105,259 research outputs found

    Ultrafast effective multi-level atom method for primordial hydrogen recombination

    Get PDF
    Cosmological hydrogen recombination has recently been the subject of renewed attention because of its importance for predicting the power spectrum of cosmic microwave background anisotropies. It has become clear that it is necessary to account for a large number n >~ 100 of energy shells of the hydrogen atom, separately following the angular momentum substates in order to obtain sufficiently accurate recombination histories. However, the multi-level atom codes that follow the populations of all these levels are computationally expensive, limiting recent analyses to only a few points in parameter space. In this paper, we present a new method for solving the multi-level atom recombination problem, which splits the problem into a computationally expensive atomic physics component that is independent of the cosmology, and an ultrafast cosmological evolution component. The atomic physics component follows the network of bound-bound and bound-free transitions among excited states and computes the resulting effective transition rates for the small set of "interface" states radiatively connected to the ground state. The cosmological evolution component only follows the populations of the interface states. By pre-tabulating the effective rates, we can reduce the recurring cost of multi-level atom calculations by more than 5 orders of magnitude. The resulting code is fast enough for inclusion in Markov Chain Monte Carlo parameter estimation algorithms. It does not yet include the radiative transfer or high-n two-photon processes considered in some recent papers. Further work on analytic treatments for these effects will be required in order to produce a recombination code usable for Planck data analysis.Comment: Version accepted by Phys. Rev. D. Proof of equivalence of effective and standard MLA methods moved to the main text. Some rewording

    Ultrafast effective multi-level atom method for primordial hydrogen recombination

    Get PDF
    Cosmological hydrogen recombination has recently been the subject of renewed attention because of its importance for predicting the power spectrum of cosmic microwave background anisotropies. It has become clear that it is necessary to account for a large number n >~ 100 of energy shells of the hydrogen atom, separately following the angular momentum substates in order to obtain sufficiently accurate recombination histories. However, the multi-level atom codes that follow the populations of all these levels are computationally expensive, limiting recent analyses to only a few points in parameter space. In this paper, we present a new method for solving the multi-level atom recombination problem, which splits the problem into a computationally expensive atomic physics component that is independent of the cosmology, and an ultrafast cosmological evolution component. The atomic physics component follows the network of bound-bound and bound-free transitions among excited states and computes the resulting effective transition rates for the small set of "interface" states radiatively connected to the ground state. The cosmological evolution component only follows the populations of the interface states. By pre-tabulating the effective rates, we can reduce the recurring cost of multi-level atom calculations by more than 5 orders of magnitude. The resulting code is fast enough for inclusion in Markov Chain Monte Carlo parameter estimation algorithms. It does not yet include the radiative transfer or high-n two-photon processes considered in some recent papers. Further work on analytic treatments for these effects will be required in order to produce a recombination code usable for Planck data analysis.Comment: Version accepted by Phys. Rev. D. Proof of equivalence of effective and standard MLA methods moved to the main text. Some rewording

    Noun incorporation in Bribri

    Get PDF

    Landau-Ginzburg Vacua of String, M- and F-Theory at c=12

    Get PDF
    Theories in more than ten dimensions play an important role in understanding nonperturbative aspects of string theory. Consistent compactifications of such theories can be constructed via Calabi-Yau fourfolds. These models can be analyzed particularly efficiently in the Landau-Ginzburg phase of the linear sigma model, when available. In the present paper we focus on those sigma models which have both a Landau-Ginzburg phase and a geometric phase described by hypersurfaces in weighted projective five-space. We describe some of the pertinent properties of these models, such as the cohomology, the connectivity of the resulting moduli space, and mirror symmetry among the 1,100,055 configurations which we have constructed.Comment: LaTeX, 33 pages, 10 PostScript figures using epsfig and psfi

    Topical treatment of peripheral neuropathic pain: applying the evidence

    Get PDF
    Patients with peripheral neuropathic pain (NP) may only achieve partial pain relief with currently recommended first-line oral treatments, which are also associated with systemic adverse events. Topical treatments are currently considered second- or third-line options, but a recent pharmacologic treatment algorithm has called for broader first-line use of these agents. This has highlighted a need to communicate the benefits associated with topical agents, in particular around the efficacy, targeted local action, and limited systemic availability resulting in minimal systemic adverse events and drug-drug interactions
    corecore