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Abstract. We propose a gradient-based simulated maximum likelihood estimation to
estimate unknown parameters in a stochastic model without assuming that the likelihood
function of the observations is available in closed form. A key element is to develop Monte
Carlo–based estimators for the density and its derivatives for the output process, using
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1. Introduction
Maximum likelihood estimation (MLE) is the most
popular statistical technique for estimating unknown
parameters based on sample observations. In addi-
tion to its dominant role in parameter estimation,
MLE also plays important roles in other inference
problems, such as hypothesis testing and model se-
lection. Under mild regularity conditions, MLE has
the following desirable properties: consistency, as-
ymptotic normality, asymptotic efficiency (achieving
the Crámer–Rao bound), and functional invariance
(Shao 2003).

A basic requirement for applying MLE is the avail-
ability of the likelihood function. In common statistical
models, the likelihood function of the data can be
written analytically, and thus, MLE can be naturally
applied. In this paper, we focus on stochastic models
represented by system dynamics rather than likelihood
functions, motivated by scenarios of the following type.
An idealized stochastic model—think, for example, of
a queueing model—is given, and a fixed set of data
output from the “real” system (e.g., the system times
of the customers) is available. Then, MLE is used to
select model parameters (e.g., arrival and service
rates) thatmaximize the likelihood function under the
idealized model from the given data. Intuitively, this

maximizes the “agreement” of the selected model
parameters with the observed data. However, in the
typical case in which the stochastic model is repre-
sented via dynamic equations (e.g., Lindley’s recur-
sion), the likelihood function of the output data may
be unavailable in analytical form, a challenge that we
investigate in this paper. In other words, our work
focuses on the computational aspects of MLE using a
simulation-based method rather than the statistical
properties of MLE.
Our motivation is twofold. First, in building sto-

chastic models for various analyses, the modeler
needs to calibrate parameters, for example, interarrival
and service rates in a queue. When system input data
(e.g., interarrival and service times) are readily avail-
able, MLE (or other estimation techniques) can easily
be performed on the input data. However, there are
practical scenarios in which, because of data collec-
tion or operational constraints, only output-level data
are available. Inferring input parameters from out-
put data are generally known as an “inverse problem”
andhasbeen studied in several scientific areas (Kennedy
andO’Hagan 2001, Tarantola 2005). Similar ideas have
also been used in studying economic market structure,
often called inverse optimization (Bertsimas et al. 2012,
Birge et al. 2017, Esfahani et al. 2018). In stochastic
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modeling, the inverse problem has been investigated
in Basawa et al. (1996, 2008), Pickands andStine (1997),
Fearnhead (2004), Wang et al. (2006), and Ross et al.
(2007) and is also related to the so-called “queue in-
ference engine” in Larson (1990) and point process
approximations in Whitt (1982). This literature ex-
ploits closed-form representations of (typically) queue-
ing models or approximations, such as heavy-traffic
limits. Our approach is a general technique that relies
on knowledge of the underlying dynamics of the sto-
chastic model, using simulation and gradient esti-
mation to perform MLE rather than closed-form ap-
proximations. A related work is Goeva et al. (2019)
that also considers simulation-based calibration but
from a different perspective of robust optimization.

Second, we take the viewpoint that, when the input
model or the dynamic is potentially misspecified and,
as such, the statistical consistency in output predic-
tion no longer holds, it could be beneficial to fit the
output data instead of the input data. In general, MLE
is an asymptotic minimizer of the Kullback–Leibler
(KL) divergence between the conjectured model and
the data (Van der Vaart 2000). Thus, applyingMLE on
the output level attempts to minimize the statistical
discrepancy between models and data when the
output prediction accuracy is important, which is
often the case when building stochastic models. This
idea of “best fitting” at the output level is similar to
the training of machine learning algorithms, which in
recent years have been developed to find reliable
representations of observed (output) data by statis-
tical (econometric) models. Although such approaches
have merit in finding simplified representations of
high-dimensional data, they lead to a black-box model
rather than a causal representation provided by sto-
chastic modeling. (“We bring light to the black box.”)

The MLE method developed in this paper requires
that a class of parameterized causal models, which
can be analyzed through simulation, be given. The
main technical contribution of this work is that we
derive unbiased estimators for the density and its
derivatives for the output of a generic stochastic
model by Monte Carlo simulation. The likelihood
of the (output) data is the joint density evaluated at
the observations. For a continuous distribution, we
write the density as the derivative of the distribution
function, which can be viewed as the expectation of an
indicator function. Thus, deriving an unbiased esti-
mator for estimating the density requires addressing
the discontinuity introduced by the indicator function
and the structural parameters in the sample perfor-
mance. Infinitesimal perturbation analysis (IPA) can-
not deal with discontinuities, and the likelihood ratio
(LR) method cannot handle structural parameters in
the sample performance (Fu 2015).

The generalized likelihood ratio (GLR) method in
Peng et al. (2018) can deal with a larger scope of
discontinuities in the sample performance. We use
this technique to estimate the density and its deriv-
atives, which fall under the umbrella of “distribution
sensitivities”—derivatives of the distribution func-
tion with respect to (w.r.t.) both the argument and
parameter in an underlying stochastic model—in Lei
et al. (2018). The difficulty in distribution sensitivities
lies in the discontinuity in the sample performance
and the presence of structural parameters. Previ-
ously, Hong and Liu (2010) offered a pathwise de-
rivative estimator w.r.t. the parameter in the under-
lying stochastic model, which achieves a convergence
rate slower than the canonical square-root rate in
Monte Carlo simulation, whereas the GLR estimator
achieves the square-root convergence rate even for
higher-order derivatives (Glynn et al. 2020a).
With the GLR estimators for the density and its de-

rivatives, we propose a general gradient-based simu-
latedmaximum likelihood estimation (GSMLE)method,
which applies a stochastic approximation (SA) algo-
rithm to estimate the unknown parameters in sto-
chastic models without assuming an analytical form of
the likelihood function. GSMLE can deal with inde-
pendent and identically distributed (i.i.d.) observations
and also data generated by a Markovian model, for
example, system times of a G/G/1 queue, and more
generally hidden Markov models (HMM). In the latter
context, related work includes Peng et al. (2014, 2016),
who calibrate stochastic volatility (SV) models using
MLE that indicate computational advantages over
some benchmarkmethods in Bayesian estimation and
moment estimation. The discrete observations of the
SV models can be viewed as the observable states of
anHMM. Because of the presence of the hidden states,
simulation is implemented to estimate the likelihood
and its derivatives, but these previous works as-
sume the observational kernel associated with the
HMM and its derivatives are analytically known or
can be numerically calculated by Fourier inversion,
which is not assumed in this work.
We summarize our main contributions as follows:
• We propose a new method for estimating un-

known parameters of a stochastic model without
assuming an analytical likelihood function.
• We directly fit the underlying stochastic model

to the output data, which opens the possibility of
extending data-driven ideas to causal stochastic models.
• We generalize our scheme to efficiently utilize

the simulated samples in calculating the MLE for
an HMM.
The rest of this paper is organized as follows. In

Section 2, we formulate the problem and provide il-
lustrative examples. We propose the GSMLE in Sec-
tion 3, in which the distribution sensitivity estimators
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are derived in Section 3.1, and the sample path de-
rivative estimator for the likelihood of the HMM is
given in Section 3.2. Numerical results can be found
in Section 4. Conclusions are given in the last section.
Some of the proofs and additional numerical exper-
iments can be found in the online appendix.

2. Problem Formulation
The MLE for parameter θ governing a given para-
metric family of stochastic models is

θ̂ � argmax
θ∈Θ

LT θ( ),

where Θ is the feasible set for parameter θ and LT(θ)
is the log-likelihood of observations. Throughout the
paper, we assume that the distribution of the obser-
vations is continuous and admits a density. However,
the likelihood and density are not available in ana-
lytical form, let alone the MLE.

