4 research outputs found

    Fuentes de color mejoradas para el modelado tridimensional de artefactos arqueol贸gicos de tama帽o medio localizados in situ.

    Get PDF
    [EN] The paper describes a color enhanced processing system - applied as case study on an artifact of the Pompeii archaeological area - developed in order to enhance different techniques for reality-based 3D models construction and visualization of archaeological artifacts. This processing allows rendering reflectance properties with perceptual fidelity on a consumer display and presents two main improvements over existing techniques: a. the color definition of the archaeological artifacts; b. the comparison between the range-based and photogrammetry-based pipelines to understand the limits of use and suitability to specific objects.[ES] El documento describe un sistema mejorado de procesamiento de color, aplicado como caso de estudio sobre un artefacto de la zona arqueol贸gica de Pompeya. Este sistema se ha desarrollado con la finalidad de mejorar las diferentes t茅cnicas para la construcci贸n de modelos 3D basados sobre datos de la realidad y para la visualizaci贸n de artefactos arqueol贸gicos. Este proceso permite visualizar las propiedades de reflectancia con fidelidad perceptible en una pantalla de usuario y presenta dos mejoras principales respecto a las t茅cnicas existentes:a. la definici贸n del color de los artefactos arqueol贸gicos;b. la comparaci贸n entre los flujos de trabajo basados en range-based-modeling y en fotogrametr铆a, para entender los l铆mites de uso y la adecuaci贸n a los objetos espec铆ficos.Apollonio, FI.; Ballabeni, M.; Gaiani, M. (2014). Color enhanced pipelines for reality-based 3D modeling of on site medium sized archeological artifacts. Virtual Archaeology Review. 5(10):59-76. https://doi.org/10.4995/var.2014.4218OJS5976510AGISOFT PHOTOSCAN (2014), http://www.agisoft.ru.ALLEN P., FEINER S., et al. (2004): "Seeing into the past: Creating a 3D modeling pipeline for archaeological visualization", in Proceedings of 3DPVT '04, 2004, pp. 751-758.BERALDIN J.-A., PICARD M., et al. (2002): "Virtualizing a byzantine crypt by combining high-resolution textures with laser scanner 3D data", in Proceedings of VSMM 2002, pp. 3-14.BERNARDINI F., RUSHMEIER H. (2000): "The 3D model acquisition pipeline", in Eurographics 2000 State of the Art Reports.BLAIS F. (2004): "A review of 20 years of Range Sensors Development", in Journal of Electronic Imaging, Vol. 13, N. 1, pp. 231-40. http://dx.doi.org/10.1117/1.1631921BLAIS F., BERALDIN J.A. (2006): "Recent Developments in 3D Multi-modal Laser Imaging Applied to Cultural Heritage, in Machine Vision and Applications, Vol. 17, N. 6, pp. 395-409. http://dx.doi.org/10.1007/s00138-006-0025-3BOEHLER W. (2005): "Comparison of 3D scanning and other 3D measurement techniques", in Baltsavias E., Gruen, A., et al. (eds), Recording, Modeling and Visualization of Cultural Heritage, Taylor & Francis.BOOCHS F., BENTKOWSKA-KAFEL A., et al. (2013): "Towards optimal spectral and spatial documentation of Cultural Heritage. COSCH - an interdisciplinary action in the COST framework", in ISPRS Arch., Vol. XL-5/W2, 2013, pp. 109-113.CALLIERI M., CIGNONI P., et al. (2008): "Masked photo blending: mapping dense photographic dataset on high-resolution 3D models", in Computer & Graphics, Vol. 32, N. 4, 2008, pp. 464 - 473.CALLIERI M., DELLEPIANE M., et al. (2011): "Processing Sampled 3D Data: Reconstruction and Visualization Technologies", in F. Stanco, S. Battiato, G. Gallo (eds.), Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration and Reconstruction of Ancient Artworks, Taylor and Francis, pp. 105-136.CORSINI M., DELLEPIANE M., et al. (2009):"Image-to-geometry registration: a mutual information method exploiting