329 research outputs found

    Distributed Fusion Estimation with Sensor Gain Degradation and Markovian Delays

    Get PDF
    This paper investigates the distributed fusion estimation of a signal for a class of multi-sensor systems with random uncertainties both in the sensor outputs and during the transmission connections. The measured outputs are assumed to be affected by multiplicative noises, which degrade the signal, and delays may occur during transmission. These uncertainties are commonly described by means of independent Bernoulli random variables. In the present paper, the model is generalised in two directions: (i) at each sensor, the degradation in the measurements is modelled by sequences of random variables with arbitrary distribution over the interval [0, 1]; (ii) transmission delays are described using three-state homogeneous Markov chains (Markovian delays), thus modelling dependence at different sampling times. Assuming that the measurement noises are correlated and cross-correlated at both simultaneous and consecutive sampling times, and that the evolution of the signal process is unknown, we address the problem of signal estimation in terms of covariances, using the following distributed fusion method. First, the local filtering and fixed-point smoothing algorithms are obtained by an innovation approach. Then, the corresponding distributed fusion estimators are obtained as a matrix-weighted linear combination of the local ones, using the mean squared error as the criterion of optimality. Finally, the efficiency of the algorithms obtained, measured by estimation error covariance matrices, is shown by a numerical simulation example.Ministerio de Economía, Industria y CompetitividadEuropean Union (EU) MTM2017-84199-PAgencia Estatal de Investigació

    Distributed Kalman Filters over Wireless Sensor Networks: Data Fusion, Consensus, and Time-Varying Topologies

    Get PDF
    Kalman filtering is a widely used recursive algorithm for optimal state estimation of linear stochastic dynamic systems. The recent advances of wireless sensor networks (WSNs) provide the technology to monitor and control physical processes with a high degree of temporal and spatial granularity. Several important problems concerning Kalman filtering over WSNs are addressed in this dissertation. First we study data fusion Kalman filtering for discrete-time linear time-invariant (LTI) systems over WSNs, assuming the existence of a data fusion center that receives observations from distributed sensor nodes and estimates the state of the target system in the presence of data packet drops. We focus on the single sensor node case and show that the critical data arrival rate of the Bernoulli channel can be computed by solving a simple linear matrix inequality problem. Then a more general scenario is considered where multiple sensor nodes are employed. We derive the stationary Kalman filter that minimizes the average error variance under a TCP-like protocol. The stability margin is adopted to tackle the stability issue. Second we study distributed Kalman filtering for LTI systems over WSNs, where each sensor node is required to locally estimate the state in a collaborative manner with its neighbors in the presence of data packet drops. The stationary distributed Kalman filter (DKF) that minimizes the local average error variance is derived. Building on the stationary DKF, we propose Kalman consensus filter for the consensus of different local estimates. The upper bound for the consensus coefficient is computed to ensure the mean square stability of the error dynamics. Finally we focus on time-varying topology. The solution to state consensus control for discrete-time homogeneous multi-agent systems over deterministic time-varying feedback topology is provided, generalizing the existing results. Then we study distributed state estimation over WSNs with time-varying communication topology. Under the uniform observability, each sensor node can closely track the dynamic state by using only its own observation, plus information exchanged with its neighbors, and carrying out local computation
    • …
    corecore