11 research outputs found

    Distributed Optimal Control and Application to Consensus of Multi-Agent Systems

    Full text link
    This paper develops a novel approach to the consensus problem of multi-agent systems by minimizing a weighted state error with neighbor agents via linear quadratic (LQ) optimal control theory. Existing consensus control algorithms only utilize the current state of each agent, and the design of distributed controller depends on nonzero eigenvalues of the communication topology. The presented optimal consensus controller is obtained by solving Riccati equations and designing appropriate observers to account for agents' historical state information. It is shown that the corresponding cost function under the proposed controllers is asymptotically optimal. Simulation examples demonstrate the effectiveness of the proposed scheme, and a much faster convergence speed than the conventional consensus methods. Moreover, the new method avoids computing nonzero eigenvalues of the communication topology as in the traditional consensus methods

    Communication-constrained feedback stability and Multi-agent System consensusability in Networked Control Systems

    Get PDF
    With the advances in wireless communication, the topic of Networked Control Systems (NCSs) has become an interesting research subject. Moreover, the advantages they offer convinced companies to implement and use data networks for remote industrial control and process automation. Data networks prove to be very efficient for controlling distributed systems, which would otherwise require complex wiring connections on large or inaccessible areas. In addition, they are easier to maintain and more cost efficient. Unfortunately, stability and performance control is always going to be affected by network and communication issues, such as band-limited channels, quantization errors, sampling, delays, packet dropouts or system architecture. The first part of this research aims to study the effects of both input and output quantization on an NCS. Both input and output quantization errors are going to be modeled as sector bounded multiplicative uncertainties, the main goal being the minimization of the quantization density, while maintaining feedback stability. Modeling quantization errors as uncertainties allows for robust optimal control strategies to be applied in order to study the accepted uncertainty levels, which are directly related to the quantization levels. A new feedback law is proposed that will improve closed-loop system stability by increasing the upper bound of allowed uncertainty, and thus allowing the use of a coarser quantizer. Another aspect of NCS deals with coordination of the independent agents within a Multi-agent System (MAS). This research addresses the consensus problem for a set of discrete-time agents communicating through a network with directed information flow. It examines the combined effect of agent dynamics and network topology on agents\u27 consensusability. Given a particular consensus protocol, a sufficient condition is given for agents to be consensusable. This condition requires the eigenvalues of the digraph modeling the network topology to be outer bounded by a fan-shaped area determined by the Mahler measure of the agents\u27 dynamics matrix

    Dynamic quantized consensus under DoS attacks: Towards a tight zooming-out factor

    Full text link
    This paper deals with dynamic quantized consensus of dynamical agents in a general form under packet losses induced by Denial-of-Service (DoS) attacks. The communication channel has limited bandwidth and hence the transmitted signals over the network are subject to quantization. To deal with agent's output, an observer is implemented at each node. The state of the observer is quantized by a finite-level quantizer and then transmitted over the network. To solve the problem of quantizer overflow under malicious packet losses, a zooming-in and out dynamic quantization mechanism is designed. By the new quantized controller proposed in the paper, the zooming-out factor is lower bounded by the spectral radius of the agent's dynamic matrix. A sufficient condition of quantization range is provided under which the finite-level quantizer is free of overflow. A sufficient condition of tolerable DoS attacks for achieving consensus is also provided. At last, we study scalar dynamical agents as a special case and further tighten the zooming-out factor to a value smaller than the agent's dynamic parameter. Under such a zooming-out factor, it is possible to recover the level of tolerable DoS attacks to that of unquantized consensus, and the quantizer is free of overflow

    Design and implementation of predictive control for networked multi-process systems

