30 research outputs found

    Regional Address Registries, Governance and Internet Freedom

    Get PDF
    Regional Internet Address Registries (RIRs) are private, nonprofit and transnational governance entities that evolved organically with the growth of the Internet to manage and coordinate Internet Protocol addresses. The RIR's management of Internet address resources is becoming more contentious and more central to global debates over Internet governance. This is happening because of two transformational problems: 1) the depletion of the IPv4 address space; and 2) the attempt to introduce more security into the Internet routing system. We call these problems "transformational" because they raise the stakes of the RIR's policy decisions, make RIR processes more formal and institutionalized, and have the potential to create new, more centralized control mechanisms over Internet service providers and users. A danger in this transition is that the higher stakes and centralized control mechanisms become magnets for political contention, just as ICANN's control of the DNS root did. In order to avoid a repeat of the problems of ICANN, we need to think carefully about the relationship between RIRs, governments, and Internet freedom. In particular, we need to shield RIRs from interference by national governments, and strengthen and institutionalize their status as neutral technical coordinators with limited influence over other areas of Internet governance

    Interdomain Route Leak Mitigation: A Pragmatic Approach

    Get PDF
    The Internet has grown to support many vital functions, but it is not administered by any central authority. Rather, the many smaller networks that make up the Internet - called Autonomous Systems (ASes) - independently manage their own distinct host address space and routing policy. Routers at the borders between ASes exchange information about how to reach remote IP prefixes with neighboring networks over the control plane with the Border Gateway Protocol (BGP). This inter-AS communication connects hosts across AS boundaries to build the illusion of one large, unified global network - the Internet. Unfortunately, BGP is a dated protocol that allows ASes to inject virtually any routing information into the control plane. The Internet’s decentralized administrative structure means that ASes lack visibility of the relationships and policies of other networks, and have little means of vetting the information they receive. Routes are global, connecting hosts around the world, but AS operators can only see routes exchanged between their own network and directly connected neighbor networks. This mismatch between global route scope and local network operator visibility gives rise to adverse routing events like route leaks, which occur when an AS advertises a route that should have been kept within its own network by mistake. In this work, we explore our thesis: that malicious and unintentional route leaks threaten Internet availability, but pragmatic solutions can mitigate their impact. Leaks effectively reroute traffic meant for the leak destination along the leak path. This diversion of flows onto unexpected paths can cause broad disruption for hosts attempting to reach the leak destination, as well as obstruct the normal traffic on the leak path. These events are usually due to misconfiguration and not malicious activity, but we show in our initial work that vrouting-capable adversaries can weaponize route leaks and fraudulent path advertisements to enhance data plane attacks on Internet infrastructure and services. Existing solutions like Internet Routing Registry (IRR) filtering have not succeeded in solving the route leak problem, as globally disruptive route leaks still periodically interrupt the normal functioning of the Internet. We examine one relatively new solution - Peerlocking or defensive AS PATH filtering - where ASes exchange toplogical information to secure their networks. Our measurements reveal that Peerlock is already deployed in defense of the largest ASes, but has found little purchase elsewhere. We conclude by introducing a novel leak defense system, Corelock, designed to provide Peerlock-like protection without the scalability concerns that have limited Peerlock’s scope. Corelock builds meaningful route leak filters from globally distributed route collectors and can be deployed without cooperation from other network

    Blockchain to improve security, knowledge and collaboration inter-agent communication over restrict domains of the internet infrastructure, with human interaction / Blockchain para melhorar a segurança, o conhecimento e a colaboração entre os agentes de comunicação sobre domínios restritos da infraestrutura da Internet, com interação humana

    Get PDF
    This paper describes the development and implementation of a  blockchain to improve security,  knowledge and intel ligence during the communication and col laboration processes between agents under restricted Internet Infrastructure domains. It is a work that proposes the application of a blockchain, independent of platform, in a particular model of agents, but that can be used  in similar proposals, since the results in the specific model were satisfactory. Additional ly, the model al lows interaction and, also, col laboration between humans and agents

