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ABSTRACT

English Version

In this dissertation some novel indexing techniques for video and image database based
on Animate Vision Paradigm are presented and discussed.

From one hand, it will be shown how, by embedding within image inspection algorithms
active mechanisms of biological vision such as saccadic eye movements and fixations, a more
effective query processing in image database can be achieved.

In particular, it will be discussed the way to generate two fixation sequences from a
query image Iq and a test image It of the data set, respectively, and how to compare the
two sequences in order to compute a possible similarity (consistency) measure between the
two images.

Meanwhile, it will be shown how the approach can be used with classical clustering
techniques to discover and represent the hidden semantic associations among images, in
terms of categories, which, in turn, allow an automatic pre-classification (indexing), and
can be used to drive and improve the query processing.

Eventually, preliminary results will be presented and the proposed approach compared
with the most recent techniques for image retrieval described in the literature.

From the other one, it will be discussed how by taking advantage of such foveated
representation of an image, it is possible to partitioning of a video into shots.

More precisely, the shot-change detection method will be based on the computation,
at each time instant, of the consistency measure of the fixation sequences generated by an
ideal observer looking at the video.

The proposed scheme aims at detecting both abrupt and gradual transitions between
shots using a single technique, rather than a set of dedicated methods.

Results on videos of various content types are reported and validate the proposed ap-
proach.
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Italian Version

In questo lavoro di tesi vengono presentate e discusse delle innovative tecniche di indi-
cizzazione per database video e di immagini basate sul paradigma della Animate Vision
(Visione Animata).

Da un lato, sara’ mostrato come utilizzando, quali algoritmi di analisi di una data
immagine, alcuni meccanismi di visione biologica, come i movimenti saccadici e le fissazioni
dell’occhio umano, sia possibile ottenere un query processing in database di immagini piu’
efficace ed efficiente.

In particolare, verranno discussi, la metodologia grazie alla quale risulta possibile gener-
are due sequenze di fissazioni, a partire rispettivamente, da un’immagine di query Iq ed una
di test It del data set, e, come confrontare tali sequenze al fine di determinare una possibile
misura della similarita’ (consistenza) tra le due immagini.

Contemporaneamente, verra’ discusso come tale approccio unito a tecniche classiche di
clustering possa essere usato per scoprire le associazioni semantiche nascoste tra immagini,
in termini di categorie, che, di contro, permettono un’automatica pre-classificazione (in-
dicizzazione) delle immagini e possono essere usate per guidare e miglioare il processo di
query.

Saranno presentati, infine, dei risultati preliminari e l’approccio proposto sara’ con-
frontato con le pi recenti tecniche per il recupero di immagini descritte in letteratura.

Dall’altro lato, sara’ mostrato come utilizzando la precedente rappresentazione “foveata”
di un’immagine, risulti possibile partizionare un video in shot.

Piu’ precisamente, il metodo per il rilevamento dei cambiamenti di shot si basera’ sulla
computazione, in ogni istante di tempo, della misura di consistenza tra le sequenze di
fissazioni generate da un osservatore ideale che guarda il video.

Lo schema proposto permette l’individuazione, attraverso l’utilizzo di un’unica tecnica
anziche’ di piu’ metodi dedicati, sia delle transizioni brusche sia di quelle graduali.

Vengono infine mostrati i risultati ottenuti su varie tipologie di video e, come questi,
validano l’approccio proposto.
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Chapter 1

Introduction

1.1 Thesis Purposes

Managing in an efficient way multimedia information in database systems represent by

now an open challenge of research activity on multimedia.

Today, the management of multimedia information such as images, graphics, video,

audio, and text, is of great interest in a lot of application fields like: Information Retrieval,

Office Automation, E-learning, Virtual Museums, Newspaper and Magazines production,

Video and Cinema Editing, Medical and Bio-informatics Applications (e.g., Radiographic

and DNA-Sequences Archives), Geographical Information Systems Management, Biometric,

Security Applications (including Video Surveillance), Remote Sensing and Meteorology and

so on.

The spatial, temporal, storage, retrieval, integration, and presentation features of multi-

media data calls for new processing beyond the ability of traditional database architecture.

For these reasons, in the past decade, the first MultiMedia Database Management Systems

(MMDBMS) were carried out with the aim of managing in a more efficient way heterogeneous

data like image, text, audio or video.

1



CHAPTER 1. INTRODUCTION 2

For the MMDBMS to serve its expected purposes, it must meet certain special require-

ments:

• Huge capacity storage management

• Information retrieval capabilities

• Media integration, composition, and presentation

• Multimedia query support

• Multimedia interface and interactivity

• High performances

In addressing these requirements, in this work some novel indexing techniques for video

and image database based on Animate Vision Paradigm are discussed.

From one hand, it will be shown how, by embedding within image inspection algorithms

active mechanisms of biological vision such as saccadic eye movements and fixations, a

more effective query processing in image database can be achieved. In particular, it will be

discussed the way to generate two fixation sequences from a query image Iq and a test image

It of the data set, respectively, and how to compare the two sequences in order to compute

a possible similarity (consistency) measure between the two images. Meanwhile, it will

be shown how the approach can be used to discover and represent the hidden semantic

associations among images, in terms of categories, which, in turn, allow an automatic

pre-classification (indexing), and can be used to drive and improve the query processing.

Eventually, preliminary results will be presented and the proposed approach compared with

the most recent techniques for image retrieval described in the literature.
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From the other one, it will be discussed how by taking advantage of such foveated

representation of an image, it is possible to partitioning of a video into shots. More precisely,

the shot-change detection method will be based on the computation, at each time instant,

of the consistency measure of the fixation sequences generated by an ideal observer looking

at the video. The proposed scheme aims at detecting both abrupt and gradual transitions

between shots using a single technique, rather than a set of dedicated methods. Results on

videos of various content types are reported and validate the proposed approach.

1.2 Outline of Thesis

The thesis is organized as following:

• in the second chapter an overview on requirements and issues in managing multimedia

information inside database system is presented;

• in the third chapter the state of the art of open challenges in developing image and

video database system is reported;

• in the fourth chapter the Animate Vision model for image analysis is illustrated;

• in the fifth chapter a Content Based Image Retrieval System for context-sensitive

queries is discussed;

• in the sixth chapter a Video Segmentation system based on a foveated video analysis

is described;

• in the seventh chapter conclusions and final remarks are discussed.



Chapter 2

Multimedia Databases

Management Systems

2.1 Introduction

The spatial, temporal, storage, retrieval, integration, and presentation requirements of

multimedia data differ significantly from those for traditional data. A MultiMedia Database

Management System (MMDBMS) has to provide for the efficient storage and manipulation

of multimedia data in all its varied forms.

In this chapter, the basic nature of multimedia data has looked into, highlighting the

need for MMDBMSs, and discussing the requirements and issues necessary for developing

such systems.

4
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2.2 Towards the first Multimedia Database Management Sys-

tems

In the last years, the database research field has been quite active for discovering, from

one hand, more efficient methods to manage traditional alphanumeric data and, from the

other one, to deal with new types of data as images, audio and video.

When multimedia data were first brought into a database environment, they underwent

a natural transformation in order to assume a representable shape for existing architectures.

Thus, when images were first managed in a database, numerous techniques for representing

them, first in a relational architecture, then in an object-oriented architecture have been

proposed.

In the relational architecture, a multimedia object and its content are represented by

means of sets of tuples over several relations. Researchers initially believed that such kind

of representation was suitable for most of the classic relational techniques developed for in-

dexing, query optimization, buffer management, concurrency control, security and recovery.

It was only after some experiences working with these new types of data that this approach

was shown to have an inherent weakness [46]: a mismatch between the nature of data and

the way both the user and system were forced to query and operate on it.

Object SQL queries and operations were not very suitable for multimedia data, for

which browsing is in important paradigm, and, standard indexing approaches do not work

for content-based queries of multimedia data. Other modules of database systems likewise

have to be changed in order to manage multimedia data efficiently [46].

It has been realized that an evolution of standard database modules has to be done in or-

der to cope with multimedia data features. Commercial object-relational database systems

are at the moment the state of art for implementing multimedia database systems, but even

these systems leave much to be desired in such areas as management and intuitive querying

environment. This presses to develop separate multimedia data management modules to

be integrated in such architectures.
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As discussed in [46], over the past 20 years, managing multimedia data in a database

environment has evolved through the following sequences of conceptual and performance

insights:

• Multimedia data was first transformed into relations in ad-hoc ways. Only certain

types of queries and operations were efficiently supported. Initially, a query, such as

“Find all images contained the person shown dancing in this video”, was extremely

difficult, if not impossible, to respond efficiently.

• When the weakness of this approach become apparent, researcher asked what types

of information should be extracted from images and videos and how this information

should be represented to support content-based queries most efficiently. The result was

a large body of work on multimedia data models.

• Since these data models specified the types of information that could be extracted from

multimedia data, the nature of multimedia queries was also discussed. Earlier work

on feature matching from the field of image interpretation was brought to bear, helping

launch the field of multimedia indexing. Multimedia indexing, in turn, started the ball

rolling towards multimedia query optimization techniques.

• A multimedia query was seen as quite different from a standard database query and

closer to queries in information-retrieval setting. The implication of this important

concept have still not played themselves out.

Today the management of multimedia information such as images, graphics, video,

audio, and text, is of great interest in a lot of application fields like: Information Retrieval,

Office Automation, E-learning, Virtual Museums, Newspaper and Magazines production,

Video and Cinema Editing, Medical and Bio-informatics Applications (e.g., Radiographic

and DNA-Sequences Archives), Geographical Information Systems Management, Biometric,

Security Applications (including Video Surveillance), Remote Sensing and Meteorology and

so on.
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By now, as underlined in a lot of important works [46, 2, 98, 59], the multimedia in-

formation features (e.g., large data size, structure, and time dependencies, etc...) calls for

new processing beyond the ability of traditional database architecture. For these reasons,

in the past decade, the first MultiMedia Database Management Systems were carried out

with the aim of managing in a efficient way heterogeneous data like image, text, audio or

video.

2.3 Basic Features of a Multimedia Database Management

System

A multimedia database management system is the heart of each multimedia information

system. It allows the integration of different multimedia data types from multiple sources.

Traditionally, a database consists of a controlled collection of data related to a given en-

tity, while a database management system, or DBMS, is a collection of interrelated data with

the set of programs used to define, create, store, access, manage, and query the database.

Similarly, it is possible to view a multimedia database as a controlled collection of multi-

media data items, such as text, images, graphic objects, sketches, video, and audio.

In a such context, as suggested in [2], a MMDBMS provides support for multimedia data

types, plus facilities for the creation, storage, access, query, and control of the multimedia

database. More in details, a multimedia database management system provides a suitable

environment for using and managing multimedia database information. Therefore, it must

support the various multimedia data types, in addition to providing facilities for traditional

DBMS functions like database definition and creation, data retrieval, data access and or-

ganization, data independence, privacy, integration, integrity control, version control, and

concurrency support.
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The different data types involved in multimedia databases require special methods for

optimal storage, access, indexing, and retrieval and a MMDBMS should accommodate these

special requirements by providing high level abstractions to manage the different data types,

along with a suitable interface for their presentation [2].

Before detailing the capabilities expected of a multimedia DBMS and the requirements

such systems should meet, the characteristic nature of multimedia information are first

considered. Then the requirements and issues facing MMDBMSs are discussed.

2.4 Nature of multimedia data

The composition and characteristics of multimedia data can be analyzed from several

perspectives like: information overload, inadequacy of textual descriptions, multiplicity of

data types, spatial and temporal characteristics, and huge volumes of data.

The data types found in a typical multimedia database include:

• text;

• images: color, black and white, photographs, maps, and paintings;

• graphic objects: ordinary drawings, sketches, and illustrations, or 3D objects;

• animation sequences: images or graphic objects, (usually) independently generated;

• video: also a sequence of images (called frames), but typically recording a real-life

event and usually produced by a video recorder;

• audio: generated from an aural recording device;

• composite multimedia: formed from a combination of two or more of the above data

types, such as an intermix of audio and video with a textual annotation.
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Some multimedia data types such as video, audio, and animation sequences also have

temporal requirements, which have inevitable implications on their storage, manipulation,

and presentation. The problems become more acute when various data types from possibly

disparate sources must be presented within or at a given time. Similarly, images, graph-

ics, and video data have spatial constraints in terms of their content. Usually, individual

objects in an image or a video frame have some spatial relationship between them. Such

relationships usually produce some constraints when searching for objects in a database [2].

Huge volumes of data also characterize multimedia information. For instance, to store

an uncompressed image or video, the requested storage capacity is of the Mbytes or Gbytes

order respectively. The potential for huge volumes of data involved in multimedia informa-

tion systems become apparent when very large video repositories are considered.

However, representing multimedia information as pictures or image sequences poses

some problems also for information retrieval due to the limitations of textual descriptions

of a multimedia experience and the massive information available from it. The potential

information overload means that users may find it difficult to make precise requests during

information retrieval. The limitations of textual descriptions also imply the need for content-

based access to multimedia information. Users need multiple cues (such as shape, color,

and texture) that are relevant to the multimedia content [2].

Another characteristic of multimedia information is that interaction with such informa-

tion types usually involves long-duration operations (such as with video data), and some-

times, with more than a single user (as is typical in collaborative support environments).

However, in collaborative environments, it is expected that most multimedia data are likely

to be accessed in a readonly mode. This assumption can be used to facilitate the provision

of concurrency control algorithms [2].

Moreover, multimedia data is quite different from standard alphanumeric data in terms

of both presentation and semantics [46]. From a presentation point of view, multimedia

data is huge and involves time-dependent characteristics that must be taken into account

for coherent viewing.
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From the other point of view, because of its complex structure, multimedia data requires

complex processing to derive semantics from its content. Real word object shown in images,

video, animations, or graphics and discussed in audio participate in meaningful events

whose nature is often the subject of queries. Using state of the art techniques from the

fields of image processing and speech recognition, systems can often made to recognize

similar real-word object and events by extracting certain information from the corresponding

multimedia objects, also called “features”, which usually less complex and voluminous than

the multimedia object themselves.

How the logical and physical representation of multimedia objects are defined and relate

to each other, as well as what features are extracted from these objects and how extraction is

accomplished, is in the domain of multimedia data modeling (see [104, 68] for more details).

2.5 Purposes of a Multimedia Database Management System

The functions of a MMDBMS basically resemble those of a traditional DMBS. However,

the nature of multimedia information makes new demands. As proposed in [2], using the

general functions provided by a traditional DBMS as a guide, it is possible to describe the

purposes of a MMDBMS as follows:

• “Integration”: ensures that data items need not be duplicated during different program

invocations requiring the data.

• “Data independence”: separation of the database and the management functions from

the application programs.

• “Persistence”: the ability of data objects to persist (survive) through different trans-

actions and program invocations.

• “Concurrency control: ensures multimedia database consistency through rules, which

usually impose some form of execution order on concurrent transactions.

• “Privacy”: restricts unauthorized access and modification of stored data.
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• “Integrity control”: ensures consistency of the database state from one transaction to

another through constraints imposed on transactions.

• “Recovery”: methods needed to ensure that results of transactions that fail do not

affect the persistent data storage.

• “Query support”: Ensures that the query mechanisms are suited for multimedia data.

• “Version control”: organization and management of different versions of persistent

objects, which might be required by applications.

In concurrency control, a transaction is a sequence of instructions executed either com-

pletely or not at all. In the latter case, the database is restored to its previous state.

Defining the appropriate granularity for concurrency is a problem in multimedia databases.

Traditional databases use a single record, a table or a part of it as the unit of concurrency;

multimedia databases typically use a single object (or composite object) as the logical unit

of access. Thus the single multimedia object could form the unit of concurrency [2]. In

achieving persistence, a simple method is to store the multimedia files in some operating

system files or as object database “blob”. However, the huge data volumes make this

approach costly to implement. Moreover, the system also needs to store the multimedia

“metadata” and possibly composite multimedia objects. Most MMDBMSs classify the data

as either persistent or transient and store only persistent data after transaction updates.

Transient data are used only during program or transaction execution and are removed

afterwards.

Traditionally, a query selects a subset of the data objects based on the user’s description

(usually apposite query language are used to help the user in the query expression) of what

data to access. A query usually involves various attributes, possibly keyword-based or

content-oriented, and is usually interactive. Thus, functions for relevance feedback and

query formulation, similarity (rather than exact) matches, and mechanisms for displaying

ranked results are important in a MMDBMS [2].



CHAPTER 2. MULTIMEDIA DATABASES MANAGEMENT SYSTEMS 12

Version control becomes important when a persistent multimedia object is updated

or modified, as some applications might need to access previous states of the object. A

MMDBMS provides such access through versions of the persistent objects.

The special nature of multimedia data also makes it important to support new spe-

cial functions. These include object composition and decomposition, management of huge

volumes of multimedia data, effective storage management, and information retrieval and

handling of spatial and temporal data objects [2].

2.6 Requirements and Issues of Multimedia Database Man-

agement System

For the MMDBMS to serve its expected purpose, it must meet certain special require-

ments and issues [2]. They are divided into the following broad categories:

• Multimedia data modeling

• Huge capacity storage management

• Information retrieval capabilities

• Media integration, composition, and presentation

• Multimedia query support

• Multimedia interface and interactivity

• Multimedia indexing

• High Performances

• Distributed multimedia database management

In addressing these requirements when building a multimedia database system, one

must also address several other questions, as reported in [2], to achieve full functionality,

including:
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• How to build a multimedia database system that encompasses several application do-

mains (that is not restrictive in terms of its domain applicability)?

• What are the levels of granularity for information decomposition, storage, and man-

agement? And how the underlying techniques and structures can be mapped and used

on the units of data?

• Knowing the data compositions of a multimedia database, how can one reliably and

efficiently develop a query language that supports the myriad access methods associated

with and necessary for the diverse object types? How will the query language support

the multimedia datas different characteristics and morphologies?

• What kind of presentation infrastructure will the multimedia system have to accom-

modate the diverse presentation requirements and modes for the different multimedia

data? How can one synchronize presentations to support the temporal and spatial

requirements of the different multimedia data?

• Given that different media types have differing modification and update requirements,

how will the system update different components of the multimedia session? What

levels of granularity will those updates have?

To respond to classical data management requirements, the architecture of a standard

database system consists of well know modules for query processing, transaction manage-

ment, buffer management, file management, recovery and security. These modules suffer of

inevitable modifies in the case of a multimedia database [46].

For what concerns query processing, in multimedia database querying is quite different

from querying in standard alphanumeric databases. Besides the fact that browsing takes

on added importance in a multimedia environment, queries can be of different nature and

contain multimedia objects input by user. The result of such queries are based on similarity

matches, not exact matches. To this purpose, indexes of standard, usually hash-based or

utilizing B-tree variants, are unsuitable for similarity matching.
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In multimedia databases a generic indexing technique is to extract n numerical-valued

features from a multimedia object and represent these n values by a n-dimensional point.

A spatial index that supports nearest-neighbor searching is used for similarity matching

and query optimization became the process of choosing the optimal access path to answer

a query [46].

For the transaction management, as already discussed, conventional concurrency control

algorithms can be used to satisfy the four ACID properties. However, the concurrency of

the overall system would suffer, since in this environment,transaction tend to be long,

compute-intensive, interactive and cooperative. For example, if a video is locked for an

update transaction, then many thousands of images frames are also locked.

In order to increase system concurrency in such environment, new transaction models

defined for object-oriented environments. In particular, the traditional ACID properties

have been generalized: Atomicity is changed to recovery, which refers to placing the database

in a correct state in the event of a database failure or transaction abortion. To this aim

recovery models for long-running transaction have to be developed. Consistency need not

depend on the traditional concept of serializability ; a non-serializable schedule can still

leave the database in a consistent state. Isolation is changed to visibility : transaction

are allowed to view the results of other transactions. And finally, durability is changed to

permanence [46].

Continuous media presentation for many concurrent users require also sophisticated

buffer management techniques to deliver information on demand, scheduling the buffering

in order to maximize sharing and support interactivity without violating the synchronization

requirements [46].

Eventually, for the storage management the challenge is to serve multiple requests for

multiple media streams so as guarantee the process do not starve, while minimizing the

buffer space needed and the time between an initial request for service and the data fruition.

Techniques as striping/interliving, data compression, data contiguity, and storage hierar-

chies have been employed to reduced this bottleneck [46].
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Figure 2.1 shows a sample high-level architecture for a MMDBMS that addresses some

of the requirements that have been discussed [2].

Figure 2.1: MMDBMS Architecture

In such architecture most of the management modules associated with a traditional

DBMS are reported. In addition, it contains some of the modules that are required specifi-

cally for multimedia data management, such as the media integrator and object manager.

However, most of the additions to the traditional DBMS are external to the core of the

MMDBMS. These include the presentation, interface, and configuration managers. The

configuration also includes a context-base and semantic information manager, which are

part of the performance module. In the following the main requirements of a MMDBMS

are described like discussed in [2].

