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Abstract- In this paper, we consider the consensus problem of first-order continuous-time multi-agent 

systems with fixed topology and time-varying topology in the presence of measurement noises. It is 

assumed that each agent can only obtain the information from its neighbors, and the information is 

corrupted by white noises. For the case of fixed topology, it is shown that consensus can be reached 

asymptotically in mean square provided the interaction topology has a spanning tree. For the case of 

time-varying topology, with the assumption that each interaction topology is balanced and strongly 

connected, consensus can be reached asymptotically in mean square as well. The convergence analysis 

is given by studying the reduced-order system with the help of stochastic Lyapunov analysis. Simulation 

results are presented to illustrate the theoretical results. 

 

Index terms: Multi-agent systems, consensus, measurement noise, stochastic systems. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Exeley Inc.

https://core.ac.uk/display/226931902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


He Qingbi and Tang Zhaojun, CONSENSUS OF CONTINUOUS-TIME MULTI-AGENT SYSTEMS UNDER NOISY MEASUREMENT 

 

581 

 

I. INTRODUCTION 

 

In recent years, distributed coordination control of multi-agent systems has received considerable 

attention from various research communities. This is mainly due to its wide applications in many 

practical areas such as rendezvous, formation control, flocking, attitude alignment, and sensor 

networks[1-4]. As a critical issue in the coordination control of multi-agent systems, consensus 

means that all agents eventually reach an agreement via local interaction. Problems of consensus 

have been studied extensively. 

In most existing works, the problem of consensus have been investigated in a noisy-free 

environment, namely, it has assumed that each agent can obtain accurate information from its 

neighbors. However, in many practical situations, such information is often corrupted by various 

noises. Hence it is more practical to consider consensus problems under noisy environment, and 

it has attracted the attention of some researchers[5-11]. In [5], average-consensus problems of 

first-order continuous-time multi-agent systems under measurement noises have been 

investigated. They have proved that mean square average-consensus can be reached if the 

interaction topology is balanced and has a spanning tree. In [6], the authors have extended the 

results of [5] to fixed and directed topology cases. In [9], they have investigated the consensus 

problem of multi-agent systems (MASs) with imperfect communication both in channels and in 

actuators, and used a Markov chain approach to describe the occurrence of the two types missing 

data in a unified framework. A sufficient consensus condition has been first obtained in terms of 

linear matrix inequalities. Then, based on this condition, a novel controller design method has 

been developed such that the MASs with imperfect communication reaches mean-square 

consensus. In [10], the authors have investigated the leader-following tracking consensus 

problem for high-order nonlinear dynamical multi-agent systems with switching topology and 

communication delay under noisy environments. In reality, the interaction topology may be  

directed and time-varying due to unreliable or limited communication/sensing range. So it is 

more practical to study the case when the interaction topology is time-varying[12-14]. To the best 

of our knowledge, there is few works concerning the consensus problem of continuous-time 

multi-agent systems with time-varying directed topologies and measurement noises. 

In this paper, we focus on the consensus problem of first-order continuous-time multi-agent 

systems with fixed topology and time-varying topology under noisy measurements. Comparing 
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with [5], this paper makes the following contributions. We prove that, as long as the interaction 

topology has a spanning tree which is a much weaker condition, the consensus can be reached 

asymptotically in mean square in the case of fixed topology. In addition, the case of time-varying 

topology is also taken into account in this paper. It is shown that the average-consensus can be 

achieved asymptotically in mean square with the assumption that each interaction topology is 

balanced and strongly connected. The convergence analysis is given by studying the reduced-

order system with the help of stochastic Lyapunov function and matrix theory. 

The following notations are used throughout this paper. Let I  be an identity matrix with 

appropriate dimension, and 1 be a column vector of all ones with appropriate dimension. For a 

given matrix n nA R  , TA  denotes its transpose, A  denotes its Frobenius norm, and tr( )A  

denotes its trace. A matrix n nA R   is said to be positively stable if all of its eigenvalues have a 

positive real part. For a given set S , ( )S  denotes its indicator function. For a given random 

variable , ( )E   denotes its mathematical expectation, Var( )  denotes its variance. For given 

real numbers a and b , a b  denotes min{ }a b . 