    인터넷 AS-Level 토폴로지: 발견과 분석

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 8. Taekyoung Kwon.The Autonomous System (AS) level topology of the Internet is critical for future protocol design, performance evaluation, simulation and analysis. Despite significant research efforts over the past decade, the AS-level topology of the Internet is far from complete. Worse, recent studies highlight that the incompleteness problem is much larger than previously believed. In this thesis, we highlight the importance of two under utilized AS-level topology data sources: Looking glass (LG) servers and Internet Routing Registries (IRR). By querying Looking glass (LG) servers, we build an AS topology estimate of around 143 K AS links from 245 LG servers across 110 countries. We find 20 K new AS links in the AS topology from the LG servers. We observe 620 neighboring ASes of the LG servers that are not sharing their BGP traces with any of RouteViews [49], RIPE-RIS [65], and PCH [66]. We discover 686 new ASes in the AS topology from the LG servers that are hidden from other AS topologies. Overall, we conclude that collecting BGP traces from the LG servers help increase the narrow view of BGP observed from current BGP collectors [38]. However, the AS topology view from the LG servers suffers from limited vantage points of the LG servers and BGP export policies employed by the neighboring ASes of LG servers. Understanding the benefits and limitations of LG servers, we explore Internet Routing Registries (IRR), which are a set of databases used by ASes to register their inter-domain routing policies. More specifically, we first present a methodology to extract AS-level topology (e.g., bilateral and multilateral peering links) from the IRR. We extract 610 K AS links from the IRR dataset of Nov. 1st, 201368% of which can be matched in BGP, traceroute, and in the cliques of Internet eXchange points (IXPs). We find active usage of the IRR by member ASes of IXPs, which results in inferring peering matrices of many large and small IXPs. Finally, we present a methodology to infer business relationships between ASes using routing polices stored in the IRR. We show that the overall accuracy of our algorithm is comparable (97% for p2c, 95% for p2p links) to the existing algorithms, which infer AS relationships using BGP AS paths. We conclude that the IRR is a strong complementary source for better understandings of the structure, performance, dynamics, and evolution of the Internet since it is actively used by a large number of operational ASes in the Internet.Abstract i Contents iii List of Figures v List of Tables vii Chapter 1 Introduction 1 Chapter 2 Background 6 2.1 Inter-domainRouting ........................ 6 2.2 ImportanceofResearchonAStopology . . . . . . . . . . . . . . 8 2.3 LookingGlassServers ........................ 13 2.4 InternetRoutingRegistries ..................... 15 2.5 RelatedWork............................. 17 Chapter 3 METHODOLOGY 20 3.1 ASTopologyderivedfromLGservers ............... 20 3.2 ExploringIRRforAS-levelTopology................ 22 3.2.1 IXPs(IPPrefixes,ASNs,andMembers) . . . . . . . . . . 22 3.2.2 Route Servers (ASNs and AS-Set Objects) . . . . . 23 3.2.3 PreprocessingIRRdata ................... 23 3.2.4 Extracting AS Links and Policies from IRR . . . . . . . . 27 3.3 ASRelationshipInference ...................... 30 Chapter 4 Datasets 32 4.1 ASTopologies............................. 32 4.2 ASRelationshipDatasets ...................... 34 Chapter 5 Analysis 36 5.1 ComparisonofBGPfeeders..................... 36 5.2 RegistrationofRoutingPoliciesintheIRR . . . . . . . . . . . . 39 5.2.1 Policiesinaut-numObjects................. 39 5.2.2 Number of Local Preference (LocalPref) Values in the IRR 5.3 AnalysisonAS-levelTopology ................... 43 5.3.1 Overlapping and Missing IRR-based AS Links . . . . . . 43 5.3.2 BGP-based AS Links vs. IRR-based AS Links . . . . . . . 48 5.3.3 ASDegreeDistribution ................... 50 Chapter 6 AS Relationship Inference 53 6.1 EvaluationResults .......................... 53 Chapter 7 Summary & Future Work 55 요약 65 Acknowledgements 67Docto

    Lowering Legal Barriers to RPKI Adoption

    Get PDF
    Across the Internet, mistaken and malicious routing announcements impose significant costs on users and network operators. To make routing announcements more reliable and secure, Internet coordination bodies have encouraged network operators to adopt the Resource Public Key Infrastructure (“RPKI”) framework. Despite this encouragement, RPKI’s adoption rates are low, especially in North America.This report presents the results of a year-long investigation into the hypothesis—widespread within the network operator community—that legal issues pose barriers to RPKI adoption and are one cause of the disparities between North America and other regions of the world. On the basis of interviews and analysis of the legal framework governing RPKI, the report evaluates the issues raised by community members and proposes a number of strategies to reduce or circumvent the barriers that are material. The report also describes substantial action taken this year by the American Registry for Internet Numbers (“ARIN”) and other private organizations in light of public dialogue about RPKI