illumination-related geometric properties", in Computer Graphics Forum, Vol. 28, N. 7, 2009, pp. 1755-1764. http://dx.doi.org/10.1111/j.1467-8659.2009.01552.xDANA K.J., VAN GINNEKEN B., et al.. (1999): "Reflectance and texture of real-world surfaces", in ACM Transaction on Graphics, Vol. 18, N. 1, 1999, pp. 1-34. http://dx.doi.org/10.1145/300776.300778DE LUCA L., VERON P., FLORENZANO M. (2006): "Reverse engineering of architectural buildings based on a hybrid modeling approach", Computer & Graphics, Vol. 30, N. 2, pp. 160-76. http://dx.doi.org/10.1016/j.cag.2006.01.020DEBEVEC P. et al. (2004): "Estimating surface reflectance properties of a complex scene under captured natural illumination", in USC ICT Technical Report ICT-TR, 06/2004.DELLEPIANE M., MARROQUIM R., et al. (2012): "Flow-Based Local Optimization for Image-to-Geometry Projection", in IEEE Transactions on Visualization and Computer Graphics, Vol. 18, N. 3, 2012, pp. 463-474. http://dx.doi.org/10.1109/TVCG.2011.75DELLEPIANE M., DELL'UNTO N., et al. (2013a): "Archeological excavation monitoring using dense stereo matching techniques", in Journal of Cultural Heritage, Vol. 14, N. 3, 2013, pp. 201-210. http://dx.doi.org/10.1016/j.culher.2012.01.011DELLEPIANE M., SCOPIGNO R. (2013b): "Global refinement of image-to-geometry registration for color projection", in DigitalHeritage 2013 Proceedings, 2013, Vol. 1, pp. 39-46.DXO (2014), http://www.dxo.com/intl/photography/dxo-optics-pro/EL-HAKIM S.F., BRENNER C., ROTH G. (1998): "A multi-sensor approach to creating accurate virtual environments", in ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 53, N. 6, pp. 379-391. http://dx.doi.org/10.1016/S0924-2716(98)00021-5EL-HAKIM S.F., BERALDIN J.-A., et al. (2004): "Detailed 3D reconstruction of large-scale heritage sites with integrated techniques", in Computer Graphics and Applications, Vol. 24, N. 3, 2004, pp. 21-29. http://dx.doi.org/10.1109/MCG.2004.1318815EL-HAKIM S.F., BERALDIN J.-A. (2007): "Sensor integration and visualization", in Fryer, Mitchell & Chandler (eds.), Applications of 3D Measurement from Images, Whittles Publishing, pp. 259-298.ENGLISH HERITAGE (2005): Metric Survey Specifications for English Heritage. English Heritage Report.ENGLISH HERITAGE (2011), 3D Laser Scanning for Heritage (second edition), English Heritage Publishing.FURUKAWA Y., PONCE J. (2010): "Accurate, dense, and robust multi-view stereopsis", in IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 32, N. 8, pp. 1362-1376. http://dx.doi.org/10.1109/TPAMI.2009.161GAIANI M., MICOLI L.L. (2005): "A framework to build and visualize 3D models from real world data for historical architecture and archaeology as a base for a 3D information system", in Forte M. (a cura di), The reconstruction of Archaeological Landscapes through Digital Technologies, BAR International series, 1379, pp. 103-125.GAIANI M., ROSSI M., RIZZI A. (2003): "Percezione delle immagini virtuali", in M. Gaiani (ed.), Metodi di Prototipazione Digitale e Visualizzazione per il Disegno Industriale, l'Architettura degli Interni e i Beni Culturali, Polidesign, Milano, 2003.GAIANI M., BENEDETTI B., REMONDINO F. (eds) (2010): Modelli digitali 3D in archeologia: il caso di Pompei, Edizioni della Normale, Pisa, 2010.GA艩PAROVIC M., MALARIC I. (2012): "Increase of readability and accuracy of 3D models using fusion of Close Range Photogrammetry and Laser Scanning", in ISPRS Arch. Photogramm. Remote Sens., Vol. XXXIX-B5, pp. 93-98.GODIN G., BORGEAT L., et al. (2010): "Issues in Acquiring, Processing and Visualizing Large and Detailed 3D Models", in Information Sciences and Systems (CISS), 44th Annual Conference on, pp.1-6. http://dx.doi.org/10.1109/ciss.2010.5464966GONIZZI BARSANTI S., MICOLI L.L., GUIDI G. (2013a): "Quick textured