    Get PDF
    This thesis is concerned with the design and application of the prediction method in the NMAS (networked multi-agent system) external consensus problem. The prediction method has been popular in networked single agent systems due to its capability of actively compensating for network-related constraints. This characteristic has motivated researchers to apply the prediction method to closed-loop multi-process controls over network systems. This thesis conducts an in-depth analysis of the suitability of the prediction method for the control of NMAS. In the external consensus problem, NMAS agents must achieve a common output (e.g. water level) that corresponds to the designed consensus protocol. The output is determined by the external reference input, which is provided to only one agent in the NMAS. This agreement is achieved through data exchanges between agents over network communications. In the presence of a network, the existence of network delay and data loss is inevitable. The main challenge in this thesis is thus to design an external consensus protocol with an efficient capability for network constraints compensation. The main contribution of this thesis is the enhancement of the prediction algorithm’s capability in NMAS applications. The external consensus protocol is presented for heterogeneous NMAS with four types of network constraints by utilising the developed prediction algorithm. The considered network constraints are constant network delay, asymmetric constant network delay, bounded random network delay, and large consecutive data losses. In the first case, this thesis presents the designed algorithm, which is able to compensate for uniform constant network delay in linear heterogeneous NMAS. The result is accompanied by stability criteria of the whole NMAS, an optimal coupling gains selection analysis, and empirical data from the experimental results. ‘Uniform network delay’ in this context refers to a situation in which the agent experiences a delay in accessing its own information, which is identical to the delay in data transfer from its neighbouring agent(s) in the network In the second case, this thesis presents an extension of the designed algorithm in the previous chapter, with the enhanced capability of compensating for asymmetric constant network delay in the NMAS. In contrast with the first case—which required the same prediction length as each neighbouring agent, subject to the same values of constant network delay—this case imposed varied constant network delays between agents, which required multi-prediction lengths for each agent. Thus, to simplify the computation, we selected a single prediction length for all agents and determined the possible maximum value of the constant network delay that existed in the NMAS. We tested the designed control algorithm on three heterogeneous pilotscale test rig setups. In the third case, we present a further enhancement of the designed control algorithm, which includes the capability of compensating for bounded random network delay in the NMAS. We achieve this by adding delay measurement signal generator within each agent control system. In this work, the network delay is considered to be half of the measured total delay in the network loop, which can be measured using a ramp signal. This method assumes that the duration for each agent to receive data from its neighbouring agent is equal to the time for the agent’s own transmitted data to be received by its neighbouring agent(s). In the final case, we propose a novel strategy for combining the predictive control with a new gain error ratio (GER) formula. This strategy is not only capable of compensating for a large number of consecutive data losses (CDLs) in the external consensus problem; it can also compensate for network constraints without affecting the consensus convergence time of the whole system. Thus, this strategy is not only able to solve the external consensus problem but is also robust to the number of CDL occurrences in NMAS. In each case, the designed control algorithm is compared with a Proportional-Integral (PI) controller. The evaluation of the NMAS output performance is conducted for each by simulations, analytical calculations, and practical experiments. In this thesis, the research work is accomplished through the integration of basic blocks and a bespoke Networked Control toolbox in MATLAB Simulink, together with NetController hardware

    Dynamic Quantized Consensus of General Linear Multi-agent Systems under Denial-of-Service Attacks

    Get PDF
    In this paper, we study multi-agent consensus problems under Denial-of-Service (DoS) attacks with data rate constraints. We first consider the leaderless consensus problem and after that we briefly present the analysis of leader-follower consensus. The dynamics of the agents take general forms modeled as homogeneous linear time-invariant systems. In our analysis, we derive lower bounds on the data rate for the multi-agent systems to achieve leaderless and leader-follower consensus in the presence of DoS attacks, under which the issue of overflow of quantizer is prevented. The main contribution of the paper is the characterization of the trade-off between the tolerable DoS attack levels for leaderless and leader-follower consensus and the required data rates for the quantizers during the communication attempts among the agents. To mitigate the influence of DoS attacks, we employ dynamic quantization with zooming-in and zooming-out capabilities for avoiding quantizer saturation

    Cooperative Strategies for Management of Power Quality Problems in Voltage-Source Converter-based Microgrids

    Get PDF
    The development of cooperative control strategies for microgrids has become an area of increasing research interest in recent years, often a result of advances in other areas of control theory such as multi-agent systems and enabled by emerging wireless communications technology, machine learning techniques, and power electronics. While some possible applications of the cooperative control theory to microgrids have been described in the research literature, a comprehensive survey of this approach with respect to its limitations and wide-ranging potential applications has not yet been provided. In this regard, an important area of research into microgrids is developing intelligent cooperative operating strategies within and between microgrids which implement and allocate tasks at the local level, and do not rely on centralized command and control structures. Multi-agent techniques are one focus of this research, but have not been applied to the full range of power quality problems in microgrids. The ability for microgrid control systems to manage harmonics, unbalance, flicker, and black start capability are some examples of applications yet to be fully exploited. During islanded operation, the normal buffer against disturbances and power imbalances provided by the main grid coupling is removed, this together with the reduced inertia of the microgrid (MG), makes power quality (PQ) management a critical control function. This research will investigate new cooperative control techniques for solving power quality problems in voltage source converter (VSC)-based AC microgrids. A set of specific power quality problems have been selected for the application focus, based on a survey of relevant published literature, international standards, and electricity utility regulations. The control problems which will be addressed are voltage regulation, unbalance load sharing, and flicker mitigation. The thesis introduces novel approaches based on multi-agent consensus problems and differential games. It was decided to exclude the management of harmonics, which is a more challenging issue, and is the focus of future research. Rather than using model-based engineering design for optimization of controller parameters, the thesis describes a novel technique for controller synthesis using off-policy reinforcement learning. The thesis also addresses the topic of communication and control system co-design. In this regard, stability of secondary voltage control considering communication time-delays will be addressed, while a performance-oriented approach to rate allocation using a novel solution method is described based on convex optimization
    corecore