    A pragmatic approach toward securing inter-domain routing

    Get PDF
    Internet security poses complex challenges at different levels, where even the basic requirement of availability of Internet connectivity becomes a conundrum sometimes. Recent Internet service disruption events have made the vulnerability of the Internet apparent, and exposed the current limitations of Internet security measures as well. Usually, the main cause of such incidents, even in the presence of the security measures proposed so far, is the unintended or intended exploitation of the loop holes in the protocols that govern the Internet. In this thesis, we focus on the security of two different protocols that were conceived with little or no security mechanisms but play a key role both in the present and the future of the Internet, namely the Border Gateway Protocol (BGP) and the Locator Identifier Separation Protocol (LISP). The BGP protocol, being the de-facto inter-domain routing protocol in the Internet, plays a crucial role in current communications. Due to lack of any intrinsic security mechanism, it is prone to a number of vulnerabilities that can result in partial paralysis of the Internet. In light of this, numerous security strategies were proposed but none of them were pragmatic enough to be widely accepted and only minor security tweaks have found the pathway to be adopted. Even the recent IETF Secure Inter-Domain Routing (SIDR) Working Group (WG) efforts including, the Resource Public Key Infrastructure (RPKI), Route Origin authorizations (ROAs), and BGP Security (BGPSEC) do not address the policy related security issues, such as Route Leaks (RL). Route leaks occur due to violation of the export routing policies among the Autonomous Systems (ASes). Route leaks not only have the potential to cause large scale Internet service disruptions but can result in traffic hijacking as well. In this part of the thesis, we examine the route leak problem and propose pragmatic security methodologies which a) require no changes to the BGP protocol, b) are neither dependent on third party information nor on third party security infrastructure, and c) are self-beneficial regardless of their adoption by other players. Our main contributions in this part of the thesis include a) a theoretical framework, which, under realistic assumptions, enables a domain to autonomously determine if a particular received route advertisement corresponds to a route leak, and b) three incremental detection techniques, namely Cross-Path (CP), Benign Fool Back (BFB), and Reverse Benign Fool Back (R-BFB). Our strength resides in the fact that these detection techniques solely require the analytical usage of in-house control-plane, data-plane and direct neighbor relationships information. We evaluate the performance of the three proposed route leak detection techniques both through real-time experiments as well as using simulations at large scale. Our results show that the proposed detection techniques achieve high success rates for countering route leaks in different scenarios. The motivation behind LISP protocol has shifted over time from solving routing scalability issues in the core Internet to a set of vital use cases for which LISP stands as a technology enabler. The IETF's LISP WG has recently started to work toward securing LISP, but the protocol still lacks end-to-end mechanisms for securing the overall registration process on the mapping system ensuring RLOC authorization and EID authorization. As a result LISP is unprotected against different attacks, such as RLOC spoofing, which can cripple even its basic functionality. For that purpose, in this part of the thesis we address the above mentioned issues and propose practical solutions that counter them. Our solutions take advantage of the low technological inertia of the LISP protocol. The changes proposed for the LISP protocol and the utilization of existing security infrastructure in our solutions enable resource authorizations and lay the foundation for the needed end-to-end security

