18,753 research outputs found

    Applications of the DFLU flux to systems of conservation laws

    Get PDF
    The DFLU numerical flux was introduced in order to solve hyperbolic scalar conservation laws with a flux function discontinuous in space. We show how this flux can be used to solve systems of conservation laws. The obtained numerical flux is very close to a Godunov flux. As an example we consider a system modeling polymer flooding in oil reservoir engineering

    Convergence of fully discrete schemes for diffusive dispersive conservation laws with discontinuous coefficient

    Get PDF
    We are concerned with fully-discrete schemes for the numerical approximation of diffusive-dispersive hyperbolic conservation laws with a discontinuous flux function in one-space dimension. More precisely, we show the convergence of approximate solutions, generated by the scheme corresponding to vanishing diffusive-dispersive scalar conservation laws with a discontinuous coefficient, to the corresponding scalar conservation law with discontinuous coefficient. Finally, the convergence is illustrated by several examples. In particular, it is delineated that the limiting solutions generated by the scheme need not coincide, depending on the relation between diffusion and the dispersion coefficients, with the classical Kruzkov-Oleinik entropy solutions, but contain nonclassical undercompressive shock waves.Comment: 38 Pages, 6 figure

    A posteriori analysis of discontinuous galerkin schemes for systems of hyperbolic conservation laws

    Get PDF
    In this work we construct reliable a posteriori estimates for some semi- (spatially) discrete discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the relative entropy stability framework, which leads to error control in the case of smooth solutions. The methodology we use is quite general and allows for a posteriori control of discontinuous Galerkin schemes with standard flux choices which appear in the approximation of conservation laws. In addition to the analysis, we conduct some numerical benchmarking to test the robustness of the resultant estimator

    Convergence of the numerical approximations and well-posedness: Nonlocal conservation laws with rough flux

    Full text link
    We study a class of nonlinear nonlocal conservation laws with discontinuous flux, modeling crowd dynamics and traffic flow, without any additional conditions on finiteness/discreteness of the set of discontinuities or on the monotonicity of the kernel/the discontinuous coefficient. Strong compactness of the Godunov and Lax-Friedrichs type approximations is proved, providing the existence of entropy solutions. A proof of the uniqueness of the adapted entropy solutions is provided, establishing the convergence of the entire sequence of finite volume approximations to the adapted entropy solution. As per the current literature, this is the first well-posedness result for the aforesaid class and connects the theory of nonlocal conservation laws (with discontinuous flux), with its local counterpart in a generic setup. Some numerical examples are presented to display the performance of the schemes and explore the limiting behavior of these nonlocal conservation laws to their local counterparts

    Scalar conservation laws with Charatheodory flux revisited

    Get PDF
    We introduce a new approach for dealing with scalar conservation laws with the flux discontinuous with respect to the space variable and merely continuous with respect to the state variable which employs a variant of the kinetic formulation. We use it to improve results about the existence of solutions for non-degenerate scalar conservation laws with Caratheodory flux under a variant of non-degeneracy conditions
    • 

    corecore