 

II. PROBLEM FORMULATION 

 

Consider a multi-agent system consisting of n  agents labeled 1 through n . The interaction 

topology of n  agents can be conveniently described by a digraph ( )G V E  , where {1 }V n    

is the set of nodes and E V V   is the set of edges of the graph. An edge of G  is denoted by

( )i j , representing that agent j  can directly receive information from agent i . In this case, i  is 

called the parent node of j  and j  the child node of i . Node j  is a neighbor of node i  if 

( )j i E  , where j i . Denote the neighbors of node i  by iN V . A path in G  is a sequence 

0 mi i   of distinct nodes such that 1( )j ji i E    for all 1 j m  . A digraph G  is said to be 

strongly connected if there is a path between any pair of distinct nodes. A directed tree is a 

digraph, where every node, except the root, has exactly one parent. A spanning tree of a digraph 

is a directed tree formed by graph edges that connect all the nodes of the graph[15].  
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The weighted adjacency matrix of digraph G  is denoted by [ ] n n

ijA a R   , where 0ija   if 

( )j i E   and 0ija   otherwise. The in-degree of node i  is defined as 
1

deg ( )
n

in ij

j

i a


  and the 

out-degree is defined as 
1

deg ( )
n

out ji

j

i a


 . Its degree matrix 1diag{ }nD d d    is a diagonal 

matrix, whose diagonal elements deg ( )i ind i . G is called a balanced digraph, if 

deg ( ) deg ( ) 1 2in outi i i n      . The Laplacian associated with the digraph G  is defined as  

L D A    

Below is an important property of Laplacian L  associated with G .  

Lemma 1[15] Zero is an eigenvalue of L , and 1 is the associated right eigenvector. In addition, 

zero is a simple eigenvalue of L  and all the other eigenvalues have positive real parts if and only 

if the digraph G  has a spanning tree.  

Owing to the existence of disturbances and subjecting to communication range limitations, the 

interaction topology may change dynamically. To describe the variable topology, we define a 

piecewise constant switching signal ( ) [0 ) {1 2 }t N        , where N  denotes the total 

number of all possible graphs describing the interconnection topology. We assume   is a finite 

set. For convenience of exposition, suppose that the time-interval [0 )  is constituted by an 

infinite sequence of nonempty, non-overlapping, and contiguous subintervals 1[ )k kt t   for 

0 1k    ,with 0 0t  , and during each of such subintervals, the interaction topology described 

by ( )kt
G  does not change.  

In this paper, we consider the following first-order continuous-time system of n  agents:  

( ) ( ) 1 ,i it u t i nx     
                                                                 

(1) 

where ( )ix t R  and ( )iu t R  are the state and control input of agent i ,respectively.  

For each agent, we assume that the obtained state of its neighbors is corrupted by white noises. In 

this case, the state of agent j  obtained by agent i  can be described as:  

                                               
( ) ( ) ( ) ( ),ji j ji ji iy t x t n t j N t   

                                                  
(2) 

where ( )iN t  is the neighbor set of agent i  at time t , ( )jiw t  is an independent normal white noise, 

0ji   is the noise intensity. Meanwhile, we assume that each agent knows its own state exactly.  
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Our control goal is to let the states of all the agents converge to a common value in the sense of 

mean square. For this end, we use the following distributed protocol:  

1

( ) ( ) ( )( ( ) ( )) 1 ,
n

i ij ji i

j

u t a t a t y t x t i n


     
                                       

(3) 

where ( ) [0 ) (0 )a t      is piecewise continuous, called consensus-gain function. In order to 

reduce the detrimental effect of the noise, we assume that the consensus-gain function satisfies 

the following assumptions.  

