1,633 research outputs found

    Consistent estimation of the filtering and marginal smoothing distributions in nonparametric hidden Markov models

    Full text link
    In this paper, we consider the filtering and smoothing recursions in nonparametric finite state space hidden Markov models (HMMs) when the parameters of the model are unknown and replaced by estimators. We provide an explicit and time uniform control of the filtering and smoothing errors in total variation norm as a function of the parameter estimation errors. We prove that the risk for the filtering and smoothing errors may be uniformly upper bounded by the risk of the estimators. It has been proved very recently that statistical inference for finite state space nonparametric HMMs is possible. We study how the recent spectral methods developed in the parametric setting may be extended to the nonparametric framework and we give explicit upper bounds for the L2-risk of the nonparametric spectral estimators. When the observation space is compact, this provides explicit rates for the filtering and smoothing errors in total variation norm. The performance of the spectral method is assessed with simulated data for both the estimation of the (nonparametric) conditional distribution of the observations and the estimation of the marginal smoothing distributions.Comment: 27 pages, 2 figures. arXiv admin note: text overlap with arXiv:1501.0478

    Approximate Bayesian Computation for a Class of Time Series Models

    Full text link
    In the following article we consider approximate Bayesian computation (ABC) for certain classes of time series models. In particular, we focus upon scenarios where the likelihoods of the observations and parameter are intractable, by which we mean that one cannot evaluate the likelihood even up-to a positive unbiased estimate. This paper reviews and develops a class of approximation procedures based upon the idea of ABC, but, specifically maintains the probabilistic structure of the original statistical model. This idea is useful, in that it can facilitate an analysis of the bias of the approximation and the adaptation of established computational methods for parameter inference. Several existing results in the literature are surveyed and novel developments with regards to computation are given

    Kernel Bayes' rule

    Full text link
    A nonparametric kernel-based method for realizing Bayes' rule is proposed, based on representations of probabilities in reproducing kernel Hilbert spaces. Probabilities are uniquely characterized by the mean of the canonical map to the RKHS. The prior and conditional probabilities are expressed in terms of RKHS functions of an empirical sample: no explicit parametric model is needed for these quantities. The posterior is likewise an RKHS mean of a weighted sample. The estimator for the expectation of a function of the posterior is derived, and rates of consistency are shown. Some representative applications of the kernel Bayes' rule are presented, including Baysian computation without likelihood and filtering with a nonparametric state-space model.Comment: 27 pages, 5 figure

    The iterated auxiliary particle filter

    Get PDF
    We present an offline, iterated particle filter to facilitate statistical inference in general state space hidden Markov models. Given a model and a sequence of observations, the associated marginal likelihood L is central to likelihood-based inference for unknown statistical parameters. We define a class of "twisted" models: each member is specified by a sequence of positive functions psi and has an associated psi-auxiliary particle filter that provides unbiased estimates of L. We identify a sequence psi* that is optimal in the sense that the psi*-auxiliary particle filter's estimate of L has zero variance. In practical applications, psi* is unknown so the psi*-auxiliary particle filter cannot straightforwardly be implemented. We use an iterative scheme to approximate psi*, and demonstrate empirically that the resulting iterated auxiliary particle filter significantly outperforms the bootstrap particle filter in challenging settings. Applications include parameter estimation using a particle Markov chain Monte Carlo algorithm

    Nonparametric Belief Propagation and Facial Appearance Estimation

    Get PDF
    In many applications of graphical models arising in computer vision, the hidden variables of interest are most naturally specified by continuous, non-Gaussian distributions. There exist inference algorithms for discrete approximations to these continuous distributions, but for the high-dimensional variables typically of interest, discrete inference becomes infeasible. Stochastic methods such as particle filters provide an appealing alternative. However, existing techniques fail to exploit the rich structure of the graphical models describing many vision problems. Drawing on ideas from regularized particle filters and belief propagation (BP), this paper develops a nonparametric belief propagation (NBP) algorithm applicable to general graphs. Each NBP iteration uses an efficient sampling procedure to update kernel-based approximations to the true, continuous likelihoods. The algorithm can accomodate an extremely broad class of potential functions, including nonparametric representations. Thus, NBP extends particle filtering methods to the more general vision problems that graphical models can describe. We apply the NBP algorithm to infer component interrelationships in a parts-based face model, allowing location and reconstruction of occluded features

    Inference via low-dimensional couplings

    Full text link
    We investigate the low-dimensional structure of deterministic transformations between random variables, i.e., transport maps between probability measures. In the context of statistics and machine learning, these transformations can be used to couple a tractable "reference" measure (e.g., a standard Gaussian) with a target measure of interest. Direct simulation from the desired measure can then be achieved by pushing forward reference samples through the map. Yet characterizing such a map---e.g., representing and evaluating it---grows challenging in high dimensions. The central contribution of this paper is to establish a link between the Markov properties of the target measure and the existence of low-dimensional couplings, induced by transport maps that are sparse and/or decomposable. Our analysis not only facilitates the construction of transformations in high-dimensional settings, but also suggests new inference methodologies for continuous non-Gaussian graphical models. For instance, in the context of nonlinear state-space models, we describe new variational algorithms for filtering, smoothing, and sequential parameter inference. These algorithms can be understood as the natural generalization---to the non-Gaussian case---of the square-root Rauch-Tung-Striebel Gaussian smoother.Comment: 78 pages, 25 figure
    • …
    corecore