the weights chosen in (22).

� Is the error indicators behaviour close to the one of the ‘‘true”
errors?
This can be investigated when an analytical solution of the
problem is available, as in the first case considered underneath.
It should be noticed that the effectivity index is classically used
to answer to this question (see e.g., [23]). Let us remember
that the main goal of the indicator suggested here is to detect
where to refine in order to obtain a good accuracy for the
transverse shear forces. It is not designed to be close to the
‘‘true” error.

Fig. 26. Settings for the twisted ribbon.
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6.1. Cylinder under uniform pressure

Let us begin with the case of a cylindrical shell, which is
clamped on one side, the opposite one being free. It is submitted
to an internal uniform pressure load P. Thus, the shell and the load
are both axisymmetric. So, the solution depends only on the abscis-
sa along the shell axis, say n2, in the case of the mapping

/ðn1; n2Þ ¼
n2

R cos n1

R sin n1

0B@
1CA; ð25Þ

where R is the radius of the cylinder. The main interest of this exam-
ple is that the exact solution of the Koiter’s model can be easily ob-
tained (see [24]).

In the local basis given by (25), the membrane forces tensor n is
such that

n1
1 ¼

2Ee
R

u3;

its other components being zero, and the bending moments are
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Fig. 30. Settings for the hyperbolic paraboloid.
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m1
1 ¼ � 2Ee

1�m2
1

R2 u3 þ mu3;22

	 

;

m2
2 ¼ � 2Ee

1�m2
m

R2 u3 þ u3;22

	 

;

8><>:
while m2

1 ¼ m1
2 ¼ 0. Then the transverse shear forces read

q1 ¼ 0; q2 ¼ m22
;2 :

Finally, the knowledge of the deflection u3 allows us to compute all
these forces. This can be done by solving the following differential
equation:

2Ee3

3ð1�m2Þ u3;2222 þ 2m
R2 u3;22 þ 1

R2 þ 3ð1�m2Þ
e2

	 

u3

R2

n o
¼ P;

u3ðLÞ ¼ 0; u3;2ðLÞ ¼ 0; m2
2ð0Þ ¼ 0; m2

2;2ð0Þ ¼ 0;

8<: ð26Þ

where L is the cylinder length. The settings for the computation are
given in Table 1.

One observes in Figs. 6–9 the very good accuracy of the numer-
ical solution versus the analytical one, after four refinements, even
for the bending moments and the transverse shear forces, espe-
cially near the clamped edge.

Finally, an approximated ‘‘true” error for this test-problem can
be derived. To achieve this, the difference between the analytical
values of the forces at the vertices of the mesh and the finite ele-
ment forces is evaluated in a similar way than in (21) and (22).
More precisely, we set for each triangle K:

ena
K ¼

P3
i¼1

na
Si
kK

i ;

~ma
K ¼

P3
i¼1

ma
Si
kK

i ;

eqa
K ¼

P3
i¼1

qa
Si
kK

i ;

8>>>>>>>><>>>>>>>>:
ð27Þ

where na
Si
;ma

Si
and qa

Si
are, respectively, the analytical exact mem-

brane forces, bending moments and shear forces computed at node
Si, while kK

i is, as in (16), the ith first-order nodal function of K. Then,
the approximated ‘‘true” error is defined as
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Table 2
Settings for the tank under uniform pressure – geometrical aspects

Length of the cylinder Thickness Radius of the cylinder and hemispheres

L ¼ 25:132 m 2e ¼ 0:02 m R ¼ 10 m

Table 3
Settings for the tank under uniform pressure – mechanical aspects

Young’s modulus Poisson’s ratio Internal pressure

E ¼ 68:25� 106 Pa m ¼ 0:3 P ¼ 3� 103 Pa

Fig. 34. Tank under uniform internal pressure – one eighth of the structure.



eðKÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

nðKÞ þ e2
mðKÞ þ e2

qðKÞ
Ja

0

s
; ð28Þ

where

enðKÞ ¼
ffiffiffiffiffiffiffiffi
1�m2

2Ee

q
kena � nhkL2ðKÞ;

emðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
eð1�m2Þ

6E

q
k ~ma �mhkL2ðKÞ;

eqðKÞ ¼
ffiffiffiffiffiffi
1þm
2Ee

q
keqa � qhkL2ðKÞ;

8>>>><>>>>: ð29Þ

and

Ja
0 ¼

X
K2T0

1� m2

2Ee
kenak2

L2ðKÞ þ
eð1� m2Þ

6E
k ~mak2

L2ðKÞ þ
1þ m
2Ee

keqak2
L2ðKÞ

� �
:

Fig. 11 allows one to compare the error indicators with the esti-
mated ‘‘true” errors, as the mesh is refined. The decrease rate of
the quadratic mean values of the errors is more important
than the one of the indicators. This behaviour is due to the fact that
the transverse shear forces are compared to zero in our indicator.
However, they are locally very large near the clamped edge (see
Fig. 9). Then, the mixed model introduced in Section 3 combined
with our mesh refinement criteria allows one to refine the mesh
where the transverse shear forces are important and to obtain a good
accuracy on them. Moreover, Fig. 11 illustrates also the efficiency of
the mesh refinement compared to a uniform mesh refinement.

The comparison of Figs. 10 to 14 shows how the selectivity
parameter a introduced in (24) influences the decrease rate of
the error indicators and the ‘‘true” errors. For large values of a,
the decrease rate can be irregular.

Finally, one can describe more precisely the effects of each part
of the error indicator. Thus, gn=

ffiffiffiffi
J0

p
;gm=

ffiffiffiffi
J0

p
;gq=

ffiffiffiffi
J0

p
and the local

indicator g along the axis direction, for the initial computation
and after 1, 2 and 3 refinement iterations, are shown in Figs. 15–
18. In all the cases, most of the error concentrates near the
clamped edge. Nevertheless, the effect of each indicator does not
follow the same way. The membrane forces indicator rapidly de-

creases near the clamped edge and remains dominant far from
it. Near the clamped edge, the transverse shear forces indicator be-
comes more and more important, relatively to the two other ones,
and finally selects the refinement area. The effect of the bending
moment indicator is rather weak. It also decreases rapidly near
the clamped edge and increases near the free edge. The reason is
that, when the Koiter’s shell model is used, a local deformation
of the shell occurs near the free edge, due to bending moments.
Let us finally observe that the global error does not change far
from the clamped edge, because the mesh refinement concentrates
near this edge. Dropping the transverse shear forces indicator
away from the local indicator would completely change the refine-
ment strategy as the global error would concentrate far from the
clamped edge.

6.2. Pinched cylinder

Here, a cylindrical shell is simply supported at its extremities by
two diaphragms and loaded by two opposite pointwise forces F
and �F in the middle. Because of the problem symmetry, only
one eighth of the cylinder is generally considered where the force
F=4 is applied (see Fig. 19).

An analytical solution, which is used as a reference one for this
problem, is obtained using a double Fourier series and the relations
due to Flügge (see [25]). But it does not correspond exactly to the
Koiter’s model, for which the change of curvature tensor is slightly
different. So, this so-called reference value for the normalized
deflection at the pinched point is 2Eeu3

kFk ¼ �164:24. When starting
from a uniform mesh of 400 elements, we get �164:21 at the 7th
computation (see Fig. 20). Let us note that this value does not vary
significantly when using finer meshes. Therefore, it can be said that
convergence has been obtained for our model.

In a similar way, concerning the stresses, a reference normal-
ized value of the component n11 of the membrane force in the
absolute basis at the pinched point is Rn11

kFk ¼ �15:72, while we get
�17:3.

The approximated interpolation of vertices and normal vectors,
described in Section 4.3, generates a neglectible error for the
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deflection, as shown in Fig. 21. It is worth to note that the conclu-
sion is the same for the stresses (see Fig. 22).

