130 research outputs found

    Obtaining the consensus of multiple correspondences between graphs through online learning.

    Get PDF
    In structural pattern recognition, it is usual to compare a pair of objects through the generation of a correspondence between the elements of each of their local parts. To do so, one of the most natural ways to represent these objects is through attributed graphs. Several existing graph extraction methods could be implemented and thus, numerous graphs, which may not only differ in their nodes and edge structure but also in their attribute domains, could be created from the same object. Afterwards, a matching process is implemented to generate the correspondence between two attributed graphs, and depending on the selected graph matching method, a unique correspondence is generated from a given pair of attributed graphs. The combination of these factors leads to the possibility of a large quantity of correspondences between the two original objects. This paper presents a method that tackles this problem by considering multiple correspondences to conform a single one called a consensus correspondence, eliminating both the incongruences introduced by the graph extraction and the graph matching processes. Additionally, through the application of an online learning algorithm, it is possible to deduce some weights that influence on the generation of the consensus correspondence. This means that the algorithm automatically learns the quality of both the attribute domain and the correspondence for every initial correspondence proposal to be considered in the consensus, and defines a set of weights based on this quality. It is shown that the method automatically tends to assign larger values to high quality initial proposals, and therefore is capable to deduce better consensus correspondences

    Generalised median of graph correspondences.

    Get PDF
    A graph correspondence is defined as a function that maps the elements of two attributed graphs. Due to the increasing availability of methods to perform graph matching, numerous graph correspondences can be deducted for a pair of attributed graphs. To obtain a representative prototype for a set of data structures, the concept of the median has been largely employed, as it has proven to deliver a robust sample. Nonetheless, the calculation of the exact (or generalised) median is known to be an NP-complete problem for most domains. In this paper, we present a method based on an optimisation function to calculate the generalised median graph correspondence. This method makes use of the Correspondence Edit Distance, which is a metric that considers the attributes and the local structures of the graphs to obtain more interesting and meaningful results. Experimental validation shows that this approach is capable of obtaining the generalised median in a comparable runtime with respect to state-of-the-art methods on artificial data, while maintaining the success rate for a real-application case