(A1)
0

( )a s ds


   

(A2)
2

0
( )a s ds



   

Remark 1.Similar to the condition on the step size in stochastic approximation [16], Assumption 

(A2) implies that ( ) 0a t  as t  , which further implies that the impact of the noise will be 

attenuated as time goes on; Assumption (A1) means that ( )a t  cannot decrease too fast, otherwise 

the agents may prematurely converge to different individual limits. 

 

III. MAIN RESULTS 

 

A. Fixed topology 

In this subsection, we consider the case of fixed topology. It was shown that having a spanning 

tree is the minimum requirement to guarantee consensus in the case of fixed topology without 

measurement noises. As a matter of fact, having a spanning tree implies that there is at least an 

agent whose information can be shared by all the other agents. Naturally, if the interaction 

topology has a spanning tree, even in the presence of measurement noises consensus could still 

be reached in certain sense by means of appropriate protocol. 

Applying protocol (3) to system (1) yields:  

 
1

( ) ( ) ( ( ) ( )) 1
n

i ij ji i

j

t a t a y t x t i nx


        (4) 

Let i  be the i th row of the adjacency matrix A  of digraph G . Denote 

1( ) ( ( ) ( ))T n

nx t x t x t R    , 1diag( ) n n

i i ni R       , 1 1diag( )T T

n nD        is an 
2n n
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dimensional block diagonal matrix, 
1( ) ( )T n

i i nit R      , 
2

1( ) ( ( ) ( ))T T T n

nt t t R      . 

Then system (4) can be written in a compact form:  

 ( ) ( ) ( ) ( ) ( )x t a t Lx t a t D t     (5) 

Since that L  is not positive stable, most existing results in stochastic approximation cannot be 

directly applied to the convergence analysis of system (5). To deal with this problem, we need the 

following lemma.  

Lemma2.[7] Suppose that G  has a spanning tree. Denote 

( 1)( ) { span{ } span{ }}n nC L B R B L     , where L  is the Laplician of G , span( )B  and span( )L  

denote the span of the column vectors of B  and L , respectively. For any given 1 ( )Q C L , the 

matrix 1(1 )Q Q   is nonsingular and  

 1
0

Q LQ
H

  
  
 

 

where H  is positive stable. In addition, let 
1

2

Tq
Q

Q

 
 
 
 
 
 

 , where nq R , then 0Tq L   and 1 1Tq  .  

Note that the vector q  in Lemma 2 is unique. Denote 
1( ) ( )y t Q x t  and write 

1
ˆ( ) ( ( ) ( ))

T Ty t y t ty  , where 
1ˆ( ) ny t R  . From (5) we have  

 
1
( ) ( ) ( )Tt a t q D ty    (6) 

 2
ˆ ˆ( ) ( ) ( ) ( ) ( )y t a t Hy t a t Q D t     (7) 

and we have the following relationship:  

 1 1
ˆ( ) ( )1 ( )x t y t Q y t    (8) 

 1( ) ( )Ty t q x t   (9) 

which will be used in the sequel.  

Let us agree to say that system (7) is the reduced-order system of (5). Noticing that H  is positive 

stable, stochastic Lyapunov analysis can be employed to the convergence analysis of the reduced-

order system. Next, we shall study the reduced-order system by using stochastic Lyapunov 

analysis.  

Theorem 1.  Consider system (7). Assume G  has a spanning tree and Assumptions (A1) and (A2) 

hold, then  
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2

ˆlim ( ) 0
t

E y t


   

Proof.  For convenience, we write (7) in the form of stochastic differential equation:  

 2
ˆ ˆ( ) ( ) ( ) ( ) ( )dy t a t Hy t dt a t Q DdW t     (10) 

where ( )W t  is an 2n -dimensional standard Brownian motion.  