We first study the case of i.i.d. observations from
a data-generating process specified by a stochastic
model. More specifically, for t � 1, . . . ,T, we let

Zt � g Xt;θ( ),
where Xt � (X1,t, . . . ,Xn,t), t � 1, . . . ,T, represent the
i.i.d. input random variables (r.v.s) with a given joint
density f (x;θ), and the mapping g(·, ·)maps the input
to the observable output Zt, thus representing the
stochastic model. The parametric forms of f (·; ·) and
g(·, ·) are assumed known and amenable to simula-
tion, but the parameter θ is unknown and needs to be
inferred from the output observations Zt, which can
be a vector. The log-likelihood of the output Zt is
given by

LT θ( ) � ∑T
t�1

log p Zt;θ( ),

where p(·;θ) is the density ofZt that lacks an analytical
form in general. The asymptotic properties of the
MLE for i.i.d. observations are well known and can
be found in Shao (2003).

If Xt is one-dimensional with density pXt , then,
provided that g is invertible and the inverse is dif-
ferentiable with respect to the z argument, it follows
from a standard result in probability that the density
of Zt can be obtained in closed form as

p z;θ( ) � pXt g
−1 z;θ( )( ) d

dz
g−1 z;θ( )

⃒⃒⃒⃒ ⃒⃒⃒⃒
,

and the log-likelihood is given by

LT θ( ) � ∑T
t�1

log pXt g
−1 Zt;θ( )( ) d

dz
g−1 z;θ( )

⃒⃒⃒⃒ ⃒⃒⃒⃒
z�Zt

( )
.

The key condition that limits the applicability of this
direct approach is the requirement of the invertibility

of g. The theory developed in this paper does not
require this restrictive property and only requires g to
be differentiable with respect to x and its derivative to
be nonzero almost everywhere (a.e.). Moreover, the
approach developed in this paper works in the case of
multidimensional input r.v. Xt as well. The following
example illustrates the generality of our approach in
the one-dimensional case.

Example 1. Let Xt have support [0,∞) with density
pXt(x) and consider Zt � θ sin(Xt). Note that g(x;θ) �
θ sin(x) fails to be invertible on the support of Xt.
However, g is differentiable with respect to x and θ and
∂g(x;θ)/∂x �� 0 a.e. As we discuss later on, this makes it
possible to apply our estimator.

An extension of the i.i.d. case is to assume obser-
vations come from a data-generating process fol-
lowing a Markov chain. The analysis of Markov
chains is addressed in the subsequent section.

2.1. Markov Chains
We assume thatMarkov chain {Zt : 0 ≤ t ≤ T} is driven
by the following stochastic recursion:

Zt � g Xt;Zt−1, θ( ), (1)
whereXt, t � 1, . . . ,T, are i.i.d. (input) r.v.s driving the
Markov chain and Z0 is the initial state independent
of θ. The log-likelihood of observations following a
Markov process is given by

LT θ( ) � ∑T
t�1

log p Zt;Zt−1, θ( ),

where p(·;Zt−1, θ) is the (unknown) conditional den-
sity on Zt−1.

Example 2. Customers arrive at a service station
according to a renewal point process. The inter-
arrival times {At : t ∈ N} are i.i.d. with density fA(x)
and 0 < E[At] < ∞ and P(At � 0) � 0. Customers are
served in order of arrival, and consecutive service times
are i.i.d. random variables {Bt(θ) : t ∈ N} with density
fB(x;θ). Interarrival times and service times are as-
sumed to be mutually independent. Consider the pro-
cess of consecutive sojourn (or system) times {Zt(θ)},
denoting the total time that the corresponding cus-
tomer is in the system (from arrival to end of service).
The arrival process starts at T0 � 0. Consecutive sojourn
times Zt(θ) follow the well-known Lindley equation:

Zt θ( ) � max 0,Zt−1 θ( ) − At( ) + Bt θ( ), t ≥ 1, (2)
where we assume that the system starts empty and
formally set Z0(θ) � 0. Letting Xt � (At,Bt(θ)), map-
ping (1) becomes

g xt; z( ) � max 0, z − at( ) + bt.
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The mapping g is differentiable with respect to bt
everywhere and differentiable a.e. with respect to at.
We show the MLE of this model can be estimated by
our method.

Complex stochastic systems are typically difficult
to accurately model, which leads to a model mis-
specification problem. Let p(·) be the density of out-
put r.v. Z of the true model and {pθ(·) : θ ∈ Θ} be the
corresponding density of the output r.v. of a mis-
specified parametric family, that is, p(·) /∈{pθ(·) :θ∈Θ}.
Let θ̃ be a solution that minimizes the KL divergence:

θ̃ � argmin
θ∈Θ

E log p Z( )/pθ Z( )( )[ ]
. (3)

It is easy to show that theMLE θ̂ is consistentwith θ̃ as
the sample size goes to infinity, that is, θ̂ − θ̃ → 0 as
T → ∞ (Van der Vaart 2000). For a given parametric
family of potential models, property (3) of the MLE
allows for finding the model within the given family
that best explains the observed output data. It is
worth noting that the meaning of “best fit” is relative
to the assumed parametric family. For example, we
may want to fit an (oversimplified) queue, such as the
M/M/1 queue, to the output data of a general G/G/1
queueing system. By fitting anM/M/1 to output data
of a G/G/1 queue, we drive the statistical property of
the outputs of two systems closer, leading to the best,
although misspecified, explanatory M/M/1 model
for the observed data. We illustrate the impact of
model misspecification and the use of MLE in com-
pensating for a possible model misfit with the fol-
lowing variation of Example 2.

Example 3 (Revisit Example 2). We apply the MLE to
this example; however, the arrival process of the true
model is a Markov modulated process (MMP). More
specifically, let ηt be a Markov chain (Pij) on {1, 2}. The
sequence of interarrival times is given by At � ζt,ηt ,
where ζt,1 and ζt,2 are independent random variables.
For our experiment, we let

P11 � P22 � 1 − η, P12 � P21 � η,

for η ∈ (0, 1). The arrival process is, thus, an MMP.
Applying the MLE assuming the model in Exam-
ple 2 (the misspecified model) with the output data
from the preceding model (the “reality”) provides a
mechanism to (potentially better) calibrate the mis-
specified model. Later on, we present supporting
numerical examples.

2.2. Hidden Markov Models
A further extension to the Markov chain framework
is that observations follow an HMM. HMMs have
wide applications, including pattern recognition, ge-
netic engineering, clustering analysis, and finance
(Dymarski 2011). Because of the presence of hidden

states, the likelihood of the HMM is a high-dimen-
sional integral. Estimating the likelihood itself is a
challenge, let alone maximization. Thus, statistical
inference has been a central part of HMM research
(Cappé et al. 2005). In statistics, the expectation-
maximization (EM) algorithm is a popular method
to calculate the MLE with latent variables (Dempster
et al. 1977). The EM algorithm separates estimating
the expectation (simulation) from maximizing the
parametric performance, which requires iteratively
solving a series of optimization problems, and the
computational benefit of the EM algorithm relies
heavily on assuming an exponential family for the
joint likelihood of hidden and observable states. In
contrast, GSMLE optimizes the likelihood simulta-
neously through simulation optimization and esti-
mates the observational kernel and its derivatives by
Monte Carlo simulation rather than assuming an
analytical form.
An HMM can be specified by the following general

state space model: for t � 1, . . . ,T,

Zt � g Xt;St, θ( ), St � h Yt;St−1, θ( ), (4)
where Yt, t � 1, . . . ,T, are i.i.d. r.v.s driving the (hid-
den) underlyingMarkov chain {St}with initial state S0
independent of θ, and Xt, t � 1, . . . ,T, are i.i.d. r.v.s
introducing interference to the (unobservable) state St
of the Markov chain. Only Zt, t � 1, . . . ,T, are ob-
servable. Put differently, we only observe a noisy
signal from the underlying system. For given obser-
vation data Z1, . . . ,ZT, the log-likelihood of observa-
tions following an HMM is given by

LT θ( )�. log E ∏T
t�1

p Zt; St, θ( )
[ ]

, (5)

where p(·;St, θ) is the (unknown) conditional density
of observation Zt on hidden state St, which is also
called the observational kernel, and the expectation
operator is applied to average out St. The asymptotic
properties of the MLE for an HMM are similar to the
i.i.d. case and can be found in Cappé et al. (2005,
chapter 6).

