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Abstract -- This paper is concerned with the consensus and 

stability problem of multi-agent control systems via 

networks with communication delays and data loss. A 

networked multi-agent predictive control scheme is 

proposed to achieve output consensus and also compensate 

for the communication delays and data loss actively. The 

necessary and sufficient conditions of achieving both 

consensus and stability of the closed-loop networked multi-

agent control systems are derived. An important result that 

is obtained is that the consensus and stability of closed-loop 

networked multi-agent predictive control systems are not 

related to the communication delays and data loss. An 

example illustrates the performance of the networked multi-

agent predictive control scheme. 
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I. INTRODUCTION 

A multi-agent system is a system that is composed of 

several agents which can act in their own environments and 

coordinate with each other. Multi-agent technology has the 

following features: autonomy, distribution, coordination,  

self-organizing ability, learning ability and reasoning ability 

[1]. Multi-agent systems can solve practical problems with 

strong robustness, good reliability and high efficiency. 

There exist various multi-agent systems in real life, such as 

multi-robot systems, multi-satellite systems, air vehicle fleet, 

autonomous underwater vehicle queue and so on. In the past 

decade, the coordinated control technology has been studied 

extensively. The research work includes multi-agent 

consensus, formation of multi-agents, as well as 

coordination of autonomous control. 

Similar to the synchronization in complex networks [2], the 

consensus of multi-agent systems plays a very important 

role in coordinative control of agents and there is a great 

amount of research work on this issue that has been done in 

recent years [3, 4]. A theoretical framework of the multi-

agent consensus problem was proposed by Olfati–Saber and 

Murray [5]. For the case where the topology of multi-agents 

changes, the necessary and sufficient condition of the 

system consensus has been derived, which is there exists a 

spanning tree in the directed graph of the system [6]. The 

convergence of various consensus strategies has been 

studied for different multi-agent systems, for example, 

agents with first-order dynamics [7], agents with double-

integrator dynamics [8, 9], and agents with immeasurable 

dynamical states [10, 11]. To design control protocols such 

that a set of agents can achieve consensus using available  
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information,  the  existence  of  consensus  protocols  (i.e., 

consensusability) has been discussed in [12, 13]. 

With the rapid development of network technology and 

Internet technology, more and more multi-agent systems 

communicate with each other via networks to achieve the 

mutual exchange of information between agents. This leads 

to a new system, called a networked multi-agent systems, 

such as networked control systems, Internet of things [14]. 

Control of networked multi-agent systems is a very complex 

task. This is mainly because communication, control, and 

information processing in a networked multi-agent system 

are distributed and there also exist communication 

constraints. So, it requires a coordinated control system for 

unified coordination and management to make multi-agents 

work together. In the past decade, various problems of 

networked multi-agent systems have been considered. The 

maximum network delay that can be tolerated by networked 

multi-agent systems has been studied in [5]. Asymptotic 

average consensus problem for multi-agent systems with 

time-varying delay has been addressed in [15, 16]. The 

consensus problem for Markovian jump second-order multi-

agent systems with random communication delay has been 

discussed using stochastic switching topology in [17]. The 

global bounded consensus problem of networked multi-

agent nonlinear systems with nonidentical node dynamics 

and communication time delay has been considered in [18]. 

Based on the networked predictive control method proposed 

in [19], a consensus protocol for discrete-time networked 

multi-agent systems has been presented to compensate for 

transmission delay [20]. 

Most current research work of multi-agent system mainly 

focuses on the consensus analysis. Actually, a multi-agent 

system can reach consensus, but it does not mean that the 

stability of the multi-agent system is guaranteed. For 

practical applications of multi-agent systems, both the 

consensus and stability should simultaneously be considered 

in the system design. To author’s knowledge, very little 

research work has been paid to this so far. This paper 

combines both the consensus analysis and stability analysis 

together and obtains necessary and sufficient conditions of 

the system consensus and stability. To compensate for 

communication delay and data loss in networked multi-

agent systems, a networked multi-agent predictive control 

scheme is proposed.  