2.6.1 Multimedia data modeling

In standard database systems, a data model is a collection of abstract concepts that

can be used to represent real-word objects, their properties, their relationships to each

other, and the operation defined over them. These abstract concepts are capable of being

physically implemented in the given database system.
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Through the mediation of this data model, queries and other operations over real-world

objects are transformed into operations over abstract representations of these objects, which

are, in turn, transformed into operations over the physical implementation of the abstract

representations.

Data models are central to multimedia database systems. A data model must isolate

and hide to users from the details of storage device management and storage structures.

It requires the development of appropriate data models to organize the various data types

typically found in a multimedia database system.

Multimedia data models capture the static and dynamic properties of the database

contents, and thus provide a formal basis for developing the appropriate tools needed in

using the multimedia data. The static properties could include the objects that make up

the multimedia data, the relationships between the objects, the object attributes, and so

on. Examples of the dynamic properties include interaction between objects, operations on

objects, user interaction, and so forth.

However, the unique nature of multimedia data requires certain new considerations when

choosing the data model. For instance, some multimedia data types (such as video) or

group of types (example, video and images) might require special data models for improved

modeling efficiency and flexibility. Moreover, the importance of interactivity in multimedia

systems makes their support by the data model an important issue. Furthermore, it may be

necessary to consider new integrity constraints in the context of multimedia databases. Var-

ious data models, such as network, relational, semantic, and object-oriented models already

exist for traditional databases, and a few have been proposed for multimedia databases.

Two basic approaches have been used in modeling multimedia data. The first involves

building a multimedia data model on top of an underlying traditional database data model

(usually relational or object-oriented databases) by using appropriate interfaces for the

multimedia data. The problem with this approach is that the underlying structures are not

designed for multimedia data. Often, the significant differences between the requirements of

the traditional and multimedia data make the interface a bottleneck in the overall system.
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These problems led to the second method, which opts to develop true multimedia-specific

data models from scratch, rather than on top of appropriate data models for individual

multimedia data types (such as video, images, or visual data), uniform modeling of arbitrary

data types, and supporting huge volumes of multimedia data, multimedia interactivity,

and content-based information using these models. Some authors have gone so far as to

claim that the data model for a MMDBMS can only be fully achieved by object-oriented

technology.

2.6.2 Huge capacity storage management

The storage requirements in multimedia systems can be characterized by their huge

capacities and the storage systems hierarchical (pyramidal) organization (see Figure 2.2)

[2].

Figure 2.2: Hierarchically organized storage for multimedia database
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Hierarchical storage places the multimedia data objects in a hierarchy of devices, either

online, near-line, or off-line. In general, the highest level provides the highest performance,

highest cost, smallest storage capacity, and least permanence. Note, however, that per-

manence improves at significant additional costwith the use of nonvolatile random access

memory. Another unique use of this hierarchical storage organization is that the higher

levels of the hierarchy can be used to store smaller abstractions (or representations) of the

actual multimedia data, which can be used to facilitate faster browsing and previewing

of the database content. Cost and performance (in terms of access time) decrease as we

go down the hierarchy (pyramid), while storage capacity and permanence increase. Typi-

cally, in most multimedia storage systems the highest level of storage is (volatile) random

access memory, followed by magnetic disk drives. These provide online services. Optical

storage devices provide the next level of storage. Online in some cases, they are near-line

(like jukeboxes) in most cases. The lowest level in the storage hierarchy represents off-line

storage devices, including magnetic tapes, optical disks, and so forth. These may or may

not be directly connected to the computer. They offer the highest storage capacity and

permanence but provide the least performance in terms of access time. A MMDBMS must

therefore manage and organize multimedia data stored at any level in the hierarchy. It must

have mechanisms for automatically migrating multimedia data objects from one level of the

storage hierarchy to another and for managing data compression and decompression.

2.6.3 Query support and information retrieval

Querying in multimedia databases can involve different multimedia data types, key-

words, attributes, content, or even contextual information. Because of the different ways

in which users think about multimedia data, multimedia query can simultaneously involve

multiple cues, necessitating multiple or multidimensional indices.

Moreover, queries are usually imprecise. Because of this and the difficulty of ensuring

exact matches between multimedia data items, retrieval usually involves comparing data

items for similarity or partial (rather than exact) matching.
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Thus, since queries might not yield exact matches, there is the need of facilities for

ranking the retrieved results according to how closely they match the given query. Similarly,

methods to prune results that do not seem to satisfy the query are required. Doing so reduces

the potentially enormous computation needed for further matching.

With the ranking, the MMDBMS should also support browsing the various retrieved

items. It is possible also to want to retrieve similar items based on one or more of the already

retrieved items. A true MMDBMS also needs a facility to support incomplete information.

More importantly, since the information extracted to index the multimedia data or from the

user query might contain errors, query interpretation should provide for uncertainties in the

information. This might require an iterative search mechanism and a relevance feedback

mechanism along with techniques for query reformulation.

Among the issues involved in multimedia query support is the availability of a multi-

media query language capable of supporting both the various media types encountered in

a typical multimedia database and new requirements such as fuzzy query predicates. Such

query models should also provide mechanisms for users to reformulate their queries, perhaps

based on the already retrieved results.

Query by example is the primary method used to enter queries in multimedia databases,

especially in those involving images. Here, the user makes a request using an existing

example (for example, similar images). Thus, the interface used to enter the query into the

system becomes an issue.

Since different multimedia data types may require different query interfaces, the prob-

lems to consider include how to integrate the various interfaces in an integrated multimedia

database system. Other problems to be resolved include querying spatial data and content-

based video query, which could involve temporal and spatial information.



CHAPTER 2. MULTIMEDIA DATABASES MANAGEMENT SYSTEMS 20

2.6.4 Media integration, composition, and presentation

Given the multiplicity and heterogeneity of data types supported, the MMDBMS should

also provide facilities for integrating data items (from possibly disparate media types) to

form new composite multimedia types and for presenting such data at a given site within

the required time.

Multimedia integration, composition, and presentation are exacerbated by the often con-

tinuous (temporal) nature of multimedia data especially video, animation, and audio. More-

over, certain applications, such as geographic information systems, may require a MMDBMS

to address spatial information. All these factors put together make multimedia composition

and presentation a complex process that the MMDBMS must support to meet the diverse

user’s needs.

Unlike traditional data, multimedia data have presentation constraints. These mainly

result from the continuous nature of some multimedia data types, which requires presenting

certain amounts of data within a given time for the presentation to seem natural to the

user. When multimedia data are distributed and transported over networks, the problems

of presentation become even more acute. Here, one can easily experience network problems,

such as limited bandwidth and statistical network delays.

Continuous media by definition are time-dependent, so timing becomes an important

factor in their delivery and presentation. Therefore, in MMDBMSs the response to a query

is often judged by both the correctness and the quality of the retrieved results. From

the users point of view, the QoS parameter specifies, qualitatively, the acceptable levels of

performance for the various services provided by the multimedia system and may affect the

results of the multimedia presentation. Thus, to support multimedia presentations where a

user can specify various QoS levels for different services, the MMDBMS must support the

specified QoS levels and a QoS management service. This typically involves providing an

appropriate mapping from the users QoS to the systems QoS and vice versa.

When presenting different types of multimedia data such as video and audio together,

problems of media integration and synchronization also become important.
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The MMDBMS must provide a mechanism to ensure good synchronization of the pre-

sented data while still meeting other requirements such as the data availability rates and the

QoS. In some situations, the MMDBMS may have to rely on an explicit synchronization

manager to ensure synchronization within a given data type and between different data

types.

2.6.5 Multimedia interface and interactivity

The diverse nature of multimedia data calls for different and apposite interfaces for

interacting with the database. Each media data type has its own method for access and

presentation and, for instance, video and audio data will need different user interfaces for

presentation and query.

Moreover, for some multimedia applications, especially those involving continuous me-

dia, the user often expects the interactive facilities of a VCR or tape recorder (such as fast

forward and reverse). When a multimedia system provides such services, it has implications

for the database, especially retrieval of the needed multimedia objects, their integration,

and their synchronization.

2.6.6 Multimedia indexing

As in traditional databases, multimedia information can be retrieved using identifiers,

attributes, keywords, and their conjunctions using conditional statements. Keywords are

by far the predominant method used to index multimedia data. A human typically selects

keywords from a set of specialized vocabulary. While simple and intuitive, this method

usually creates problems when applied to multimedia data: it is basically manual and time

consuming, and the resulting indices are highly subjective and limited depending on the

vocabulary. Another method, content-based access, refers either to the actual contents

of the multimedia database or to derived contextual information. Intensive research has

focused on content-based indexing in recent years, with the goal of indexing the multimedia

data using certain features derived directly from the data.
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Various features, such as color, shape, texture, spatial information, symbolic strings,

and so on, have been used to index images. Deriving such features requires automatic

analysis of the multimedia data. The primary methods used for image and video data are

image processing, image understanding, and video sequence analysis. With video data, the

video sequence is first separated into its constituent scenes, then representative abstractions

(usually key frames) are selected to represent each scene. Further indexing on the video is

based on the key frame, as in the case for images. For audio data, content-based index-

ing could involve analysis of the audio signal or automatic speech recognition followed by

keyword-based indexing. On the other hand, indexing can be based on other information

depending on the type of audio data. For example, some developers have used rhythm

signature, chord, and melody for content-based indexing of music data.

Similarly, methods for content-based search and retrieval of audio data have been pro-

posed based on the characteristics of audio data, as indicated by its perceptual and acoustic

features. Using content-based indexing implies the consideration of certain issues. First,

the same multimedia data could mean different things to different people. Second, users

typically have diverse information needs. Thus, it is evident that a single feature may not

be sufficient to completely index a given multimedia data type.

Therefore, it becomes difficult to identify the features that are most appropriate in any

given environment. Another problem has to do with efficiency: making the indexing fast

and storing the indices efficiently for easy access, since multimedia data typically come in

huge volumes. Because of the diverse content inherent in multimedia data, indexing has not

been completely automated. For example, while the computer can easily analyze a picture

containing works of art, it is almost impossible for the computer to automatically determine

the meaning of the art object. Only a human can provide such information.
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2.6.7 Performance

High performance is an important requirement for a MMDBMS. It includes efficiency,

reliability, real-time execution, guaranteed and synchronized delivery of multimedia presen-

tations, and quality-of-service (QoS) acceptable to the users.

2.6.8 Distributed multimedia database management

Distributed MMDBMS loosely refers to a collection of various (possibly) independent

multimedia database management systems, located in disparate locations, that can com-

municate and exchange multimedia data over a network. Multimedia systems are usually

distributed in the sense that a single multimedia interaction often involves data obtained

from distributed information repositories. This is typically the case in collaborative multi-

media environments, where multiple users in possibly disparate physical locations manip-

ulate and author the same multimedia document. Moreover, issues like storage problems

and data generation may also force multimedia system designers to place multimedia data

in different physical locations. To support the information required in such distributed

and collaborative environments, a distributed MMDBMS must address the general prob-

lems in distributed databases, such as distributed and parallel query processing, distributed

transaction management, data location transparency, data security, and so forth. In ad-

dition, network issues such as limited bandwidth and network delays become important

considerations, since they could have adverse effects on the QoS supported.

Unlike in the traditional DBMS, data replication is often not encouraged in a distributed

MMDBMS due to the huge data volumes. The client-server computing model, in which a

server application services multiple client applications with the clients and server residing

in possibly different machineshas proven suitable for multimedia systems in general and

distributed multimedia DBMSs in particular.
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2.7 Some motivating examples

In the following two examples in video and image data managing are reported in order

to underline the requirements for MMDBMS environments and motivate such dissertation.

• Video Database System. Let us consider a large repository of soccer-match videos:

in a such environment an interesting query should be “find all goal-actions scenes in

a given video” (see figure 2.3).

To respond in an efficient manner to the user query, the system has to present the

following features:

– A Data Model that supports an high-level video abstraction in terms of scenes

and their contents is necessary.

– The videos have to be indexed (in an automatic or semi-automatic manner)

in according to the Data Model and by means of apposite textual description

(metadata) inside the repository.

– The Interface and Presentation Manager modules have to guarantee a suitable

video fruition that satisfies the temporal constraints and supports some interac-

tive facilities (as fast forward and reverse).

– The Object, Storage, Directory Manager modules have to serve the requests of

multimedia streams optimizing the storage access.

– The Transaction Manager has to resolve a possible concurrency access to video

resources.

– The Query Manager has to offer to the user a friendly interface to build the query

in according to a given query language.
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Figure 2.3: An example of query by content in a video database

• Image Database System. Let us consider a large repository of images: in a such

environment an interesting query should be “find all airplanes images similar to a

given target image and with a blue-sky color predominance” (see figure 2.4).

To respond in an efficient manner to the user query, the system has to present the

following features:

– A Data Model that supports an high-level image abstraction in terms of image

description and content is necessary.

– The images have to be indexed (in an automatic or semi-automatic manner)

in according to the Data Model and by means of apposite textual description

(metadata) inside the repository.

– The Interface and Presentation Manager modules have to guarantee a suitable

image fruition without viewing latency and supports some interactive facilities

(as zoom, rotation, etc...).

– The Object, Storage, Directory Manager modules have to serve the requests of

multimedia data optimizing the storage access.
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– The Transaction Manager has to resolve a possible concurrency access to image

resources.

– The Query Manager has to offer to the user a friendly interface to build the query

in according to a given query language and a matching module for computing

images similarity and selecting the most relevant results.

Figure 2.4: An example of query by content and example in an image database

As can be observed in the two examples, a traditional DBMS is in general not able to

manage multimedia information and support possible user queries. The need of a novel

architectures and techniques to respond to such requirements motivates this work.



Chapter 3

Video and Image Database

Systems

3.1 Introduction

Among multimedia information, video and image are the most common ones and their

efficient managing in a MMDBMS environment represents an open challenge of research

activity on multimedia.

Fast access to multimedia information requires the ability to search and organize the

information. While, the technology to search text has been available for some time - and in

the form of web search engines is familiar to many people - the technology to search images

and videos, is much more challenging due to different nature of multimedia information.

In such area the main objective of the researchers is to index in an automatic way video

and image data on the base of their content in order to facilitate and make more effective

and efficient the query processing.

In the following, supported by the related state-of-the-art, we describe the major chal-

lenges in developing reliable image and video database systems.

27
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3.2 Image Databases

3.2.1 Introduction

With the steady growth of computer power, rapidly declining cost of storage, and ever-

increasing access to the Internet, digital acquisition of information has become increasingly

popular in recent years. For this reason, during the last years, fast retrieval of relevant and

accurate images respect to the user query in very large repositories or huge digital libraries

has been one of the most important research issue.

Libraries have traditionally used manual image annotation for indexing and then later

retrieving their image collections. However, by now, manual image annotation is an expen-

sive and labor intensive procedure and hence there has been great interest in coming up

with automatic ways to retrieve and index images based on content.

To this purpose, several researchers have investigated techniques to retrieve images based

on their content, but many of these approaches require the user to query based on image

concepts like color or texture, which most people are not familiar with.

In general, people would like to pose semantic queries using textual descriptions and

find images relevant to those semantic queries. In particular, the automatic derivation of

semantically-meaningful information from the content of an image has the focus of interest

for the most recent research on image databases.

The images semantics, i.e., the meanings of an image, has several levels. From the lowest

to the highest, these levels can be roughly categorized as:

1. semantic types (e.g., landscape photograph, clip art);

2. object composition (e.g., a bike and a car parked on a beach, a sunset scene);

3. abstract semantics (e.g., people fighting, happy person, objectionable photograph);

4. detailed semantics (e.g., a detailed description of a given picture)
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As underlined in [28], in the state-of-the-art approaches, the retrieval task may be effi-

cient for some queries in which the semantic content of the query can be easily translated

into visual features. For example, finding images of fires is simple because fires are charac-

terized by specific colors (yellow and red). However, it is not efficient in other application

fields in which the semantic content of the query is not easily translated into visual features.

For example, finding images of birds during migrations is not easy because the system has

to understand the query semantic. In the query, the basic visual features may be useful (a

bird is characterized by a texture and a color), but they are not sufficient. What is missing

is the generalization capability. Birds during migrations belong to the same repository of

birds, so they share common associations among basic features (e.g., textures and colors)

that the user cannot specify explicitly.

There is the need of an approach that discovers hidden associations (these associations

discriminate image repositories) among features during image indexing and allow a user-

friendly query formulation.
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3.2.2 Content based Image Retrieval (CBIR)

The goal of an image retrieval system is to find images from an image database while

processing a query provided by a user. In the last decade, most of researches are focused on

Content Based Image Retrieval (CBIR). The CBIR is characterized by the ability of a

system in retrieving relevant information on the base of image visual content and semantics

expressed by means of simple search-attributes or keywords [112].

The relevance of retrieved information can be judged in different ways by different users,

although the query was formulated in the same manner. In other terms, the relevance-

concept is dynamical, subjective and user and context dependent.

A CBIR system has to be capable of becoming adaptable respect to user query formu-

lation and interesting information content. Actually, there are two different methodologies

to perform a search in image database on the base of image information content:

• textual-based methodologies, usually using descriptive metadata (title, description,

format, resolution, etc...);

• feature-based methodologies, usually based on image processing algorithms able

to extract from image sets of content features (color, shape, texture, objects, image

samples, etc...).

In the first case the retrieval is more simple but presents some limitations due to the

manual annotation process: for example, two user can describe the same image using dif-

ferent descriptions. In the opposite, the second methodology is more complex and requires,

form on hand, the choice of suitable perceptive features to represent an image and, form the

other one, the presence of image processing algorithms to extract the perceptive content in

an automatic and robust manner.

For these reasons, the actual trend, as already described, is to combine the two ap-

proaches and allow to pose queries using textual descriptions or image samples, where the

semantically-meaningful information has to be automatically obtained from the content of

an image.
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3.2.2.1 Image representation and feature selection problems

An important research issue in the field of multimedia data analysis is that of choosing

the right representations for the data (images, sounds, video, etc). Whether it is for search-

ing, indexing, comparison, etc., it is clear that the way the multimedia data are represented

can significantly influence the performance for the various data analysis tasks.

Approaches for content-based image querying typically extract a single signature from

each image based on color, texture, or shape features. The images returned as the query

result are then the ones whose signatures are closest to the signature of the query image.

Traditionally, the problem of query by content or, alternately, that of retrieving images

that match a given query image from a large database of images has been solved by comput-

ing a feature signature for each image, mapping all signatures to d-dimensional points

in some metric space (usually reducing dimensionality in the process), and building an in-

dex on all signatures for fast retrieval. An appropriate distance function (e.g., Euclidean

distance) is then defined for each pair of signatures and, given a query, the index is used

to efficiently locate signatures close to the query point. The set of images corresponding to

the signatures are then returned to the user and constitute the result of the query.

Typical methods for computing image signatures include color histograms [6], which

can be used to characterize the color composition of an image, regardless of its scale or

orientation. Color histograms, however, do not contain any shape, location, or texture

information. As a result, two images with similar color composition may in fact contain

very different shapes and, thus, be completely unrelated semantically. The most diffuse

opposite approach is to use the wavelets coefficients for an image as its signature, since

wavelets capture shape, texture, and location information in a single unified framework

[67]. In Fig. 3.1 an example of color histograms and Wavelet transform of a given image is

reported.
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Figure 3.1: Color histograms and Wavelet Transform

Features can be extracted from the whole image or from particular regions of image it-

self, in the second case, a crucial part of any region-based image query system is the region

extraction procedure (image segmentation). A number of strategies for decomposing an

image into its individual objects have been proposed in the literature, however, extracting

regions from an image is a difficult problem to solve [17]. Approaches that involve manual

object extraction can be extremely tedious and time-consuming and are therefore impracti-

cal for large image collections. Consequently, most image segmentation techniques rely on

being able to identify region boundaries, sharp edges between objects, and on a number of

other factors, such as color, shape, connectivity, etc. However, besides being computation-

ally expensive, the schemes are frequently inaccurate in identifying objects and the used

methods are generally not robust with respect to object granularity.

The reason for this is that the definition of an object is largely subjective as a result,

a single method cannot successfully identify the correct objects for all applications and

may decompose what the user perceives as a single object into several smaller objects. A

number of image segmentation techniques therefore utilize domain-specific constraints and

are thus application-specific. Similarly, there is a need for region extraction specifically for

the purpose of sub-image indexing and retrieval.
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3.2.2.2 Possible query formulation in image database

The formulation of a query in a modern CBIR system can be executed using three

different approaches or by a their combination.

• Query By Example (QBE): in a such approach a user specifies a target image and

the system respond retrieving from the database the most similar images in according

to a similarity criterion.

• Query By Features (QBF): in a such approach a user specifies the wanted image

features (e.g., images with a red color predominance, images with a circular object,

etc..) by means of an apposite graphical interface.