Example 4. We now discuss an application in which θ
serves as a behavioral threshold parameter. We adjust
the notation introduced in Example 2 by letting St
denote the sojourn time of the tth customer. Once a
customer finishes service, the customer is asked about
the rating of the service, which is a summation of some
random factor Xt and the quality of the service mea-
sured by c1(θ − St) if St ≤ θ and c2(θ − St) if St > θwith
0< c1 < c2 <∞. Note that Xt models the part of the rat-
ing that cannot be explained by our simplified model.
Assuming c1 < c2 reflects the asymmetric perception
of gain and loss in human behavior. This models the

Peng et al.: Gradient-Based Simulated Maximum Likelihood Estimation
Operations Research, 2020, vol. 68, no. 6, pp. 1896–1912, © 2020 INFORMS 1899



rating of the service depending on the behavioral pa-
rameter θ as follows:

g Xt;St, θ( ) � c1 max θ − St, 0( ) + c2 min θ − St, 0( ) + Xt,

where
St � max 0,St−1 − At( ) + Bt.

Provided we observe the rating of the customers, we
can apply MLE to identify the choice for the behav-
ioral parameter in our utility model.

3. GSMLE Theoretical Development
In our paper, we solve the MLE by gradient-based
simulation optimization. Specifically, the following
SA algorithm is used:

θk+1 � ΠΘ θk + λkD̂T θk( )
[ ]

, (6)
where ΠΘ is a projection onto Θ with Θ denoting a
given compact set of admissible parameters, D̂T(θ) is
the log-likelihood derivative estimator at θ, and λk is
the step size at iteration k. To guarantee almost sure
(a.s.) convergence of SA to the optimum of the log-
likelihood, certain conditions on the noise of the
derivative estimate, the sequence of step sizes, and
uniqueness of the optimum are required; see Kushner
and Yin (2003, chapter 5) for details.

Unlike random search, gradient-based simulation
does not suffer from the curse of dimensionality (of
parameter θ), and it is usually considered to be effi-
cient if it applies. For objective functions with mul-
tiple local optima, SA can be implemented with dif-
ferent initializations, and the best terminal estimate
is chosen. In this paper, we use the SA configura-
tions suggested by the conventional Robbins–Monro
algorithm (Kushner and Yin 2003). In the next sec-
tion, we provide unbiased derivative estimators for
the density of the observations. The resulting log-
likelihood derivative estimator has a ratio form that
bears a small bias relative to the standard deviation,
which can be reduced by increasing the number of
simulation replications.

3.1. Distribution Sensitivities
For simplicity, we only consider distributional sen-
sitivities when θ is scalar (Xt is still a vector). It is
straightforward to extend the results in this section to
the case in which θ is a vector. We first derive the
distribution sensitivity estimators for the i.i.d. case.
The likelihood of the observations and its sensitivities
are given as follows:

p Zt;θ( ) � ∂E 1 g Xt;θ( ) ≤ z
{ }[ ]

∂z

⃒⃒⃒⃒
⃒
z�Zt

,

∂p Zt;θ( )
∂θ

� ∂2 E 1 g Xt;θ( ) ≤ z
{ }[ ]
∂θ∂z

⃒⃒⃒⃒
⃒
z�Zt

. (7)

Notice that expectation E[1{g(Xt;θ) ≤ z}] is the dis-
tribution function of Zt. To estimate the distributional
sensitivities in (7), note that (i) IPA might not apply
because of the discontinuity introduced by the indi-
cator function in the sample performance, and (ii) LR
might not work because of the presence of structural
parameters, that is, θ and z, in the sample perfor-
mance. In the following, we show that our GLR es-
timator overcomes both (i) and (ii).
Let X follow the distribution of Xt, t � 1, . . . ,T with

density f (x;θ), where x�. (x1, . . . , xn). We derive n
different GLR estimators, one utilizing each com-
ponent of the input vector (but each only using one
simulation run) for the derivative of the distribution
function with respect to its argument (i.e., the density
p(z;θ) in (7)) in the form

1 g X;θ( ) ≤ z
{ }

Ψ1,i X;θ( ), i � 1, . . . , n, (8)
where Ψ1,i(x;θ) can be expressed explicitly in terms
of the derivatives of f (·;θ) and g(·;θ) (shown before
Theorem 1). We also derive an estimator for the
second-order distribution sensitivity w.r.t. θ and z
(i.e., ∂p(z;θ)/∂θ in (7)) as

1 g X;θ( ) ≤ z
{ }

Ψ2,i X;θ( ), i � 1, . . . , n,

whereΨ2,i(X;θ) is expressible in terms of bothΨ1,i(x;θ)
and the derivatives of f (·;θ) and g(·;θ) (shown be-
fore Theorem 2).
With these estimators of the density and its de-

rivative, we can estimate the derivative of the log-
likelihood in the i.i.d. setting:

∂LT θ( )
∂θ

� ∑T
t�1

∂p Zt;θ( )
∂θ

p Zt;θ( )( )−1,
by plugging the corresponding estimators into the
numerator and denominator of the ratio

D̂T,i θ( ) � ∑T
t�1

∑M
m�1

1 g X m( )
t ;θ

( )
≤ Zt

{ }
Ψ2,i X

m( )
t ;θ

( )( )

× ∑M
m�1

1 g X m( )
t ;θ

( )
≤ Zt

{ }
Ψ1,i X

m( )
t ;θ

( )( )−1
,

whereM is the number of simulated samples andX(m)
t

is the mth sample of Xt. The Markovian case can be
handled similarly by replacing the density with the
conditional density (transition kernel) of the Markov
chain. Therefore, we omit the details on the Mar-
kovian case for brevity. Then, SA (6) can be used to
search for the optimum of the likelihood function.
The first-order distribution sensitivity with respect

to z discussed previously (and also the sensitivity
with respect to θ) is pivotal in quantile sensitivity
estimation pioneered by Hong (2009), a seminal work
leading to a series of work on sensitivity estimation
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for financial risk measures (Fu et al. 2009, Hong and
Liu 2009, Liu and Hong 2009, Jiang and Fu 2015,
Heidergott and Volk-Makarewicz 2016). Recently,
Peng et al. (2017) and Glynn et al. (2020b) established
the asymptotic results for several quantile sensitiv-
ity estimators in a unified manner using functional
limit theory.

For our main theoretical results, Theorem 1 pres-
ents the GLR estimator for the first-order distribution
sensitivity with respect to z, which is a special case of
the general setting in Peng et al. (2018) under simpler
conditions (A.1)–(A.3) enabled by an explicit con-
struction of a smoothing sequence for the perfor-
mance function that utilizes the specific structure of
the indicator function. Theorem 2 extends the GLR
estimator, for the first time, to any order of the dis-
tribution sensitivity. This, in particular, is used to
estimate ∂p(z;θ)/∂θ.

Define Aε
z,θ�. {x ∈ Rn : z − ε ≤ g(x;θ) ≤ z + ε}. We in-

troduce the following regularity conditions to derive
the GLR estimator for the first-order distribution sen-
sitivity in (8) with index i.

Condition A.1. Suppose the components of the random
vector Xt are independent, that is, f (x;θ) � ∏n

l�1 fl(xl;θ),
f (x;θ) is differentiable and g(x;θ) is twice differentiable on
Rn ×Θ.