II. NETWORKED MULTI-AGENT PREDICTIVE 

CONTROL SCHEME 

With the development of communication technology, multi-

agents are integrated via networks in practice. There are 

various structures of networked multi-agent control systems 

in terms of the location of networks in a system. The most 

popular one is the networks are located between the sensors 

and controllers, for example, the formation of satellites that 
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receive the position measurements from a communication 

network. The structure of networked multi-agent systems to 

be studied here is shown in Fig. 1.  

 
 

 

  Plant i 

Network 

 

ui (t) yi (t) 
 

   Predictive 

   Controller 

0
( )

N/A

, 1

, 1
i t

r i
r

i


 



 

yj (t), for j=1,2, …, N  but  j i. 

Agent i 

 

yj (t-τj ) , for j=1,2, …, N 

Fig. 1. The networked multi-agent predictive control system 

 

 

To simplify the presentation of the proposed method in this 

paper, it is assumed that each agent can receive the output 

measurements of all the agents via networks, the delay 

caused by networks for the output of the i-th agent is 

bounded by di, the number of consecutive data loss on 

networks is bounded by ci, the data transmitted through a 

network are with a time stamp, and all the agents in the 

system are synchronised. 

Nowadays, most researchers in multi-agent systems assume 

the desired reference inputs of all the agents are zero. 

Actually, this is not the case in practice. To consider a more 

generic case, here it is assumed that the desired reference 

input of the first agent is given. 

The communication topology of networked multi-agents is 

modeled by a digraph ={,,}, where ={1, 2, …, N} 

denotes the set of agents,  the set of edges, and =[aij] 

the nonnegative weighted adjacency matrix with aii=0. The 

directed edge (i,j) means that the i-th agent can receive 

information from the j-th agent via networks. Adjacency 

element aji associated with edge (i,j) is positive. Let 

1 .N
jii ijl a   

The multi-agents to be considered are described as   

( 1) ( ) ( )

( ) ( )

i i i i i

i i i

t t t

t t

x A x B u

y C x

  


             (1) 

for i=1, 2, …, N, where ,in l

i ix y   and im

iu   are the 

state, output and input vectors of the i-th agent, respectively, 

and ,i i i in n n m

i iA B
 

   and il n

iC


  are the system 

matrices. It is assumed that (Ai, Ci),  i, are observerable 

but the states of all the agents are immeasurable. 

To prevent the data from dropout during data transmission 

from the i-th agent to other agents via networks, a data 

transmission strategy is adopted. In this strategy, the output 

data [yi(t), yi(t-1),…, yi(t-ci)] at time t are sent from the i-th 

agent to other agents, which implies that the output data are 

always available if the number of consecutive data loss on 

networks is not greater than ci.  

From the assumptions, let τi=di+ci. As (Ai, Ci) is 

observerable, to estimate the state vector of an agent, the 

following state observer for the i-th agent is designed: 

(

( (

) ( ) ( ) ( ) ( )

) )

ˆ ˆ ˆ( )

ˆ ˆ

o

ii i i i i i i i i i i i i i i

i i i i i i i

t- +1|t- A t- |t- -1 B t- K t- t- |t- -1

t- |t- -1 C t- |t- -1

x x u y y

y x

       

   

   



            

(2) 

where ˆ ( | ) ( )in

ix t k t j k j     denotes the state prediction 

of the i-th agent for time t-k using the information upto time 

t-j, ˆ (. | .) l

iy  is the output prediction, and io

i

n l
K


  is the 

observer gain matrix. 

