466,816 research outputs found

    A FAMILY OF CATION ATPASE-LIKE MOLECULES FROM PLASMODIUM-FALCIPARUM

    Get PDF
    Abstract. We report the nucleotide and derived amino acid sequence of the ATPase 1 gene from Plasmodium falciparum. The amino acid sequence shares homology with the family of "P-type cation transloeating ATPases in conserved regions important for nucleotide binding, conformational change, or phosphorylation. The gene, which is present on chromosome 5, has a product longer than any other reported for a P-type ATPase. Interstrain analysis from 12 parasite isolates by the polymerase chain reaction reveals that a 330-bp nucleotide sequence encoding three cytoplasmic regions conserved in cation ATPases (regions a-c) is of constant length. By contrast, another 360-bp sequence which is one of four regions we refer to as

    Analysis of the Size of the Carcinoembryonic Antigen (CEA) Gene Family

    Get PDF
    Five members of the human CEA gene family [human pregnancy-specific β1-glycoprotein (PSβG), hsCGM1, 2, 3 and 4] have been isolated and identified through sequencing the exons containing their N-terminal domains. Sequence comparisons with published data for CEA and related molecules reveal the existence of highly-conserved gene subgroups within the CEA family. Together with published data eleven CEA family members have so far been determined. Apart from the highly conserved coding sequences, these genes also show strong sequence conservation in their introns, indicating a duplication of whole gene units during the evolution of the CEA gene family

    A cryptic RNA-binding domain mediates Syncrip recognition and exosomal partitioning of miRNA targets

    Get PDF
    Exosomal miRNA transfer is a mechanism for cell-cell communication that is important in the immune response, in the functioning of the nervous system and in cancer. Syncrip/hnRNPQ is a highly conserved RNA-binding protein that mediates the exosomal partition of a set of miRNAs. Here, we report that Syncrip's amino-terminal domain, which was previously thought to mediate protein-protein interactions, is a cryptic, conserved and sequence-specific RNA-binding domain, designated NURR (N-terminal unit for RNA recognition). The NURR domain mediates the specific recognition of a short hEXO sequence defining Syncrip exosomal miRNA targets, and is coupled by a non-canonical structural element to Syncrip's RRM domains to achieve high-affinity miRNA binding. As a consequence, Syncrip-mediated selection of the target miRNAs implies both recognition of the hEXO sequence by the NURR domain and binding of the RRM domains 5′ to this sequence. This structural arrangement enables Syncrip-mediated selection of miRNAs with different seed sequences. © 2018 The Author(s)

    Predicting the effectiveness of hepatitis C virus neutralizing antibodies by bioinformatic analysis of conserved epitope residues using public sequence data

    Get PDF
    Hepatitis C virus (HCV) is a global health issue. Although direct-acting antivirals are available to target HCV, there is currently no vaccine. The diversity of the virus is a major obstacle to HCV vaccine development. One approach toward a vaccine is to utilize a strategy to elicit broadly neutralizing antibodies (bNAbs) that target highly-conserved epitopes. The conserved epitopes of bNAbs have been mapped almost exclusively to the E2 glycoprotein. In this study, we have used HCV-GLUE, a bioinformatics resource for HCV sequence data, to investigate the major epitopes targeted by well-characterized bNAbs. Here, we analyze the level of conservation of each epitope by genotype and subtype and consider the most promising bNAbs identified to date for further study as potential vaccine leads. For the most conserved epitopes, we also identify the most prevalent sequence variants in the circulating HCV population. We examine the distribution of E2 sequence data from across the globe and highlight regions with no coverage. Genotype 1 is the most prevalent genotype worldwide, but in many regions, it is not the dominant genotype. We find that the sequence conservation data is very encouraging; several bNAbs have a high level of conservation across all genotypes suggesting that it may be unnecessary to tailor vaccines according to the geographical distribution of genotypes

    Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development.