Condition A.2. The following uniform convergence condi-
tion holds: ∀ θ ∈ Θ,

lim
ε→0

sup
z∈R

ν Aε
z,θ

( ) � 0,

where ν denotes the Lebesgue measure on Rn.

Condition A.3. The following integrability conditions
hold: ∀ x ∈ Rn, there exist functions vl(·), l � 1, . . . ,n such
that |(∂g(x;θ)/∂xi)−1| ≤ ∏n

l�1 vl(xl;θ), and

lim
xi→±∞ vi xi;θ( ) fi xi;θ( ) � 0,∫
R

vl xl;θ( ) fl xl;θ( ) dxl < ∞, l �� i;

in addition, ∫
x∈Rn

Ψ1,i x;θ( )⃒⃒ ⃒⃒
f x;θ( ) dx < ∞.

Remark 1. For distributions not supported on the
whole space, for example, the exponential distribution,
the continuity condition on f might not hold on the
whole space, which is required in condition (A.1).
However, a change of variables may be applied to
transform the support to Rn (see Peng et al. 2018) so

that the continuity condition holds on the whole space.
If ∂g(x;θ)/∂xi � 0, then |(∂g(x;θ)/∂xi)−1| is interpreted
as infinity. Integrability condition (A.3) implies ∂g(x;θ)/
∂xi �� 0 a.e. For the special case when g is invertible, that
is, there exists i � 1, . . . ,n,

xi � g−1 z; x−i, θ( ),
where g−1 means an inversion of g with respect to
the ith argument and x−i � (x1, . . . , xi−1, xi+1, . . . , xn),
condition (A.2) holds if g−1 is globally Lipchitz con-
tinuous with respect to z, which can be justified if
there exists ε > 0 such that |(∂g(x;θ)/∂xi)−1| > ε. With
this condition, Condition (A.3) can be simplified by

E
∂2g x;θ( )

∂x2i

⃒⃒⃒⃒
x�X

⃒⃒⃒⃒ ⃒⃒⃒⃒[ ]
< ∞,

and
lim

xi→±∞ fi xi;θ( ) � 0, f x;θ( ) < ∞ .

When g is a linear function of x, ∂2g(x;θ)/∂x2i is zero, so
the moment condition holds. The condition on the
density holds for most distributions supported on the
whole space.

To state our first result, we define

Ψ1,i x;θ( )�. ∂g x;θ( )
∂xi

( )−1
× ∂ log f x;θ( )

∂xi
− ∂2g x;θ( )

∂x2i

∂g x;θ( )
∂xi

( )−1( )
.

We have the following theorem:

Theorem 1. For i � 1, . . . ,n, under Conditions (A.1)–(A.3),

∂E 1 g X;θ( ) ≤ z
{ }[ ]

∂z
� E 1 g X;θ( ) ≤ z

{ }
Ψ1,i X;θ( )[ ]

.

Proof. Define

χε z( )�.
1 z < −ε,
1 − z+ε( )

2ε −ε ≤ z ≤ ε,

0 z > ε.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
By construction, χε is continuous and piecewise con-
tinuously differentiable. Applying the dominated con-
vergence theorem to interchange the derivative and
expectation (Fu 2006) then yields

∂

∂z
E χε g X;θ( ) − z

( )[ ] � −E χ′
ε g X;θ( ) − z
( )[ ]

� −
∫
x∈Rn

χ′
ε g x;θ( ) − z
( )

f x;θ( ) dx,

where χ′
ε(z) is the derivative of χε(z)with respect to z.

We now expand the right-hand side by inserting
partial derivatives of g, where we may freely choose
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the particular component xi with respect to which we
differentiate. This gives

∂

∂z
E χε g X;θ( ) − z

( )[ ] � −
∫
x∈Rn

χ′
ε g x;θ( ) − z
( ) ∂g x;θ( )

∂xi

× ∂g x;θ( )
∂xi

( )−1
f x;θ( ) dx. (9)

Recall that f (x, θ) has a product form, and we can
write this as

−
∫
Rn−1

∫
R

χ′
ε g x;θ( ) − z
( ) ∂g x;θ( )

∂xi

(
× ∂g x;θ( )

∂xi

( )−1
fi xi;θ( ) dxi

)∏
l��i

fl xl;θ( ) dxl. (10)

Note that

∂χε g x;θ( ) − z
( )

∂xi
� χ

′
ε g x;θ( ) − z
( ) ∂g x;θ( )

∂xi
.

Applying integration by parts to the term in the inner
bracket of (10), we obtain that (10) is equal to

−
∫
Rn−1

χε g x;θ( ) − z
( ) ∂g x;θ( )

∂xi

( )−1
fi xi;θ( )

×∏
l ��i

fl xl;θ( )dxl
⃒⃒⃒⃒
⃒
∞

xi�−∞

+
∫
Rn−1

∫
R

χε g x;θ( ) − z
( ) ∂

∂xi

∂g x;θ( )
∂xi

( )−1[{
× fi xi;θ( )

]
dxi

}∏
l��i

fl x;θ( ) dxl

�
∫
Rn

χε g x;θ( ) − z
( ) ∂g x;θ( )

∂xi

( )−1
× ∂f x;θ( )

∂xi
− ∂2g x;θ( )

∂x2i

∂g x;θ( )
∂xi

( )−1
f x;θ( )

[ ]
dx

� E χε g X;θ( ) − z
( )

Ψ1,i X;θ( )[ ]
,

where the first equality holds because ∂f
∂xi

� ∂fi
∂xi

∏
l��i fl

and by Conditions (A.1) and (A.3) and the dominated
convergence theorem,∫

Rn−1
χε g x;θ( )− z
( ) ∂g x;θ( )

∂xi

( )−1
fi xi;θ( )

⃒⃒⃒⃒
⃒
×∏

l��i
fl xl;θ( )dxl

⃒⃒⃒⃒
⃒
∞

xi�−∞

⃒⃒⃒⃒
⃒⃒

≤ vi xi;θ( ) fi xi;θ( )⃒⃒∞xi�−∞∏
l��i

∫
R

vl xl;θ( ) fl xl;θ( ) dxl
( )

� 0 .

We have, thus, shown that

∂

∂z
E χε g X;θ( ) − z

( )[ ] � E χε g X;θ( ) − z
( )

Ψ1,i X;θ( )[ ]
.

(11)
It remains to be shown that taking limit ε → 0 yields
the claim. We start off by noting that

E χε g X;θ( )−z
( )

Ψ1,i X;θ( )[ ]−E 1 g X;θ( ) ≤ z
{ }

Ψ1,i X;θ( )[ ]⃒⃒ ⃒⃒
≤E 1 z−ε≤ g X;θ( ) ≤ z+ε

{ }
Ψ1,i X;θ( )⃒⃒ ⃒⃒[ ]

�
∫
Aε

z,θ

Ψ1,i x;θ( )⃒⃒ ⃒⃒
f x;θ( ) dx .

By the absolute continuity of the Lebesgue inte-
gral (Royden 1988), ∀ ε > 0, ∃ δ > 0 such that, if
ν(Aε

z,θ) < δ, then∫
Aε

z,θ

Ψ1,i x;θ( )⃒⃒ ⃒⃒
f x;θ( ) dx < ε.