Finally, the error indicators gn=
ffiffiffiffi
J0

p
, gm=

ffiffiffiffi
J0

p
;gq=

ffiffiffiffi
J0

p
along AB

_

and the local indicator g are shown in Fig. 23. It can be observed
that the membrane forces indicator is dominant away from the
pinched point, while near this point the bending moment and
the transverse shear forces indicators grow and finally contribute
to select the refinement area. The same features remain valid after
more refinement iterations (see Fig. 24). For these computations,
our goal is reached because gn;gm and gq are weighted in such a
manner that none of them masks systematically the others during
the refinement process. A last point that should be noticed is the
efficiency of the mesh refinement versus a uniform mesh refine-
ment, as shown in Fig. 25.

6.3. Pinched twisted ribbon

Let us now consider another instructive classical example: the
twisted cantilevered ribbon (see Fig. 26). One extremity is clamped
and the opposite one is submitted to a concentrated unit shear load
in the thickness direction.

The computed displacement for the pinched point A in the basis
ðe1; e2; e3Þ is ð0:;0:00175;�0:00171Þ at the 5th computation as the
reference solution given by [22] is ð0:;0:00175;�0:00179Þ, this
solution being derived from the beam theory.

The error indicators g;gn=
ffiffiffiffi
J0

p
;gm=

ffiffiffiffi
J0

p
and gq=

ffiffiffiffi
J0

p
along DE

_

are
shown in Fig. 28. Let us remark that the transverse shear and the
membrane forces indicators lead to the same order of magnitude.
Although the bending moment drops back in this case, the weights
of (22) are satisfying.

Finally, Fig. 27 shows the good accuracy along DE
_

of the approx-
imated interpolation method proposed in [8], while Fig. 29 reveals,
at the pinched point, the approximated interpolation gives slightly
less accurate results than the exact one. To overcome this problem,
it could be advantageous to incorporate some shell geometrical
informations to the error indicator (see [7] for an example of such
an approach).

Fig. 36. Tank under uniform internal pressure ða ¼ 0Þ – successive refinements.
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6.4. Clamped hyperbolic paraboloid

The middle surface is given by the mapping

/ðn1; n2Þ ¼
n1 � b

n2 � b
c

2b2 ððn2Þ2 � ðn1Þ2Þ

0B@
1CA; ð30Þ

where b and c are two positive numbers and x̂ ¼�0;2b½��0;2b[ (see
Fig. 30, where the frame Ox0y0 is obtained from Oxy by the rotation
of p=4 radians in this plane). The geometrical and mechanical set-
tings are those of the case described in e.g., [26].

First, let us notice that the displacement of the center point O is
close to the reference solution given in [26]. For the clamped par-
abolic hyperboloid, the refinement concentrates near the bound-
aries. The clamped boundary condition, which creates a
horizontal tangency along the edge, appears clearly on the de-
formed configuration after few refinements, as shown in Fig. 31.
Again, exact and approximated interpolations give very close
results.

Figs. 32 and 33 show that the refinement process is strongly
dependant on the transverse shear forces indicator gq for the
clamped hyperbolic paraboloid. This underlines again the impor-
tance of gq in the expression (23) of the error indicator.

6.5. A case of junction of shells: tank under uniform pressure

As a more complex structure than the previous ones, a shell
which contains junctions between a cylinder and two hemispheres
is now considered. The mechanical load is an internal uniform pres-
sure. The data are given in Tables 2 and 3. Due to the problem sym-
metry, only one eighth of the structure is considered (see Fig. 34).