    Get PDF
    During the phylotypic period, embryos from different genera show similar gene expression patterns, implying common regulatory mechanisms. Here we set out to identify enhancers involved in the initial events of cardiogenesis, which occurs during the phylotypic period. We isolate early cardiac progenitor cells from zebrafish embryos and characterize 3838 open chromatin regions specific to this cell population. Of these regions, 162 overlap with conserved non-coding elements (CNEs) that also map to open chromatin regions in human. Most of the zebrafish conserved open chromatin elements tested drive gene expression in the developing heart. Despite modest sequence identity, human orthologous open chromatin regions recapitulate the spatial temporal expression patterns of the zebrafish sequence, potentially providing a basis for phylotypic gene expression patterns. Genome-wide, we discover 5598 zebrafish-human conserved open chromatin regions, suggesting that a diverse repertoire of ancient enhancers is established prior to organogenesis and the phylotypic period

    A yeast gene (BLH1) encodes a polypeptide with high homology to vertebrate bleomycin hydrolase, a family member of thiol proteinases

    Get PDF
    We have purified bleomycin hydrolase from yeast (molecular mass 55 000 Da). Using protein sequence-derived degenerate oligonucleotide primers and amplification by polymerase chain reaction, the yeast gene BLH1 was isolated and characterized. The deduced amino acid sequence (483 amino acids) exhibits surprisingly high homology to vertebrate bleomycin hydrolase (43% identical residues and 22% conserved exchanges). It contains three blocks of sequences found conserved in other members of the thiol proteinase family and thought to be associated with the catalytic centre. BLH1 is non-essential under all growth conditions tested. However, in the presence of 3.5 mg bleomycin/ml medium wild-type cells have a slight growth advantage compared to blh1 mutant cells

    A novel mathematical tool for generating highly conserved protein domain via different organismal genomic landscapes

    Get PDF
    Darwinian evolution hypothesizes that a short stretch of DNA was first constructed and then it expanded to give rise to a long strand. This long strand then produced a mix of exons, introns and repetitive DNA sequence. The order of production of above three kinds of DNA sequence is unknown. Reshuffling of stretches of DNA like above within organisms has given rise to different chromosomes. Till date it is not known how this process is governed. In this paper we show that starting with a sixteen base-pair human olfactory DNA sequence one can form a highly conserved protein domain. Once this domain is formed repetitive DNA sequences of a particular kind starts generating which signifies that this particular conserved protein domain will be unique in nature. The entire mathematical exercise presented in this paper is based on simplest possible context free L-System which we think has been adopted by biological system in general

    Comparative genomic analysis and molecular examination of the diversity of enterotoxigenic Escherichia coli isolates from Chile

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) is one of the most common diarrheal pathogens in the low- and middle-income regions of the world, however a systematic examination of the genomic content of isolates from Chile has not yet been undertaken. Whole genome sequencing and comparative analysis of a collection of 125 ETEC isolates from three geographic locations in Chile, allowed the interrogation of phylogenomic groups, sequence types and genes specific to isolates from the different geographic locations. A total of 80.8% (101/125) of the ETEC isolates were identified in E. coli phylogroup A, 15.2% (19/125) in phylogroup B, and 4.0% (5/125) in phylogroup E. The over-representation of genomes in phylogroup A was significantly different from other global ETEC genomic studies. The Chilean ETEC isolates could be further subdivided into sub-clades similar to previously defined global ETEC reference lineages that had conserved multi-locus sequence types and toxin profiles. Comparison of the gene content of the Chilean ETEC identified genes that were unique based on geographic location within Chile, phylogenomic classifications or sequence type. Completion of a limited number of genomes provided insight into the ETEC plasmid content, which is conserved in some phylogenomic groups and not conserved in others. These findings suggest that the Chilean ETEC isolates contain unique virulence factor combinations and genomic content compared to global reference ETEC isolates
    corecore