Using the information available on the controller side, the 

states of the i-th agent from t-τi +2 to time t can be predicted 

by 

( ) ( ) ( )

( ) ( )

ˆ ˆ

ˆ ˆ

i i i i i i i i i i

i i i i i i i

t- +k|t- A t- +k-1|t- B t- +k-1

t- +k|t- C t- +k|t-

x x u

y x

    

   

 


    (3) 

for 2,3,..., .ik    

To track the desired reference input r0, the following states 

are introduced: 

1 1 1 1 0( 1) ( ) ( )ˆt+ t t|t-z z y r 

                 

(4)

 
1 1( 1) ( ) ( ) ( )ˆ ˆ

i i i it+ t t|t- t|t-z z y y  

         

(5) 

To compensate for the time delays and data loss caused by 

networks actively, the following predictive control protocol 

for networked multi-agents is proposed:  

1

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))
N

i
j

y z e

ij j j i
i i ii i i i Ku t K y t|t- K z t a y t|t- -y t|t-  



  

                

(6)

 where , andi i i im l m m m ly z e

i i iK K K
  

    are the 

gain matrices to be designed, and aij,  i,j, are the 

elements of the nonnegative weighted adjacency matrix .  

 

 

III. CONSENSUS AND STABILITY ANALYSIS OF 

NETWORKED MEULTI-AGENT PREDICTIVE 

CONTROL SYSTEMS  

In multi-agent control systems, both the consensus and 

stability are the key issues. They are simultaneously 

analysed in this section. 

Definition 1: Networked multi-agent control system (1) with 

control protocol (6) is input-output stable and achieves the 

output consensus if the following conditions hold: 

1) ( )lim i
t

ty


  ,   if  
0 , for 0r t    

2) ( ) ( )lim 0i j
t

t y ty


   

for  i,j, where r0 is an constant reference input. 

It is clear from Definition 1 that condition 1) defines the 

input-output stability and condition 2) does the output 

consensus. It defines how both stability and consensus of 

networked multi-agent control systems can be combined.  

Replacing t by t+τi in observer (2) results in the following: 

( 1| ) ( | 1) ( ) ( ) ( | 1)

( | 1) ( | 1)

ˆ ˆ ˆ( )

ˆ ˆ

o

ii i i i i i i

i i i

t t t t t K t t t

t t t t

x A x B u y -y

y C x

  

 

  



         (7) 
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Subtracting the observer state equation (7) from the multi-

agent state equation (1) leads to the state error equation:  

( 1) ( )( )o

ii i i it te A K C e              (8) 

where ( ) ( ) ( | 1)ˆ .i i it t t te x -x   Using the state prediction equation 

(3) recursively, the τi -th step ahead state prediction can be 

written as 

1

1 1

2

1

( | ) ( 1| ) ( 1)

( | 1) ( )

( 1)

ˆ ˆ

ˆ( )

i

i

ki i

i i

o oi i

i ii i

ki

i

i i i i i i i i

k

i i i i i i i i

i i i

k

t t- t- t- t+k- -

K t- t- - K t-

t+k- -

x A x A B u

A A C x A C x

A B u

 

 







   

  



 

 







 

  







         (9) 

Employing (1) recursively results in  

1

( ) ( ) ( 1)
i

ki i

i ii i i i i i

k

t t- t+k- -x A x A B u
 



 




         (10) 

Combining (9) and (10) yields  

1 1

1

1

1

( | ) ( | 1) ( )

( ) ( )

( | 1) ( )) ( )

( ) ( )

( ) ( 1)

ˆ ˆ( )

ˆ( )(

( )

o oi i

i ii i

i

i

oi

i i

oi

i i

i

i

i i i i i i i i i i

i i i

i i i i i i i i

i i i i i

i i i

t t- K t- t- - K t-

t t-

K t- t- - t- t

t K t-

t t-

x A A C x A C x

x A x

A A C x x x

x A A C e

x A e

 









   



  





 











 

  

 

  

 



 

       (11) 

Using the above, control protocol (6) can be expressed as 

1

11

1

1

)

)

( ) ( ) ( ) ( ( ) ( )

( ( 1) ( 1)

( 1)

N
y z e

i ij j j i ii i i
j

N
e ji

ij i i i i j j j ji
j

y i

i i i ii

i i i K

K

u t K C x t K z t a C x t - C x t

a C A e t- C A e t-

K C A e t-





 













 

  

 

 

                 (12) 