Since H  is positive stable, by Lyapunov theorem, there exists a positive definite matrix P  such 

that  

 TPH H P I    

Choose stochastic Lyapunov function  

 ˆˆ( ) ( ) ( )
T

V t t Py ty   

By use of It ô  formula, from (10) we have  

 2

0 2
ˆˆ ˆ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( )

T T
dV t a t t y t dt C a t dt a t t PQ DdW ty y      (11) 

where 0 2 2tr( )T TC PQ DD Q . It is clear that  

 
max min

1 1
ˆˆ( ) ( ) ( ) ( )

( ) ( )

T
V t t y t V ty

P P 
    (12) 

where max ( )P  and min ( )P  denote the maximum and minimum eigenvalue of P , which leads to  

 
2

0 2

max

( )
ˆ( ) ( ) ( ) 2 ( ) ( ) ( )

( )

Ta t
dV t V t dt C a t dt a t t PQ DdW ty

P
      (13) 

We claim that  

 
0

2 0
ˆ( ) ( ) ( ) 0

t T

t
E a s s PQ DdW s t ty     
    (14) 

To establish this fact, let 0

0inf{ ( ) }
t

t t V t      for any 0 00t T t   , where   is a given 

positive number if ( )V t   for some 0[ ]t t T  ; otherwise 0t T  . From (13), we have  

 

0

0

0

0
0 0

0

0

2

0

max

2

0

[ ( ) ] [ ( )]

1
( ) ( ) ( )

( )

( ) .

t

t

t

t

t t
t

tt t

t

t

E V t E V t

a s V s ds C a s ds
P

C a s ds





 

 

 

 






 

   



 



 

It follows that there exists a constant 
0t T , such that  

 0

0 0
[ ( ) ]t

t

t Tt
E V t


 
  

     
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Then, by Fatou lemma, we have  

 
0

0

[ ( )]sup t T

t t T

E V t 

 

    

Therefore,  

 

0

0

2

2

0

( ) ( )

[ ( )] ( )sup

t

t

T

t s t

E a s V s ds

E V s a s ds
 

 
  



 



  

At the same time, note that  

 
0

0

2
2

2

2

1

ˆ( ) ( )

( ) ( )

t T

t

t

t

E a s t PQ D dsy

C E a s V s ds

 
  

  
  




 

where 
min

21
1 2( )P

C PQ D


 . By the property of Ito integral , (14) is verified.  

From (13), we have  

 

0 0

0

2

0

max

[ ( )] [ ( )]

1
( ) [ ( )] ( )

( )

t t

t t

E V t E V t

a s E V s ds C a s ds
P



    
 

By the comparison theorem, we have  

 
0

0

0

max

2

0

max

[ ( )]

1
[ ( )]exp ( )

( )

1
  ( ) exp ( )

( )

t

t

t t

t s

E V t

E V t a s ds
P

C a s a u du ds
P





 
  

 

 
   

 



 

 

Noticing that  

 
0

0 0

2

max

2

max

1
( )exp ( )

( )

1
exp ( ) ( ) ( )

( )

t t

t s

t t

t t

a s a u du ds
P

a s ds a s V s ds
P





 
 
 

 
   

 

 

 

 

recalling Assumptions (A1) and (A2), we have  
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0

2

max

1
lim ( )exp ( ) 0

( )

t t

t st
a s a u du ds

P

 
  
 

   

At the same time, recalling Assumption (A1) again, we have  

 
0

max

1
lim exp ( ) 0

( )

t

tt
a s ds

P

 
   
 

  

As a result,  

 lim [ ( )] 0
t

E V t


   

From (12), the conclusion follows.  

Theorem 2.  Consider system (5). Assume G  has a spanning tree and Assumptions (A1) and (A2) 

hold, then the n  agents reach consensus asymptotically in mean square. That is, there is a random 

variable x , such that  

 
2

lim ( ) 0 1i
t

E x t x i n


         (15) 

In addition, 
2

0
[ ] (0) var( ) ( )T T TE x q x x q DD q a s ds


     .  