mesh generation for massive 3D digitization of museum artifacts", in DigitalHeritage 2013, Vol. 1, pp. 197-200.GONIZZI BARSANTI S., REMONDINO F., VISINTINI D. (2013b): "3D surveying and modeling of archaeological sites - some critical issues", in ISPRS Ann. Photogramm. Remote Sens., Vol. II-5/W1, 2013, pp. 145-150.GRUSSENMEYER P., LANDES T., et al. (2008): "Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings", in ISPRS Arch. Photogramm. Remote Sens., Vol. XXXVII/W5, pp. 213-218.GUARNIERI A., REMONDINO F., VETTORE A. (2006): "Digital photogrammetry and TLS data fusion applied to Cultural Heritage 3D modeling", in ISPRS Arch., Vol. XXXVI/W6, pp. 6.HAPPA J., BASHFORD-ROGERS T., et al. (2012): "Cultural Heritage Predictive Rendering", in Computer Graphics Forum, Vol. 31, N. 6, 2012, pp. 1823-1836. http://dx.doi.org/10.1111/j.1467-8659.2012.02098.xHIRSCHM脺LLER H. (2005): "Accurate and efficient stereo processing by semi-global matching and mututal information", in CVPR 2005 proceedings, Vol. 2, pp. 807-814.HIRSCHMUELLER H. (2008): "Stereo processing by semi- global matching and mutual information", in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, N. 2, pp. 328-41. http://dx.doi.org/10.1109/TPAMI.2007.1166KARSIDAG G., ALKAN R.M. (2012): "Analysis of The Accuracy of Terrestrial Laser Scanning Measurements", in FIG Working Week 2012 - Knowing to manage the territory, protect the environment, evaluate the cultural heritage proceedings, TS07A - Laser Scanners I, 6097.KAWAKAMI R., IKEUCHI K., TAN R.T. (2005): "Consistent surface color for texturing large objects in outdoor scenes", in ICCV 2005 proceedings, Vol. 2, 2005, pp. 1200-1207.IMATEST (2014), http://www.imatest.com/homeIMAGENOMIC LLC (2012): Noiseware 5 Plug-In User's Guide, 2012INNOVMETRIC POLYWORKS (2014): http://www.innovmetric.com/polyworks/Surveying/LENSCH H.P.A., KAUTZ J., et al. (2003): "Image-based reconstruction of spatial appearance and geometric detail", in ACM Trans. Graph., Vol. 22, N. 2, 2003, pp. 234-257. http://dx.doi.org/10.1145/636886.636891LOWE D. (2004): "Distinctive image features from scale-invariant keypoints", in IJCV, Vol. 60, N. 2, 2004, pp. 91-110.MESHLAB (2014): http://meshlab.sourceforge.net/MUDGE M., SCHROER C., et al. (2010): "Principles and Practices of Robust, Photography based Digital Imaging Techniques for Museums", in VAST 2010 Proceedings, 2010, pp. 111-137.NICODEMUS F. (1965): "Directional reflectance and emissivity of an opaque surface", in Applied Optics, Vol. 4, N. 7, 1965, pp. 767-775. http://dx.doi.org/10.1364/AO.4.000767OPENGL (2014): http://www.opengl.orgPASCALE D. (2006): "RGB coordinates of the Macbeth ColorChecker", in Technical report, The BabelColor Company, Jun 2006.PETROSYAN A., GHAZARYAN A. (2006): "Method and System for Digital Image Enhancement", in US Patent Application, #11/116, 408, 2006.PIERROT-DESEILLIGNY M., PAPARODITIS N. (2006): A multiresolution and optimization-based image matching approach: an application to surface reconstruction from SPOT5-HRS stereo imagery, in ISPRS Arch., Vol. XXXVI-1/W41.PIETRONI N., TARINI M., CIGNONI P. (2010): "Almost isometric mesh parameterization through abstract domains", in IEEE Trans. on Visualization and Computer Graphics, Vol. 16, N. 4, 2010, pp. 621-635. http://dx.doi.org/10.1109/TVCG.2009.96REINHARD E., ARIF KHAN E., OGUZ AKY脺Z A., JOHNSON G. (2008): Color Imaging Fundamentals and Applications, A. K. Peters, Wellesley.REMONDINO F., EL-HAKIM S. (2006): "Image-based 3D modelling: a review", in The Photogrammetric Record, Vol. 21, N.115, 2006, pp. 269-291. http://dx.doi.org/10.1111/j.1477-9730.2006.00383.xREMONDINO F., CAMPANA S., (eds.) (2014): 3D Recording and Modelling in Archaeology and Cultural Heritage, BAR International Series 2598, Archaeopress.REMONDINO