259 research outputs found

    Consensus and Stability Analysis of Networked Multiagent Predictive Control Systems

    Get PDF

    An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination

    Get PDF
    This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations

    A Survey of Resilient Coordination for Cyber-Physical Systems Against Malicious Attacks

    Full text link
    Cyber-physical systems (CPSs) facilitate the integration of physical entities and cyber infrastructures through the utilization of pervasive computational resources and communication units, leading to improved efficiency, automation, and practical viability in both academia and industry. Due to its openness and distributed characteristics, a critical issue prevalent in CPSs is to guarantee resilience in presence of malicious attacks. This paper conducts a comprehensive survey of recent advances on resilient coordination for CPSs. Different from existing survey papers, we focus on the node injection attack and propose a novel taxonomy according to the multi-layered framework of CPS. Furthermore, miscellaneous resilient coordination problems are discussed in this survey. Specifically, some preliminaries and the fundamental problem settings are given at the beginning. Subsequently, based on a multi-layered framework of CPSs, promising results of resilient consensus are classified and reviewed from three perspectives: physical structure, communication mechanism, and network topology. Next, two typical application scenarios, i.e., multi-robot systems and smart grids are exemplified to extend resilient consensus to other coordination tasks. Particularly, we examine resilient containment and resilient distributed optimization problems, both of which demonstrate the applicability of resilient coordination approaches. Finally, potential avenues are highlighted for future research.Comment: 35 pages, 7 figures, 5 table

    Synchronous MDADT-Based Fuzzy Adaptive Tracking Control for Switched Multiagent Systems via Modified Self-Triggered Mechanism

    Get PDF
    In this paper, a self-triggered fuzzy adaptive switched control strategy is proposed to address the synchronous tracking issue in switched stochastic multiagent systems (MASs) based on mode-dependent average dwell-time (MDADT) method. Firstly, a synchronous slow switching mechanism is considered in switched stochastic MASs and realized through a class of designed switching signals under MDADT property. By utilizing the information of both specific agents under switching dynamics and observers with switching features, the synchronous switching signals are designed, which reduces the design complexity. Then, a switched state observer via a switching-related output mask is proposed. The information of agents and their preserved neighbors is utilized to construct the observer and the observation performance of states is improved. Moreover, a modified self- triggered mechanism is designed to improve control performance via proposing auxiliary function. Finally, by analysing the re- lationship between the synchronous switching problem and the different switching features of the followers, the synchronous slow switching mechanism based on MDADT is obtained. Meanwhile, the designed self-triggered controller can guarantee that all signals of the closed-loop system are ultimately bounded under the switching signals. The effectiveness of the designed control method can be verified by some simulation results

    A Consensus Approach to Distributed Convex Optimization in Multi-Agent Systems

    Get PDF
    In this thesis we address the problem of distributed unconstrained convex optimization under separability assumptions, i.e., the framework where a network of agents, each endowed with local private convex cost and subject to communication constraints, wants to collaborate to compute the minimizer of the sum of the local costs. We propose a design methodology that combines average consensus algorithms and separation of time-scales ideas. This strategy is proven, under suitable hypotheses, to be globally convergent to the true minimizer. Intuitively, the procedure lets the agents distributedly compute and sequentially update an approximated Newton-Raphson direction by means of suitable average consensus ratios. We consider both a scalar and a multidimensional scenario of the Synchronous Newton-Raphson Consensus, proposing some alternative strategies which trade-off communication and computational requirements with convergence speed. We provide analytical proofs of convergence and we show with numerical simulations that the speed of convergence of this strategy is comparable with alternative optimization strategies such as the Alternating Direction Method of Multipliers, the Distributed Subgradient Method and Distributed Control Method. Moreover, we consider the convergence rates of the Synchronous Newton-Raphson Consensus and the Gradient Descent Consensus under the simplificative assumption of quadratic local cost functions. We derive sufficient conditions which guarantee the convergence of the algorithms. From these conditions we then obtain closed form expressions that can be used to tune the parameters for maximizing the rate of convergence. Despite these formulas have been derived under quadratic local cost functions assumptions, they can be used as rules-of-thumb for tuning the parameters of the algorithms. Finally, we propose an asynchronous version of the Newton-Raphson Consensus. Beside having low computational complexity, low communication requirements and being interpretable as a distributed Newton-Raphson algorithm, the technique has also the beneficial properties of requiring very little coordination and naturally supporting time-varying topologies. Again, we analytically prove that under some assumptions it shows either local or global convergence properties. Through numerical simulations we corroborate these results and we compare the performance of the Asynchronous Newton-Raphson Consensus with other distributed optimization methods
    corecore