Proof.  Using the fact that 
2

1 1 1
ˆ ˆˆ ˆ( ) ( ) ( ) ( )

T TTt Q Q y t Q t y ty y , invoking Theorem 1, we have  

 
2

1
ˆlim ( ) 0

t
E Q y t


   

Then, it follows from (8) that  

 
2

1lim ( ) ( )1 0
t

E x t y t


    (16) 

It follows from (5) and Lemma 2 that  

 ( ) ( ) ( )T Tq x t a t q D t   

Recalling (9), we have  

 1
0

( ) (0) ( ) ( )
t

T Ty t q x q D a s dW s    

Let  

 
0

(0) ( ) ( )T Tx q x q D a s dW s


     (17) 

which is well defined since 
2

0
( )a s ds



  . Therefore, by the Ito isometry, we have  
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  

2

1

2

2

lim ( ( ) )

lim ( )

lim ( )

0

t

T

tt

T T

tt

E y t x

E q D dW s

q DD q a s ds



















 





 

This together with Theorem 1 leads to (15).  

In addition, from (17) we have  

 [ ] (0)TE x q x    

 
 

2

0

2

0

( ) ( ) ( )

( )

T

T T

Var x E q D a s dW s

q DD q a s ds








 





 

Remark 2. Comparing with [5], here we only require that G  has a spanning tree, which is much 

weaker than being balanced. In addition, if G  is balanced and has a spanning tree, then 1
n

q  1 , 

which implies that the n  agents reach average consensus asymptotically in mean square. That is, 

Theorem 3.3 in [5] is a special case of this theorem.   

 

B. Time-varying topology 

In this subsection, we consider the case of time-varying topology. Let ( )i t  be the ith row of the 

adjacency matrix ( )tA  of digraph ( )tG , and 1diag( ) n n

i i ni R      , where 0ji   ( )ij N t ,

( ) 1 1diag( )T T

t n nD       is an 2n n  dimensional block diagonal matrix. 

1 1( ) ( ( ) ( )) , ( ) ( ( ) ( )) .T T T T

i i ni nt n t n t t t t         Applying protocol (3) to system (1), gives 

( ) ( )

( )
( ) ( ) ( ) ( )t t

dx t
a t L x t a t D t

dt
                                              (18) 

It is a system driven by an 2N -dimensional standard white noise, which can be written in the 

form of the It ô  stochastic differential equation  

( ) ( )( ) ( ( ) ( )) ( ) ( )t tdx t a t L x t dt a t D dW t     

Where 11 1( ) ( ( ) ( ) ( ))T

n nnW t W t W t W t      is an 2N -dimensional standard Brownian motion.To 

proceed, we need the following assumption:   

(A3) ( )tG  is balanced and strongly connected for all 0t  .  
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Under (A3), there exists an orthogonal matrix 1
1( )

n
U U 1  such that  

( )

( )

0 0

0

T

t

t

U L U
H



 
 
 
 
 
 

  

Where
( )tH  is positively stable. Denote ( ) ( )Ty t U x t  and write 1

ˆ( ) ( ( ) ( ))
T Ty t y t ty  , where

1ˆ( ) ny t R  . From (18), we have  

1
( )

( ) 1
( ) 1 ( )T

t

dy t
a t D t

dt n
                                                    (19) 

( ) 1 ( )

ˆ( )
ˆ( ) ( ) ( ) ( )T

t t

dy t
a t H y t a t U D t

dt
                                          (20) 

and the following relationship:  

1 1

1
ˆ( ) ( ) ( )x t y t U y t

n
 1                                                       (21) 

1

1
( ) ( )Ty t x t

n
 1                                                                  (22) 

which will be used in the sequel.  