• Query By Attributes (QBA): in this approach the classical textual annotations are

used as keys for searching in the database.
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3.2.3 Similarity query and access methods for very large database

The emerging technologies based on repositories of heterogeneous information (such as

images, video, audio, time series and DNA sequences) require general search models and

algorithms in order to deal with such complex and large-scale multidimensional data sets.

In this context a “key-problem” is the development of fast and efficient access techniques,

especially for what concerns very large image repositories.

A viable solution to perform queries on multimedia and complex data is the introduction,

in the objects domain, of a distance function δ, pointing out the dissimilarity between two

objects belonging to the class of objects O. Formally:

δ : O × O → R+ (3.1)

In the multimedia realm, to make possible a comparison between any two objects, a

“feature-based” solution, as already described, is usually proposed. The basic idea is to

extract important features from the multimedia objects, represent the above features by

high-dimensional vectors and search the database objects having the most similar features.

Thus, we assume that objects (for example images or video-frame) are mapped into points

of a “multi dimensional features vector space” with a fixed and finite dimension d.

The introduced distance function must satisfy some particular properties (non-negativity,

symmetry and triangular inequality) that characterize a metric. Formally a metric space

is a pair MS = (S, δ) where S is a domain of feature values and δ is a distance function

having the following properties:

1. δ(Ox,Oy) = δ(Oy,Ox)(symmetry);

2. δ(Ox,Oy) > 0 with (Ox 6= Oy)(non negativity); and δ(Ox,Ox) = 0

3. δ(Ox,Oy) < δ(Ox,Oz) + δ(Oz,Oy) (triangle inequity).
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When a distance function with the above features is defined, it is said to be a metric

function, the domain is said to be metric space, and metric access methods can be used

to indexing and retrieving data by means of the “similarity query” search paradigm. Its

essence is to find in a given collection of objects those which better fit (i.e., which are more

similar to) a given query specification.

More in details, the types of similarity queries that can be usefully used to search objects

in a generic metric space are defined as follows.

DEFINITION 1 (Range Query).

RangeQuery(DB,Oq, ϕ,M) = {O ∈ DB|δMS(O,Oq) ≤ ϕ}

where DB is a set of n points in a d-dimensional data space, Oq is the query object, ϕ is a

distance value and MS is a generic metric space.

The result of this function is the set of all object-points having a distance smaller than

or equal to ϕ from Oq, according to the metric δ

DEFINITION 2 (Nearest-Neighbor Query).

NNQuery(DB,Oq,M) ⊆ {O ∈ DB|∀O′ ∈ DB : δMS(O,Oq) ≤ δMS(O′
,Oq)}

where DB is a set of n points in a d-dimensional data space, Oq is the query object and

MS is a generic metric space.

The result is an object-point chosen among those points having minimal distance from

the query object Oq.
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In particular if a user wants to get the first k closest points to the query object, the

notion of Nearest-Neighbor query could be expanded with the definition of k-NN Query.

DEFINITION 3 (K-Nearest-Neighbor Query).

kNNQuery(DB,Oq, k,M) = {{O1..Ok} ∈ DB| ¬∃i, 0 ≤ i < k :

δMS(Oi,Oq) > δMS(O′
,Oq)}

where k indicates the number of closer points to the query point Q.

Note that the queries introduced above can be performed using either a “sequential”

scan of the objects present in the database or a “smart scan” that permits to locate and

analyze only the relevant objects. A drawback of sequential scanning is time complexity,

which is directly related to the size and number of stored objects.

To improve retrieval efficiency, features should be organized into indexing data struc-

tures that support efficiently the query process. Generally speaking, an index consists of a

collection of entities, one for each object, containing the key for that object, and a reference

pointer which allows immediate access to that object [19].

Different indexing mechanisms have been proposed in the literature to facilitate fast

feature-based retrieval of multimedia objects in very large database. A formal definition is:

DEFINITION 4 (Index mechanism for feature based retrieval). Let Σ be a set

of multimedia objects (Oi) and Ω= ω1, ω2, ..., ωm a set of m classes to which Σ is to be

classified where ω satisfies the following:

1. ωi 6= Σ∀ i = 1, 2, 3...m;

2. ∪1≤i≤m ωi = Σ;

3. ωi 6= ωj for i 6= j;

the indexing process consists of the application of a mapping Σ → Ω denoted by T =η(R, Ω),

where R is a set of parameters to define the mapping, and classes in Ω represent the cate-

gories of multimedia object set Σ.
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If the clusters are organized according to the classical tree structure, we have the follow-

ing indexing association {ω1, ω2, ..., ωm} → {N1, N2, ..., Nm}, Ni being a generic tree-node.

In particular, an efficient index for a large data set, where data are described in high

dimensional feature space, should allow to prune comparisons between data during the sim-

ilarity search process by taking advantage from distance properties. To this end, the overall

data distributions can be considered for “grouping” similar objects in the same “similarity-

class”, and each class represented by a particular object called “centroid”, “pivot” or “rout-

ing object”. Then, during retrieval, it is possible to reduce necessary comparisons by calcu-

lating the similarity between the query objects and each class through their representatives.

In this way, complex and multimedia data retrieval can be accelerated and improved using

both classes-based index structures and the similarity query concept.

Probably, the first general solution to search in metric spaces was presented by Burkhard

and Keller [15]. They propose a tree (thereafter called the “Burkhard Keller Tree”, or

BKT), which is suitable for discrete-valued distance functions. From the opposite the

“vantage-point trees” or VPT is proposed in [111] as a tree data structure designed for

continuous distance functions. The “bisector trees” (BST) are proposed in [54] as binary

trees built recursively segmenting the data space. In [102], is also proposed the “generalized-

hyperplane tree” (GHT), identical in construction to a BST. The GHT is extended in [14]

to an m-ary tree, called GNAT (“geometric near-neighbor access tree”), keeping the same

essential idea, but also using a Voronoi-like partition (an example of GNAT is reported in

Figure 3.2). Eventually, the “M-tree” (MT) data structure is presented in Ciaccia et al.,

[19] aiming at providing dynamic capabilities and good I/O performance in addition to few

distance computations (an example of MTREE generated in a [0, 1]2 domain by L1 metric

is reported is reported in Figure 3.3).
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Figure 3.2: A GNAT example using Voronoi-like partition

Figure 3.3: An example of generated MTREE on a [0, 1]2 domain by L1 metric

From the opposite, clustering [52] represents the most diffused analysis technique for

discovering interesting data patterns in the underlying data set: given a set of n data points

in a d-dimensional metric space, a clustering approach assigns the data points to l (l << n)

classes or groups, maximizing object similarity within the same class. The clustered data

structure can be efficiently used (e.g., by means of a recursive application on the data space)

to build indexes (e.g., search-trees) for high dimensional data sets, which support efficient

queries. Interestingly enough, many statistical clustering techniques (e.g., k-means, fuzzy k-

means) can be considered as special cases of the Expectation-Maximization (EM) algorithm

[11].
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Different approaches were proposed in literature for representing clustered data by in-

dexing structures. In [43], the clusters are organized in a tree structure CF ∗tree and a

representative called “clusteroid” is chosen from each cluster. While searching, the query

object is compared against the clusteroid and the associated cluster is eliminated from con-

sideration in the case in which a similarity criterion does not hold. The problems connected

to the inserting of new objects are solved by introducing a “inter-cluster” distance. An ad-

vantage of the clustering approach respect to the other ones is the possibility of generating

classes of objects that are independent: such feature can be used to simplify the pruning

conditions in the query process.

Eventually, in [113] a new indexing approach to representing clusters generated by any

existing clustering algorithm in a tree structure called “ClusterTree” is presented.
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3.2.4 A short overview of the most diffused CBIR systems

In the past decade, systems for retrieval by visual content (CBIR) have been presented

in the literature proposing visual features that, together with similarity measures, could

provide an effective support of image retrieval ([26], and for a detailed survey, [89]).

Three commercial CBIR systems are now available, IBM’s Query by Image Content

(QBIC) [38], Virage’s VIR Image Engine [47], and EXACALIBUR’s Image RetrievalWare

[32]. They mostly rely on low-level image features such as color, texture, shape features

[38], [47], [32], where shapes can be described using simple cues like shape area, circularity,

eccentricity, major axis orientation, algebraic moment invariants [38], relative orientation,

curvature and contrast of lines [32]. Matching is performed through weighted Euclidean

distance [38], or user supplied similarity functions [47], [32].

Also, a number of experimental/research systems have been proposed, beyond early

systems like Chabot [78], including MIT’s Photobook [81], Columbia University’s VisualSeek

[96, 97], Pichunter [22], PICASSO [24, 25], Blobworld [17], SIMPLIcity [105], El Nino [90],

[92].

Features exploited relate to color, [22], [81], [25],[92], spatial properties [96, 97], [24],

faces, 2-D shapes and textures [81],[92], sketches [24]. Segmentation is specifically ac-

counted for by PICASSO [25], SIMPLIcity [105] and Blobworld [17]. PICASSO exploits

multiresolution color segmentation [25]. In SIMPLIcity, the k-means algorithm is used to

cluster regions, while in Blobworld regions (blobs) are segmented via the EM algorithm

and features used for querying are color, texture, location, and shape of regions (blobs)

and of the background. In these systems, matching is accomplished through a variety of

ways, using distance between eigenimage representations [81], color set similarity, region

absolute location, spatial extent [96, 97] L1 distance [22], quadratic or Euclidean distance

[17], specific color distances [25], feature contrast metrics [92], integrated region matching

through wavelet coefficients [105].
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3.3 Video Databases

3.3.1 Introduction

The rapid advances in video technology, the widespread diffusion of video products -

such as digital cameras, camcorders and storage devices - and the explosive growth of the

internet have quickly made of digital video an essential component of today multimedia

applications, including video-on-demand, video conferences, multimedia authoring systems

and so on.

Then, thanks to the development of multimedia compression techniques, we have ob-

served an exponential increase in the amount of available digital video data. While the

amount of video data is rapidly increasing, multimedia applications are still very limited in

content management capabilities. There is a growing demand for new techniques that can

enable efficient processing, modeling and management of video contents.

Searching information based on content is difficult for audio-visual content, as no gen-

erally recognized or standardized description of this material exist. To this end, in the

last years, MPEG (the Moving Pictures Experts Group) has been setting a standard called

“Multimedia Content Description Interface (MPEG7)”, that will extend the limited search

capabilities of today to allow efficient retrieval of multimedia information.

Today, the major bottleneck limiting a wider use of digital video is the ability of quickly

finding desired information from a huge database using content. A reliable way to resolve

this problem and enable fast access to video clips is to properly index video sequences using

suitable descriptors.

Traditional video database use keywords as index to quickly access to a great deal of

data. However, this kind of data representation requires a burdening manual processing.

It is widely agreed that video analysis refers to the computerized understanding of the

semantic meanings of a video sequence. Tools that enable such automated analysis are

becoming indispensable to be able to efficiently access and retrieve video information.
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A typical indexing and retrieval scenario of video content is shown in Figure 3.4. First,

input videos and images are segmented into temporal consistent units. Visual and audio

features are then extracted from these segments to build indices and summaries. And finally

videos or images are browsed and retrieved based on these features and structures.

Figure 3.4: Block diagram of a video database management sytsem for content-based video indexing
and retrieval

The main feature of a video management system should be the presence of an efficient

indexing system to enable fast access to the stored data. This could be achieved by a set of

semantic indices for meaningfully describing video scenes and a query capability for flexible

specification and efficient retrieval.

Within this scenario, the content-based technique is one key component that provides

feature based similarity search of pictorial data.

In order to achieve such purposes a common approach and an essential step in video

indexing and content-based retrieval is to segment a video sequence in atomic units called

shots. In this work our efforts will be devoted to develop new techniques for the video

shots segmentation process.
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3.3.2 The video segmentation problem

The first step in an automatic video indexing process is the so called video shot

segmentation. The objective of video shot segmentation is to partition a video into basic,

meaningful parts called shots. Each video shot represents a meaningful event, or a continu-

ous sequence of actions, and it corresponds, in according to the most diffused definition in

the literature, to a sequence of frames captured from a unique and continuous record by a

camera. Further scene analysis and interpretation could then be performed on such units.

Semantic annotations, determined either by an human or by means of some automatic or

semiautomatic content analysis techniques, can be associated to each shot to complete the

indexing process. The segmented video sequences could also be used for browsing, in which

only one or a few representative frames (key-frames) of each shot are displayed.

In a given video, different kinds of transitions may occur. The basic distinction is

between abrupt and gradual ones. An abrupt transition occurs in a single couple of

frames, when stopping and restarting the video camera. A gradual transition is obtained

using some spatial, chromatic or spatio-chromatic effects, such as fade in(out) - i.e. a

gradual increase (decrease) in brightness resulting in a solid color frame - or dissolve - i.e.

a gradual super-imposition of two consecutive shots. Gradual transitions include also other

video editing special effects as wiping, tinning and so on.

Generally, abrupt transitions are very easy to detect because the two successive frames

involved in the transition are totally uncorrelated. On the contrary gradual transitions

are harder to detect from a data-analysis point of view because the difference between

consecutive frames is substantially reduced. A number of considerable works has been

reported on the detection of abrupt transitions. The majority of the proposed techniques

evaluate some similarity measure between successive frames and assume that a cut occurs

when the value returned by the measure is lower than a fixed threshold. The comparison of

successive frames is not useful to detect gradual transitions because the difference between

them is very small.
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One of the main issue in segmenting a video sequence into shots is the ability to dis-

tinguish between scene breaks and normal changes into the scene. Moreover camera move-

ments, such as panning, tilting and zooming, present similar features to transition effects

such as dissolves.

A reliable video segmentation algorithm must be able to recognize dissolve effects with-

out misinterpreting camera movements as gradual transitions. Although many progresses

have been made in scene cut detection, existing systems still lack the following capabili-

ties: (i) detect gradual transitions reliably; (ii) achieve real-time (or faster than real-time)

processing performance; and (iii) to handle special situations such as flashes or sudden

lightening variances.

After shot detection preliminary stage, an efficient process for content-based video re-

trieval requires an effective scene segmentation technique to divide a video into meaningful

high-level aggregates of shots called scenes. Each scene has an autonomous semantic con-

tent and can be used as starting point in the video classification and annotation work. Such

task involves the segmentation of the video into semantically meaningful units, classifying

each unit into a predefined scene type, and indexing and summarizing the video for efficient

retrieval and browsing.
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3.3.3 An overview of issues and existing techniques for video shot seg-

mentation

3.3.3.1 Main objectives in a video shot segmentation process

The development of shot-boundary detection algorithms has the longest and richest

history in the area of content-based video analysis and retrieval longest, because this area

was actually initiated some decade ago by the attempts to detect hard cuts in a video,

and richest, because a vast majority of all works published in this area so far address in

one way or another the problem of shot-boundary detection. This is not surprising, since

detection of shot boundaries provides a base for nearly all video abstraction and high-level

video segmentation approaches. Therefore, solving the problem of shot-boundary detection

is one of the major prerequisites for revealing higher level video content structure.

As underlined in [49], despite countless proposed approaches and techniques so far,

robust algorithms for detecting various types of shot boundaries have not been found yet.

We relate here the attribute “robust” to the following major criteria:

1. excellent detection performance for all types of shot boundaries (hard cuts and gradual

transitions);

2. constant quality of the detection performance for any arbitrary sequence, with mini-

mized need for manual fine tuning of detection parameters in different sequences.
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3.3.3.2 Modeling the video shot segmentation process

Assume as input to a segmentation system a video sequence, that is a finite sequence

of time parameterized images, (f(t0), f(t1), . . . f(tN )), where each image f(tn) is called a

frame. Each frame is a color image, namely a mapping from the discrete image support

Ω ⊆ Z2 to an m-dimensional range, f : Ω → Q ⊆ Zm; in other terms, it is a set of single-

valued images, or channels, sharing the same domain, i.e., f(x, y) = (fi(x, y))T , where the

index i = 1, ..,m, defines the i-th color channel and (x, y) denotes a point in the Ω lattice.

Q = {q1, ..., qN} is the set of colors used in the image. Each frame displays a view, a

snapshot, of a certain visual configuration representing an original world scene.

A time segmentation of a video f defined on the time interval [t0, tN ] is a partition of the

video sequence into Nb subsequences or blocks. One such partition can be obtained in two

steps. First, a mapping T : Zm → F of the frame f(tn) ∈ Zm to a representation T (f(tn)) ∈
F , F being a suitable feature space, is performed. Then, given two consecutive frames

f(tn) and f(tn+l), where l ≥ 1 is the skip or inter-frame distance, a discriminant function

D : F × F → R+ is defined to quantify the visual content variation between T (f(tn)) and

T (f(tn+l)), such that a boundary occurs at frame f(tn) if D(T (f(tn)), T (f(tn+l))) > T ,

where T is a suitable threshold.

Thus, in principle, to solve the shot detection problem three steps must be undertaken:

choose an appropriate mapping T ; define a robust discriminant function D; devise a (uni-

versal) threshold T .

As regards the first two points, different techniques have been used: pixel based methods,

such as the mean absolute value of intensity between frames [56],[80], or block matching

[93] [49], histograms difference [110],[41], [42], [73], [116] motion difference [33, 115, 83] and

perceived motion energy [66], differential geometry [64].
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For what concerns the third point, heuristically chosen thresholds have been proposed

[73],[80]. However a fixed thresholding approach is not feasible especially when considering

gradual transitions. In particular, dissolve effects are reputed the most common ones, but

also the most difficult to detect [35], [100]. A dissolve can be obtained as a combination of

fade-out and fade-in, superimposed on the same film strip; fade-out occurs when the visual

information gradually disappears, leaving a solid color frame, while fade-in takes place when

the visual information gradually appears from a solid color frame.

Dissolve detection is still a challenging problem. Few techniques have been published

[61]. Variable thresholding has been proposed in [110] and [116], the latter relying on gaus-

sian distribution of discontinuity values. For instance in [116] the twin-comparison approach

using a pair of thresholds, for detecting hard cuts and gradual transitions, respectively, has

been introduced. More significant improvements have been achieved by recasting the detec-

tion problem in a statistical framework. A novel and robust approach has been presented by

Lienhart [62], which relies on multi-resolution analysis of time series of dissolve probabilities

at various time scales; experiments achieved a detection rate of 75% and a false alarm rate

of 16% on a standard test video set. Further, it has been recently argued that a statistical

framework incorporating prior knowledge in model based [48], statistical approaches leads

to higher accuracy for choosing shot boundaries [64], [49].

In the following we describe, more in details, some of the most diffused techniques in

the literature for video shot detection.
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3.3.3.3 Analysis of methods for detecting abrupt transitions

As already described, considerable work has been reported on detecting abrupt transi-

tions both in uncompressed and compressed video domain.

The first methods for shot detection [56, 80] were methods based on a pixelwise differ-

ence. in particular, the distance, D(T (f(tn)), T (f(tn+l))), used for establishing the simi-

larity between two successive frames, is reported in equations 3.2 and 3.2 respectively.

D(T (f(tn)), T (f(tn+l))) =

∑X
x=1

∑Y
y=1 |Pn(x, y)− Pn+1(x, y)|

XY
(3.2)

for gray-levels images,

D(T (f(tn)), T (f(tn+l))) =

∑X
x=1

∑Y
y=1

∑
c |Pn(x, y, c)− Pn+1(x, y, c)|

XY
(3.3)

for color images.

Where f(tn) e f(tn+l) are the two successive frames of XY size, Pn(x, y) is the intensity

value of (x, y) pixel, c is the index for color components (for example in the RGB space,

c ∈ {R, G, B}), and Pn(x, y, c) is the color component of (x, y) pixel.

All methods based on image pixel difference difference are sensible to camera or frame

objects motion that can produce false alarms. For this reason a more motion-tolerant

(block-based comparison) was introduced [49, 93].

In such approach a given frame is subdivided into b blocks that are then compared with

the related blocks in the successive frames in according to equation 3.4:

D(T (f(tn)), T (f(tn+l))) =
b∑

k=1

ck ·DP (n, n + 1) (3.4)

where ck is a matching coefficient for block k and DP (n, n + 1, k) is the local distance

between the k − th blocks in the two successive frames.
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An example of block-based comparison is the likelihood ratio proposed in [55] and re-

ported in equation 3.5:

λ =
[σn+σn+1

2 + (µn−µn+1

2 )2]2

σi · σn+1
(3.5)

where µn e µn+1 and σn e σn+1 are respectively the mean and variance values for homologous

blocks in the n− th and n + 1− th frames.

All block-based methods are more robust but requires more time for video analysis.

The histogram comparison based methods try to resolve robustness and performance

problems using color histograms of an image [42, 116, 73, 41, 110]. A color histogram is

a m− dimensional vectors T (f(tn)) = Hn(j), j = 1, .., m, where m is the number of color

levels and Hi(j) is the number of pixel belonging to the n − th frame and having a color

level equal to j.