    Learning the Consensus of Multiple Correspondences between Data Structures

    Get PDF
    En aquesta tesi presentem un marc de treball per aprendre el consens donades múltiples correspondències. S'assumeix que les diferents parts involucrades han generat aquestes correspondències per separat, i el nostre sistema actua com un mecanisme que calibra diferents característiques i considera diferents paràmetres per aprendre les millors assignacions i així, conformar una correspondència amb la major precisió possible a costa d'un cost computacional raonable. Aquest marc de treball de consens és presentat en una forma gradual, començant pels desenvolupaments més bàsics que utilitzaven exclusivament conceptes ben definits o únicament un parell de correspondències, fins al model final que és capaç de considerar múltiples correspondències, amb la capacitat d'aprendre automàticament alguns paràmetres de ponderació. Cada pas d'aquest marc de treball és avaluat fent servir bases de dades de naturalesa variada per demostrar efectivament que és possible tractar diferents escenaris de matching. Addicionalment, dos avanços suplementaris relacionats amb correspondències es presenten en aquest treball. En primer lloc, una nova mètrica de distància per correspondències s'ha desenvolupat, la qual va derivar en una nova estratègia per a la cerca de mitjanes ponderades. En segon lloc, un marc de treball específicament dissenyat per a generar correspondències al camp del registre d'imatges s'ha modelat, on es considera que una de les imatges és una imatge completa, i l'altra és una mostra petita d'aquesta. La conclusió presenta noves percepcions de com el nostre marc de treball de consens pot ser millorada, i com els dos desenvolupaments paral·lels poden convergir amb el marc de treball de consens.En esta tesis presentamos un marco de trabajo para aprender el consenso dadas múltiples correspondencias. Se asume que las distintas partes involucradas han generado dichas correspondencias por separado, y nuestro sistema actúa como un mecanismo que calibra distintas características y considera diferentes parámetros para aprender las mejores asignaciones y así, conformar una correspondencia con la mayor precisión posible a expensas de un costo computacional razonable. El marco de trabajo de consenso es presentado en una forma gradual, comenzando por los acercamientos más básicos que utilizaban exclusivamente conceptos bien definidos o únicamente un par de correspondencias, hasta el modelo final que es capaz de considerar múltiples correspondencias, con la capacidad de aprender automáticamente algunos parámetros de ponderación. Cada paso de este marco de trabajo es evaluado usando bases de datos de naturaleza variada para demostrar efectivamente que es posible tratar diferentes escenarios de matching. Adicionalmente, dos avances suplementarios relacionados con correspondencias son presentados en este trabajo. En primer lugar, una nueva métrica de distancia para correspondencias ha sido desarrollada, la cual derivó en una nueva estrategia para la búsqueda de medias ponderadas. En segundo lugar, un marco de trabajo específicamente diseñado para generar correspondencias en el campo del registro de imágenes ha sido establecida, donde se considera que una de las imágenes es una imagen completa, y la otra es una muestra pequeña de ésta. La conclusión presenta nuevas percepciones de cómo nuestro marco de trabajo de consenso puede ser mejorada, y cómo los dos desarrollos paralelos pueden converger con éste.In this work, we present a framework to learn the consensus given multiple correspondences. It is assumed that the several parties involved have generated separately these correspondences, and our system acts as a mechanism that gauges several characteristics and considers different parameters to learn the best mappings and thus, conform a correspondence with the highest possible accuracy at the expense of a reasonable computational cost. The consensus framework is presented in a gradual form, starting from the most basic approaches that used exclusively well-known concepts or only two correspondences, until the final model which is able to consider multiple correspondences, with the capability of automatically learning some weighting parameters. Each step of the framework is evaluated using databases of varied nature to effectively demonstrate that it is capable to address different matching scenarios. In addition, two supplementary advances related on correspondences are presented in this work. Firstly, a new distance metric for correspondences has been developed, which lead to a new strategy for the weighted mean correspondence search. Secondly, a framework specifically designed for correspondence generation in the image registration field has been established, where it is considered that one of the images is a full image, and the other one is a small sample of it. The conclusion presents insights of how our consensus framework can be enhanced, and how these two parallel developments can converge with it

    Modelling the generalised median correspondence through an edit distance.

    Get PDF
    On the one hand, classification applications modelled by structural pattern recognition, in which elements are represented as strings, trees or graphs, have been used for the last thirty years. In these models, structural distances are modelled as the correspondence (also called matching or labelling) between all the local elements (for instance nodes or edges) that generates the minimum sum of local distances. On the other hand, the generalised median is a well-known concept used to obtain a reliable prototype of data such as strings, graphs and data clusters. Recently, the structural distance and the generalised median has been put together to define a generalise median of matchings to solve some classification and learning applications. In this paper, we present an improvement in which the Correspondence edit distance is used instead of the classical Hamming distance. Experimental validation shows that the new approach obtains better results in reasonable runtime compared to other median calculation strategies