By Condition (A.2), for δ > 0, ∃ ε0 > 0 such that ∀ z ∈
R and ε < ε0, ν(Aε

z,θ) < δ. Therefore,

lim
ε→0

sup
z∈R

E χε g X;θ( ) − z
( )

Ψ1,i X;θ( )[ ]⃒⃒
− E 1 g X;θ( ) ≤ z

{ }
Ψ1,i X;θ( )[ ]⃒⃒

≤ lim
ε→0

sup
z∈R

E 1 z − ε ≤ g X;θ( ) ≤ z + ε
{ }[

Ψ1,i X;θ( )⃒⃒ ⃒⃒]
≤ lim

ε→0
sup
z∈R

∫
Aε

z,θ

Ψ1,i x;θ( )⃒⃒ ⃒⃒
f x;θ( ) dx � 0,

which justifies the interchange of limit and derivative
as follows (Rudin 1964):

∂E 1 g X;θ( ) ≤ z
{ }[ ]

∂z
� ∂

∂z
lim
ε→0

E χε g X;θ( ) − z
( )[ ]

� lim
ε→0

∂

∂z
E χε g X;θ( ) − z

( )[ ]
� E 1 g X;θ( ) ≤ z

{ }
Ψ1,i X;θ( )[ ]

and proves the claim. □

Remark 2. The GLR estimator in Theorem 1 is not
unique. Different weight functions Ψ1,i, i � 1, . . . ,n,
correspond to the integration by parts with respect to
different coordinates of input r.v. X � (X1, . . . ,Xn). An
alternative interpretation of the GLR lies in the dif-
ferentiation of an implicit change of variable (see the
online appendix in Peng et al. 2018). Different weight
functions also correspond to the changing variable in
different coordinates. Within an unbiased GLR esti-
mator family for the distribution sensitivities, we can
obtain an optimal estimator by minimizing variance;
see Section A.3 in the online appendix.
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Let Ψj,i be defined in a jth-order distribution sen-
sitivity estimator such that

∂j E 1 g X;θ( ) ≤ z
{ }[ ]
∂θj−1∂z

� E 1 g X;θ( ) ≤ z
{ }

Ψj,i X;θ( )[ ]
.

To derive the GLR estimators for the ( j + 1)th order
distribution sensitivities, we introduce the following
regularity condition.

Condition A.4. The following uniform convergence con-
dition holds: ∀ z ∈ R,

lim
ε→0

sup
θ∈Θ

ν Aε
z,θ

( ) � 0.

Condition A.5. The following integrability conditions
hold: for any j ∈ Z+,

lim
xi→±∞

∫
Rn−1

∂g x;θ( )
∂xi

( )−1∂g x;θ( )
∂θ

Ψj,i x;θ( )
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ f x;θ( )

×∏
l ��i

dxl � 0,

and ∫
x∈Rn

sup
θ∈Θ

Ψj+1,i x;θ( ) f x;θ( )⃒⃒ ⃒⃒
dx < ∞,

where

Ψj+1,i x;s,θ( )�. ∂ log f x;θ( )
∂θ

+∂Ψj,i x;θ( )
∂θ

− ∂g x;θ( )
∂xi

( )−1 ∂2g x;θ( )
∂θ∂xi

Ψj,i x;θ( )
{

+∂g x;θ( )
∂θ

∂Ψj,i x;θ( )
∂xi

+Ψj,i x;θ( )
[

× ∂ log f x;θ( )
∂xi

(
−∂2g x;θ( )

∂x2i

∂g x;θ( )
∂xi

( )−1)]}
.

Note that the quantity Ψj+1,i(x; s, θ) is defined recursively
in terms of its lower-order analog Ψj,i(x; s, θ).
Theorem 2. For i� 1, . . . ,n, under Conditions (A.1), (A.2),
(A.4), and (A.5) for any j ∈ Z+,

∂j+1 E 1 g X;θ( ) ≤ z
{ }[ ]
∂θj∂z

� E 1 g X;θ( ) ≤ z
{ }

Ψj+1,i X;θ( )[ ]
.

The proof of Theorem 2 is similar to that of Theorem 1
and can be found in Section A.1 of the online ap-
pendix. Note that the implementation of the GLR
estimators for distributional sensitivities requires the
capability to simulate the input r.v. X. The conver-
gence rates of these estimators in terms of the sim-
ulation replication size are canonical square root and,
moreover, with a bound on the first-order multiplica-
tive constant that is independent of the realization of

the real-world observations. This is justified by a uni-
form convergence of the GLR estimators over z (see
Section A.2 of the online appendix for details).
Moreover, note that, for estimating the density and
the derivatives for multiple parameters, one can use
the same batch of simulation samples and apply the
corresponding Ψj,i(X;θ) for each of these estimators.

3.2. Sample Path Derivative for HMM
Assuming the observation kernel p and its derivatives
known (or can be estimated) in HMM, we derive an
IPAestimator for the derivative of the log-likelihood (5).
To facilitate calculation, we assume Yi,t, i � 1, . . . ,n
are independent, t � 1, . . . ,T, with marginal distri-
bution function and density given by Qi(·;θ) and
qi(·;θ), respectively. Assuming the derivative and
expectation can be interchanged, which is typi-
cally justified by the dominated convergence theorem
(Glasserman 1991),

∂LT θ( )
∂θ

� ∂

∂θ
E

∏T
t�1

p Zt;St, θ( )
[ ]/

E
∏T
t�1

p Zt; St, θ( )
[ ]

� E
∑T
t�1

Wt St;θ( )
( )∏T

t�1
p Zt;St, θ( )

[ ]/

× E
∏T
t�1

p Zt;St, θ( )
[ ]

, (12)

where

Wt St;θ( ) �. ∂p Zt; St, θ( )
∂θ

+ ∂p Zt; s, θ( )
∂s

⃒⃒⃒⃒
s�St

∂St
∂θ

( )
× p Zt;St, θ( )( )−1, (13)

and for t � 1, . . . ,T,

∂St
∂θ

� ∂h Yt; St−1;θ( )
∂θ

+∑n
i�1

∂h y;St−1;θ
( )
∂yi

⃒⃒⃒⃒
⃒
y�Yt

∂Yi,t

∂θ

+ ∂h Yt; s;θ( )
∂s

⃒⃒⃒⃒
s�St−1

∂St−1
∂θ

,

∂Yi,t

∂θ
� − ∂Qi Yi,t;θ( )

∂θ

/
qi Yi,t;θ( ), (14)

where y�. ( y1, . . . , yn). Note that the expression for the
derivative of Yi,t is an IPA estimator; see Suri and
Zazanis (1988).
In our setting, the conditional density of the ob-

servation on the hidden state may not be analyti-
cally known. The LR estimator for the derivative of
log-likelihood (5) can also be derived, but it re-
quires estimating the conditional density of the hidden
Markov chain and its derivatives besides estimating the
observational kernel and associated derivatives, which
adds extra computational burden.
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For more general HMM (4), the sensitivity of the
density with respect to the hidden state variable St
might also be needed. Similar to the proof of Theorem 2,
under appropriate regularity conditions, we have the
distribution sensitivity w.r.t. the hidden state variable s
and the argument z:

∂2 E 1 g X; s, θ( ) ≤ z
{ }[ ]

∂s∂z
� E 1 g X; s, θ( ) ≤ z

{ }
Ψ̃2,i X; s, θ( )

[ ]
,

where

Ψ̃2,i x; s, θ( )
�. ∂Ψ1,i x; s, θ( )

∂s
− ∂g x; s, θ( )

∂xi

( )−1 ∂2g x; s, θ( )
∂s∂xi

Ψ1,i

{
x; s, θ( )

+ ∂g x; s, θ( )
∂s

∂Ψ1,i x; s, θ( )
∂xi

+Ψ1,i x; s, θ( )
[

× ∂ log f x;θ( )
∂xi

− ∂2g x; s, θ( )
∂x2i

∂g x; s, θ( )
∂xi

( )−1( )]}
.

Simulation is needed to implement the derivative
estimator given by (12) for the HMM. Sampling from
the prior distribution of hidden Markov chain is
straightforward, but the variance of the estimate may
be extremely high if the prior distribution and pos-
terior distribution differ significantly, which is very
likely if the number of observations is large.

To overcome the drawbacks of direct sampling, we
sample from the posterior distribution, which is a
consecutive update of the prior distribution by in-
corporating information from observations sequen-
tially, using the Bayes rule. This is often known as the
filtering problem. Because of the sequential structure
of the HMM, sequential Monte Carlo (SMC) can be
used as an iterative sampling algorithm of the fil-
tering measure, which provides estimators of the
conditional expectation with relatively lower vari-
ance. Because of page limitations, we introduce
only the minimal background on Bayesian statistics
and SMC sufficient for understanding our proposed
method. For more details, see Doucet (2001).