Let ( ) ( ) ( 1)
ii it t - t-x x x   and ( ) ( ) ( 1)

ii it t tz z z   . It is clear 

from (1) and (12) that the state increment of the i-th agent 

can be expressed by 

1

11

1

1

( ( ) ( ))

( ( 1) ( 1))

( 1) ( ) ( )

( ) ( ) ( )

( 1)

i i i

y z

i i i

N
e

ij j j i ii
j

N
e ji

ij i i i i j j j ji
j

y i

i i i ii

i i

i i i i i i

i

i

i

K a C x t C x t

K a C A e t- C A e t-

x t A x t B u t

A x t B K C x t B K z t

B

B

B K C A e t-





 











   

     

     

     

  

                        

1

1

11

1

( )

( ( 1) ( 1))

( ( ) ) ( ) ( )

( 1)

y e z

i ii i i

N
e y i

ij j j i i i ii i
j

N
e ji

ij i i i i j j j ji
j

i i i i i i

i i

i

K

K a C x t

K a C A e t- C A e t-

A B K l C x t B K z t

B B K C A e t-

B




 










 

     

     

  

 

(13) 

From (4), (5) and (11),  ( 1)i t+z can be given by  

1 1

1 1 11 1 1 1 1( 1) ( ) ( ) ( 1)t+ t C t C A e t-z z x





        

1 11

1 1

1 1

1 1 1 1

( 1) ( ) ( ) ( )

( ) ( ) ( )

( 1) ( 1)

ˆ ˆ

i

i i i i

i i i

i i i i

t+ t t|t- t|t-

t x t x t

t- t-

z z y y

z C C

C A e C A e


 

 


   

   

   

  

 

 

 

         (14) 

for i = 2,3,…, N.  Let  

1 2( ) ( ) ( )( )
T

T T T

Nt t tX t x x x      
  

1 2( ) ( ) ( )( )
T

T T T

Nt t tZ t z z z        

1 1 2 21 1 2 2( 1), ( ), ( 1), ( ), , ( )( )
N

T
T T T T T

Nt t t t tE t e e e e e             
 

Then, the compact forms for (13), (14) and (8) can be given 

by 

( 1) ( ) ( ) ( ) ( )
D kyec akc kz

X t A B B X t B Z t P t            (15) 

1( 1) ( ) ( ) ( ) ( )
NDZ t J X t Z t Q tC C                  (16) 

( 1) ( )koct tE A E 

             

(17)

 
where   

1 2
diag{ , , , }

D N
A A A A  

1 1 1 1 2 21 1 2 22 2

,

diag{ , , , ,

, }

o o o o

o o

N N N NN N

koc K C K C K C K C

K C K C

A A A A A

A A

   

 



 

1 11 11 1 2 22 2
) )2 2( (

(

diag{ , ,

, ) }

y e y e

y e

N N NN N

kyec

N

K K C K K C

K K C

B B l B l

B l

 





 

11 1 1 1 12 1 1 2 1 1 1

21 2 2 1 22 2 2 2 21 2 2

1 1 1 2

e e e
N N

e e e
N

e e e
N N N N N N NN N N N

akc

a B K C a B K C a B K C

a B K C a B K C a B K C

a B K C a B K C a B K C

B

 
 
 
 
 
 
 
 



1 1 22diag{ , , , }
z z z

N Nkz K K KB B B B

1 2
diag{ , , , }

D N
C C C C

 

,( ) ( ), , ( )1 2( )
T

T T T

N
t t tP t p p p     

,( ) ( ), , ( )1 2( )
T

T T T
t t tNQ t q q q     

1

1

1

1

( ( ) ( 1))( )

( ( 1) ( ))

( ( 1) ( ))

N
e j

ij j j j j j ji i
j

e i

ii i i i i i i ii

y i

i i i i i ii

i

i

p K a C A e t e tt B

l B K C A e t e t

B K C A e t e t







 

 

 









    

    

    

 

1 1

1 1 1 1 1 1 1( ) ( 1))( ) ( t- t-q t C A e e


 


 
 