    3D shape matching and registration : a probabilistic perspective

    Get PDF
    Dense correspondence is a key area in computer vision and medical image analysis. It has applications in registration and shape analysis. In this thesis, we develop a technique to recover dense correspondences between the surfaces of neuroanatomical objects over heterogeneous populations of individuals. We recover dense correspondences based on 3D shape matching. In this thesis, the 3D shape matching problem is formulated under the framework of Markov Random Fields (MRFs). We represent the surfaces of neuroanatomical objects as genus zero voxel-based meshes. The surface meshes are projected into a Markov random field space. The projection carries both geometric and topological information in terms of Gaussian curvature and mesh neighbourhood from the original space to the random field space. Gaussian curvature is projected to the nodes of the MRF, and the mesh neighbourhood structure is projected to the edges. 3D shape matching between two surface meshes is then performed by solving an energy function minimisation problem formulated with MRFs. The outcome of the 3D shape matching is dense point-to-point correspondences. However, the minimisation of the energy function is NP hard. In this thesis, we use belief propagation to perform the probabilistic inference for 3D shape matching. A sparse update loopy belief propagation algorithm adapted to the 3D shape matching is proposed to obtain an approximate global solution for the 3D shape matching problem. The sparse update loopy belief propagation algorithm demonstrates significant efficiency gain compared to standard belief propagation. The computational complexity and convergence property analysis for the sparse update loopy belief propagation algorithm are also conducted in the thesis. We also investigate randomised algorithms to minimise the energy function. In order to enhance the shape matching rate and increase the inlier support set, we propose a novel clamping technique. The clamping technique is realized by combining the loopy belief propagation message updating rule with the feedback from 3D rigid body registration. By using this clamping technique, the correct shape matching rate is increased significantly. Finally, we investigate 3D shape registration techniques based on the 3D shape matching result. Based on the point-to-point dense correspondences obtained from the 3D shape matching, a three-point based transformation estimation technique is combined with the RANdom SAmple Consensus (RANSAC) algorithm to obtain the inlier support set. The global registration approach is purely dependent on point-wise correspondences between two meshed surfaces. It has the advantage that the need for orientation initialisation is eliminated and that all shapes of spherical topology. The comparison of our MRF based 3D registration approach with a state-of-the-art registration algorithm, the first order ellipsoid template, is conducted in the experiments. These show dense correspondence for pairs of hippocampi from two different data sets, each of around 20 60+ year old healthy individuals

    Automatic Landmarking for Non-cooperative 3D Face Recognition

    Get PDF
    This thesis describes a new framework for 3D surface landmarking and evaluates its performance for feature localisation on human faces. This framework has two main parts that can be designed and optimised independently. The first one is a keypoint detection system that returns positions of interest for a given mesh surface by using a learnt dictionary of local shapes. The second one is a labelling system, using model fitting approaches that establish a one-to-one correspondence between the set of unlabelled input points and a learnt representation of the class of object to detect. Our keypoint detection system returns local maxima over score maps that are generated from an arbitrarily large set of local shape descriptors. The distributions of these descriptors (scalars or histograms) are learnt for known landmark positions on a training dataset in order to generate a model. The similarity between the input descriptor value for a given vertex and a model shape is used as a descriptor-related score. Our labelling system can make use of both hypergraph matching techniques and rigid registration techniques to reduce the ambiguity attached to unlabelled input keypoints for which a list of model landmark candidates have been seeded. The soft matching techniques use multi-attributed hyperedges to reduce ambiguity, while the registration techniques use scale-adapted rigid transformation computed from 3 or more points in order to obtain one-to-one correspondences. Our final system achieves better or comparable (depending on the metric) results than the state-of-the-art while being more generic. It does not require pre-processing such as cropping, spike removal and hole filling and is more robust to occlusion of salient local regions, such as those near the nose tip and inner eye corners. It is also fully pose invariant and can be used with kinds of objects other than faces, provided that labelled training data is available