Theorem 3.Consider system (20). Assume that Assumptions (A1)-(A3) hold, then  

2
ˆlim ( ) 0

t
E y t


  

Proof. Choose stochastic Lyapunov function  

ˆˆ( ) ( ) ( )
T

V t t y ty  

It follows from (20) and It ô  formula that 

( ) ( )

2

0 1 ( )

ˆˆ( ) ( ) ( )( ) ( )

ˆ            ( ) 2 ( ) ( ) ( )

T T

t t

T T

t

dV t a t t H H y t dty

a t C dt a t t U D dW ty

 



  

 
 

where 
0 1 ( ) ( ) 1tr( )T T

t tC U D D U  . Since ( )tG  is balanced and strongly connected, 
( ) ( )

T

t tL L   is the 

laplacian of the mirror associated with ( )tG  [16], and hence zero is a simple eigenvalue of 

( ) ( )

T

t tL L  . Thus, 
( ) ( )

T

t tH H   is positively definite. Therefore,  

2

0

1 ( )

( ) ( ) ( ) ( )

ˆ            2 ( ) ( ) ( )
T T

t

dV t a t V t dt C a t dt

a t t U D dW ty 

   


                                          (23) 
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Where min ( ) ( ) min ( ) ( )
0

min{ ( ) ( )T T

t t t t
t

L L L L       


    denotes the minimum nonzero eigenvalue of 

( ) ( )

T

t tL L  ,  0 1 ( ) ( ) 1
0

min tr( )T T

t t
t

C U D D U 




 , which are well defined since   is a finite set.  

We claim that  

0
1 ( ) 0

ˆ( ) ( ) ( ) 0
t T T

s
t

E a s s U D dW s t ty 
    
                                               (24) 

To establish this fact, let 0

0inf{ ( ) }
t

t t V t      for any 0 00t T t   , where   is a given 

positive number if ( )V t   for some 0[ ]t t T  ; otherwise 0t T  . From (23), we have  

0

0

0

0
0 0

0

0

2

0

2

0

[ ( ) ] [ ( )] 

 ( ) ( ) ( )

 ( ) .

t

t

t

t

t t
t

tt t

t

t

E V t E V t

a s E V s ds C a s ds

C a s ds





 

 

 

  
 
 
 
 
 



 





 

  



 



 

It follows that there exists a constant 
0t T , such that 0

0 0
[ ( ) ]t

t

t Tt
E V t


 
  

     Then, by Fatou 

lemma [18], we have 
0

0

sup [ ( )] t T
t t T

E V t 
 

    Therefore,  

0

0

2

2

0

( ) ( )

sup [ ( )] ( )

.

t

t

T

t t T

E a s V s ds

E V s a s ds
 

 
  



 



  

At the same time, note that 

0

0

2
2

1 ( )

2

1

ˆ( ) ( )

( ) ( ) ,

t T T

s
t

t

t

E a s t U D dsy

C E a s V s ds





 
  

 
  




 

where 1

min1 ( )

C

P
C



   with 
1 1 ( )

0
max{ }T

t
t

C U D


 . By the property of Ito integral [19], (24) is verified.  

From (23), we have 

0 0

0

2

0

[ ( )] [ ( )]

( ) [ ( )] ( )
t t

t t

E V t E V t

a s E V s ds C a s ds 



   
. 

By the comparison theorem [20], we have  
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 
 

0

0

0

2

0

[ ( )] [ ( )]exp ( )

                 ( ) exp ( )

t

t

t t

t s

E V t E V t a s ds

C a s a u du ds









 





 
. 

Noticing that  

 
 

0

0 0

2

2

( )exp ( )

exp ( ) ( ) ( ) ,

t t

t s

t t

t t

a s a u du ds

a s ds a s V s ds







 

 

 
 

recalling Assumptions (A1) and (A2), we have  

 
0

2lim ( )exp ( ) 0
t t

t st
a s a u du ds


   

At the same time, recalling Assumption (A1) again, we have  

 
0

limexp ( ) 0
t

tt
a s ds


 . 

As a result, lim [ ( )] 0
t

E V t


 , which implies the conclusion.  