1 1

1 1 1 1 1 1

1

( 1) ( ))

( 1) ( )), for 2,3, ...,

( ) (

(i

i

i i i i i i

t- t-

t- t- i N

q t C A e e

C A e e





 

 





 

   


 

 0,1, ,1 0 ( 1)N

T
n nJ  
   

    

and  denotes the Kronecker product of matrices. 
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Thus, it is clear from (15), (16) and (17) that the closed-loop 

networked multi-agent predictive control system can be 

described by the following compact form: 

1

( 1) ( )

( 1) ( )

( 1) ( )

kz

N

D kyec akc

D

koc

t t

t J t

t t

X A B B B X

Z C C Z

E A E







 



        
     
   
     
          

I

0 0

       (18) 

where ( ) ( )E t P t  , ( ) ( ),E t Q t  and 0 and I denote a zero 

matrix and identity matrix with an appropriate dimension, 

respectively. Let 

1 I
kz

N

D kyec akc

D J

A B B B

C C

  
   

          

(19)

 

It is clear from the above that if system (18) is stable then 

( ) 0i tx  , ( ) 0i tz   and ( ) 0
i

te   as t  , for i=1, 

2, …, N.  From ( ) 0
i

te   as t  , it leads to    

( | ) ( )ˆ as t (from (11))
ii it t tx x  

 
So, 

 

( | ) ( )ˆ as t
ii it t ty y  

        

(20)

 
because of (3).  Eq. (4) ad (5) can be rewritten as 

11 1 0( 1) ( | )ˆt+ t tz y r  

        

(21)

 
1 1( 1) ( | ) ( )ˆ ˆ

ii it+ t t t|t-z y y   

       

(22) 

for i = 2,3,…, N.  From ( ) 0
i

tz   as t  ,  i, it 

implies from (19) and (20) that  

011( | )ˆ ast ty r t    

             

(23) 

11 1( | ) ( | ) ( )ˆ ˆ as
ii t t t t ty y y t     , for i=2, 3, …, N  

     

(24) 

Thus, it can be concluded from (20), (23) and (24) that 

01( ) asty r t   

              

(25) 

1( ) ( ) asi t ty y t  , for i=2, 3, …, N           (26) 

Clearly, the two conditions of Definition 1 are satisfied. In 

other words, the closed-loop networked multi-agent 

predictive control system is stable and also achieves the 

consensus. It is well-known that the necessary and sufficient 

stability conditions of system (18) are all the eigenvalues of 

matrices  and ,o

ii iA K C   i, are within the unit circle. So, 

summarising the above results gives the following theorem: 

Theorem 1: The networked multi-agent control system (1) 

with control protocol (6) is stable and achieves consensus if 

and only if all the eigenvalues of matrices  and ,o

ii iA K C  

 i, are within the unit circle.  

It is also noted from the above theorem that both the 

consensus and stability of the closed-loop networked multi-

agent predictive control systems are not related to network 

delays. This is a significant achievement for networked 

multi-agent control systems. Actually, after the observers (7) 

converge, the networked multi-agent predictive control 

system has the same control performance as the multi-agent 

control system without communication delays and data loss 

(i.e., τi=0,  i,). 

If there do not exist network delays or data loss, or the 

outputs of all the agents are directly measured without 

networks, this means that τi=0,   i. For this case, the 

control protocol (6) can be modified to be 

1

( ) ( ) ( ) ( ( ) ( ))
N

j

y z e

ij j i
i i ii i i Ku t K y t K z t a y t -y t



  

        (27) 

for i=1, 2, …, N, where    
 

1 1 1 0( 1) ( ) ( )t+ t tz z y r 

                       

(28)

 
1( 1) ( ) ( ) ( )i i it+ t t tz z y y 

              

(29) 

for i=2, 3, …, N. Following the similar procedure used for 

the case of τi≠0,  i, the closed-loop multi-agent control 

system without networks can be described by 

( 1) ( )

( 1) ( )

t t

t t

X X

Z Z





    
    

               

(30) 

where matrix  is the same one given by (19). Thus, the 

necessary and sufficient conditions of networked multi-

agent control system (1) with control protocol (27) being 

stable and achieving consensus are all the eigenvalues of 

matrix  are within the unit circle.     