    Novel Methods for Multi-Shape Analysis

    Get PDF
    Multi-shape analysis has the objective to recognise, classify, or quantify morphological patterns or regularities within a set of shapes of a particular object class in order to better understand the object class of interest. One important aspect of multi-shape analysis are Statistical Shape Models (SSMs), where a collection of shapes is analysed and modelled within a statistical framework. SSMs can be used as (statistical) prior that describes which shapes are more likely and which shapes are less likely to be plausible instances of the object class of interest. Assuming that the object class of interest is known, such a prior can for example be used in order to reconstruct a three-dimensional surface from only a few known surface points. One relevant application of this surface reconstruction is 3D image segmentation in medical imaging, where the anatomical structure of interest is known a-priori and the surface points are obtained (either automatically or manually) from images. Frequently, Point Distribution Models (PDMs) are used to represent the distribution of shapes, where each shape is discretised and represented as labelled point set. With that, a shape can be interpreted as an element of a vector space, the so-called shape space, and the shape distribution in shape space can be estimated from a collection of given shape samples. One crucial aspect for the creation of PDMs that is tackled in this thesis is how to establish (bijective) correspondences across the collection of training shapes. Evaluated on brain shapes, the proposed method results in an improved model quality compared to existing approaches whilst at the same time being superior with respect to runtime. The second aspect considered in this work is how to learn a low-dimensional subspace of the shape space that is close to the training shapes, where all factors spanning this subspace have local support. Compared to previous work, the proposed method models the local support regions implicitly, such that no initialisation of the size and location of these regions is necessary, which is advantageous in scenarios where this information is not available. The third topic covered in this thesis is how to use an SSM in order to reconstruct a surface from only few surface points. By using a Gaussian Mixture Model (GMM) with anisotropic covariance matrices, which are oriented according to the surface normals, a more surface-oriented fitting is achieved compared to a purely point-based fitting when using the common Iterative Closest Point (ICP) algorithm. In comparison to ICP we find that the GMM-based approach gives superior accuracy and robustness on sparse data. Furthermore, this work covers the transformation synchronisation method, which is a procedure for removing noise that accounts for transitive inconsistency in the set of pairwise linear transformations. One interesting application of this methodology that is relevant in the context of multi-shape analysis is to solve the multi-alignment problem in an unbiased/reference-free manner. Moreover, by introducing an improvement of the numerical stability, the methodology can be used to solve the (affine) multi-image registration problem from pairwise registrations. Compared to reference-based multi-image registration, the proposed approach leads to an improved registration accuracy and is unbiased/reference-free, which makes it ideal for statistical analyses

    Computational Approaches to Drug Profiling and Drug-Protein Interactions

    Get PDF
    Despite substantial increases in R&D spending within the pharmaceutical industry, denovo drug design has become a time-consuming endeavour. High attrition rates led to a long period of stagnation in drug approvals. Due to the extreme costs associated with introducing a drug to the market, locating and understanding the reasons for clinical failure is key to future productivity. As part of this PhD, three main contributions were made in this respect. First, the web platform, LigNFam enables users to interactively explore similarity relationships between ‘drug like’ molecules and the proteins they bind. Secondly, two deep-learning-based binding site comparison tools were developed, competing with the state-of-the-art over benchmark datasets. The models have the ability to predict offtarget interactions and potential candidates for target-based drug repurposing. Finally, the open-source ScaffoldGraph software was presented for the analysis of hierarchical scaffold relationships and has already been used in multiple projects, including integration into a virtual screening pipeline to increase the tractability of ultra-large screening experiments. Together, and with existing tools, the contributions made will aid in the understanding of drug-protein relationships, particularly in the fields of off-target prediction and drug repurposing, helping to design better drugs faster

    Efficient extraction of semantic information from medical images in large datasets using random forests

    No full text
    Large datasets of unlabelled medical images are increasingly becoming available; however only a small subset tend to be manually semantically labelled as it is a tedious and extremely time-consuming task to do for large datasets. This thesis aims to tackle the problem of efficiently extracting semantic information in the form of image segmentations and organ localisations from large datasets of unlabelled medical images. To do so, we investigate the suitability of supervoxels and random classification forests for the task. The first contribution of this thesis is a novel method for efficiently estimating coarse correspondences between pairs of images that can handle difficult cases that exhibit large variations in fields of view. The proposed methods adapts the random forest framework, which is a supervised learning algorithm, to work in an unsupervised manner by automatically generating labels for training via the use of supervoxels. The second contribution of this thesis is a method that extends our first contribution so as to be applicable efficiently on a large dataset of images. The proposed method is efficient and can be used to obtain correspondences between a large number of object-like supervoxels that are representative of organ structures in the images. The method is evaluated for the applications of organ-based image retrieval and weakly-supervised image segmentation using extremely minimal user input. While the method does not achieve image segmentation accuracies for all organs in an abdominal CT dataset compared to current fully-supervised state-of-the-art methods, it does provide a promising way for efficiently extracting and parsing a large dataset of medical images for the purpose of further processing.Open Acces

    Proceedings of the 15th ISWC workshop on Ontology Matching (OM 2020)

    Get PDF
    15th International Workshop on Ontology Matching co-located with the 19th International Semantic Web Conference (ISWC 2020)International audienc
    corecore