The most simple histogram-based metric uses the gray-levels histograms as shown in

equation 3.6:

D(T (f(tn)), T (f(tn+l))) =
n∑

j=1

|Hn(j)−Hn+1(j)| (3.6)

Gargi e al. [42] evaluate the performances of histogram-based methods using six color

spaces: RGB, HSV, YIQ, L*a*b*, L*v*u* and Munsell. From this analysis the authors

have underlines as the best performances in terms both of precision and computational cost

are a characteristic of YIQ, L*a*b* and HSV spaces.

Authors agree that pixel-based methods are highly sensitive to motion of objects, so they

generate an high rate of false detection. On the contrary histogram-based methods provide

a better trade-off between accuracy and speed, and the performances of such methods are

good for the case of abrupt scene changes. However, color histograms provide information

about the color composition of images, but not about the spatial distribution of color, so

different images could have similar histograms.
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For these reasons hybrid approaches [73] based on local histogram comparison have been

proposed in according to 3.7 and 3.7:

D(T (f(tn)), T (f(tn+l))) =
b∑

k=1

DP (n, n + 1, k) (3.7)

with:

D(T (f(tn)), T (f(tn+l))) =
n∑

j=1

|Hn(j, k)−Hn+1(j, k)| (3.8)

Moreover, in order to overcome the limitation due to the use of single comparison tech-

nique, in [83] Philips and Wolf propose a multi-attribute algorithm for detecting cuts in

video programs: the algorithm uses a motion metric to identify a set of cuts, then uses

luminance histograms to eliminate false cuts. Motion vector analysis is also used in [34],

while an edge tracking is used in [115] to detect both gradual and abrupt transitions.

The introduction of the MPEG standard has redirected the research efforts for the video

segmentation in the compressed-domain. The most common approaches in this domain are

based on DC-components [70, 117], DC-sequences [110] and number of interpolated blocks

[33].

In such methods the DCT coefficients of the different 8x8 are merged frame blocks are

grouped into a particular vector T (f(tn)) = Vn = dct1, dct2, .. and to evaluate the frames

difference the equation 3.9 is used :

D(T (f(tn)), T (f(tn+l))) =
Vn · Vn+1

|Vn| · |Vn+1| (3.9)

Eventually, in [36] a unified approach to scene change detection in both uncompressed

and compressed video is proposed.
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3.3.3.4 Analysis of methods for detecting gradual transitions

Also the detection of gradual transitions has been widely investigated. At the best of

our knowledge, a lot of techniques and algorithms have been proposed for fading (fade-in,

fade-out) regions detection [35], while there are few works about the detection of other

special effects such as dissolve and wipe.

Xiong et al. [107] use a classical block-based comparison based on a Step-variable algo-

rithm for detecting gradual transitions. In this approach the comparison is not performed

on consecutive frames, but on frames at a variable distance. Similarly, Yeo e Liu [110] use

a plateau detection method comparing frames at a fixed distance.

Zhang e al.[116] propose a particular histogram based comparison called twin-comparison[9].

In such methods the histograms of frames belonging to a hypothetic dissolve region are in-

vestigated using two separate thresholds for abrupt and gradual transition. Li e al. [57]

propose a Model-based Video Segmentation algorithm based on the analysis of frame-blocks

gray-levels. By means of the use of two two separate thresholds, in a first step abrupt

transitions are detected, then in the second step dissolves are isolated.

Other important approaches [3, 35] works on frame statistical features as dissolve vari-

ance respect to frame intensity and its derivative function. In a dissolve region the variance

will have a parabolic behavior.

Lienhart [62] casts the problem of automatic dissolve detection as a pattern recognition

and learning problem. Nam and Tewfik [74] use a technique based on B-spline polynomial

curve fitting. In [58] Li and Wei propose a dissolve detection method based on the analysis

of Joint probability Images, while in [60] a motion-tolerant algorithm for dissolve detection

is presented.
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3.3.3.5 A short outline on video scenes detection techniques

In the literature, several automatic techniques for video scene detection have been pro-

posed.

The majority of such methods uses audio and visual information jointly for accom-

plishing the above task. In [104], the main audio and visual features that can effectively

characterize scene content and some algorithms for video segmentation and classification

are reported. In [40] some visual useful metrics for scene change detection based on scene

lighting and intensity distribution are presented; in opposite [65] focuses the attention on

the associated audio information for video scene analysis. In [106] a framework to group

shots based on the analysis of video content (in terms of visual, position, camera, motion

and audio features) continuity is performed. In [99] video scenes are detected on the base of

cromacity, lighting conditions and ambient sound video properties. In [4] a Markov model

approach for scene detection based on audio and visual video analysis is proposed. Eventu-

ally, in [82] a scheme for identifying scenes on the base of video genre has been developed.



Chapter 4

A Model for a Foveated Image and

Video Analysis

4.1 Introduction: the Animate Vision approach

Content Based Image Retrieval (CBIR) systems and some video segmentation approaches

rely upon the effectiveness of image (frame) similarity models, consequently, the effective-

ness of querying and shot detection processes largely depends on the strategy adopted to

analyze and represent the image content.

Assessing the similarity between two images can be reformulated as a task of visual

search: given a target image Iq and a test image It, is there an instance of the target in the

test image?

To this end, it is of relevance that in most biological vision systems, only a small frac-

tion of the information registered at any given time reaches levels of processing that di-

rectly influence behavior and, indeed, attention seems to play a major role in this process.

Notwithstanding, classical approaches in computer vision and in CBIR, consider the input

image as a static entity, to be processed in a passive way.

To correct such trend, the well-know Animate Vision paradigm has been proposed [7]

and used in a lot of applications.

53
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The term attention captures the cognitive functions that are responsible for filtering

out unwanted information and bringing to consciousness what is relevant for the observer

[51].

When analyzing an image, human subjects mainly concentrate inspection on a subset of

points (regions). A basic example is the generation of saccades, i.e. ocular movements that

allow to acquire high resolution images (foveation) of the most relevant part of the scene.

More precisely an average of three eye fixations per second generally occurs during active

looking; these eye fixations are intercalated by rapid eye jumps, the saccades, during which

vision is suppressed.

Noton and Stark [77] claimed that when a particular visual pattern is viewed, a particular

sequence of eye movements is executed and this sequence is important in accessing the visual

memory for the pattern. An example is provided in Figs. 4.1, 4.2.

Figure 4.1: Eye movements sequence over a sample image

Figure 4.2: Fovea view of the sample image
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In other words the points of an image have not the same importance: human eye atten-

tion is captured only from certain points, called saliency points and Animate Vision is

the visual biological system capacity of quickly detecting interesting regions of visual stim-

ulus, a computational counterpart of using gaze shifts to enable a deictic perceptual-motor

strategy on an image [7].

In this note, we argue that animate vision mechanisms should be taken into account in

CBIR, since they allow to concentrate the visual process on a circumscribed region of the

visual field, the “focus of attention” (FOA), which is sequentially shifted across the scene

either in a bottom-up, saliency driven fashion, and/or in a top-down, model driven way.

To the best of our knowledge, the animate perspective has never been considered for the

CBIR problem which still adheres to a passive approach. However, it may play a twofold

role for the purposes of this work:

1. An attentional scheme has as its main goal the selection of certain aspects of the input

stimulus while causing the effects of other aspects of the stimulus to be minimized;

2. Attention introduces a third dimension, beyond features and relationships, namely the

dimension of times: features and relationships are not established as static structures,

but are incrementally set-up along the visual inspection task. In other terms, attention

“linearizes” the 2D structure, naturally reducing visual matching complexity.

In particular, in the following, we discuss the way to generate two fixation sequences

from a query image Iq and a test image It, respectively, and how to compare the two

sequences in order to compute a similarity measure of the two images.
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4.2 Outline of the model for attentive/foveated image anal-

ysis: the mapping in the WW space

Indeed, at the heart of our ability to detect changes and similarities between images is

an intriguing and remarkable information selection/reduction process.

As already described, through an attentive visual inspection, we view scenes in the real

world by moving our eyes three to four times each second, and integrating information across

subsequent fixations (foveation points). Each fixation defines a focus of attention (FOA)

on a certain region of the scene, and the FOA sequence is denoted scanpath [77]. According

to scanpath theory, patterns that are visually similar, give rise to similar scanpaths when

inspected by the same observer under the same viewing conditions (current task or context).

Such animate visual behavior [6] can be computationally modeled as described in Fig. 4.3.

Figure 4.3: A general model of attentive/foveated image analysis.

At a lower level, the observer generates visuomotor patterns, related to the images

content. At a higher level, the observer evaluate images similarity by judging his own

visuomotor behavior in the context of prior knowledge available (for CBIR it could be the

database image categories, in the opposite, in a video segmentation task, it could be the

kinds of possible transitions).
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In the pre-attentive stage, salient features are extracted by specific detectors oper-

ating in parallel for all points of the image, at different spatial scales, and organized in the

form of contrast maps. In order to obtain such a representation different methods can be

adopted, e.g., [86], [50], [37].

It is worth remarking, that the model presented in this work is unaffected by the method

chosen to implement such pre-attentive stage. We experimented with schemes proposed in

[37], [50], and opted for the latter due to simplicity and limited computational complexity.

Precisely, low-level vision features are derived from the original color image decomposed

at several spatial scales using Gaussian and oriented pyramids (via convolution with Gabor

filters). Note that pyramid computation is an O(|Ω|) method, where |Ω| represents the

number of samples in the image support Ω.

The features considered are:

• brightness (I);

• color channels tuned to red (R), green (G), blue (B) and yellow (Y) hues;

• orientation (O).

From color pyramids, red/green (RG) and blue/yellow (BY ) pyramids are derived by

subtraction. Then, from each pyramid a contrast pyramid is computed encoding differences

between a fine and a coarse scale for a given feature. As a result, one contrast pyramid

encodes for image intensity contrast, four encode for local orientation contrast, and two

encode for red/green (RG) and blue/yellow (BY) contrast (see [50], for details).
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From a computational point of view, the generation of a scanpath under free viewing

conditions, can be accomplished in three steps: (i) Selection of interesting regions; (ii)

Features extraction from the detected regions; (iii) Search of the next interesting region.

To this aim, the pre-attentive representation undergoes specialized processing through a

‘‘Where" system devoted to localizing regions (objects) of interest, and the ‘‘What" system

tailored for analyzing them (WW Space). Clearly, tight integration of these two information

pathways is essential, and indeed attentive mechanisms play a fundamental role. A plausible

assumption is that, in the “What” pathway, early layers provide feature extraction modules,

whose activity is subjected to temporal modulation by the “Where” pathway and the related

attention shifting mechanism, so that unmodulated responses are suppressed.
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4.2.1 The Where system: from pre-attentive features to attention shift-

ing

In the “Where” pathway, the pre-attentive contrast maps are combined into a master or

saliency map [50], [71], [1], which is used to direct attention to the spatial location with the

highest saliency through a winner take-all (WTA) network (attention shifting stage).

The region surrounding such location represents the current focus of attention (FOA), Fs

. By traversing spatial locations of decreasing saliency, a scanpath, (Fs)s=1,2,.. is obtained

by connecting a sequence of FOAs, and stored. An example of a scanpath is reported in

Fig.4.4.

Figure 4.4: Example of a scanpath

It is important to note that, in general and specifically in this work, a “working mem-

ory” retains either a representation of a set of visual features (measured at FOAs) and a

motor map of how such features have been explored; indeed, the memory of an attentive

system is a visuomotor trace of a world view [79],[45], rather than a classical feature

representation of the original image, and any subsequent information-lookup task entails a

prediction/confirmation upon such visuomotor scheme.
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More in details, the goal of the “Where” system is to build a saliency map of the image

and define over this map the motor trace, that is the sequence of FOAs (Fs)s=1,2,...,Nf
.

To this end, the contrast features for intensity, color and orientation, obtained from the

preattentive stage, are summed across scales (pyramid levels) into three separate contrast

maps, one for intensity, one for color and one for orientation. Eventually, the three maps,

normalized between 0 and 100, are linearly summed into a unique master map (for simplicity,

we compute the latter as the average of the three maps), or saliency map (SM). By using

the SM map, the attention shifting mechanism could be implemented through a variety of

ways (e.g., [44], [86], [50], [101]). One intuitive method for traversing spatial locations of

decreasing saliency, is to use a winner-take-all (WTA) strategy [50], [101], in which the most

salient location “wins” and determines the setting of the FOA; the winner is subsequently

inhibited in order to allow competition among less salient locations, for predicting the next

FOA.
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In Fig. 4.5 an overview of the results coming from application of the Animate Vision

process for generating the scanpath of a given image is shown.

Figure 4.5: From features maps to scanpath
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A simple and efficient way of implementing such strategy is through a WTA neural

network, e.g. an array of integrate-and-fire neurons with global inhibition [50]. It is worth

noting that a WTA algorithm, due to fast convergence properties, has O(n) time complexity,

n being the number of processing elements (neurons) of the network. In our scheme the

number of neurons is constrained by the number of samples in the saliency map (each point

of the map, represents the input to one neuron). Since the map resides at an intermediate

scale between the highest and the lowest resolution scales, namely at scale 4, a reduction

factor 1:16 is achieved with respect to the original image, thus the time complexity of the

WTA stage is given by |Ω|/16 time units.

This solution has the advantage of providing information on the fixation time spent on

the FOA (the firing time of WTA neurons) and our model, differently from others proposed

in the literature, explicitly exploits such information.

After the “Where” processing, an image Ii is represented by a spatio-temporal, or motor

trace, representing the stream of foveation points (F i
s(ps; τs))s=1,2,...,Nf

, where ps = (xs, ys)

is the center of FOA s, and the delay parameter τs is the observation time spent on the

FOA before a saccade shifts to Fs+1 [88], provided by the WTA net.

Figure 4.6: Generation of the motor trace of a given image
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As outlined in Fig. 4.6, the generation of spatio-temporal information is basically an

information reduction step in which we assume that the “Where” system “projects” towards

the “What” system and signals the FOA to be analyzed. The scheme shows the selection

of a FOA by the “Where” pathway, and the extraction of FOA information by the “What”

pathway. For visualization purposes, the trace is represented as a graph-like structure: each

node corresponds to a single FOA, and the arc joining two FOAs denotes a saccade.

4.2.2 The What pathway: properties encoding

In the “What” pathway, features are extracted from each highlighted FOA, relative

to color, shape and texture. A FOA is represented in the intensity and color opponent

pyramids, at the highest resolution scale. Note that in biological vision, the spatial support

of the FOA is usually assumed as circular; here, for computational purposes, each FOA is

defined on a square support Dps ⊆ Ω, centered on ps, of dimension |Dps | = 1
36 |Ω| (we drop

the τ parameter for sake of simplicity).

In our case, for each FOA F i
s , the “What” pathway extracts two specific features, the

color histogram hb(F i
s) and the edge covariance signature ΞF i

s
as described in the following.

• Color features. A color image, is a mapping from the discrete image support Ω ⊆
Z2 to an m-dimensional range, I : Ω → Q ⊆ Zm; in other terms, it is a set of single-

valued images, or channels, sharing the same domain, i.e., I(x, y) = (Ii(x, y))T , where

the index i = 1, ..,m, defines the i-th color channel and (x, y) denotes a point in the

Ω lattice. Q = {q1, ..., qN} is the set of colors used in the image. Thus, given a set of

representative colors Q = {q1, ..., qB}, a color histogram h(F (p)) = {hb} of the FOA

F (p) is defined on bins b ranging in [1, B], such that hb given for any pixel in Dp, is

the probability that the color of the pixel is qb ∈ Q. Here, B = 16× 16× 16 is used.

For a three channel frame, the FOA histogram calculation time is |Dp| × 3.
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• Shape and texture features A wavelet transform (WT) of the FOA has been

adopted [67]. Denote the wavelet coefficients as wk
l (x, y), where (x, y) ∈ Dp, l in-

dicates the decomposition level and k indexes the sub-bands. In our case, due to the

limited dimension of the FOA, only a first level decomposition (l = 1) is considered,

and in the sequel, for notational simplicity the index l is dropped. Decomposition gives

rise to 4 subregions of dimension |Dp|/4. Then, only detail components of the WT are

taken into account, in order to characterize shape (edges) and texture. Namely, for

k = 1, 2, 3, the detail sub-bands contain horizontal, vertical and diagonal directional

information, respectively, and are represented by coefficient planes
[{

wk(x, y)
}]

k=1,2,3
.

The wavelet covariance signature is computed as the feature vector of coefficient co-

variances ΞF m
s

= {ξX,Y }, where:

ξX,Y =
∑
x,y

{ 1
|Dp|/4

3∑

k=1

Xk(x, y)Yk(x, y)}. (4.1)

The pair (Xk, Yk) is in the set of coefficient plane pairs {(wk
i , wk

j )}, i and j being used

to index the three channels, and (x, y) span over the sub-band lattice of dimension

|Dp|/4 [67]. Clearly, |Ξ| = 18.

Eventually, the saccadic movements together with their resultant fixations, and feature

analysis of foveated regions, allow the formation of the trace T (Ii) in the WW space, briefly

T (i), of the view observed in the image Ii:

T (i) = (T i
s )s=1,...,Nf

(4.2)

where T i
s = (F i

s , hb(F i
s), ΞF i

s
). Note that the process described above obtains a visuomotor

trace as generated under free-viewing conditions (i.e., in the absence of an observation task),

which is the most general scanpath that can be recorded. Clearly, according to different

viewing conditions an image may be represented by different maps in such space; such

“biased” maps can be conceived as weighted T s, or sub-paths embedded in the context-free

one, as Yarbus’ seminal experiments have shown [109].
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In Fig. 4.7 an example of the features extracted in the “What” pathway is reported.

Figure 4.7: Features from “What” pathway
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4.3 Evaluating images similarity by attention consistency

For defining a similarity function M between two images, we rely upon a given assump-

tion: the visuomotor generation process performed on a pair of similar images under the

same viewing conditions will generate similar traces, a property that we denote Attention

Consistency.

In Fig. 4.8 two similar images with respective visuomotor traces are shown.

Figure 4.8: Similar images with visuomotor traces

Hence, the image-matching problem can be reduced to a visuomotor traces matching;

in fact, experiments performed by Walker and Smith [103], provide evidence that when

observers are asked to make a direct comparison between two simultaneously presented

pictures, a repeated scanning, in the shape of a FOA by FOA comparison, occurs [103].

Thus, in our model, two images are similar if homologous FOAs have similar color,

texture and shape features, are in the same spatial regions of the image, and are detected

with similar times. The procedure, is a sort of inexact matching, which we denote animate

matching and is summarized in Fig. 4.9.

Given a fixation point F t
r(pr; τr) in the test image It, the procedure selects the homol-

ogous point F q
s (ps; τs) in the query image Iq among those belonging to a local temporal

window, that is τs ∈ [s−H, s + H]. The choice is performed by computing for the pair F t
r

and F q
s :

Mr,s = αaMr,s
spatial + βaMr,s

temporal + γaMr,s
visual, (4.3)

where αa, βa, γa ∈ [0, 1], and by choosing the FOA s as s = arg max{Mr,s}.
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Figure 4.9: Animate matching between two images represented as visuomotor traces T (m), T (n)
in the WW space

In other terms, the choice of the new scanpath is top-down driven, so as to maximize

the similarity of the query image respect to the test image; the analyzing scanpath results

to be a sub-path of the original free-viewed one. This “best fit” strategy has been chosen in

order to reduce the sensitivity of the algorithm both to the starting FOA point and to the

fact that, in similar images, some FOAs could be missing due to lighting changes and noise.

Such “best fit” is retained and eventually used to compute the consistency M(T t, T q) as

the average consistency of the first N
′
f consistencies:

M =
1

N ′
f

N ′
f∑

f=1

Mr,s
f , (4.4)

where N ′
f <= Nf . Right-hand terms of Eq. 4.3, namely Mr,s

spatial, Mr,s
temporal, Mr,s

visual,

account for local measurements of spatial temporal and visual consistency, respectively.
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These are calculated as follows.

