9 research outputs found

    Protocols and Algorithms for Adaptive Multimedia Systems

    Get PDF
    The deployment of WebRTC and telepresence systems is going to start a wide-scale adoption of high quality real-time communication. Delivering high quality video usually corresponds to an increase in required network capacity and also requires an assurance of network stability. A real-time multimedia application that uses the Real-time Transport Protocol (RTP) over UDP needs to implement congestion control since UDP does not implement any such mechanism. This thesis is about enabling congestion control for real-time communication, and deploying it on the public Internet containing a mixture of wired and wireless links. A congestion control algorithm relies on congestion cues, such as RTT and loss. Hence, in this thesis, we first propose a framework for classifying congestion cues. We classify the congestion cues as a combination of: where they are measured or observed? And, how is the sending endpoint notified? For each there are two options, i.e., the cues are either observed and reported by an in-path or by an off-path source, and, the cue is either reported in-band or out-of-band, which results in four combinations. Hence, the framework provides options to look at congestion cues beyond those reported by the receiver. We propose a sender-driven, a receiver-driven and a hybrid congestion control algorithm. The hybrid algorithm relies on both the sender and receiver co-operating to perform congestion control. Lastly, we compare the performance of these different algorithms. We also explore the idea of using capacity notifications from middleboxes (e.g., 3G/LTE base stations) along the path as cues for a congestion control algorithm. Further, we look at the interaction between error-resilience mechanisms and show that FEC can be used in a congestion control algorithm for probing for additional capacity. We propose Multipath RTP (MPRTP), an extension to RTP, which uses multiple paths for either aggregating capacity or for increasing error-resilience. We show that our proposed scheduling algorithm works in diverse scenarios (e.g., 3G and WLAN, 3G and 3G, etc.) with paths with varying latencies. Lastly, we propose a network coverage map service (NCMS), which aggregates throughput measurements from mobile users consuming multimedia services. The NCMS sends notifications to its subscribers about the upcoming network conditions, which take these notifications into account when performing congestion control. In order to test and refine the ideas presented in this thesis, we have implemented most of them in proof-of-concept prototypes, and conducted experiments and simulations to validate our assumptions and gain new insights.

    Performance analysis of topologies for Web-based Real-Time Communication (WebRTC)

    Get PDF
    Real-time Communications over the Web (WebRTC) is being developed to be the next big improvement for rich web applications. This enabler allow developers to implement real-time data transfer between browsers by using high level Application Programing Interfaces (APIs). Running real-time applications in browsers may lead to a totally new scenario regarding usability and performance. Congestion control mechanisms may influence the way this data is sent and metrics such as delay, bit rate and loss are now crucial for browsers. Some mechanisms that have been used in other technologies are implemented in those browsers to handle the internals of WebRTC adding complexity to the system but hiding it from the application developer. This new scenario requires a deep study regarding the ability of browsers to adapt to those requirements and to fulfill all the features that are enabled. We investigate how WebRTC performs in a real environment running over an current web application. The capacity of the internal mechanisms to adapt to the variable conditions of the path, consumption resources and rate. Taking those principles, we test a range of topologies and use cases that can be implemented with the current version of WebRTC. Considering this scenario we divide the metrics in two categories, host and network indicators. We compare the results of those tests with the expected output based on the defined protocol in order to evaluate the ability to perform real-time media communication over the browser

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Investigating the Effects of Network Dynamics on Quality of Delivery Prediction and Monitoring for Video Delivery Networks

    Get PDF
    Video streaming over the Internet requires an optimized delivery system given the advances in network architecture, for example, Software Defined Networks. Machine Learning (ML) models have been deployed in an attempt to predict the quality of the video streams. Some of these efforts have considered the prediction of Quality of Delivery (QoD) metrics of the video stream in an effort to measure the quality of the video stream from the network perspective. In most cases, these models have either treated the ML algorithms as black-boxes or failed to capture the network dynamics of the associated video streams. This PhD investigates the effects of network dynamics in QoD prediction using ML techniques. The hypothesis that this thesis investigates is that ML techniques that model the underlying network dynamics achieve accurate QoD and video quality predictions and measurements. The thesis results demonstrate that the proposed techniques offer performance gains over approaches that fail to consider network dynamics. This thesis results highlight that adopting the correct model by modelling the dynamics of the network infrastructure is crucial to the accuracy of the ML predictions. These results are significant as they demonstrate that improved performance is achieved at no additional computational or storage cost. These techniques can help the network manager, data center operatives and video service providers take proactive and corrective actions for improved network efficiency and effectiveness

    XIII Jornadas de ingeniería telemática (JITEL 2017)

    Full text link
    Las Jornadas de Ingeniería Telemática (JITEL), organizadas por la Asociación de Telemática (ATEL), constituyen un foro propicio de reunión, debate y divulgación para los grupos que imparten docencia e investigan en temas relacionados con las redes y los servicios telemáticos. Con la organización de este evento se pretende fomentar, por un lado el intercambio de experiencias y resultados, además de la comunicación y cooperación entre los grupos de investigación que trabajan en temas relacionados con la telemática. En paralelo a las tradicionales sesiones que caracterizan los congresos científicos, se desea potenciar actividades más abiertas, que estimulen el intercambio de ideas entre los investigadores experimentados y los noveles, así como la creación de vínculos y puntos de encuentro entre los diferentes grupos o equipos de investigación. Para ello, además de invitar a personas relevantes en los campos correspondientes, se van a incluir sesiones de presentación y debate de las líneas y proyectos activos de los mencionados equiposLloret Mauri, J.; Casares Giner, V. (2018). XIII Jornadas de ingeniería telemática (JITEL 2017). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/97612EDITORIA

    Ramon Llull's Ars Magna

    Get PDF
    corecore