431 research outputs found

    Semantic image retrieval using relevance feedback and transaction logs

    Get PDF
    Due to the recent improvements in digital photography and storage capacity, storing large amounts of images has been made possible, and efficient means to retrieve images matching a user’s query are needed. Content-based Image Retrieval (CBIR) systems automatically extract image contents based on image features, i.e. color, texture, and shape. Relevance feedback methods are applied to CBIR to integrate users’ perceptions and reduce the gap between high-level image semantics and low-level image features. The precision of a CBIR system in retrieving semantically rich (complex) images is improved in this dissertation work by making advancements in three areas of a CBIR system: input, process, and output. The input of the system includes a mechanism that provides the user with required tools to build and modify her query through feedbacks. Users behavioral in CBIR environments are studied, and a new feedback methodology is presented to efficiently capture users’ image perceptions. The process element includes image learning and retrieval algorithms. A Long-term image retrieval algorithm (LTL), which learns image semantics from prior search results available in the system’s transaction history, is developed using Factor Analysis. Another algorithm, a short-term learner (STL) that captures user’s image perceptions based on image features and user’s feedbacks in the on-going transaction, is developed based on Linear Discriminant Analysis. Then, a mechanism is introduced to integrate these two algorithms to one retrieval procedure. Finally, a retrieval strategy that includes learning and searching phases is defined for arranging images in the output of the system. The developed relevance feedback methodology proved to reduce the effect of human subjectivity in providing feedbacks for complex images. Retrieval algorithms were applied to images with different degrees of complexity. LTL is efficient in extracting the semantics of complex images that have a history in the system. STL is suitable for query and images that can be effectively represented by their image features. Therefore, the performance of the system in retrieving images with visual and conceptual complexities was improved when both algorithms were applied simultaneously. Finally, the strategy of retrieval phases demonstrated promising results when the query complexity increases

    Image Recommendation Based on Keyword Relevance Using Absorbing Markov Chain and Image Features

    Get PDF
    Image recommendation is an important feature of search engine, as tremendous amount of images are available online. It is necessary to retrieve relevant images to meet the user's requirement. In this paper, we present an algorithm image recommendation with absorbing Markov chain (IRAbMC) to retrieve relevant images for a user's input query. Images are ranked by calculating keyword relevance probability between annotated keywords from log and keywords of user input query. Keyword relevance is computed using absorbing Markov chain. Images are reranked using image visual features. Experimental results show that the IRAbMC algorithm outperforms Markovian semantic indexing (MSI) method with improved relevance score of retrieved ranked images

    Context based detection of urban land use zones

    Get PDF
    This dissertation proposes an automated land-use zoning system based on the context of an urban scene. Automated zoning is an important step toward improving object extraction in an urban scene

    Distributed Kernelized Locality-Sensitive Hashing for Faster Image Based Navigation

    Get PDF
    Content based image retrieval (CBIR) remains one of the most heavily researched areas in computer vision. Different image retrieval techniques and algorithms have been implemented and used in localization research, object recognition applications, and commercially by companies such as Facebook, Google, and Yahoo!. Current methods for image retrieval become problematic when implemented on image datasets that can easily reach billions of images. In order to process extremely large datasets, the computation must be distributed across a cluster of machines using software such as Apache Hadoop. There are many different algorithms for conducting content based image retrieval, but this research focuses on Kernelized Locality-Sensitive Hashing (KLSH). For the first time, a distributed implementation of the KLSH algorithm using the MapReduce programming paradigm performs CBIR and localization using an urban environment image dataset. This new distributed algorithm is shown to be 4.8 times faster than a brute force linear search while still maintaining localization accuracy within 8.5 meters

    Class Anchor Margin Loss for Content-Based Image Retrieval

    Full text link
    The performance of neural networks in content-based image retrieval (CBIR) is highly influenced by the chosen loss (objective) function. The majority of objective functions for neural models can be divided into metric learning and statistical learning. Metric learning approaches require a pair mining strategy that often lacks efficiency, while statistical learning approaches are not generating highly compact features due to their indirect feature optimization. To this end, we propose a novel repeller-attractor loss that falls in the metric learning paradigm, yet directly optimizes for the L2 metric without the need of generating pairs. Our loss is formed of three components. One leading objective ensures that the learned features are attracted to each designated learnable class anchor. The second loss component regulates the anchors and forces them to be separable by a margin, while the third objective ensures that the anchors do not collapse to zero. Furthermore, we develop a more efficient two-stage retrieval system by harnessing the learned class anchors during the first stage of the retrieval process, eliminating the need of comparing the query with every image in the database. We establish a set of four datasets (CIFAR-100, Food-101, SVHN, and Tiny ImageNet) and evaluate the proposed objective in the context of few-shot and full-set training on the CBIR task, by using both convolutional and transformer architectures. Compared to existing objective functions, our empirical evidence shows that the proposed objective is generating superior and more consistent results

    Intelligent Image Retrieval Techniques: A Survey

    Get PDF
    AbstractIn the current era of digital communication, the use of digital images has increased for expressing, sharing and interpreting information. While working with digital images, quite often it is necessary to search for a specific image for a particular situation based on the visual contents of the image. This task looks easy if you are dealing with tens of images but it gets more difficult when the number of images goes from tens to hundreds and thousands, and the same content-based searching task becomes extremely complex when the number of images is in the millions. To deal with the situation, some intelligent way of content-based searching is required to fulfill the searching request with right visual contents in a reasonable amount of time. There are some really smart techniques proposed by researchers for efficient and robust content-based image retrieval. In this research, the aim is to highlight the efforts of researchers who conducted some brilliant work and to provide a proof of concept for intelligent content-based image retrieval techniques