    Novel architectures and strategies for security offloading

    Get PDF
    Internet has become an indispensable and powerful tool in our modern society. Its ubiquitousness, pervasiveness and applicability have fostered paradigm changes around many aspects of our lives. This phenomena has positioned the network and its services as fundamental assets over which we rely and trust. However, Internet is far from being perfect. It has considerable security issues and vulnerabilities that jeopardize its main core functionalities with negative impact over its players. Furthermore, these vulnerabilities¿ complexities have been amplified along with the evolution of Internet user mobility. In general, Internet security includes both security for the correct network operation and security for the network users and endpoint devices. The former involves the challenges around the Internet core control and management vulnerabilities, while the latter encompasses security vulnerabilities over end users and endpoint devices. Similarly, Internet mobility poses major security challenges ranging from routing complications, connectivity disruptions and lack of global authentication and authorization. The purpose of this thesis is to present the design of novel architectures and strategies for improving Internet security in a non-disruptive manner. Our novel security proposals follow a protection offloading approach. The motives behind this paradigm target the further enhancement of the security protection while minimizing the intrusiveness and disturbance over the Internet routing protocols, its players and users. To accomplish such level of transparency, the envisioned solutions leverage on well-known technologies, namely, Software Defined Networks, Network Function Virtualization and Fog Computing. From the Internet core building blocks, we focus on the vulnerabilities of two key routing protocols that play a fundamental role in the present and the future of the Internet, i.e., the Border Gateway Protocol (BGP) and the Locator-Identifier Split Protocol (LISP). To this purpose, we first investigate current BGP vulnerabilities and countermeasures with emphasis in an unresolved security issue defined as Route Leaks. Therein, we discuss the reasons why different BGP security proposals have failed to be adopted, and the necessity to propose innovative solutions that minimize the impact over the already deployed routing solution. To this end, we propose pragmatic security methodologies to offload the protection with the following advantages: no changes to the BGP protocol, neither dependency on third party information nor on third party security infrastructure, and self-beneficial. Similarly, we research the current LISP vulnerabilities with emphasis on its control plane and mobility support. We leverage its by-design separation of control and data planes to propose an enhanced location-identifier registration process of end point identifiers. This proposal improves the mobility of end users with regards on securing a dynamic traffic steering over the Internet. On the other hand, from the end user and devices perspective we research new paradigms and architectures with the aim of enhancing their protection in a more controllable and consolidated manner. To this end, we propose a new paradigm which shifts the device-centric protection paradigm toward a user-centric protection. Our proposal focus on the decoupling or extending of the security protection from the end devices toward the network edge. It seeks the homogenization of the enforced protection per user independently of the device utilized. We further investigate this paradigm in a mobility user scenario. Similarly, we extend this proposed paradigm to the IoT realm and its intrinsic security challenges. Therein, we propose an alternative to protect both the things, and the services that leverage from them by consolidating the security at the network edge. We validate our proposal by providing experimental results from prof-of-concepts implementations.Internet se ha convertido en una poderosa e indispensable herramienta para nuestra sociedad moderna. Su omnipresencia y aplicabilidad han promovido grandes cambios en diferentes aspectos de nuestras vidas. Este fenómeno ha posicionado a la red y sus servicios como activos fundamentales sobre los que contamos y confiamos. Sin embargo, Internet está lejos de ser perfecto. Tiene considerables problemas de seguridad y vulnerabilidades que ponen en peligro sus principales funcionalidades. Además, las complejidades de estas vulnerabilidades se han ampliado junto con la evolución de la movilidad de usuarios de Internet y su limitado soporte. La seguridad de Internet incluye tanto la seguridad para el correcto funcionamiento de la red como la seguridad para los usuarios y sus dispositivos. El primero implica los desafíos relacionados con las vulnerabilidades de control y gestión de la infraestructura central de Internet, mientras que el segundo abarca las vulnerabilidades de seguridad sobre los usuarios finales y sus dispositivos. Del mismo modo, la movilidad en Internet plantea importantes desafíos de seguridad que van desde las complicaciones de enrutamiento, interrupciones de la conectividad y falta de autenticación y autorización globales. El propósito de esta tesis es presentar el diseño de nuevas arquitecturas y estrategias para mejorar la seguridad de Internet de una manera no perturbadora. Nuestras propuestas de seguridad siguen un enfoque de desacople de la protección. Los motivos detrás de este paradigma apuntan a la mejora adicional de la seguridad mientras que minimizan la intrusividad y la perturbación sobre los protocolos de enrutamiento de Internet, sus actores y usuarios. Para lograr este nivel de transparencia, las soluciones previstas aprovechan nuevas tecnologías, como redes definidas por software (SDN), virtualización de funciones de red (VNF) y computación en niebla. Desde la perspectiva central de Internet, nos centramos en las vulnerabilidades de dos protocolos de enrutamiento clave que desempeñan un papel fundamental en el presente y el futuro de Internet, el Protocolo de Puerta de Enlace Fronterizo (BGP) y el Protocolo de Separación Identificador/Localizador (LISP ). Para ello, primero investigamos las vulnerabilidades y medidas para contrarrestar un problema no resuelto en BGP definido como Route Leaks. Proponemos metodologías pragmáticas de seguridad para desacoplar la protección con las siguientes ventajas: no cambios en el protocolo BGP, cero dependencia en la información de terceros, ni de infraestructura de seguridad de terceros, y de beneficio propio. Del mismo modo, investigamos las vulnerabilidades actuales sobre LISP con énfasis en su plano de control y soporte de movilidad. Aprovechamos la separacçón de sus planos de control y de datos para proponer un proceso mejorado de registro de identificadores de ubicación y punto final, validando de forma segura sus respectivas autorizaciones. Esta propuesta mejora la movilidad de los usuarios finales con respecto a segurar un enrutamiento dinámico del tráfico a través de Internet. En paralelo, desde el punto de vista de usuarios finales y dispositivos investigamos nuevos paradigmas y arquitecturas con el objetivo de mejorar su protección de forma controlable y consolidada. Con este fin, proponemos un nuevo paradigma hacia una protección centrada en el usuario. Nuestra propuesta se centra en el desacoplamiento o ampliación de la protección de seguridad de los dispositivos finales hacia el borde de la red. La misma busca la homogeneización de la protección del usuario independientemente del dispositivo utilizado. Además, investigamos este paradigma en un escenario con movilidad. Validamos nuestra propuesta proporcionando resultados experimentales obtenidos de diferentes experimentos y pruebas de concepto implementados.Postprint (published version
    corecore