By the Bayes rule, the posterior density of the
hidden states S1:t+1�. (S1, . . . ,St+1) conditional on Z1:t�.
(Z1, . . . ,Zt) is

πt+1|t d ·( ) �.
∏t

�1 p Z; S, θ( ) p S+1;S, θ( ) d ·∫
Rt+1

∏t
�1 p Z;S, θ( ) p S+1; S, θ( ) dS1:t+1 ,

where
∏0

 ≡ 1. Thus, the conditional expectation of
pt+1(St+1;θ) is

πt+1|t pt+1
( ) � E

∏t+1
�1

p S;θ( )
[ ]/

E
∏t

�1
p S;θ( )

[ ]
, (15)

where pt(St;θ)�. p(Zt;St, θ). To apply SMC, we de-
compose the log-likelihood (5) into a sum of log
conditional expectations

LT θ( ) � ∑T−1
t�0

logπt+1|t pt+1
( )

.

Taking the derivative, we have

∂LT θ( )
∂θ

� ∑T−1
t�0

∂πt+1|t pt+1
( )

∂θ

/
πt+1|t pt+1

( )
,

and elaborating on (15), we obtain

∂πt+1|t pt+1
( )

∂θ
� ∂

∂θ
E

∏t+1
�1

p S;θ( )
[ ]/

E
∏t

�1
p S;θ( )

[ ]

−πt+1|t pt+1
( ) ∂

∂θ
E

∏t

�1
p S;θ( )

[ ]/

E
∏t

�1
p S;θ( )

[ ]

� E
∑t+1
�1

W S;θ( )
( )∏t+1

�1
p S;θ( )

[ ]/

E
∏t

�1
p S;θ( )

[ ]

−πt+1|t pt+1
( )

E
∑t
�1

W S;θ( )
( )∏t

�1
p S;θ( )

[ ]
/
E

∏t

�1
p S;θ( )

[ ]
,

with W(S;θ) defined in (13).
If we can sample from the posterior distribution

πt+1|t(·) of the hidden states S1:t+1 given observa-
tions Z1:t, then the posterior expectation πt+1|t(ϕ) for a
measurable function ϕ(·) on Rt+1 has the following
unbiased estimator:

π̃J
t+1|t ϕ

( )�. 1
J

∑J
j�1

ϕ S̃
j( )

1:t+1

( )
,

where S̃( j)1:t+1 is the jth particle (sample path) of the
hidden state generated from the posterior distribu-
tion. However, it is infeasible to directly sample from
the posterior distribution because there is no closed
form for the high-dimensional integral in the poste-
rior distribution. Alternatively, we can sample from
the prior distribution (Markov chain) of S1:t+1 and
then use importance sampling to reweight each
sample in the estimator of the posterior expectation
as follows:

πJ
t+1|t ϕ

( )�. 1
J

∑J
j�1

ϕ S
j( )

1:t+1

( )
w

j( )
1:t+1,
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where S( j)1:t+1 is the jth particle of the hidden state
generated from the prior distribution, and

w
j( )

1:t+1�.
∏t

�1 p S
j( )

 ;θ

( )
∑J

j�1
∏t

�1 p S
j( )

 ;θ

( ) .

However, estimator πJ
t+1|t(ϕ) might end up with ex-

tremely large variance. An intuitive explanation is
that the prior distribution of S1:t+1, following a long
Markov chain, might differ significantly from the pos-
terior distribution adjusted by observations, so a large
portion of particles would have their weights (w( j)

1:t+1,
j � 1, . . . , J) close to zero.

In SMC, the particles are propagated over time
using a combination of sequential importance sam-
pling and resampling steps. The resampling step
statistically multiplies and discards particles at each
step to adaptively concentrate particles on the region
of high intensity of the posterior distribution. Spe-
cifically, SMC updates the posterior distribution by
the following sequential mechanism:

π̂J
| ·( ) �.

1
J

∑J
j�1

δ
Ŝ

j( )
1:

·( ) → π̂J
+1| ·( )

�. 1
J

∑J
j�1

δ
Ŝ

j( )
1: ,S

j( )
+1

( ) ·( ) → π̂J
+1|+1 ·( )

�. 1
J

∑J
j�1

δ
Ŝ

j( )
1:+1

·( ),

where δŜ (j)
1:
(·) is a δ-measure concentrated on Ŝ( j)1:, S

( j)
+1

is sampled from the transition function of the hid-
den Markov chain:

S
j( )

+1 � h Y
j( )

 ; Ŝ
j( )

 , θ

( )
,

and Ŝ( j)+1, j � 1, . . . , J, are resampled from S( j)+1, j �
1, . . . , Jwithweights adjustedby the  + 1th observation

ŵ
j( )

+1 �.
p+1 S

j( )
+1;θ

( )
∑J

j�1 p+1 S
j( )

+1;θ
( ) , j � 1, . . . , J.

SMC is consistent and can significantly reduce the
variance of the estimator but introduces a slight bias
that decreases linearly with the number of particles.
Under appropriate regularity conditions,

lim
J→∞ π̂J

t+1|t ϕ
( ) � πt+1|t ϕ

( )
a.s.,

E π̂J
t+1|t ϕ

( )[ ]
� πt+1|t ϕ

( ) +O J−1
( )

.

In addition, its (asymptotic) variance is O( J−1). The
proofs for the asymptotic variance and bias estimate
can be found in Del Moral (2004, chapters 8 and 9).
Generating r.v.s Yt, t � 1, . . . ,T, driving the hidden

Markov chain might be time consuming in practical
applications (Peng et al. 2014, 2016). We can use one
batch of i.i.d. simulated samples Y(i), i � 1, . . . ,N, of
the i.i.d. r.v.s Yt, t � 1, . . . ,T, driving the hidden Mar-
kov chain in (4). For t � 1, . . . ,T, Y( j)

t is resampled
independently from {Y(i)}Ni�1, j � 1, . . . , J. To achieve
this, we only need to generate T independent mul-
tinomial r.v.s, which is computationally cheap, to
obtain T i.i.d. copies of r.v.s generated from the
empirical distribution:

QN ·( ) � 1
N

∑N
j�1

δY j( ) ·( ).

We define the expectation with respect to the em-
pirical distribution as follows:

EN ϕ Y1, . . . ,Yt( )[ ]�. ∫
Rt
ϕ y1, . . . , yt
( )∏t

�1
QN dy

( )
.

To avoid generating input r.v.s in every iteration of
SA, we apply a change of measure:

E ϕ Y1, ..,Yt( )[ ] � E ϕ Ȳ1, .., Ȳt
( )∏t

�1
R Ȳ;θ, θ̄
( )[ ]

,

where Ȳ,  � 1, . . . , t, are i.i.d. random vectors with
density q(·; θ̄) and

R x;θ, θ̄
( )�. q x;θ( )/q x; θ̄

( )
. (16)

With parameter θ updating in SA, the distribution of
input r.v.s under θ could get further away from the
distribution of input r.v.s under θ̄. The degeneracy of
samples can be measured by the effective sample size
(ESS) criterion (Liu and Chen 1998)

ESS�. ∑N
j�1

w̄ j( )( )2{ }−1
,

where w̄( j)�. R( j)/(∑N
i�1R(i)) and R( j) �R(Ȳ( j); θ̄,θ), which

take values between one and M. If the degeneracy
is too high, that is, ESS is below a prespecified thresh-
old, say M/3, then we resimulate a new batch of
input r.v.s.
What remains to be addressed is the fact that the

product of empirical distributions
∏t

�1 QN(dy) is ob-
tained by one batch of simulated samples instead of t
batches of independently generated samples, so the
law of large numbers does not apply. In Section A.4 in
the online appendix, in which the theory of empirical
processes is elaborated, we establish consistency and
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a central limit theorem for the empirical expectation
EN[ϕ(Y1, ..,Yt)].