• Local spatial consistency. Mr,s
spatial is gauged through the `1 distance between

homologous FOA centers, d(pr, ps) = |xr−xs|+ |yr− ys|. The distance is “penalized”

if, for the two images, the displacement between the current FOA and the next one

is not in the same direction:

d̂(pr, ps) = d(pr, ps) · e−∆(pr,ps), (4.5)

∆ being the difference of direction between two FOAs, ∆ = ζ · sgn[(xr − xr−1) · (xs −
xs−1)] · sgn[(yr − yr−1) · (ys − ys−1)], where ζ is a penalization constant. Thus, after

d̂(pr, ps) normalization:

Mr,s
spatial = 1− d̂(pr, ps). (4.6)

• Local temporal consistency. Mr,s
temporal takes into account the difference of time

that the observer gazes at two different fixation points. To this end the `1 distance

is introduced, d(τr, τs) = |τr − τs|. The distance is normalized with respect to the

maximum fixation time of the scanpath. Then temporal consistency is calculated as

Mr,s
temporal = 1− d(τr, τs). (4.7)

• Local visual consistency. Mr,s
visual is defined using either color and texture/shape

properties. Evaluation of consistency in terms of color is performed by exploiting

well known histogram intersection, which again is an `1 distance on the color space

[6]: given the two color histograms h(Fm
r ) and h(Fn

s ), defined on the same num-

ber of bins b = [1, . . . , B], dr,s
col =

∑B
b=1(min(hb(Fm

r ), hb(Fn
s )))/

∑B
b=1 hb(Fm

r ), where
∑B

b=1 hb(Fm
r ) is a normalization factor. Then,

Mr,s
col = 1− dr,s

col. (4.8)



CHAPTER 4. A MODEL FOR A FOVEATED IMAGE AND VIDEO ANALYSIS 69

By using the `1 distance 1
R

∑|Ξ|
i=1

|ΞFm
r

[i]−ΞFn
s

[i]|
min(|ΞFm

r
[i]|,|ΞFn

s
[i]|) , shape and texture consistency is

measured as:

Mr,s
tex = 1− 1

R

|Ξ|∑

i=1

|ΞF m
r

[i]− ΞF n
s
[i]|

min(|ΞF m
r

[i]|, |ΞF n
s
[i]|) , (4.9)

where R is a normalization factor to bound the sum in [0, 1], and |Ξ| the number of

features in the feature vector Ξ computed through Eq. 4.1. Eventually, FOA’s visual

content consistency is given from the weighted mean of terms calculated via Eqs. 4.8

and 4.9:

Mr,s
visual = µ1Mr,s

col + µ2Mr,s
tex. (4.10)

The computation cost of Eq. 4.3 is approximately linear in the number of histogram

bins B, since |Ξ| = 18, and Eqs. 4.6 and 4.7, are performed in constant time units. Thus,

the matching algorithm requires (2H + 1)BN
′
f operations, which means that, once H and

B have been fixed as in our case, the AC algorithm is linear in the number of FOAs N
′
f .

The algorithm 1 reported in the following summarizes the animate matching procedure

Algorithm 1 Attention Consistency (AC) Algorithm
Given µ1, µ2, αa, βa, γa, T q and T t

M← 0
for i = 1, ..., N

′
f do

j =selectFOA(F q
i , T t, H) using the best fit strategy

Compute local spatial consistency Mi,j
spatial between F q

i and F t
j

Compute local temporal consistency Mi,j
temporal between F q

i and F t
j

Compute local visual consistency Mi,j
visual between F q

i and F t
j

Mi,j ← αaMi,j
spatial + βaMi,j

temporal + γaMi,j
visual

M←M+Mi,j

M← M
N
′
f

Return M



Chapter 5

Context-sensitive Queries for

Image Retrieval

5.1 Introduction

In spite of recent important research efforts, image indexing and retrieval of images in

large databases is still a challenging task. Clearly, the greatest difficulty is to find features

that effectively represent image content, while adopting image data structures that organize

efficiently the feature space.

In the framework of Content Based Image Retrieval (CBIR), Query By Example (QBE)

is considered a suitable approach because the user handles an intuitive query representation:

the form of the query, namely an image, is that of the data to be evaluated. However, a

hallmark all too easily overlooked is that when the user is performing a query, he is likely to

have some semantic specification in mind, e.g. “I want to see a portrait”, and the portrait

example provided to the query engine is chosen to best represent the semantics. However,

traditional image databases are not able to express either such semantics or similarity rules

consistent with semantics; this problem is known as “semantic gap” [28],[112], [20].

In this chapter, it will be shown how, by embedding within image inspection algorithms

active mechanisms of biological vision such as saccadic eye movements and fixations, a

70
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more effective query processing in image database can be achieved. In particular, it will be

discussed how the model for foveated image analysis can be used to discover and represent

the hidden semantic associations among images, in terms of categories, which in turn drive

the query process. Also, such associations allow an automatic pre-classification, which

makes query processing more efficient and effective. Preliminary results will be presented

and the proposed approach compared with recent techniques described in the literature.
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5.2 The Context-sensitive approach

As pointed out by Santini et al. [92], in traditional databases information is encoded in

symbols that have a syntax and a semantics relying upon a distinction between structurally

atomic and structurally composed representation.

Similarly, current image databases mainly work within the framework of a syntactical

description of the image (a scene composed of objects, that are composed of parts, etc.).

Consequently, the only meaning that can be attached to an image is its similarity with the

query image, namely the meaning of the image is determined by the interaction between

the user and the database.

The main issue here is that perception indeed is a relation between the perceiver and

its environment, which is determined and mediated by the goals it serves (i.e., context):

we perceive the world as made of objects because the goal of our perception is to help us

act upon the world [31]. Thus, considering for instance Leonardo’s Mona Lisa (Fig. 5.1):

should it be classified as a portrait or a landscape?

Clearly, the answer depends on the context at hand. In this perspective, it is useful to

distinguish between the “What” and “Where” aspects of the sensory input and to let the

latter serve as a scaffolding holding the would-be objects in place [31]. Such distinction

offers a solution to the basic problem of scene representation - what is where - by using

the visual space as its own representation and avoids the problematic early commitment

to a rigid designation of an object and to its crisp segmentation from the background (on

demand problem, binding problem) [31]. Consider again Fig. 5.1 and let Leonardo’s Mona

Lisa represent one target image It. An ideal unconstrained observer would scan along free

viewing the picture by noting regions of interest of either the landscape and the portrait,

mainly relying on physical relevance (color contrast,etc). However this is unlikely in real

observations, since the context (goals) heavily influence the observation itself.
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Figure 5.1: The “What-Where” similarity space: the “Where” dimension (corresponding to the
image location) and the two “What” dimensions (similarity to a face image and to a landscape image)
are shown. Switching to one “What” dimension or to the other one, depends on the context/goal
provided, represented in the image by a face example and a landscape example

For example, in a face detection context, the goal is accomplished when “those” eye

features are encountered “here” above “these” mouse features. On the other hand, when a

landscape context is taken into account, the tree features “there” near river features “aside”

may better characterize the Mona Lisa image. Clearly, in the absence of this active binding,

the Mona Lisa picture can either be considered a portrait or a landscape; per se, it has no

meaning at all.

This dynamic binding of context-sensitive components is an example of a deictic strategy

[85]. Linguists classify words like “this” or “that” as deictic because they constrain the

listener’s attention to a specific target from a set of candidate targets. Such a strategy

is known to be used in vision to circumscribe the possible interpretations of perceptual

feedback to the current context.

Visual fixations, following eye movements is one example of deictic strategy [85]. The act

of fixating on an object centers the target in the retinotopic array, potentially simplifying

cognitive process to deal with the “object I’m looking at” rather than with the attributes

that distinguish that particular objects from all others.
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The computational counterpart of using gaze shifts to enable a deictic perceptual-motor

strategy is named, as already seen, Animate Vision.

In according to the model presented in the previous chapter, we propose a representation

scheme in which the “What” entities are coded by their similarities to an ensemble of

reference features, and, at the same time the “Where” aspects of the scene structure are

represented by their spatial distribution with respect to the image support domain.

This is obtained by generating a perceptual-motor trace of the observed image, which we

have denoted visuomotor trace T . Thus, the similarity of a query image Iq to a test image

It of the data set can be assessed within the “What+Where” (WW) space, or equivalently

by comparing their T s (Animate Matching).

In this sense we agree with [92] that the meaning that can be attached to an image is its

similarity with the query image. In fact, by providing a query image, we can “shape” the

WW space by “pinning features to a corkboard”, which, in some way, corresponds to shape

the geometric structure of the feature space. In computer vision terms, we are exploiting

“top-down” information to perform the matching.

Clearly, the approach outlined above assumes the availability of a context, and of a

representation of such context in order to drive the perceptual actions in the WW space.

There is a wealth of research in neurophysiology [72] and in psychology [39] showing that

humans interact with the world with the aid of categories. When faced with an object or

person, an individual activates a category that according to some metric best matches the

given object, and in turn the availability of a category grants the individual the ability

to recall patterns of behavior (stereotypes as built on past interactions with objects in a

given category. In these terms, an object is not simply a physical object but a view of an

interaction.

Thus, differently from [92], we allow for the possibility of providing the database with a

preliminary context in the form of a tunable WW space, where an image is not definitely

classified but, according to a finite number of different viewing strategies, is represented in

terms of the likelihood to belong to a finite number of pre-specified categories.
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In the proposed system, AICQ, we functionally distinguish these basic components:

1. A component which performs a “free-viewing” analysis of the images, corresponding

to “bottom-up” analysis mainly relying on physical features (color, texture, shape)

and derives their T s as described in chapter 4.

2. A WW space in which different WW maps may be organized according to some

selected categories; any image is to be considered the support domain upon which

different maps (T s) can be generated, according to viewing purposes.

3. A query module (high level component) which acts upon the WW space by considering

“top-down” information, namely, context represented through categories, and exploits

animate matching to refine the search.

A functional outline of AICQ is depicted in Fig. 5.2.

Figure 5.2: A functional view of the system at a glance
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5.3 Endowing the WW space with context: category repre-

sentation

An observer will exhibit a consistent attentive behavior while viewing a group of similar

images. This is consistent with the fact that we can categorize objects in categories, where

each category represents a stereotyped view of the interaction with a class of objects [39].

Thus, in our case an image category, say Cn, can be seen as a group of images from which,

under the same viewing conditions, similar T s are generated.

In the following we first discuss in general terms how categories can be structured in

a set of clusters from a probabilistic standpoint, by using the Expectation-Maximization

(EM) algorithm. Then in order to achieve a balanced solution of the clustering procedure,

which is desirable for a large database, a balanced variant of the EM algorithm will be intro-

duced. The balanced clustering obtained in this way is appealing, since allowing category

representation in terms of a balanced tree.

To this end, the AICQ system requires an initial step in which an initial image set and

the associated category classification have been pre-selected, through a supervised process

[30].
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5.3.1 Probabilistic learning of category clusters

We use a probabilistic framework in order to allow the association of each image to

different categories, according to the concept of WW space, thus avoiding a hard assignment

to a single Cn.

What we need is a procedure capable to estimate the likelihood P (T i|Cn) that a visuo-

motor trace (VMT) T i is generated by observing a test image, which belongs to one of the

categories Cn, n = 1, · · · , N .

However, the browsing of all database categories and the selection of the “best match”,

the most evident solution, is computationally prohibitive for a very large database, the

number of comparisons being equal to the total number of images in the data set. A more

efficient solution is to subdivide/cluster the images belonging to a given category Cn into

subgroups called category clusters, Cl
n.

Note that a VMT can be thought of as a feature vector so that the goal of clustering

[52] is to assign a label l to the different VMTs (images), where l ∈ [1, . . . , Ln] identifies a

particular category cluster Cl
n, which can be selected with a certain probability P (l).

Denote T = {T 1, · · · , T N} the VMT data set generated by sampling independently

from the following generative model, namely a mixture model:

p(T |Θ) =
L∑

l=1

αlpl(T |θl), (5.1)

where Θ = {α1, · · · , αL, θ1, · · · , θL}, αl being the mixing proportions subject to constraints

αl ≥ 0,
∑L

l=1 αl = 1 and the distribution pl(T |θl) is a single multivariate gaussian distribu-

tion with parameters (mean and covariance) θl = {ml,Σl}, more precisely

pl(T i|ml,Σl) =
exp(−1

2(T i −ml)TΣ−1
l (T i −ml))

(2π)(D/2)|Σl|1/2
. (5.2)

here D denotes the dimension of the feature space.
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Let Z = {z1, · · · , zN} be the corresponding set of hidden random variables such that

zi = l when T i has been generated following pl(T |θl). Then, the complete log-likelihood

of the observed data is given by:

logL = log p(T ,Z|Θ) =
N∑

i=1

log(αzipzi(T i|θzi)), (5.3)

from which maximum likelihood parameter estimates can be obtained. Since, in terms of the

mixture model we are dealing with an incomplete data problem (i.e., we must simultaneously

determine the labelling p(Z|T , Θ) given distribution parameters Θ and viceversa), a suitable

choice for the maximization of the likelihood is the EM algorithm [27].

The EM algorithm starts with some initial guess at the maximum likelihood parameters

θ0
l , and then proceeds to iteratively generate successive estimates, θ1

l , θ
2
l , · · · by repeatedly

applying the following two steps for t = 1, 2, · · · [75]: E-step: compute a distribution p̃t over

the range of Z such that p̃t = p(T |Z, Θt−1); M-step: set Θt to maximize the expectation

of the complete log–likelihood Ep̃t [log p(T ,Z|Θ)]

Note that the expectation of logL over the given distribution p can be obtained from

Eq. 5.3, through simple manipulations as [11]:

Ep [log p(T ,Z|Θ)] =
N∑

i=1

L∑

l=1

hil log(αl) +
N∑

i=1

L∑

l=1

hil log(pl(T i|θl)) (5.4)

where hil = p(l|T i, Θ) denotes the posterior distribution of the hidden variables given the

set of parameters Θ and the observed T i.

Under this setting, the standard EM algorithm for Gaussian mixtures with parameters

θl = {ml,Σl} can be computed in close form. The E-step computes the distribution of

hidden variables as:

ht
il =

αt
lp(T i|l,mt

l ,Σ
t
l)∑

l α
t
lp(T i|l,mt

l ,Σ
t
l)

, (5.5)

while the M-step, given the distribution of the hidden variables, obtains parameters θl that

maximize the expectation of logL as:
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αt+1
l =

1
N

∑

i

ht
il,m

t+1
l =

∑
i h

t
ilT i

∑
i h

t
il

,Σt+1
l =

∑
i h

t
il[T i −mt+1

l ][T i −mt+1
l ]T∑

i h
t
il

. (5.6)

Both steps are iterated until convergence criteria are met. It can be shown that the

incomplete data log-likelihood log p(T |Θ) is non-decreasing at each iteration of the up-

date [27]; thus, a suitable convergence criterion is ∆log = | logL(t+1) − logL(t)| < ε, where

ε is a threshold experimentally determined.

Once the learning step is completed and the parameters Θ of the Gaussian mixture

model have been obtained, the images Iiof a given category Cn can be partitioned in clusters

Cn = {C1
n, C2

n, . . . , CLn

n }, where each image Ii, represented through T i, is assigned to the

cluster Cl
n with probability p(l|T i,Θ)

5.3.2 Balanced EM learning

The cluster representation previously discussed, beyond its generality, has some draw-

backs when exploited for a very large database. On the one hand the labeling of the image

bears a computational cost which is linear in time with the number of clusters Ln in the cat-

egory. On the other hand, for retrieval purposes, such solution is not efficient with respect

to indexing issues, since the clusters obtained are in general unbalanced. To overcome such

drawbacks, we introduce a variant of the EM algorithm which provides a balanced clustering

of the observed data, so that clusters can be organized in a suitable data structure, namely

a balanced tree.
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The idea is to constrain, along the E-step, the distribution of the hidden variables so

as to provide a balanced partition of the data, and then perform a regular M-step. This

is equivalent to provide a mapping p(Z|T , Θ) → q(Z|T , Θ) so that log p(T |Θ) is non-

decreasing at each iteration of the update. To make this clear define, following Neal and

Hinton [75], the free energy:

F (p̃, Θ) = Ep̃ [log p(T ,Z|Θ)] + H(p̃), (5.7)

where H(p) = Ep [log p(Z|T , Θ)] =
∑N

i=1

∑L
l=1 hil log(hil) is the entropy of the hidden

variables. It has been shown [75] that this function is maximized by the E and M steps.

In particular when the distribution of the hidden variable is computed according to

the standard E-step as in Eq. 5.5, then p̃ = p gives the optimal value of the function,

which is exactly the incomplete data log-likelihood F (p, Θ) = log p(T |Θ). For any other

distribution p̃ = q 6= p over the hidden variables, F (q,Θ) ≤ F (p,Θ) = log p(T |Θ)

Basically, what we need is to design a distribution q so that information paths T i are

assigned to clusters where each hidden variable has a distribution with probability 1 for one

of the mixture component and zero for all the others [8]. DenoteQ this class of distributions.

Remark that for q ∈ Q, a partition of T 1, · · · , T N is defined where for each T i, there

exists l(1 ≤ l ≤ L) such that q(l|T i, Θ) = 1, thus q(l|T i, Θ) log q(l|T i, Θ) = 0 for all

1 ≤ l ≤ L and 1 ≤ i ≤ N (since 0 log 0 = 0, [23]). Hence H(q) = 0 and we have:

F (q, Θ) = Eq [log p(T ,Z|Θ)] ≤ F (p,Θ) = log p(T |Θ) (5.8)

which shows that the expectation over q lower bounds the likelihood of the data. Further,

it has been shown [8] that for some choices of q (e.g., q = 1, if l = arg maxl′ p(l|T i, Θ) and

q = 0 otherwise) is a tight lower bound, Ep [log p(T ,Z|Θ)] ≤ Eq [log p(T ,Z|Θ)].
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Thus, due to Eq. 5.8, we can set up an E-step in which the free energy is maximized by

maximizing Ep̃ [log p(T ,Z|Θ)] given Θ where, taking into account Eq. 5.4, and discarding

the penalty term
∑N

i=1

∑L
l=1 hil log(αl),

Ep̃ [log p(T ,Z|Θ)] =
N∑

i=1

L∑

l=1

hil log(pl(T i|θl)) (5.9)

Following [118], balanced partitioning can be achieved by solving the optimization problem:

maxEp̃ = max
h

N∑

i=1

L∑

l=1

hil log(pl(T i|θl)), (5.10)

subject to
∑L

l=1 hil = 1, ∀i, ∑N
i=1 hil = N

L , ∀l, and hil ∈ {0, 1}, ∀i, l.

Algorithm 2 Balanced EM
Initialize all αl, θl, l = 1, · · · , L
t ← 1
repeat
{E-step}
for (i = 1, ..., N) do

for (l = 1, ..., L) do

ht
il ←

αt
lp(T i|l,mt

l ,Σ
t
l)∑

l αt
lp(T i|l,mt

l ,Σ
t
l)

qt
il ← 1 if ht

il is in the N/L highest values for class l, qt
il ← 0 otherwise

{M-step}
for (l = 1, ..., L) do

αt+1
l ← 1

N

∑
i q

t
il

mt+1
l ←

∑
i qt

ilT i
∑

i qt
il

Σt+1
l ←

∑
i qt

il[T i−mt+1
l ][T i−mt+1

l ]T∑
i qt

il

Compute logL(t+1)

t ← t + 1
until | logL(t+1) − logL(t)| < ε
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Since the solution of such optimization problem is an integer programming problem,

which is NP-hard in general, in [118] a greedy heuristics has been suggested which gives

a locally optimal solution to such problem. The procedure assign N/L data samples to

one of the L clusters at each iteration, by selecting the first N/L samples with higher hil

probability with respect to the cluster. For instance, for L = 2, this gives a {N/2, N/2}
bipartition that maximizes Ep̃. Eventually, the given partition provides the distribution

q ∈ Q. Denote qil = q(l|T i, θt
l ).

The balanced EM algorithm (BEM) is detailed in Algorithm 2. Note that the algo-

rithm introduces a sort of classification within the E-step in the same vein of the CEM

algorithm[18].

In Fig. 5.3 an application of expectation, balancing and maximization steps and an

example of BEM algorithm evolution are shown.

a. BEM Steps b. BEM evolution

Figure 5.3: BEM behavior
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5.3.3 Balanced Cluster Tree representation

At this point, each category can be represented in terms of clusters by mapping the

cluster space onto the tree-structure shown in Fig. 5.4, which we denote Balanced Cluster

Tree (BCT).
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Clusters Inferred from BEM Probabilities

a. Balanced Clusters obtained by BEM in a 3-dimensional space b. A 2-D example of BCT

Figure 5.4: Generating BCT

Given a category Cn a BCT of depth Υ is obtained by recursively applying the bal-

anced EM algorithm at each level υ = 0, · · · , Υ − 1 of the tree. Each tree node of level

υ is associated with one of the discovered clusters at the (υ + 1)-th iteration of the BEM

algorithm. New discovered clusters are recursively partitioned until each category cluster

contains a number of VMTs lower than a fixed threshold c, representing the desired filling-

coefficient (capacity) of tree leaves. This induces a coarse-to-fine representation, namely

Cn(υ) = {C1
n(υ), C2

n(υ), . . . , CLn

n (υ)}υ=0,··· ,Υ−1. The category sub-tree level can be calcu-

lated as levn = logLn(Nn
c ), Nn being the number of category indexing objects, and Ln the

number of clusters generated at n-th BEM iteration.
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In particular, as shown in Fig. 5.4, the root node is associated with the whole category

Cn, and the tree maintains a certain number of entry points for each node dependent on

the number Ln of wanted clusters for each tree-level; we represent the non-leaves node

{C1
n(υ), C2

n(υ), . . . , CLn

n (υ)}υ=0,··· ,Υ−1, at level υ by using the parameters ml
n(υ), and, the

cluster radius |Σl
n(υ)|, whereas leaves contain the image pointers. In Fig. 5.5 an UML

representative diagram of BCT nodes is reported.