An analytical solution is available in [24] for the tank under uni-
form pressure. However, the hemispheres are considered as two
membranes and the shell model of the cylinder is Novozhilov’s
one, which is different from Koiter’s model, even if it belongs to
the same family of Kirchhoff–Love’s models. Consequently, this
analytical solution is too different from ours to take the role of
the reference solution. However, let us mention that on the spher-

ical side of the structure, the ‘‘analytical” normal displacement
near the junction is u3 ¼ ð1�mÞpR2

4eE ¼ 0:07692, as we get
u3 ¼ 0:08783 (see Fig. 35), whereas on the cylindrical side of the
structure, the ‘‘analytical solution” gives u3 ¼ 0:18853 while we
get u3 ¼ 0:19092. Thus, the analytical results indicate that the
deflection variation has to be located at the junction. This can be
observed in Fig. 35. Furthermore, Fig. 36 shows, as expected, the
location of the refinement in the vicinity of the junction. Corre-
spondingly, the error indicators concentrate on the junction during
the refinement process (see Fig. 37, the results remain the same
after several iterations). Finally, the good results of the approxi-
mated interpolation and the interest of a refinement strategy ver-
sus a uniform mesh refinement are illustrated in Fig. 38.

6.6. A case of cracked shell

The last test-problem considered in this paper is a cracked
cylindrical shell. One quarter of a cylinder is clamped on all its
boundary and submitted to a uniform pressure. The settings are
those of Table 1. Let us note that the crack was chosen so that its
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Fig. 38. Tank under uniform internal pressure ða ¼ 0Þ – relative error (%) of the deflection of the junction points (reference value: 0:1319 m) – refined and uniform meshes
with exact geometry.

Fig. 39. Cracked cylindrical shell – location of the crack on the initial mesh.



direction is not along the principal directions of curvature of the
middle surface (see Fig. 39).

It can be observed in Fig. 40 that the refinement propagates par-
tially in an orthogonal direction of the crack.

All error indicators decrease near the crack tip during the
refinement process (see Fig. 41). The structure carries the load
dominantly by membrane action. Thus, the membrane forces indi-

cator is highly dominant. In the studied case, the opening mode is
Mode I, for which the stresses are the most important in a direction
which is perpendicular to the crack: it explains the refinement
propagation. Finally, it can be observed that, as expected, the stres-
ses increase near the crack tip, which is in fact theoretically singu-
lar (see Fig. 42). Here the stresses are evaluated in L2 norm on the
patch of the crack tip.

Fig. 40. Cracked cylindrical shell ða ¼ 0Þ – successive refinements.
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Fig. 41. Cracked cylindrical shell – indicators g, gn=
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7. Conclusion

A fundamental problem arising in shell structure approxima-
tion, is the geometry. Even if it is known from an analytical expres-
sion, it implies a lot of numerical difficulties in the approximation.
A first step is to use the definition of a set of vertices displayed on
the middle surface of the shell and to assume that the exact normal
are known at these points. A consistent numerical scheme can be
developed from these reduced informations on the shell geometry
[16,20]. But, as in non-linear analysis, when one tries to add new
points during a mesh refinement procedure, it becomes necessary
to introduce a local approximation of the surface along the edges of
each element, in order to define with precision the new points and
the new normals at these points. The important feature is that the
true informations on the real middle surface of the shell are not
necessarily known. Therefore, it has been useful to adapt the strat-
egy introduced in [8] to adaptive mesh refinements. As illustrated
on various different shells, we have compared the previous strat-
egy with an exact interpolation of the geometry (the added nodes
are on the exact middle surface and the associated normal vectors
are also exact). Then, it can be observed that the effect of the geom-
etry interpolation introduced in [8] on the mesh refinement proce-
dure is neglectible, and the results obtained in this paper show
that the method works with accuracy. Moreover, the introduction,
in a more classical local indicator, of the transverse shear forces
indicator, as a quantity of interest in the case of shell structures,
has been investigated. Its influence can be determinant in the
refinement strategy. A further step would be to study more deeply
this phenomenon and to introduce other mesh refinement criteria.
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Fig. 42. Cracked cylindrical shell – kqkL2 ; knkL2 and kmkL2 near the crack tip.