4. Applications
In this section, we apply GSMLE to the i.i.d. case in
Section 4.1, to the Markovian model in Section 4.2,
and to the HMM in Section 4.3. The algorithms for
implementation can be found in Section A.6 of the
online appendix, and the codes can also be found in
the online supplemental material.

4.1. I.I.D. Case
We suppose i.i.d. observations are generated by a
data-generating process g(Xt;θ) � X1,t + θX2,t, where
X1,t,X2,t ∼ N(0, 1) are independent. For this example,
the MLE has an analytical form:

θ̂ �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T

∑T
t�1

Z2
t − 1

√
.

From Theorems 1 and 2, the two GLR estimators with
i � 1 for the distributional sensitivities in (7), using a
single simulation run, are

− 1 g Xt;θ( ) ≤ z
{ }

X1,t, 1 g Xt;θ( ) ≤ z
{ }

X2,t 1 − X2
1,t

( )
.

From Remark 2 after Theorem 1, there are different
choices of the weight functions in the GLR estima-
tors. Here we choose a GLR estimator that has the
simplest weight function, namely putting all weight
on i � 1. In Online Appendix A.3, we derive a variance-
minimizing estimator and numerically compare dif-
ferent choices of the weight function. We use simulated
samples of Xt � (X1,t,X2,t) to estimate the likelihood
function and its derivative. The true value is set to
θ � 1. The step size in SA algorithm (6) is chosen as
λk � a/k with a � 0.01, starting point θ0 � 0.8, and
feasible set Θ � [0.5, 2]. We take M, the number of
simulated samples per iteration, to be 105 or 104 in our
implementation. Such a large number of samples is
used to ensure a negligible bias coming from the ratio
form of our log-likelihood derivative estimator. In
fact, because θ does not show up in the distribution of
Xt and we have used a large simulated sample size, we
opt to reuse these samples across iterations (i.e., one
can generate new samples in each iteration, but this is
unlikely to substantially affect the subsequent ob-
served algorithmic behaviors). A similar approach is
applied to other examples in this section.

To see the statistical behavior of SA algorithm (6)
with simulated derivative estimates for the likelihood
of a fixed set of observations, we generate one batch of
T � 100 i.i.d. observations. In Figure 1, the GSMLE
converges in about 50 iterations. The true MLE (black
line) lies within the confidence interval of the GSMLE

withM � 104 simulated samples (blue line) andM � 105

simulation samples (red line) based on 100 indepen-
dent experiments. TheGSMLEwithM � 105 simulated
samples has smaller bias and standard error than the
GSMLE with M � 104 simulated samples.
To test the statistical behavior of the GSMLE, we

independently generate 100 batches of 100 and 1,000 i.i.d.
observations and report estimation results in boxplots.
The horizontal (black) line in the middle is the true value.
The (red) line in the middle of each box is the sample
median. The tops and bottoms of each box are the 25th
and 75th percentiles of the estimates, respectively. From
Figure 2, we can see the average behavior of the
GSMLE with M � 105 simulated samples is similar to
the statistical behavior of the true MLE.
If we assumeX1,t ∼ N(0, 1) andX2,t ∼ t2, where t2 is a

t-distribution with two degrees of freedom, the MLE
does not have an analytical form. The GLR estima-
tors for the distribution sensitivities can be obtained
similarly, and for i � 1 in Theorems 1 and 2, the GLR
estimators have the same formas in the case inwhichX2,t
is a standard normal r.v. We run GSMLE with
M � 106, M � 107, and M � 108 simulated samples
under the same initialization of the algorithm as the
previous case. In Figure 3, we report the boxplots of
GSMLE based on independent 100 batches of 100 and
1,000 i.i.d. observations. We can see that it requires
more simulated samples to reduce the ratio bias in cal-
culating the GSMLE compared with the previous case.

4.2. Markovian Case
In this section, GSMLE is applied to both a simple
Markovian examplewith an analytical likelihood and
a queueing example without an analytical likelihood.

Figure 1. (Color online) Trajectories (Solid Lines) of the
Means of the GSMLE with Sample Size M � 104 (Blue Line
in Online Version) and M � 105 (Red Line in Online
Version) Bounded by the Trajectories of Means ± Standard
Errors (Dotted Line) Based on 100 Independent
Experiments for the Linear Gaussian System
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In the queueing example, we illustrate the difference
between the input fitting and output fitting.

4.2.1. Simple Example. In this example, we test the
performance of the GSMLE on a simple Markov
process (autoregressivemodel of order 1) given by the
following data-generating process: for t � 1, . . . ,T,

Zt � g Xt;Zt−1, θ( ) �. θZt−1 + Xt,

where Xt, t � 1, . . . ,T, and Z0 are i.i.d. standard nor-
mal distributed r.v.s. The necessary and sufficient
condition for the time series model to have a stationary
distribution isθ < 1. For this example, theMLE has the
following analytical form:

θ̂ �
∑T

t�1 Zt−1Zt∑T
t�1 Z2

t−1
.

By Theorem 1, the GLR estimators for distribution
sensitivities using a single simulation run are

− 1 g Xt;Zt−1, θ( ) ≤ z
{ }

Xt,

1 g Xt;Zt−1, θ( ) ≤ z
{ }

Zt−1 1 − X2
t

( )
.

We use one batch of M simulated samples of Xt to
estimate the likelihood function and its derivative. The
truevalue is set toθ� 0.5. The step size inSAalgorithm(6)
is chosen as λk � a/k with a � 0.01, the starting point
θ0 � 0.3, and the feasible set Θ � [0.2, 0.8].
Figure 4 presents the boxplots of 100 independent

GSMLEs with 100 and 1,000 observations. In this
example, the GSMLE with M � 104 simulated sam-
ples, GSMLEwithM � 105 simulated samples, and the
true MLE have comparable statistical performances.

4.2.2. Queueing Example. We implement GSMLE on
Example 2 of Section 2. Assume both Bt(θ) and At

Figure 2. (Color online) Boxplots ofMLE andGSMLEwith 100 and 1,000Observations Based on 100 Independent Experiments
for X1,t,X2,t ∼ N(0, 1)

Figure 3. (Color online) Boxplots ofMLE andGSMLEwith 100 and 1,000Observations Based on 100 Independent Experiments
for X1,t ∼ N(0, 1) and X2,t ∼ t2
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follow log-normal distributions. Let X1,t and X2,t
be independent standard normal r.v.s, and Bt(θ) �
eσ1X1,t+θ and At � eσ2X2,t+μ2 . We can rewrite the model
as follows:

g Xt;Zt−1, θ( ) � max 0,Zt−1 θ( ) − eσ2X2,t+μ2
{ }

+ eσ1X1,t+θ, t ≥ 1.

From Theorems 1 and 2, the GLR estimators with i � 1
for distribution sensitivities are

− 1
σ1

1 g Xt;Zt−1, θ( ) ≤ z
{ }

X1,t + σ1( )e− θ+σ1X1,t( ),

− 1
σ1

1 g Xt;Zt−1, θ( ) ≤ z
{ }

× X1,t + σ1( )2
σ1

− X1,t + σ1( ) − 1
σ1

[ ]
e− θ+σ1X1,t( ).

Notice that the exponential term in the estimator
could lead to large variance. To further reduce the
variance, we can do a change of variables. Alternative
estimators can be written as

− eσ
2
1/2−θ

σ1
1 g̃ Xt;Zt−1, θ( ) ≤ z
{ }

X1,t,

− eσ
2
1/2−θ

σ1
1 g̃ Xt;Zt−1, θ( ) ≤ z
{ } X2

1,t

σ1
− X1,t − 1

σ1

[ ]
,

where

g̃ Xt;Zt−1, θ( ) � max 0,Zt−1 θ( ) − eσ2X2,t+μ2
{ }

+ eσ1X1,t−σ21+θ, t ≥ 1.