Figure 5.5: BCT Nodes: a representative diagram

Formally, we can define the tree-nodes (“pivots”,“routing nodes”) and the leaves of our

structure nodes as ρ = 〈m, |Σ|, P tr〉 and ι = 〈Γ〉, respectively, where (m, |Σ|) are the

features representative of the current routing node, Ptr is the pointer to the parent tree-

node and Γ is the set of pointer to the objects on the secondary storage system. In this

manner, the procedure to build our tree can be outlined by algorithm 3.
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Algorithm 3 Building BCT
Given the current level υ and the pointer Ptr to the parent node
Υ =

[
log|C(υ−1)|(Nn

c )
]

if υ ≤ Υ− 1 then
for (i = 1, ..., |Cn(υ)| do

mi
n(υ), |Σi

n(υ)| ← BEMAlgorithm

ρi
n(υ) ← {mi

n(υ), |Σi
n(υ)|, P tr}

Building Cluster Tree (υ + 1, P tr(ρi
n(υ)))

else
ιin(υ) ← Γ

At this point to perform the category assignment process, we can obtain the probability,

at level υ, that a test image It belongs to a category Cn as P (Cn(υ)|T t) ' P (T t|Cn(υ))P (Cn(υ)),

which, due to independency of clusters guaranteed by the EM algorithm, can be reformu-

lated as:

P (Cn(υ)|T t) ' P (Cn(υ))
∏

l∈Lp

p(T t|Cl
n(υ)). (5.11)

The category discovery process can be carried out by comparing the image map VMT

with the category clusters in the WW space at a coarse scale (υ = 1) and by choosing the

best categories on the base of belonging probabilities of the image to the database categories

obtained by Eq. 5.11. Each image It, is associated to probabilities of being within given

categories as 〈It = P (C1|T t), · · · , P (CN |T t)〉. On the other hand, given the category Cn to

which the image belongs, the search of the images can be performed by exploiting the BCT

structure.
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Eventually, to evaluate the clustering goodness, in Fig. 5.6 we propose a comparison

between a balanced and unbalanced tree-solution obtained by BEM and EM application,

respectively.

Figure 5.6: Goodness of clustering with BEM: a comparison with EM
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5.4 The Animate query process

Given a query image Iq and the dimension of the desired results set, the Tk most similar

images are retrieved in the following steps:

1. Map the image in the WW space by computing the image path under free viewing

conditions, Iq 7→ T q.

2. Discover the best K < N categories that may describe the image by using Eq. 5.11,

but substituting Iq for It.

3. For each category Cn among the best K discovered, by traversing the BCT associated

to Cn, retrieve the NI target images It within the category at minimum distance from

the query image.

4. Refine results by choosing the TK images most similar to the query image by per-

forming a sequential scanning of the previous set of KNI images and evaluating the

similarity M(T t, T q) between their VMTs.

Fig. 5.7 summarizes the animate query process.

Thus, in order to perform step 3 we need to efficiently browse the BCT while step 4,

requires the specification of the similarity function M ∈ R+ used to refine the results of

query process. The first issue is addressed in the following, while the second has already

discussed in chapter 4.
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Figure 5.7: Animate Query Process

5.4.1 Category browsing using the BCT

When a query image Iq is proposed, the BCT representing category Cn can be traversed

for retrieving the NI target images It, by evaluating the similarity between T q and clusters

Cl
n(υ) at the different levels υ of the tree. Recall that each cluster Cl

n(υ) is represented

through its mean and covariance, respectively ml
n(υ), Σl

n(υ). To this end, it is possible to

define the distance d(T q, Cl
n(υ)) as the distance between T q and the cluster center ml

n(υ)

weighted by covariance Σl
n(υ) [95]:

d(T q, Cl
n(υ)) = e−(T q−ml

n(υ))T Σl
n(υ)

−1
(T q−ml

n(υ)). (5.12)
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It is easy to verify that such distance indeed is real-valued, finite and nonnegative and

satisfies symmetry and triangle inequality properties, so that d is a metric on the information

path space T and the pair (T , d) is a metric space. In other terms the BCT is a metric

balanced tree and, as such, is suitable to support operations of classic multidimensional

access methods [19].

Recall that a viable search technique is the range query [19], which returns the objects

of our distribution that have a distance lower than a fixed range query radius r(IP q)

with respect to the query object T q. In such approach the tree-search is based on a

simple concept: the node related to the region having as center ml
n(υ) is visited only if

d(ml
n(υ), T q) ≤ r(T q) + r(ml

n(υ)), where r(ml
n(υ)) is the radius of the analyzed region.

The range query algorithm starts form the root node and recursively traverses all paths

which cannot be excluded from leading to objects because satisfying the above inequality.

The r(T q) value is usually evaluated in an experimental way [19].In our case, due to clus-

ter independency guaranteed by the EM procedure, the classical problem of range query

strategy [19] is avoided. In Fig. 5.8 an example of a range query is shown.

Figure 5.8: Range Query inside a given category Cn
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For a given tree level υ >= 1, clearly, it is not convenient to have a fixed value of r(T q),

which rather should depend on the distribution of cluster centers surrounding the query

object, at a certain level of the BCT (cfr. Fig. 5.8). Thus, for each level, we consider the

maximum and the minimum distances between the query object and each cluster center,

dq
min(υ) and dq

max(υ), respectively , where distance is computed via Eq. 5.12.

Denote for simplicity, ml = ml
n(υ) the center of the l-th cluster of category n, l =

1, · · · , Ln, surrounding the query point, and dl the distance between the latter and clus-

ter l. By increasing the radius through discrete steps, j = 1, 2, · · · , within the interval

[dq
min(υ), dq

max(υ)] and counting the number of clusters occurring within the area spanned

by the radius, aj = {#ml|dl ≤ rj}, a step-wise function s = {a1, a2, . . . , ak} is obtained,

where normalization aj = aj

maxj aj
constrains s to take values within the interval [0, 1]. Each

s value is thus related to the number of BCT nodes we want to explore for a given query

object. In other terms, given a query object T q, by choosing a value sq, which specifies

the span of the search, we can automatically decide, at each level of the BCT, the range

query radius at that level by using the inverse mapping s 7→ r; for instance, by setting

sq = 1 exploration is performed on all cluster nodes available at that level. We have exper-

imentally verified that such mapping is well approximated by a sigmoid function, namely

1
1+exp(−ρ·(sq−.5)) , where ρ = 0.2 provides the best fit.

A possible procedure to exploit range query is reported by algorithm 4.

Algorithm 4 Range Query on Cluster C(υ)
Given sq, T q and υ
Compute dq

max(υ) and dq
min(υ)

ϕ = 1
1+exp(−ρ·(sq−.5))

for (i = 1, ..., |Cn(υ)| do
if υ = Υ− 1 then

Save Object Pointers Γ
break

else if d(T q, Cl
n(υ)) < ϕ then

Range Query(Cl
n(υ + 1))
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Eventually, it is worth remarking that, for what concerns the tree updating procedures,

a naive strategy would simply re-apply the classification step of BEM algorithm. However, a

more elegant and efficient solution is to exploit the category detection step to assign the new

item to category Cn and then exploit an on-line, incremental version of the BEM algorithm

to update the related tree; the incremental procedure updates the sufficient statistics of the

expected log-likelihood only as a function of the new data item inserted in the database,

which can be done in constant time [75], [108].

Summing up, in the approach proposed here, a user specifies a query image Iq, from

which the image path under free viewing conditions, Iq 7→ T q (query object) is extracted,

the related r(T q) and the dimension Tk of the results set (step 1). By means of the range

query technique, the BCT is traversed to discover all related categories and the images

similar to the query image are retrieved (step 2 and 3). Eventually (step 4), a sequential

animate matching is performed on the results set to select the Tk most similar images.
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5.5 Experimental results

5.5.1 Methodological foreword

Retrieval effectiveness is usually measured in the literature through recall and precision

measures [28]. For a given number of retrieved images (the result set rs), the recall R =

|rl ∩ rs|/|rl| assesses the ratio between the number of relevant images within rs and the

total number of relevant images rl in the collection, while the precision P = |rl ∩ rs|/|rs|
provides the ratio between the number of relevant images retrieved and the number of

retrieved images.

Unfortunately, on the one hand, from a bare practical standpoint, when dealing with

large databases it is difficult to estimate even approximately [105] the recall, and, in partic-

ular, the number of relevant results that have to be retrieved. On the other hand and most

important, the concept of “relevant result” is often ill-defined or, at least problematic (see

[21] and [91] for an in-depth discussion).

More generally, it is not easy to evaluate a system that takes into account properties

like perceptual behaviors and categorization, since this necessarily involves comparison with

human performance. This entails in our case the evaluation of the matching relying upon

attention consistency and categorization capabilities along the query step.

To this end, for what concerns the animate matching step, we consider the following

issues: 1) Robustness of the matching method, with respect to physical variations of the

image; 2) Consistency of image similarity proposed by the matching with respect to human

judgement of similarity. The first issue does not involve comparison with human perfor-

mance, while the second experiment entails that the human subject is used as a measuring

instrument [91].
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Categorization effectiveness has been tested in terms of: 1) Performance with respect

to recall and precision figures of merit; 2) Performance with respect to human categoriza-

tion. The former experiment was performed, similarly to [105], on a subset of the COREL

database, where precision and recall can be directly evaluated. The latter relies upon a

weighted precision metric accounting for human performance. Eventually, query perfor-

mance in terms of retrieval efficiency is discussed.

5.5.2 Experimental setting

Our data set consists of about 50000 images collected from the Internet, experimental

databases and several commercial archives. In particular a subset of 1000 pictures has

been obtained from the COREL archive and used only for the evaluation of categorization

performance in terms of precision. Images are coded in the JPEG format at different

resolution and size, and stored, together with the related VMTs, into a commercial object

relational DBMS.

The images have been grouped into 300 categories. In order to associate the set of

images to each proposed category, twenty naive observers were asked to perform the task

on the data set, and eventually the classification has been accomplished by grouping into a

category those images that the majority of observers judged to belong to such category.

The VMT as provided tout court by the “What” and ”Where” streams gives rise to a

high dimensional feature space spanning a 2-D subspace representing the set of FOA spatial

coordinates, a 768-D (256 for component) space which represents the set of FOA HSV color

histograms, a 1-D subspace which represents the set of FOA WTA fire-times and a 18-D

subspace which represents the set of FOA covariance signatures of the wavelet transform.

To exploit the BEM algorithm, each image is represented more efficiently by performing

the following reduction: the color histogram is obtained on the HSV components quantized

by using 16, 8, 8 levels for H S and V components, respectively; the covariance signatures of

wavelet transform are represented through using 18 components.
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Eventually the clustering space becomes a 53Nf -D space, Nf = 20 being the number of

FOAs in free viewing conditions.

The different BCTs related to each category have been joined by means of a root node

that represents the whole space of images; thus, each node of the first tree level contains

the images related to a given database category.

For what concerns the BCT building step, at each level υ > 1 of the tree (we assume

the root node related to level 0), a number L = 3 was used in the recursive application of

BEM algorithm due to efficiency and effectiveness aims in the retrieval task. Moreover, for

each category sub-tree the total number of level lev was chosen considering a leaf filling

coefficient c = 15. Note that we assume L fixed, in that we are not concerned here with

the problem of model selection, in which case L may be selected by Bayesian information

criterion (BIC, [69]).

Note that at BCT level υ = 1, a characterization (in terms of mean and covariance)

of each category is not available, so for determining the distances between query object

and clusters in the range query process, mean and covariance of the whole category IP

distribution are considered.

For what concerns the BEM algorithm, non uniform initial estimates were chosen for

α
(0)
k , µ

(0)
l ,Σ(0)

l parameters; {m(0)
l } were set in the range from minimal to maximal values of

T i in a constant increment; {Σ(0)
l } were set in the range from 1 to max{T i} in a constant

increment; {α(0)
l } were set from max{T i} to 1 in a constant decrement and then normalized,

∑
l α

(0)
l = 1.

We found that convergence rate is similar for both methods, convergence being achieved

after t = 300 iterations (with ε = 0.1). Fig. 5.9 shows how the incomplete data log-

likelihood log p(T |Θ) as obtained by the BEM algorithm is non-decreasing at each iteration

of the update, and that convergence is faster than with classic EM.
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Figure 5.9: Behavior of ∆log (left) and of log p(T |Θ) vs. number of iterations of the BEM algorithm
compared with standard EM

As regards the animate matching step (see chapter 4), the value of N ′
f = 10 was chosen

either because, in this way, each FOA is only visited once, and for the importance of earliest

FOAs. The local temporal window used in the image matching algorithm was set to the

fixed size 4, as an experimental trade-off between retrieval accuracy and computational

cost. For what concerns the setting of equation parameters, considering again Eq. 4.3, we

simply use αa = βa = γa = 1/3, granting equal informational value to the three kinds of

consistencies; similarly, we set µ1 = µ2 = 1/2 in Eq. 4.10.
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5.5.3 Matching robustness

In this experiment we evaluate the robustness of the matching algorithm used in the

query refining stage, with respect to image alterations: brightness and contrast variation,

noise corruption, rotation and translation operations. An example is provided in Fig. 5.10

.

Figure 5.10: An example of Information Path changing due to image alterations: (1,1) Original
Image; (1,2) Brighten 10%; (1,3) Darken 10%; (2,1) More Contrast 10%; (2,2) Less Contrast 10%;
(2,3) Noise Adding 5%; (3,1) Horizontal Shifting 15%; (3,2) Rotate 90; (3,3) Flip 180

In Fig. 5.11, the average attention consistency distance between 50 target images,

randomly chosen from different categories and the same images after alterations, is plotted

for increasing brightness and contrast variations and noise (uniform noise was considered).

Corresponding curves, for rotations and translations are not reported, since we have

experimentally observed that, on the one hand, for rotation operations, the average attention

consistency does not suffer of significant alterations (lower than 0.3) for variations inside the

intervals: [−15o, 15o],[90o−15o, 90o+15o], [180o−15o, 180o+15o] and [270o−15o, 270o+15o];
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on the other hand, the consistency measure is definitely robust to horizontal translations.

Figure 5.11: Robustness of the animate matching algorithm with respect to image alterations

Provided that the matching procedure results to be quite robust to imaging conditions,

what is important to notice here is that, clearly, like it happens for human observers,

some transformations should be invariant only to some extent. For instance consider the

simple image of an horse, depicted at the center of an image (e.g., Fig. 5.10). If the object

(horse) translates, the semantic content of the image should be comparable, and actually the

Information path provides a similar “shape”. A different effect should play scale variations:

if the same horse is reduced to a small patch at the bottom right of the picture, is the

image still an horse image? It is likely that if a large region of grass is represented, it

would be better classified as a landscape. This is easy to verify, by performing eye-tracking

experiments with human observers. Thus scale invariance in many case could be a wrong

issue to address. The same holds for occlusions: assume that an elephant is half-occluding

the horse. In this case the IP and related matching will dramatically change (as well as for

human observers) providing a different classification.
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5.5.4 Matching effectiveness

This set of experiments aims at comparing the ranking provided by our system using

the proposed similarity measure (attention consistency M) with the ranking provided by a

human observer. To such end we have slightly modified a test proposed by Santini [91]. in

order to obtain a quantitative measure of the difference between the two performed rankings

(“treatments”, [91]) in terms of hypothesis verification. Consider a weighted displacement

measure defined as follows [91]. Let q be a query on a database of N images that produces

n results. There is one ordering (usually given by one or more human subjects ) which

is considered as the ground truth, represented as Lt = {I1, . . . , In}. Every image in the

ordering has also associated a measure of relevance 0 ≤ S(I, q) ≤ 1 such that (for the

ground truth), S(Ii, q) ≥ S(Ii+1, q), ∀i. This is compared with an (experimental) ordering

Ld = {Iπ1 , . . . , Iπ1}, where {π1, . . . , πn} is a permutation of 1, . . . , n. The displacement of

Ii is defined as dq(Ii) = |i− πi|. The relative weighted displacement of Ld is defined as:

Wq =
∑

i S(Ii, 1)dq(Ii)
Ω

(5.13)

where Ω = bn2

2 c is a normalization factor. Relevance S is obtained from the subjects asking

them to divide the results in three groups: very similar (S(Ii, q) = 1), quite similar

(S(Ii, q) = 0.5) and dissimilar (S(Ii, q) = 0.05).

In our experiments, on the basis of the ground truth provided by human subjects, treat-

ments provided either by humans or by our system are compared. The goal is to determine

whether the observed differences can indeed be ascribed to the different treatments or are

caused by random variations. In terms of hypothesis verification, if µi is the average score

obtained with the ith treatment, a test is performed in order to accept or reject the null

hypothesis H0 that all the averages µi are the same (i.e., the differences are due only to

random variations); clearly the alternate hypothesis H1 is that the means are not equal,

that is the experiment actually revealed a difference among treatments.
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The acceptance of H0 hypothesis can be checked with the F ratio. Assume that there are

m treatments and n measurements (experiments) for each treatment. Let wij be the result

of the jth experiment performed with the ith treatment in place. Define : µi = 1
n

∑n
j=1 wij

the average for treatment i, µ = 1
m

∑m
i=1 µi = 1

nm

∑m
i=1

∑n
j=1 wij the total average, σ2

A =

n
m−1

∑
i=1 m(µi−µ)2 the between treatments variance, σ2

W = 1
m(n−1)

∑
i=1 m

∑
j=1 n(wij−

µi)2 the within treatments variance. Then, the F ratio is:

F =
σ2

A

σ2
W

. (5.14)

A high value of F means that the between treatments variance is preponderant with respect

to the within treatment variance, that is, that the differences in the averages are likely to be

due to the treatments. In our case we have used 8 subjects selected among undergraduate

student. Six students randomly chosen among the 8 were employed to determine the ground

truth ranking and the other two served to provide the treatments to be compared with that

of our system. Four query images have been used, and for each of them a query was

performed in order to provide a result set of 12 images, for a total of 48 images. Each result

set was then randomly ordered and the two students were asked to rank images in the

result set with respect to their similarity to the query image. Each subject was also asked

to divide the ranked images in three groups: the first group consisted of images judged very

similar to the query, the second group consisted of images judged quite similar to the

query, and the third of dissimilar to the query. The mean and variance of the weighted

displacement of the two subjects and of our system with respect to the ground truth are

reported in Table 5.1.

Human 1 Human 2 IP Matching
µi 0.0209 0.0203 0.0190
σ2

i 7.7771e−4 8.1628e−4 8.5806e−4

Table 5.1: Average (µi) and variance (σ2
i ) of the weighted displacement for the three treatments

(two human subjects and system
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Then, the F ratio for each pair of distances,in order to establish which differences were

significant, was computed according to Eq. 5.14.

As can be noted from Table 5.2 the F ratio is always less then 1 and since the critical

value F0, regardless of the confidence degree (the probability of rejecting the right hypotesis),

is greater then 1, the null hypothesis can be statistically accepted. It is worth noting that

the two rankings provided by the observers are consistent with one another and the attention

consistency ranking is consistent with both.

F Human 1 Human 2 IP Matching
IP Matching 0.3021 0.7192 0

Human 2 0.0875 0
Human 1 0

Table 5.2: The F ratio measured for pairs of distances (human vs. human and human vs. system)



CHAPTER 5. CONTEXT-SENSITIVE QUERIES FOR IMAGE RETRIEVAL 101

5.5.5 Query performance via recall and precision

In this experiment we evaluate recall and precision parameters, following the systematic

evaluation of image categorization performance provided by Wang et al. [105]. A subset

composed of 10 images categories, each containing 100 pictures has been chosen from the

COREL database and described in Table 5.3. In particular such testing database has been

downloaded from http://www-db.stanford.edu/IMAGE/ web site (the images are stored in

JPEG format with size 384 x 256 or 256 x 384). The 10 categories reflect different semantic

topics.

Table 5.3: The COREL subdatabase used for query evaluation
ID Category Name Number of Images
1 Africa people and villages 100
2 Beach 100
3 Building 100
4 Buses 100
5 Dinosaurs 100
6 Elephants 100
7 Flowers 100
8 Horses 100
9 Mountains and glaciers 100
10 Food 100

Within such data set a retrieved image can be considered a match respect to the query

image if and only if it is in the same category as the query. In this way it easy to estimate

precision parameter within the first 100 retrieved images for each query, and, moreover

in these conditions recall is identical to precision. In particular, for recall and precision

evaluation every image in the sub-database was tested as query image and the retrieval

results obtained. In Fig. 5.12, the achieved performance is reported for each category in

terms of precision and weighted precision (p̄ = 1
100

∑100
k=1

nk
k , where k = 1...100 and nk is

the number of matches in the first k retrieved images).
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Figure 5.12: Precision of retrieval on the COREL subdatabase

For performing the previous experiment, a number of clusters equal to 3 for each tree

level, a max tree level equal to 6, a leaf fan-out equal to 15 and a range query strategy

using sq = 0.5 have been set in the BEM tree building and traversing steps. The average

precision and weighted precision obtained are respectively 0.438 and 0.460; the obtained

results can also be compared with those obtained by SIMPLICITY and Color Histogram

methods discussed in [105].