F., GUARNIERI A., VETTORE A. (2005): "3D modeling of close-range objects: photogrammetry or laser scanning?", in Procceedings of Videometrics VIII, SPIE-IS&T Electronic Imaging, Vol. 5665, pp. 216-225. http://dx.doi.org/10.1117/12.586294REMONDINO F., EL-HAKIM S., et al. (2008a): "Development and performance analysis of image matching for detailed surface reconstruction of heritage objects", in IEEE Signal Processing Magazine, Vol. 25, N.4, pp. 55-65. http://dx.doi.org/10.1109/MSP.2008.923093REMONDINO F., EL-HAKIM S., GRUEN A., ZHANG L. (2008b): " Turning images into 3D models - Development and performance analysis of image matching for detailed surface reconstruction of heritage objects", in IEEE Signal Processing Magazine, Vol. 25, N.4, 2008, pp. 55-65. http://dx.doi.org/10.1109/MSP.2008.923093REMONDINO F., et al. (2012): "Low-Cost and Open-Source Solutions for Automated Image Orientation - A Critical Overview", in Euromed 2012 Proceedings, pp. 40-54. http://dx.doi.org/10.1007/978-3-642-34234-9_5RUSHMEIER H., BERNARDINI F. (1999): "Computing consistent normals and colors from photometric data," in 3DIM 1999 proceedings, pp. 99-108. http://dx.doi.org/10.1109/im.1999.805339SANTOPUOLI N., SECCIA L. (2008): "Il rilievo del colore nel campo dei beni culturali", in Trattato di Restauro Architettonico, UTET, 2008, Vol. X, pp. 141-163.SCOPIGNO R., CALLIERI M., et al. (2011): "3D Models for Cultural Heritage: Beyond Plain Visualization", in Computer , Vol. 44, N. 7, pp. 48-55.SCHWARTZ C., WEINMANN M., RUITERS R., KLEIN R. (2011): "Integrated High-Quality Acquisition of Geometry and Appearance for Cultural Heritage", in VAST 2011 Proceedings, 2011, pp. 25-32.SEITZ S.M., et al. (2006): "A comparison and evaluation of multi-view stereo reconstruction algorithms", in CVPR Proceedings, Vol. 1, 2006, pp. 519-528. http://dx.doi.org/10.1109/cvpr.2006.19SINHA S.N., POLLEFEYS M. (2005): "Multi-view reconstruction using photo-consistency and exact silhouette constraints: a maximum-flow formulation", in Proc. 10th ICCV, pp. 349-356. http://dx.doi.org/10.1109/iccv.2005.159STAMOS I., LIU L., et al. (2008): "Integrating automated range registration with multiview geometry for the photorealistic modelling of large-scale scenes", in International Journal of Computer Vision Vol. 78, N. 2-3, pp. 237-60. http://dx.doi.org/10.1007/s11263-007-0089-1STUMPFEL J., TCHOU C., et al. (2003): "Digital reunification of the Parthenon and its sculptures", in Proceedings of Virtual Reality, Archaeology and Cultural Heritage (VAST) 2003, pp. 41-50.TOMASI C., KANADE T. (1992): "Shape and motion from image streams under orthography - a factorization method", in IJCV, Vol. 9, N. 2, 1992, pp. 137-154.TROCCOLI A., ALLEN P.K. (2005): "Relighting acquired models of outdoor scenes", in 3DIM 2005 proceedings, pp. 245-252. http://dx.doi.org/10.1109/3dim.2005.69VOSSELMAN G., MAAS H. (2010): Airborne and Terrestrial Laser Scanning, CRC Press.VOGIATZIS G., HERNANDEZ C., et al. (2007): "Multi-view stereo via volumetric graph-cuts and occlusion robust photo-consistency", in IEEE Trans. PAMI, Vol. 29, N. 12, pp. 2241-2246. http://dx.doi.org/10.1109/TPAMI.2007.70712VU H.H., LABATUT P., et al. (2012): "High accuracy and visibility-consistent dense multiview stereo", in IEEE Trans. PAMI, Vol. 34, N. 5, pp. 889-901. http://dx.doi.org/10.1109/TPAMI.2011.172WENZEL K., ABDEL-WAHAB M., et al., (2012): "High-Resolution Surface Reconstruction from Imagery for Close Range Cultural Heritage Applications", in ISPRS Arch., Vol. XXXIX-B5, pp. 133-138.WU C. (2013): "Towards Linear-Time Incremental Structure from Motion", in 3D Vision, 2013 International Conference on, 2013, pp.127-134. http://dx.doi.org/10.1109/3dv.2013.25XU C., A. GEORGHIADES S., et al. (2006): "A System for