Theorem 4. Consider system (18). Assume that Assumptions (A1)-(A3) hold, then the n  agents 

reach mean square average-consensus, namely, there exists a random variable x  such that  

2lim ( ) 0 1i
t

E x t x i n


          

and 

1

1
[ ] (0)

n

i

i

E x x
n





   

Proof Using the fact that 1 1 1 1
ˆ ˆˆ ˆ( ) ( ) ( ) ( )

T TT Tt U U y t U U t y ty y , invoking Theorem 3, we have 

2

1
ˆlim ( ) 0.

t
E U y t


  Then, it follows from (21) that  

2

1

1
lim ( ) ( ) 0
t

E x t y t
n

 1

                                               

(25) 

It follows from (18) that ( )( ) ( )T T

t

dx
a t D t

dt
  1 1  Then, we have  

1
1

( )

0

( ) 1

( ) (0) ( ) ( )

             ( ) ( )  .

i

i
i

m
m

m t
T T T

t
t

i

t
T

t m m
t

x t x D a s dW s

D a s dW s t t t












 

   

 



1 1 1

1
                                 

(26) 
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Let 1 1
1lim ( ) lim ( )T

nnt t
x y t x t

 
  1 , which is well defined by recalling 

2

0
( )a s ds



  , and we 

have 

 

1 1

2

2

( ) ( )

1

2

( ) ( )
0

1
( )

1
= ( ) ( ) ( ) ( )

1
max ( ) .

m i

m i
i

T

t t
T T

t t
t t

i m

T T

t t
tt

E x t x
n

E D a s dW s D a s dW s
n

D D a s ds
n

 

 

 





 











 



1

1 1

1 1

 

Thus, again by Assumption (A2) we have 
2

1lim 1 ( ) 0T

n
t

E x t x


    Noticing that 1[ ] (0)T

n
E x x  1 , 

from (25), the conclusion follows. 

 

IV. NUMERICAL EXAMPLE 

 

In this section, two examples are provided to illustrate our theoretical results. The two examples 

consider the case of fixed topology and time-varying topology, respectively. Choose 1
1

( )
t

a t


 . It 

is clear that Assumptions (A1) and (A2) are satisfied. Suppose that 1ija  when ( )j i E  , 0ija   

otherwise, and the noise intensity 1ji   when 1ija  .  

Example 1. Consider a multi-agent system consisting of four agents with the interaction topology 

described as Figure 1. It is clear that G  has a spanning tree. Let the initial positions of agents be 

1 2 3 4(0) 1 (0) 2 (0) 3 (0) 1x x x x        . It can be seen from Figure 2 that all agents reach 

consensus asymptotically under noisy measurements.  

 

Figure 1.  Interaction topology G  
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Figure 2.  Curves of states of Example 1.  

 

Example 2. Consider a multi-agent system consisting of four agents. Suppose that the interaction 

topology is time-varying of switching period 1 between two graphs ( 1 2)iG i    described as 

Figure 3. It is clear that Assumption (A3) holds. Let the initial position of agents be 

1 2 3 4(0) 2 (0) 1 (0) 3 (0) 4x x x x        . Figure 4 shows that the four agents reach consensus 

asymptotically. 

 

 

Figure 3. Switching topologies: 1G and 2G  
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Figure 4. Curves states of Example 2. 

 

V. CONCLUSIONS 

 

In this paper, consensus problems of first-order continuous-time multi-agent systems with fixed 

and time-varying topology in the presence of measurement noises are investigated. Stochastic 

Lyapunov analysis and matrix theory are employed in the convergence analysis of the multi-

agent system. Through studying the reduced-order system, we proved that consensus can be 

reached asymptotically in mean square for both fixed and time-varying topology cases. In the 

case of fixed topology, we only require that the interaction topology has a spanning tree, which is 

a much weaker condition. In the case of time-varying topology, with the assumption that each 

interaction topology is balanced and strongly connected, average consensus can be reach 

asymptotically in mean square. 
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