    Indexing Techniques for Image and Video Databases: an approach based on Animate Vision Paradigm

    Get PDF
    [ITALIANO]In questo lavoro di tesi vengono presentate e discusse delle innovative tecniche di indicizzazione per database video e di immagini basate sul paradigma della “Animate Vision” (Visione Animata). Da un lato, sarà mostrato come utilizzando, quali algoritmi di analisi di una data immagine, alcuni meccanismi di visione biologica, come i movimenti saccadici e le fissazioni dell'occhio umano, sia possibile ottenere un query processing in database di immagini più efficace ed efficiente. In particolare, verranno discussi, la metodologia grazie alla quale risulta possibile generare due sequenze di fissazioni, a partire rispettivamente, da un'immagine di query I_q ed una di test I_t del data set, e, come confrontare tali sequenze al fine di determinare una possibile misura della similarità (consistenza) tra le due immagini. Contemporaneamente, verrà discusso come tale approccio unito a tecniche classiche di clustering possa essere usato per scoprire le associazioni semantiche nascoste tra immagini, in termini di categorie, che, di contro, permettono un'automatica pre-classificazione (indicizzazione) delle immagini e possono essere usate per guidare e migliorare il processo di query. Saranno presentati, infine, dei risultati preliminari e l'approccio proposto sarà confrontato con le più recenti tecniche per il recupero di immagini descritte in letteratura. Dall'altro lato, sarà mostrato come utilizzando la precedente rappresentazione “foveata” di un'immagine, risulti possibile partizionare un video in shot. Più precisamente, il metodo per il rilevamento dei cambiamenti di shot si baserà sulla computazione, in ogni istante di tempo, della misura di consistenza tra le sequenze di fissazioni generate da un osservatore ideale che guarda il video. Lo schema proposto permette l'individuazione, attraverso l'utilizzo di un'unica tecnica anziché di più metodi dedicati, sia delle transizioni brusche sia di quelle graduali. Vengono infine mostrati i risultati ottenuti su varie tipologie di video e, come questi, validano l'approccio proposto. / [INGLESE]In this dissertation some novel indexing techniques for video and image database based on “Animate Vision” Paradigm are presented and discussed. From one hand, it will be shown how, by embedding within image inspection algorithms active mechanisms of biological vision such as saccadic eye movements and fixations, a more effective query processing in image database can be achieved. In particular, it will be discussed the way to generate two fixation sequences from a query image I_q and a test image I_t of the data set, respectively, and how to compare the two sequences in order to compute a possible similarity (consistency) measure between the two images. Meanwhile, it will be shown how the approach can be used with classical clustering techniques to discover and represent the hidden semantic associations among images, in terms of categories, which, in turn, allow an automatic pre-classification (indexing), and can be used to drive and improve the query processing. Eventually, preliminary results will be presented and the proposed approach compared with the most recent techniques for image retrieval described in the literature. From the other one, it will be discussed how by taking advantage of such foveated representation of an image, it is possible to partitioning of a video into shots. More precisely, the shot-change detection method will be based on the computation, at each time instant, of the consistency measure of the fixation sequences generated by an ideal observer looking at the video. The proposed scheme aims at detecting both abrupt and gradual transitions between shots using a single technique, rather than a set of dedicated methods. Results on videos of various content types are reported and validate the proposed approach

    A Method Of Content-based Image Retrieval For The Generation Of Image Mosaics

    Get PDF
    An image mosaic is an artistic work that uses a number of smaller images creatively combined together to form another larger image. Each building block image, or tessera, has its own distinctive and meaningful content, but when viewed from a distance the tesserae come together to form an aesthetically pleasing montage. This work presents the design and implementation of MosaiX, a computer software system that generates these image mosaics automatically. To control the image mosaic creation process, several parameters are used within the system. Each parameter affects the overall mosaic quality, as well as required processing time, in its own unique way. A detailed analysis is performed to evaluate each parameter individually. Additionally, this work proposes two novel ways by which to evaluate the quality of an image mosaic in a quantitative way. One method focuses on the perceptual color accuracy of the mosaic reproduction, while the other concentrates on edge replication. Both measures include preprocessing to take into account the unique visual features present in an image mosaic. Doing so minimizes quality penalization due the inherent properties of an image mosaic that make them visually appealing

    Automatic Prediction of Building Age from Photographs

    Full text link
    We present a first method for the automated age estimation of buildings from unconstrained photographs. To this end, we propose a two-stage approach that firstly learns characteristic visual patterns for different building epochs at patch-level and then globally aggregates patch-level age estimates over the building. We compile evaluation datasets from different sources and perform an detailed evaluation of our approach, its sensitivity to parameters, and the capabilities of the employed deep networks to learn characteristic visual age-related patterns. Results show that our approach is able to estimate building age at a surprisingly high level that even outperforms human evaluators and thereby sets a new performance baseline. This work represents a first step towards the automated assessment of building parameters for automated price prediction.Comment: Preprint of paper to appear in ACM International Conference on Multimedia Retrieval (ICMR) 2018 Conferenc
    corecore