Fig. 5.13 a) shows the top 12 results related to 2 inside query cases with the number

images belonging to the same query category among the first 24 proposed ones and, and

Fig. 5.13 b), the top 12 results related to 2 outside query cases using a Top-K of size 100.

For the inside query, the category belonging score computed from maximum probability

P (Cn|Tt) resulted to be 69.47% corresponding to Cn=“Dinosaurs” for the top image and

92.63% corresponding to Cn=“Africa” for the bottom image. For queries performed with

outside images the maximum category belonging score resulted to be 62.67% corresponding

to Cn=“Horses” followed by 61.45% score corresponding to Cn=“Elephants” for the top

image, and 56.83% corresponding to Cn=“Mountains” followed by a 56.33% score corre-

sponding to Cn=“Beaches” for the bottom image. In the latter case, note that the top

query presents image with cows and the system retrieves images from the data set by chos-

ing “Horses” and ”Elephants” categories which are most likely to represent, with respect

to other categories, the semantics of the query.
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a. Query Results for inside images. b. Query Results for outside images

Figure 5.13: Query results on the COREL subdatabase using either query images present within
the data set (a) or outside the data set (b)

5.5.6 Query performance with respect to human categorization

The goal is the evaluation of the retrieval precision of the system, with respect to the

possible categories that the user has in mind when a query is performed. This measure is

evaluated with respect to the whole database (50000 images), and the following protocol

has been adopted.

Given a test set of 4 outside images Iq, q = 1...4 (see Fig. 5.14), randomly selected

out of 50 images, ten observers uj , j = 1...10 (different from those that performed category

identification), were asked to perform the task of choosing for each query image Iq, the

three most representative categories, say C1, C2, C3 among those describing the database. To

this end, images in all categories have been presented in a hierarchial way (e.g., animals:

horses, cows, etc..), to speed-up the selection process.
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Meanwhile, each user was asked to rank the three categories in terms of a representa-

tiveness score, within the interval [0, 100], namely R
(uj ,q)
1 (C1|Iq), R

(uj ,q)
2 (C2|Iq), R

(uj ,q)
3 (C3|Iq);

the three scores were constrained to sum to 100 (e.g., a user identifies categories 1, 2, 3 for

image 2 with scores 60, 30, 10)

Figure 5.14: Query examples

For each image, the three most relevant categories have been chosen,according to a

majority vote, by considering those that received the highest number of “hits” Nhc, c =

1, 2, 3, from the observers, and each category was assigned the average score Rq
c(Cc|Iq) =

1
Nhc

∑Nhc
j=1 R

(uj ,q)
c (Cc|Iq). Results are reported in Table 5.4.

Table 5.4: Representativeness score Rq
c(Cc|Iq) for each query image of Fig.5.14

Image User Scores
1 Sunset (40%), Beaches (35%), Coasts (25%)
2 Horses (45%), People (40%), Landscapes (15%)
3 Cows (0.60%), Landscapes (0.25%), Mountains (0.15%)
4 Buildings (55%), Mountains (30%), Landscapes (15%)

The scores Rq
c(Cc|Iq) are then normalized within the range [0, 1] to allow comparison with

category belonging probabilities computed by the system, and the perceptually weighted

precision has been calculated:

P q
w =

1
TK

TK∑

k=1

wnq
k

k
, (5.15)

where wnq
k represents, for the query q, the weighted average match of the k retrieved image

with respect to user score Rq
c(Cc|Iq) and belonging probability P k

c (Cc|Ik) provided by the

system:

wnq
k = 1−

∑3
c=1 wc|Rq

c(Cc|Iq)− P k
c (Cc|Ik)|∑3

c=1 wc

(5.16)
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Note that a perfect match is obtained only for wnq
k = 1, that is for |Rq

c(Cc|Iq) −
P k

c (Cc|Ik)| = 0, ∀c. Relevance distance weights wc have been chosen as the decreasing

values {1, 0.5, 0.25}.
In this way the perceptually weighted precision on the whole data set of 50000, consid-

ering the first 100 retrieved images, as in the previous experiment, resulted to be 0.788.

Also, a query was performed for each image Iq, by considering a variable TK of images.

Fig. 5.15, for each query case, values P q
w plotted at Tk variation. As shown in the figure,

the three category belonging scores returned by system decrease to the TK size variation,

but it is possible to notice that the related proportions between system scores and user

probabilities are preserved.

Figure 5.15: Perceptually weighted precision P q
w plotted as a function of TK , for queries q =

1, 2, 3, 4.
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5.5.7 Retrieval efficiency

The retrieval efficiency can be evaluated in terms of time elapsed between query formu-

lation and presentation of results. For AICQ the total search time tQ is obtained from the

tree search (traversing) time ttree and the query refining time tqref as

tQ = ttree + tqref . (5.17)

Due to the indexing structure adopted, the parameters that affect the total search time

are the range query radius, obtained via the sq value, the number of clusters L, which is

fixed for each level of the BCT, the tree capacity c and the number of images within the

i-th category Ni. Thus, by fixing L, c, Ni, the times ttree and tqref are expected to increase

for increasing sq within the interval [0, 1]. The upper bounds on such quantities can be

estimated as follows.

The tree search time accounts for the CPU time tCPU to compute the range query

distances while traversing the tree, and the I/O time tIO needed to retrieve from the disk

the image VMTs (the storage on disk of each VMT requires 32Kb) and to transfer them to

central memory:

ttree = tCPU + tIO. (5.18)

By allocating the images of a leaf node in contiguous disk sectors (by exploiting the appro-

priate operating system primitives) it is possible to reduce the number of disk accesses, so

that tCPU >> tIO, and ttree ≈ tCPU holds. In the worst case, sq = 1,

ttree ≈
Nc∑

i=1

·
[logL(

Ni
c

)]∑

k=0

td · Lk, (5.19)

tqref = tsim ·
Nc∑

i=1

[
Ni

Nleaves
] ·Nleaves (5.20)

Nc being the number of database categories. Here td is the time for computing a single

distance via Eq. 5.12, Nleaves the number of tree leaves. Eq. 5.20 takes into account the

fact that our tree is balanced and each leaf contains approximately the same number of

images, in general [ Ni
Nleaves

] <= c.
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Eqs. 5.19 and 5.20 provide upper bounds in the sense that the number of evaluated

distances, in the tree traversing step, is greater than the average case since, to simplify, we

are not considering that in practice at each tree-level many pruned nodes occur. In fact, by

setting sq = 1, all nodes of the tree are explored: thus, the number of evaluated distances

is equal to the total number of such nodes and the number of retrieved leaves that satisfy

the range query is equal to the total number of tree leaves; on the contrary, by choosing

sq < 1, at each tree-level there are many pruned nodes and the number of retrieved leaves

is lower than Nleaves.

The actual variations of times ttree and tqref for an increasing range query radius are

plotted in Fig. 5.16 (here, c = 15, L = 3).

Figure 5.16: Tree search and query refining time at sq variation
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The experimental curves have been obtained by using a PENTIUM IV 3GHz Server

(1 GB RAM), under the Windows 2003 Server operating system. To compute the VMT

features (about 0.6 sec. for each image) and create the full BCT index (about 1 min. for

each category) on the entire database (50000 images subdivided in about 300 categories)

our system requires about 14 hours. Moreover for such hardware configuration the time

required for computing td is about 0.3e − 4 secs. (about 25000 CPU floating operations

are necessary), and the time required for computing tsim is about 1e− 3 secs. Such results

refer to the case in which the query image is present in the database; on the contrary, one

extra second of CPU time is approximately spent to extract from the query image features

related to the VMT.

In order to have an idea of BCT performances respect to other access methods, in figure

5.17 we report the index construction time and index size at d (space-dimension) variation.

Figure 5.17: Index Construction Time and Index Size at d variation

We compared BEM access method with M-Tree one in terms of Query Processing

Time, using our data set (50000 images) and metric. To this end, we have observed a

performance improvement of 0.05 sec. respect to M-tree and of about 2 sec. respect to

sequential scan approach.
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By considering Eqs. 5.19 and 5.20, it is possible to estimate the scalability of our system

and the total search times for a very large database. Assuming a database of 1000000 images

subdivided in 2000 categories (500 images for each category), and choosing L = 3, c = 25,

we have a tree search time of about 3 sec. and a query refining time of about 1000 sec., in

other terms, in the worst case, our system would spend about 15 minutes to execute a user

query.



Chapter 6

Foveated Shot Detection for Video

Segmentation

6.1 Introduction

Detection of shot boundaries provides a base for nearly all video abstraction and high

level video segmentation methods [73], [57]. In this work, we propose a novel approach to

partitioning of a video into shots based on a foveated representation of the video.

A shot is usually conceived in the literature as a series of interrelated consecutive frames

taken contiguously by a single camera and representing a continuous action in time and

space. In other terms, a shot is a subsequence generated by the camera from the time it

“starts” recording images, to the time it “stops” recording [42]. However, shot segmentation

is ill-defined. On the one hand, a video is generated by composing several shots by a

process called editing, and due to edit activity different kinds of transitions from one

shot to another, either abrupt or gradual, may take place. An abrupt transition, or hard

cut, occurs between two consecutive frames and is the most common type. An example is

provided in Fig. 6.1.

110
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Gradual transitions such as fades, wipes and dissolves (see Fig. 6.2 below) are spread

over several frames and are obtained using some spatial, chromatic or spatio-chromatic

effect; these are harder to detect from a purely data analysis point of view because the

difference between consecutive frames is smaller.

Figure 6.1: An example of hard cut effect. An abrupt transition occurs between the second and
the third frame

Figure 6.2: An example of dissolve effect

It has been observed [5] from a study of video production techniques, that the production

process originates several constraints, which can be useful for video edit classification in the

framework of a model based approach to segmentation. But the use of such constraints

implies high costs in designing shot models due to the high number of degrees of freedom

available in shot production (for review and discussion, see [57], [42]).
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On the other hand, for the purposes of video retrieval, one would like to mark the case

of any large visual change, whether camera stops or not (e.g., a large object entering the

scene). Thus, from a general standpoint, shot detection should rely on the recognition of any

significant discontinuity in the visual content flow of the video sequence [42]. Meanwhile,

the detection process should be unaffected by less significant changes within the same shot,

like object/camera motion and lighting changes, which may contribute to missed or false

detections. In such a complex scenario, despite the number of proposals in the literature,

robust algorithms for detecting different types of boundaries have not been found, where

robustness is related to both detection performance and stability with minimum parameter

tuning [49].
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6.2 The attentive model for video segmentation

At the heart of our ability to detect changes from one view of a scene to the next is the

mechanisms of visual attention.

Film makers have long had the intuition that changes to the visual details across cuts

are not detected by audiences, particularly when editing allows for smooth transitions [94].

In the movie Ace Ventura: When Nature Calls the pieces on a chess board disappear

completely from one shot to the next. In Goodfellas a child is playing with blocks that

appear and disappear across shots. In fact, almost every movie, and almost every cut, has

some continuity mistake, yet, most of the time people are blind to these changes. It has

been noted that change blindness is evident when mistakes occur far from the viewer’s focus

of attention [94].

As already seen in chapter 4, the term attention captures the cognitive functions that

are responsible for filtering out unwanted information and bringing to consciousness what is

relevant for the observer [51]. Visual attention, in turn, is related to how we view scenes in

the real world: moving our eyes (saccade) three to four times each second, and integrating

information across subsequent fixations [109]. Saccades represent overt shifts of spatial

attention that can be performed either voluntarily (top-down), or induced automatically

(bottom-up) by salient targets suddenly appearing in the visual periphery and allow an

observer to bring targets of interest onto the fovea, the retinal region of highest spatial

resolution. Eye movements, though being characterized by some degree of randomness are

likely to occur in a specific path (the scanpath, [77]) so as to focus areas that are deemed

important. The scanpath can be conceived as a visuomotor pattern resulting from the

perceptual coupling of observer and observed scene.

An example generated on the third frame of Fig. 6.1 is illustrated in Fig. 6.3. The

scanpath has been graphically overlapped on the original image: circles represent fixations,

and lines trace displacements (saccades) between fixations.
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Figure 6.3: Scanpath eye-tracked from a human observer while viewing the third frame presented
in Fig. 6.1.

In the course of a scan we have a rich visual experience from which we abstract the

meaning or gist of a scene. During next scan, if the gist is the same our perceptual system

assumes the details are the same. Clearly, this “sketch” representation not only serves the

information reduction purpose of filtering unwanted information, but also, by integrating

the gist from one view to the next, to achieve the impression of a stable world. However,

the lack of a detailed representation of the outside world from one view to the next can rise

failures of change detection [94].

The background question which motivates this work is whether these mechanisms that

are useful to prevent audiences noticing the transitions, can conversely be exploited to detect

such transitions, and thus help for video segmentation. Intuitively, one could argue that if

the playback speed is reduced (or, equivalently, the saccade rate increased) change blindness

effects would be reduced too. This corresponds to introducing an ideal observer or agent,

capable of tuning his saccadic rate. In some sense, this is akin to Gargi’s experimental

study of human ground-truthing, where most consistent results in marking shot changes

were obtained when subjects performed such task at half speed after viewing the sequence

once at full speed [42].
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The rationale behind our approach is that perceptual capacity of an observer can be

defined at two levels [79]. At the first level there is the ability of the agent to explore the

scene in ways mediated by knowledge of patterns of visuomotor behavior, that is the ability

to exploit the interdependence between incoming sensory information and motor behavior

(eye movements). At the second, higher level there is the accessing by the observer of

information related to the nature of observer’s own exploration.

For example, while viewing a video sequence, it is reasonable that in the presence of

similar visual configurations, and in the absence of an habituation mechanism, an observer

should consistently deploy attention to visually similar regions of interest and by following

a similar motor pattern; clearly, when the gist of the world observed undergoes a significant

change, the visuomotor pattern cannot be exploited further, since inconsistent, and a new

scanpath will be generated (see Fig. 6.4). Such an intuitive assumption can be theoretically

motivated on the basis that after an abrupt transition the video signal is governed by a new

statistical process [63].

Figure 6.4: Traces generated on six frames embedding an hard cut. The first four FOAs are shown
for each frame. The red rectangle represents the first FOA of the trace. The trace sequence abruptly
changes between frame 3 and 4

Indeed, it has been shown [12] that gaze-shift is strongly constrained by structure and

dynamics of the underlying random field modeling the image. Quantitatively, if a measure

M of attention consistency is defined, M should decrease down to a minimum value.

For instance, this is what is likely to occur when a view abruptly changes.
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On the other hand, a view change may occur across long delay intervals, as in gradual

transitions. In this case, M should account for a behavior similar to that experienced in

change blindness experiments, where subjects fail to detect a slow, global spatio-chromatic

editing of a sequence presenting the same image [79], but suddenly succeed when the frame

rate of presentation is increased, due to the reduction of the time lag between the first and

the last frames of the transition. In this case the M function should vary smoothly across

the interval, while decreasing rapidly if measured on the first and the last frames of the

same interval. It is worth remarking that shots involved in a dissolve transition may have

similar color distribution, which a color histogram would hardly detect [63], while differing

in structural information that can be detected by appropriate algorithms (e.g., edge based).

As in the case of hard cuts, the sequence of attention shifts can be suitably exploited,

since its dynamics [12] is strongly intermingled with the complexity of the statistical process

modelling the signal (e.g., two-source model for a dissolve [63]).

As regards the second level, namely the evaluation of information about the nature of

visual exploration itself, it can be stated as an inference drawn by the observer from its own

sensorimotor behavior under prior knowledge available. On such assumption, the problem

of detecting a shot change given the change of the observer’s behavior M, naturally leads

to a Bayesian formulation, and can be conceived as a signal detection problem where the

probability that a shot boundary B occurs, given a behavior M, is compared against the

probability that a shot boundary is not present.

The introduction of this approach has several advantages, both theoretical and practical.

First it allows to find a uniform method for treating both abrupt and gradual transitions.

As discussed above, this result stems from relations occurring between the dynamics of

gaze-shifts and statistical processes modelling the observed image [12]; also, the method is

well grounded in visual perception theories [77], [79].
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As such, it is suitable to overcome usual shortcomings of other simpler techniques

proposed so far (e.g, histogram manipulations). In this sense, higher robustness can be

achieved, as regards performance and stability in detecting important visual changes while

discarding negligible ones. Then, once the distinctive scanpath has been extracted from

a frame, subsequent analysis needs only to process a sparse representation of the frame.

Eventually, attentive analysis can, in perspective, provide a sound and unitary framework

at higher levels of video content analysis. For instance, key frame selection/generation

could be conceived in terms of average scanpath of shot frames; multimodal processing for

deriving semantic properties of a scene, can be stated in terms of attentive audio/visual inte-

gration. Summarizing, the discussed video model , in according to the suggestions reported

in chapter 4, has two levels of analysis:

• At a lower level, the observer generates the visuomotor patterns, related to the content

of the video sequence (we denote T (f(t)) the visuomotor trace (simply, the trace) of

frame f(t)).

• At a higher level, the observer detects scene changes by judging his own visuomotor

behavior in the context of prior knowledge available. More in details, the observer

evaluates the information regarding the nature of visual exploration itself and infers

the presence of a shot boundary from its own sensorimotor behavior under prior

knowledge available on the kinds of transitions he is dealing with. To this end, given

two frames f(t) and f(t + l) (for notational simplicity, t = tn), the animate matching

procedure (see chapter 4) is used to compute the function M(t)) which gauges the

consistency between the two traces T (f(t)) and T (f(t + l)). The behavior of the

M function, is then used by a detection module, based on Bayesian decision theory,

which, under prior contextual knowledge available, infers from M the presence of a

scene transition, either abrupt or gradual.

While the low level of video analysis has been largely exploited in chapter 4, some

aspects of high level need a separate discussion for the video segmentation problem.
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6.3 Using attention consistency and prior knowledge for de-

tecting shot transitions

The observer’s behavior can be formalized as the attention consistency gauged over

subsequences of the video sequence f . To this end, let us generalize the local attention

consistency measure M to a parametrized family M : F × F ×N+ → R+, which accounts

for the attentive behavior over the full sequence f , namely (M(T (i), T (i + l)))i=0,l,...,N/l,

being l the considered frame distance.

In such framework, the problem of inferring a shot change given the change of observation

behavior M(t) can be conceived as a signal detection problem where the probability that

a shot boundary B occurs, given a behavior M(t), P (B|M(t)), is compared against the

probability that a shot boundary is not present, P (B̄|M(t)).

More precisely, the observer’s judgement of his own behavior can be shaped in a Bayesian

approach where detection becomes the inference between two hypotheses:

• H0: no shot boundary occurs between the two frames under analysis (B̄)

• H1: a shot boundary occurs between the two frames (B)

In this setting the optimal decision is provided by a test whereH1 is chosen if p(M(t)|B)P (B) >

p(M(t)|B̄)P (B̄) and H0 is chosen, otherwise. Namely a cut occurs if:

L(t) >
P (B̄)
P (B)

=
1− P (B)

P (B)
(6.1)

where L(t) = p(M(t)|B)
p(M(t)|B̄)

represents a likelihood ratio.

In general, the prior shot probability P (B) models shot boundaries as arrivals over

discrete, nonoverlapping temporal intervals, and a Poisson process seems an appropriate

prior [64], [49], which is based on the number of frames elapsed since the last shot boundary.

Hanjalic has suggested [49] that the prior P (B) should be more conveniently corrected

by a factor depending upon the structural context of the specific shot boundary, gauged

through a suitable function.
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It is possible to generalize this suggestion resorting to contextual Bayesian analysis [53]

in which an occurrence of the property B is detected by taking into account the behavior

M(t) given a context E, that is a set of events {e1, e2, ..., en} characterizing B. Namely,

H1 is chosen if p(M(t)|B, E)P (S|E) > p(M(t)|B̄, E)P (B̄|E).

Thus, a cut is detected according to the likelihood ratio:

L(t) >
1− P (B|E)

P (B|E)
, (6.2)

where now the r.h.s. of Eq. defines the adaptive threshold:

T (t) =
1− P (E|B)P (B)

P (E|B)P (B)
. (6.3)

The prior probability P (B) models the Poisson process of boundary arrival according to

the cumulative probability P (B) = 1
2 ·

∑λ(t)
w=0

µw

w! exp(−µ) [49], where λ(t) is the shot-length

at the current frame and w is a frame-counter that is reset in correspondence of a detected

shot boundary.

As regards P (E|B), under weak coupling assumption [114] of structural events e1, e2, ..., en,

we can set P (e1, e2, ..., en|B) =
∏

i P (ei|B). The events that constitute the structural con-

text can be described as follows.

Consider the behavior of function M for both abrupt and gradual transitions. An

example is depicted in Fig. 6.5 related to a video sequence characterized by the presence of

two hard cuts embedding a dissolve.