Letμ2 � σ1 � σ2 � 1 andθ � 0. Setλk � a/kwith a � 0.1,
starting point θ0 � 0.5, and feasible set Θ � [−1, 1].
Similar to the i.i.d. case, we show the statistical be-
havior for the trajectory of SA based on T � 100

observations and M � 105, 106 simulated samples.
MLE-input is the MLE for θ, assuming the input
random variables Bt, t � 1, . . . ,T, are observable:

1
T

∑T
t�1

logBt.

From Figure 5, we can see that GSMLE converges
very fast and is almost identical to the MLE-input
when the sample size reaches 107.
Figure 6 presents the boxplots of 100 indepen-

dent GSMLEs with 100 observations under the true
model and model misspecification. In the case of
model misspecification, we generate the observations
from Example 3 of Section 2. Let ζ1 � eX2,t , ζ2 � e2+X3,t ,
where X2,t and X3,t are independent standard normal
r.v.s, and η � 0.4. So At switches between ζ1 and ζ2,
following a Markov chain. On the other hand, we
calculate the GSMLE based on Example 2 of Section 2
and let At � e1+X2,t .
From Figure 6, we can see thatMLE-input produces

an estimate close to the true service time distribution
parameter value (θ � 0),whereas theGSMLEs that are
calculated based on the likelihood of the output ob-
servations provide estimates significantly different
from the true value. In contrast, GSMLE seems to
perform better than MLE-input in terms of the ac-
curacy on output performance measures. In Figure 7,
we can see that the expected system times of the
first 10 customers in the Lognormal/Lognormal/1
queueingmodelwith the service rate calibrated by the
MLE using the input data grows at a much slower
speed than those in the true model, whereas the
growth rate of the expected system times of the first
six customers in the Lognormal/Lognormal/1 model
with service rate calibrated by the GSMLE(106) using
the output data catches up with the growth rate of the

Figure 4. (Color online) Boxplots ofMLE andGSMLEwith 100 and 1,000Observations Based on 100 Independent Experiments
for a Simple Markov Model
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expected system times of the corresponding cus-
tomers in the true model though the rate lags behind
after nine customers.

In Table 1, we show the estimates of the average
system time of the first 10 customers with data gen-
erated by the true model, the misspecified model
with the service rate fitted by GSMLE(106), and the
misspecified model with the service rate fitted by the
MLE-input. In this example, we can see the average
system time of the misspecified model with the ser-
vice rate fitted by the GSMLE is much closer to the
average system time of the true model than the av-
erage system time of the misspecified model fitted
by the MLE-input. The observation indicates that
even fitting one parameter using output data can

significantly push the statistical property of a mis-
specified M/M/1 queueing model “closer” to the
statistical property of the true model generating the
data. An experiment using real bank data can be
found in Section A.5 of the online appendix.

4.3. Hidden Markov Model
For the HMM, GSMLE can be implemented by Al-
gorithm 1 provided in Online Appendix Section A.5,
and Algorithm 3 outputs the derivative estimator of
log-likelihood (5) by using the SMC approximation
discussed in Section 3.2. The estimators in Algorithm 3
implement a basic SMC sampler to sample from the
posterior distribution. We apply the same techniques
used in Peng et al. (2014) to further reduce variance
and enhance efficiency.
In Algorithm 1, one batch of input random vectors

{X̄(m)}Mm�1 and {Ȳ( j)}Nj�1 obtained by simulating the un-
derlying state space model with a fixed parameter θ̄ is
used throughout the experiment. This can signifi-
cantly reduce the number of simulated samples from
K × (T + 1) × (M + J) required in a straightforward
simulation procedure for estimating the derivative of
log-likelihood (5) to M +N + J.
We implement the GSMLE on Example 4 of Sec-

tion 2. Assume Xt follows a standard normal distri-
bution. From Theorems 1 and 2, the distribution
sensitivities are given by

− 1 g Xt;St, θ( ) ≤ z
{ }

Xt,

− 1 g Xt;St, θ( ) ≤ z
{ }

X2
t − 1

( )
c11 St ≤ θ{ } + c21 St ≥ θ{ }( ).

The interarrival times and service times are assumed
to be lognormally distributed with mean zero and
variance one and mean one and variance one in the
normal distributions, respectively. We set behavior

Figure 5. (Color online) Trajectories of the Means of the
GSMLE with Sample Size M � 106 (Blue Line) and M � 107

(Red Line) Based on 100 Independent Experiments for the
Queueing Example

Figure 6. (Color online) Boxplots of MLE and GSMLE with 100 Observations Under the True Model and Model
Misspecification Based on 100 Independent Experiments for a Queueing Example
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parameter θ � 3, λk � a/k with a � 1, starting point
θ0 � 2.5, and feasible set Θ � [2, 4]. We show one
trajectory of SA based on T � 1,000 observations, and
M � N � 104, 105 simulated samples. For this exam-
ple, we can also calculate the GSMLE based on the
analytical forms of the transitional kernel and its
derivatives and simulation from the true transition
kernel for the hidden states, which is denoted as
GSMLE(∞).

Figure 8 reports the trajectories of GSMLE for one
set of 1,000 observations. We can see the trajectory of
GSMLE(100,000) is very close to GSMLE(∞). With the
initial pointθ0 uniformly distributed inΘ, GSMLE(∞)
outputs 2.86 ± 0.05 (mean ± standard error) based on
100 macro experiments with 1,000 observations.

5. Conclusions
We provide a GSMLE using GLR estimators for the
density and its derivatives, which allows a stochastic
model without an analytical likelihood function to be
directly fitted to the output data. Numerical experi-
ments demonstrate that the GSMLE is flexible in

handling many types of stochastic models with dif-
ferent data-generating structures, including i.i.d. and
Markovian/hiddenMarkovmodels and has potential
to alleviate misleading results obtained by input fit-
ting as illustrated by fitting a misspecified queueing
model with output data, that is, the system times of
the customers.
In future work, we plan to apply the GSMLE to

calibration of complex stochastic models for decision-
making problems with the underlying stochastic
models driven by historic observations. We also plan
to use it in likelihood ratio tests for hypothesis testing,
the Akaike/Bayesian information criteria for model
comparison, and Bayesian estimation for problems in
which data are observed at the output level. Regard-
ing optimization procedures, we investigate further
techniques to handle the ratio bias in our log-likelihood
derivative estimator, for example, letting the sample
size sequentially go to infinity in the SA to get an as-
ymptotically unbiased MLE and randomization tech-
niques, such as in Rhee and Glynn (2015). Develop-
ing more efficient SA algorithms for the GSMLE
utilizing higher-order derivatives of the likelihood
and lower variance distribution sensitivity estima-
tors are also interesting future directions. Finally, we
also plan to study settings with online real-world
data, with which applying GSMLE efficiently re-
quires a joint sequential analysis with respect to both
the real-world and simulated data as well as set-
tings in which the Monte Carlo sampling is costly
so that one would need to utilize their information
most efficiently.

Figure 7. (Color online) The Expected System Times of the
First 10 Customers in the True Model and M/M/1
Queueing Models Calibrated by GSMLE Fitting and MLE-
Input Fitting, Respectively, Based on 104 Independent
Experiments

Table 1. Mean ± Standard Error of the Average System
Time of the First 10 Customers Based on 10,000 Independent
Experiments

True
model

GSMLE
fitting

MLE-input
fitting

Mean ± standard
error

4.3 ± 0.04 4.8 ± 0.04 2.5 ± 0.02

Figure 8. (Color online) Trajectories of the GSMLE with
1,000 Observations Based on Sample Size M � 104 (Blue
Line) and M � 105 (Red Line) and Known Observational
Kernel (Black Line)
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