868 research outputs found

    Nonparametric estimation of scalar diffusions based on low frequency data

    Full text link
    We study the problem of estimating the coefficients of a diffusion (X_t,t\geq 0); the estimation is based on discrete data X_{n\Delta},n=0,1,...,N. The sampling frequency \Delta^{-1} is constant, and asymptotics are taken as the number N of observations tends to infinity. We prove that the problem of estimating both the diffusion coefficient (the volatility) and the drift in a nonparametric setting is ill-posed: the minimax rates of convergence for Sobolev constraints and squared-error loss coincide with that of a, respectively, first- and second-order linear inverse problem. To ensure ergodicity and limit technical difficulties we restrict ourselves to scalar diffusions living on a compact interval with reflecting boundary conditions. Our approach is based on the spectral analysis of the associated Markov semigroup. A rate-optimal estimation of the coefficients is obtained via the nonparametric estimation of an eigenvalue-eigenfunction pair of the transition operator of the discrete time Markov chain (X_{n\Delta},n=0,1,...,N) in a suitable Sobolev norm, together with an estimation of its invariant density.Comment: Published at http://dx.doi.org/10.1214/009053604000000797 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Kalikow-type decomposition for multicolor infinite range particle systems

    Full text link
    We consider a particle system on Zd\mathbb{Z}^d with real state space and interactions of infinite range. Assuming that the rate of change is continuous we obtain a Kalikow-type decomposition of the infinite range change rates as a mixture of finite range change rates. Furthermore, if a high noise condition holds, as an application of this decomposition, we design a feasible perfect simulation algorithm to sample from the stationary process. Finally, the perfect simulation scheme allows us to forge an algorithm to obtain an explicit construction of a coupling attaining Ornstein's dˉ\bar{d}-distance for two ordered Ising probability measures.Comment: Published in at http://dx.doi.org/10.1214/12-AAP882 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Diffusion Approximations for Online Principal Component Estimation and Global Convergence

    Full text link
    In this paper, we propose to adopt the diffusion approximation tools to study the dynamics of Oja's iteration which is an online stochastic gradient descent method for the principal component analysis. Oja's iteration maintains a running estimate of the true principal component from streaming data and enjoys less temporal and spatial complexities. We show that the Oja's iteration for the top eigenvector generates a continuous-state discrete-time Markov chain over the unit sphere. We characterize the Oja's iteration in three phases using diffusion approximation and weak convergence tools. Our three-phase analysis further provides a finite-sample error bound for the running estimate, which matches the minimax information lower bound for principal component analysis under the additional assumption of bounded samples.Comment: Appeared in NIPS 201

    Privacy-preserving parametric inference: a case for robust statistics

    Full text link
    Differential privacy is a cryptographically-motivated approach to privacy that has become a very active field of research over the last decade in theoretical computer science and machine learning. In this paradigm one assumes there is a trusted curator who holds the data of individuals in a database and the goal of privacy is to simultaneously protect individual data while allowing the release of global characteristics of the database. In this setting we introduce a general framework for parametric inference with differential privacy guarantees. We first obtain differentially private estimators based on bounded influence M-estimators by leveraging their gross-error sensitivity in the calibration of a noise term added to them in order to ensure privacy. We then show how a similar construction can also be applied to construct differentially private test statistics analogous to the Wald, score and likelihood ratio tests. We provide statistical guarantees for all our proposals via an asymptotic analysis. An interesting consequence of our results is to further clarify the connection between differential privacy and robust statistics. In particular, we demonstrate that differential privacy is a weaker stability requirement than infinitesimal robustness, and show that robust M-estimators can be easily randomized in order to guarantee both differential privacy and robustness towards the presence of contaminated data. We illustrate our results both on simulated and real data

    Maximum likelihood estimation by monte carlo simulation:Toward data-driven stochastic modeling

    Get PDF
    We propose a gradient-based simulated maximum likelihood estimation to estimate unknown parameters in a stochastic model without assuming that the likelihood function of the observations is available in closed form. A key element is to develop Monte Carlo-based estimators for the density and its derivatives for the output process, using only knowledge about the dynamics of the model. We present the theory of these estimators and demonstrate how our approach can handle various types of model structures. We also support our findings and illustrate the merits of our approach with numerical results
    corecore