The first event we deal with is a shape event: when the gist of the world observed

abruptly changes (hard cut), M decreases down to a minimum value.
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Figure 6.5: Plot of M(t) function for a sequence characterized by one a dissolve region embedded
between two abrupt transitions

Thus, as regards hard cuts, to calculate the probability P (E|B), we use a sliding window

of dimension W = 10, centered on the frame f(t), thus including all frames in the temporal

interval [t − W
2 , t + W

2 ], chosen with the interframe distance l = 5. For each frame, we

consider the probability that the difference between the first minimum of M, Mmin1, and

the second minimum Mmin2 detected within the temporal window, be significant:

P (E|B) = P (shape|Bcut) =
1

1 + exp(β′δ)
(6.4)

where δ represents the normalized difference (Mmin1 −Mmin2)/Mmin1.

The Fig. 6.6 shows the advantages in using an adaptive threshold.

On the contrary, during a dissolve, the difference between consecutive frames is reduced,

and a frame is likely to be similar to the next one. Thus, the consistency function will vary

smoothly across the transition interval. Indeed, the behavior of M along a dissolve region is

of parabolic type, and can be more precisely appreciated in Fig. 6.7, where M(t) decreases

very slowly till a local minimum point (fade-out effect), then slowly increases (fade-in effect)

in according to the model illustrated in section 3.3.5.
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Figure 6.6: Abrupt transition detection: using a static threshold (top) a cut is not detected, in the
opposite, using an adaptive threshold the previous missed shot boundary is detected

A second event, which we denote dM, stems from the fact that the first derivative

function of M is approximately constant and about zero in those frames characterized by

dissolve effects (see Fig. 6.8).

Clearly, previous events are not sufficient to completely characterize the context of a

dissolve region: in fact M could exhibit a similar trend, e.g. in shots featuring a slow zoom.

Thus, the inconsistency between the edge frames, that is the first and last frames of an

hypothetical dissolve region, must be taken into account. We denote this event a change

event.

Summing up, in the case of dissolves we can assume:

P (E|B) = P (shape|Bdis)P (dM|Bdis)P (change|Bdis) (6.5)

To calculate the probability P (E|B), we use a sliding window of dimension W = 20,

centered on the frame f(t), which includes all frames in the temporal interval [t−W
2 , t+ W

2 ],

chosen with the interframe distance l = 5. The first term on the r.h.s. of Eq. 6.5 is defined

as:
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Figure 6.7: Attention consistency M in a dissolve region and its parabolic fitting

P (shape|Bdis) =
1

1 + exp(β′(dminP ))
, (6.6)

where dminP represents the distance between the absolute minimum of M within the tem-

poral window and the minimum of the parabolic fitting performed on M values occurring

in the same window.

The second term P (dM|Bdis) accounting for the probability that derivative dM
dt be close

to zero, is modelled as

P (dM|Bdis) = exp(−k|dM
dt

− µ|), (6.7)

where µ is the mean value of dM
dt within the time window. To compute derivatives, the M

curve is preprocessed via median filtering [84] in order to avoid noise boost-up.

The third term P (change|Bdis), representing the probability that the first and the last

frame of the dissolve be different, is given by

P (change|Bdis) = 1− 1
1 + exp(−β(M(T (fstart), T (fend))− δ′))

, (6.8)

where fstart and fend are the first and last frame of the sliding window, fstart = ft−W
2

and

fend = ft+W
2

respectively.
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Figure 6.8: First derivative of M(t) in the same region shown in Fig. 6.7

The variation δ′ is defined as:

δ′ = Mmin + (Mmax −Mmin)/2 (6.9)

where Mmin and Mmax represent the absolute minimum and maximum values of the M
function within the window, respectively.

The likelihood in Eq. 6.2 is estimated, on training sequences, by computing the his-

tograms of the M(t) values within a shot and at its boundaries, respectively; then, ideal

distributions are derived in non parametric form through Parzen windows [29] using kernels

ξ(1−M) exp(−(1−M)) (boundaries) and 1
σ
√

2π
exp(−((1−M)− µ)2/2σ2) (within shot),

where ξ = 2.5, µ = 1.1, σ = 0.4, are the estimated parameters. In fig. 6.9 the normal-

ized distributions of the M(t) values within a shot and at its boundaries and the related

distributions derived by Parzen are reported for the case of abrupt transitions.

Eventually, the decision module can be outlined as in Fig. 6.10.

The input is represented by the M(t) sequence computed by applying the AC algo-

rithm on the video sequence, together with contextual knowledge. Boundary detection is

accomplished according to a two-step procedure, which we denote Inconsistency Detection

(ID).
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Figure 6.9: Normalized distributions of the M(t) values within a shot and

In a first step abrupt transitions are detected by means of Eqs. 6.2, 6.3, 6.4. At the end

of this phase we obtain the positions of hard cuts, which partition the original video in a

sequence of blocks representing candidate shots.

In a second step, the frames interested in dissolve effects are detected. For each block,

dissolve regions are individuated by means of Eqs. 6.2, 6.3, 6.6, 6.7, 6.8, computed through

a sliding window centered on each frame of the block, chosen according to an interframe

distance l = 5. Eventually, the output of the system is represented by the list of shot

boundary positions, defining the shot segmentation of the original video.
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Figure 6.10: The decision module for inferring boundary presence from M(t) behavior and
prior/contextual knowledge

The first step of the ID algorithm has complexity O(N/l), N being the number of

frames of the video sequence. The second step is O(WNbLb/l), where W,Nb, Lb are the

dimension of the sliding window, the number of blocks partitioned along the first step, and

the maximum block length, respectively.

The dimensions of the sliding windows have been chosen by means of an analysis of

ROC curves obtained for the training set in order to maximize true detections with respect

to false alarms (in fig. 6.11 the ROC curve for dimensioning W in the case of dissolves is

reported).

Figure 6.11: ROC curve for dimensioning W in the case of dissolves
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Eventually, for what concerns the attention consistency algorithm, a value of H = 2 has

been chosen for the best fit window provides suitable results, while the value of N
′
f = 10

was chosen either because, in this way, each FOA is only visited once, and for the bottom-

up importance of earliest FOAs. For what concerns the setting of equation parameters,

considering again Eq. 4.3, we simply use αa = βa = γa = 1/3, granting equal informational

value to the three kinds of consistencies; similarly, we set µ1 = µ2 = 1/2 in Eq. 4.10.

The algorithm 5 and 6, reported in the following, summarizes the ID procedures for

detecting abrupt and gradual transitions.
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Algorithm 5 Abrupt Transitions Detection
Given a video v, l and W
c[] ← 0
k ← 0
Detect all cuts-position c[]
for i = W

2 , i = i + l, i < length(v)− W
2 do

for j = i− W
2 ...i + W

2 − 1 do
Compute M(fj , fj+1)

Compute L(i)
if (L(i) > Tcut(i)) then

c[k] ← i
k + +

Build intermediate video-blocks b[]
h ← 1
fs ← f1

fe ← flength(v)

for z = 1...length(c) do
bh = [fs, ..., fc(z)−1]
fs ← fc(z)

h + +
bh = [fs, ..., fe]
Return all intermediate video-blocks b[]



CHAPTER 6. FOVEATED SHOT DETECTION FOR VIDEO SEGMENTATION 128

Algorithm 6 Gradual Transitions Detection
Given a set of video blocks b[], l and W
d[] ← 0
Detect all dissolve positions inside a block h, dh[]
for h = 1...length(b[]) do

k ← 0
if length(bh[]) > W then

for i = W
2 , i = i + l, i < length(bh[])− W

2 do
for j = i− W

2 ...i + W
2 − 1 do

Compute M(fj , fj+1)
Compute L(i)
if (L(i) > Tdiss(i)) then

dh[k] ← i
k + +

Build final video-blocks s[]
y ← 1
for h = 1...length(b[]) do

if bh[] is affected by a dissolve then
fs ← bh(1)
fe ← bh(length(bh))
for z = 1...length(dh) do

sy = [fs, ..., fdh(z)−1]
fs ← fdh(z)

y + +
sy = [fs, ..., fe]
y + +

else
sy = bh

y + +
Return all final video-blocks s[]
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6.4 Experiments and results

To evaluate the performance of the proposed shot detection algorithm, a database of

video sequences has been obtained from documentaries and news belonging to TREC01

video repository and from famous movies. The database represents a total of 1694 cuts

and 440 dissolves in approximately 166 min. of video. The selected sequences are complex

with extensive graphical effects. Videos were captured at a rate of 30 frames/sec, 640× 480

pixel resolution, and stored in AV I format. These video sequences are also characterized

for presenting significant dissolve effects. For each sequence a ground-truth was obtained

by three experienced humans using visual inspection [42].

To obtain an estimate of parameters for detection (we have set β
′=0.075,µ=50 for abrupt

transitions and β
′=0.075,β=20,k=4.5,µ=19 for gradual transition), the training set, shown in

Table 6.1, has been used.

Table 6.1: Description of the video training set
Sequence Dur.(sec.) Transitions (Abrupt-Gradual)

The School of Athens (Docum.) 60 0-9
BOR03 (Doc. TREC01) 330 34-21

ANNI006 (Doc. TREC01) 366 41-28
The Time Machine (Movie) 118 15-6

The Life is Beautiful (Movie) 600 100-30
Moulin Rouge (Movie) 700 200-10

Total 36 min 390-104

Experiments for performance evaluation were carried out on a test set including a total

of 1304 cuts and 336 dissolves in 130 min. of video, which is summarized in Table 6.2.

The comparison between the proposed algorithm’s output and the ground truth relies

on the well know recall and precision figures of merit [42]:

recall = detects/(detects + MD) (6.10)

precision = detects/(detects + FA) (6.11)
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Table 6.2: Description of the video sequences in the test set
Sequence Dur.(sec.) Transitions (Abrupt-Gradual)

ANNI005 (Doc.TREC01) 245 38-8
BOR02 (Doc.TREC01) 328 20-9
BOR07 (Doc.TREC01) 420 45-22
BOR08 (Doc.TREC01) 350 42-18
NAD31 (Doc.TREC01) 516 51-19
NAD33 (Doc.TREC01) 310 41-8
NAD53 (Doc.TREC01) 692 62-36
NAD55 (Doc.TREC01) 485 49-24
NAD57 (Doc.TREC01) 420 43-23

SENSES111 (Doc.TREC01) 388 31-18
Desert Storm (News) 30 4-4

Mandela (News) 22 0-3
Dinosaurs (Movie) 600 205-50

Harry Potter (Movie) 661 176-21
Matrix (Movie) 617 162-0

The Fifth Element (Movie) 600 191-0
The Lord of the Rings II (Movie) 627 63-33

The Patriot (Movie) 500 81-47
Total 130 min 1304-336

where detects denotes the correctly detected boundaries, while MD and FA denote missed

detections and false alarms, respectively.
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In other terms, at fixed parameters, recall measures the ratio between right detected

shot changes and total shot changes in a video, while precision measures the ratio between

right detected shot changes and the total shot changes detected by algorithm.

Results obtained are provided in Tables 6.3 and 6.4 and summarized in Table 6.5.

Table 6.3: Abrupt transition performance of the foveated detection method
Video Cuts Detections MD FA

ANNI005 38 40 0 2
BOR02 20 19 1 0
BOR07 45 50 1 6
BOR08 42 41 2 3
NAD31 51 52 0 1
NAD33 41 41 0 0
NAD53 62 65 1 4
NAD55 49 49 0 0
NAD57 43 42 2 1

SENSES111 31 31 2 2
Desert Storm 4 4 0 0

Dinosaurs 205 210 3 8
Harry Potter 176 176 0 0

Matrix 162 170 2 10
The Fifth Element 191 189 3 1

The Lord of the Rings II 63 67 0 4
The Patriot 81 83 1 3

Total 1304 1322 18 45

The proposed method achieves a 97% recall rate with a 95% precision rate on abrupt

transitions, and a 92% recall rate with a 89% precision rate on gradual transitions (Table

6.5). In order to provide an idea about the quality of this results, we refer to the discussion

published by Hanjalic [49]. In particular, on dissolve detection, it is worth comparing with

Lienahrt [62] and works therein reported, [63], [115].
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Table 6.4: Gradual transition performance of the foveated detection method
Video Dissolves Detections MD FA

ANNI005 8 8 2 2
BOR02 9 10 3 4
BOR07 22 24 3 5
BOR08 18 16 2 0
NAD31 19 22 1 4
NAD33 8 8 0 0
NAD53 36 38 0 2
NAD55 24 27 2 5
NAD57 23 21 3 1

SENSES111 18 21 1 4
Desert Storm 4 4 0 0

Mandela 3 3 0 0
Dinosaurs 50 52 5 7

Harry Potter 21 22 1 2
The Lord of the Rings II 33 35 5 7

The Patriot 47 49 2 4
Total 336 360 30 43

Table 6.5: Performance of the method
Type of Transition Average Recall Average Precision F1

Abrupt 0.97 0.95 0.93
Gradual 0.92 0.89 0.90

Also, Table 6.5 provides results in terms of the F1 metric, F1 = 2 × precision ×
recall/(precision+recall), which is commonly used to combine precision and recall scores

[87], F1 being high only when both scores are high. Summing up, the method proposed

here achieves an overall average F1 performance of 0.91 when considering both kinds of

transitions. This result can indicatively be compared to the performance of a recently pro-

posed method [87] that uses global and block wise histogram differences, camera motion

likelihood, followed by k-nearest neighbor classification. Such method achieves an F1 per-

formance of 0.94 and 0.69, for hard cuts and gradual transitions, respectively, resulting in an

average performance of 0.82; interestingly enough, this result is higher than average scores

(0.82 and 0.79) obtained by the two best performing systems at 2001 TREC evaluation [87].
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It is worth noting that, in our case, the overall score of 0.91 also accounts for results

obtained by processing movies included in our test set, which eventually resulted to be the

most critical. For completeness sake, by taking into account only TREC01 video sequences,

the overall performance of our method is 0.925.

As regards the efficiency of the method, recall that to obtain the visuomotor trace of the

frame, main effort is spent on pyramid and WTA computation, which can be estimated as

an O(|Ω|) step, where |Ω| represents the number of samples in the image support Ω, while

FOA analysis involves lower time complexity, since each of the Nf FOAs is defined on a

limited support with respect to the original image (1/36|Ω|) and only 10 FOAs are taken

into account to form a trace. The AC algorithm is O(Nf ), that is linear in the number of

FOAs. The first step of ID algorithm has complexity O(N/l), N and l being the number

of frames of the video sequence and the interframe distance, respectively. The second step

is O(WNbLb/l), where W,Nb, Lb are the dimension of the sliding window, the number of

blocks partitioned along the first step, and the maximum block length, respectively.

From this analysis, by considering operations performed on a single frame, we can expect

that most of the time will be spent in the low-level perception stage, while the AC and ID

algorithms will have higher efficiency, the former only performing on a sparse representation

of the frame (Nf = 10) and the latter working on M(t) values of the sliding window of

dimension W . This is experimentally confirmed from the results obtained and reported in

Table 6.6.

Table 6.6: Average frame processing time for each step
Steps Low-level AC algorithm ID algorithm

Elapsed time (msec) 26 6.2 2.8

The system achieves a processing speed per frame of about 35 ms on the Pentium IV 2.4

GHz PC (1 GB RAM). It is worth noting that the current prototype has been implemented

using the Java programming language, running in Windows XP operating system, without

any specific optimization.
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Clearly, for time critical applications, the bottleneck of the proposed method, that is the

computing of visuomotor traces, could be easily reduced by resorting to existing hardware

implementation of pyramidal representations ([16]) and more efficient realizations of the

WTA scheme (e.g., in [9] a network is presented, which has O(lg n) time complexity).



Chapter 7

Final Remarks and Conclusions

7.1 Image retrieval task

A novel approach to QBE has been presented. We have shown how, by embedding

within image inspection algorithms active mechanisms of biological vision such as saccadic

eye movements and fixations, a more effective processing can be achieved. Meanwhile, the

same mechanisms can be exploited to discover and represent hidden semantic associations

among images, in terms of categories, which in turn drives the query process along an

animate image matching. Also, such associations allow an automatic pre-classification,

which makes query processing more efficient and effective in terms of both time (the total

time for presenting the output is about 4 sec.) and precision results.

Note that the proposed representation allows the image database to be endowed with

semantics at a twofold level, namely, both at the set-up stage (learning) and at the query

stage. In fact, as regards the query module it can in principle work on the given WW space

learned along the training stage or by further biasing the WW by exploiting user interaction

in the same vein of [92].

135
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A feasible way could be that of using an interactive interface where the actions of the

user (pointing, grouping, etc.) provide a feedback that can be exploited to tune on the fly

parameters of the system, e.g. the category prior probability P (Cn) or, at a lower level,

the mixing coefficients in Eq. 4.3 to grant more information to color as opposed to texture,

for instance. Current research is devoted to such improvements as well as to extend our

experiments to very large image databases.
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7.2 Video segmentation task

We have defined a novel approach to partitioning of a video into shots based on a

foveated representation of the video. To the best of our knowledge, foveation mechanisms

have never been taken into account for video segmentation, while there are some recent

applications to video compression (refer to [13]). The motivation for the introduction of

this approach stems from the fact that success or failure in the perception of changes to the

visual details of a scene across cuts are related to the attentive performance of the observer

[94]. By exploiting the mechanism of attention shifting through saccades and foveations,

the proposed shot-change detection method computes, at each time instant, a consistency

measure M(t) of the foveation sequences generated by an ideal observer looking at the

video. The problem of detecting a shot change given the change of consistency M(t) has

been conceived as a Bayesian inference of the observer from his own visual behavior.

The main results achieved can be summarized as follows. The proposed scheme allows

the detection of both cuts and dissolves between shots using a single technique, rather than

a set of dedicated methods. Also, it is well grounded in visual perception theories and allows

to overcome usual shortcomings of many other techniques proposed so far. In particular,

features extracted are strictly related to the visual content of the frame; this, for instance is

not true for simpler methods, such as histogram based methods, where, in general, totally

different frames may have similar histograms (e.g., a frame generated by randomly flipping

the pixels of another frame has the same histogram of the original one). Further, the

FOA representation is robust with respect to smooth view changes: for instance, an object

translating with respect a a background, gives rise to a sequence of similar visuomotor

traces. Meanwhile, a large object entering the scene would be recognized as a significant

discontinuity in the visual content flow of the video sequence; in this sense, the approach

accounts for the more general definition of shot as a sequence of frames that was, or appears

to be, continuously captured from the same camera [42].
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Once the distinctive scanpath has been extracted from a frame, subsequent feature

analysis need only to process a sparse representation of the frame; note that for each frame,

we consider 10 FOAs, each FOA being defined on a square support region whose dimension

is 1/36 of the original image; further reduction is achieved at the detection stage, where

only the M function is processed (cfr. Table 6.6). Last, the perceptual capacity of an

observer to account for his own visual behavior, naturally leads, in this framework, to a

Bayesian decision formulation for solving the detection problem, in a vein similar to [64],

[49]. In particular, by resorting to recently proposed contextual Bayesian analysis [53], we

have generalized some suggestions introduced in [49] for exploiting structural information

related to different types of transitions.

It is worth remarking that, with respect to the specific problem of gradual transitions,

the present work focuses on dissolve detection. However, the detection scheme can be easily

extended to other kinds of transitions; for instance, preliminary experiments performed on

wipes (not reported here, because out of the scope of this paper) show a behavior of the

M function characterized by a damped oscillatory pattern. Also, beyond the context of

video segmentation, the proposed technique introduces some novelties per se with respect

to the “Where” and “What” integration problem, the explicit use of the fixation time in

building a visuomotor trace, and as regards the way to exploit the extracted information

for comparing different views (information look-up problem).

Results on a test set representing a total of 1304 cuts and 336 dissolves in 130 min. of

video, including videos of different kinds are reported and validate the proposed approach.

The performance of the currently implemented system is characterized by a 97% recall

rate with a 95% precision rate on abrupt transitions, and a 92% recall rate with a 89%

precision rate on gradual transitions. Meanwhile it exhibits a constant quality of detection

for arbitrary complex movie sequences with no need for tuning parameters. Interestingly

enough, the system has been trained on a small data set with respect to the test set used.
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However, the introduction of an attention based approach not only is motivated by

performance in shot-detection, but in perspective it could constitute an alternative to tra-

ditional approaches, and overcome their limitations for high-level video segmentation. Con-

sider, for instance, the issue of scene change detection by jointly exploiting video and audio

information. Audio and pictorial information play different roles and, to some extent, com-

plementary. When trying to detect a scene decomposition of the video sequence, the analysis

of visual data may provides candidate cuts, which are successively validated through fusion

with information extracted from audio data. How to perform such fusion, in a principled

way, is unclear. However, behavioral studies and cognitive neuroscience have remarked the

fundamental role of attention in integrating multimodal information [10]; and the approach

proposed here could serve as a sound basis for such integration. In this way, the low level

and high level video analysis could share the processing steps, making the entire content

analysis process more effective and efficient.
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