Reconstructing Integrated Texture Maps for Large Structures", in 3DPVT'06 proceedings, 2006, pp.822-829.YU Y., MALIK J. (1998): "Recovering photometric properties of architectural scenes from photographs", in SIGGRAPH '98 proceedings, 1998, pp. 207-217.ZHANG L. (2005): "Automatic Digital Surface Model (DSM) generation from linear array images", Ph.D. Thesis, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland.ZHAO X., ZHOU Z., WU W. (2012): "Radiance-based color calibration for image-based modeling with multiple cameras", in Science China Information Sciences, Vol. 55, N. 7, 2012, pp. 1509-1519

    Consistent Surface Color for Texturing Large Objects in Outdoor Scenes

    No full text
    Color appearance of an object is significantly influenced by the color of the illumination. When the illumination color changes, the color appearance of the object will change accordingly, causing its appearance to be inconsistent. To arrive at color constancy, we have developed a physics-based method of estimating and removing the illumination color. In this paper, we focus on the use of this method to deal with outdoor scenes, since very few physics-based methods have successfully handled outdoor color constancy. Our method is principally based on shadowed and non-shadowed regions. Previously researchers have discovered that shadowed regions are illuminated by sky light, while non-shadowed regions are illuminated by a combination of sky light and sunlight. Based on this difference of illumination, we estimate the illumination colors (both the sunlight and the sky light) and then remove them. To reliably estimate the illumination colors in outdoor scenes, we include the analysis of noise, since the presence of noise is inevitable in natural images. As a result, compared to existing methods, the proposed method is more effective and robust in handling outdoor scenes. In addition, the proposed method requires only a single input image, making it useful for many applications of computer vision

    Uses of uncalibrated images to enrich 3D models information

    Get PDF
    The decrease in costs of semi-professional digital cameras has led to the possibility for everyone to acquire a very detailed description of a scene in a very short time. Unfortunately, the interpretation of the images is usually quite hard, due to the amount of data and the lack of robust and generic image analysis methods. Nevertheless, if a geometric description of the depicted scene is available, it gets much easier to extract information from 2D data. This information can be used to enrich the quality of the 3D data in several ways. In this thesis, several uses of sets of unregistered images for the enrichment of 3D models are shown. In particular, two possible fields of application are presented: the color acquisition, projection and visualization and the geometry modification. Regarding color management, several practical and cheap solutions to overcome the main issues in this field are presented. Moreover, some real applications, mainly related to Cultural Heritage, show that provided methods are robust and effective. In the context of geometry modification, two approaches are presented to modify already existing 3D models. In the first one, information extracted from images is used to deform a dummy model to obtain accurate 3D head models, used for simulation in the context of three-dimensional audio rendering. The second approach presents a method to fill holes in 3D models, with the use of registered images depicting a pattern projected on the real object. Finally, some useful indications about the possible future work in all the presented fields are given, in order to delineate the developments of this promising direction of research
    corecore