 

IV. AN EXAMPLE 

This section uses an example to demonstrate how the 

networked multi-agent predictive control scheme proposed 

in this paper works. Three different agents are considered 

with the following system matrices: 

1 1 1

1.7 1.3 1.0 1.0
, ,

1.6 1.8 2.0 0.3

T

A B C
     

       
     

 

2 2 2

1.8 1.4 1.7 0.7
, ,

1.8 1.9 3.4 0.2

T

A B C
     

       
     

 

3 3 3

1.4 1.1 0.8 1.1
, ,

1.3 1.5 1.6 0.4

T

A B C
     

       
     

 

The three agents are communicated via a network with a 

structure in which there is a one-to-one connection between 

them, i.e., the elements of the nonnegative adjacency 

weighted matrix are a12=a21=a13=a31=a23=a32=1 and 

a11=a22=a33=0. 

There are many methods to design the gain matrices in  

predictive control protocol (6). Here, following the 

eigenstructure assignment method [21], one of possible 

solutions for the control gain matrices that make all the 

eigenvalues of matrix  be within the unit circle is obtained, 

which results from the following control gains: 

0.25, 0.20, 0.15y z e

i i iK K K      

for i=1, 2, 3. 

Using the pole assignment method, the observer gain 

matrices for the three agents are designed as 

1 2 3

0.1700 0.2759 0.1535
, ,

0.7666 1.0345 0.5780

o o oK K K
       

       
       
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to assign the desired poles of the three observers to 0.1 and 

0.2. In this example, there are the following assumptions:  

1) The communication delays are d1=3, d2=2, d3=4 and the 

numbers of the consecutive data loss in the network for 

individual agents are c1=1, c2=3, c3=2.  

2) The initial values of all the agent states, control inputs 

and observer states are zero. The desired reference input 

for the first agent is r0=1 for 0＜t≤50 and r0=2 for t>50.  

From the first assumption in the above, it can be calculated 

that
1 2 34, 5, 6.     Three cases are discussed in this 

example. 

Case 1 

For this case, there do not exist communication delays or 

data loss in the networked three-agent control system, and 

the control protocol (27) are utilised, i.e.,  

3

1

( ) ( ) ( ) ( ( ) ( ))
j

y z e

ij j i
i i ii i i Ku t K y t K z t a y t -y t



    

for i=1, 2, 3, where 
1 1 1 0( 1) ( ) ( )t+ t tz z y r  and

1( 1) ( ) ( ) ( ),i i it+ t t tz z y y  for i=2, 3. The outputs yi(t) of 

the three agents are shown in Figure 2. It is clear that the 

closed-loop three-agent control systems are stable and track 

the desired reference input very well.  

 

Figure 2  The outputs of the agents (Case 1) 

 

Case 2 

For this case, there are communication delays and data loss 

in the networked three-agent control system, and a normal 

control protocol without compensating for network delays 

and data loss is used as follows: 

3

1

( ) ( ) ( ) ( ( ) ( ))
j

y z e

ij j i
i i i j ii i i i Ku t K y t K z t a y t -y t  



      

for i=1, 2, 3, where
11 1 1 0( 1) ( ) ( )t+ t tz z y r   and

11( 1) ( ) ( ) ( ),
ii i it+ t t tz z y y     for i=2, 3. In this 

example, if one of 1, 2 and 3 is not zero, the closed-loop 

networked three-agent control system with the above control 

protocol is unstable. For example, for 1=0, 2=0 and 3=1, 

the outputs yi(t) of the three agents are shown in Figure 3. 

Clearly, the closed-loop system is unstable. This is mainly 

because the communication delays and data loss are not 

compensated in the control protocol.   

 
Figure 3  The outputs of the agents (Case 2) 

 

Case 3 

For this case, there are communication delays and data loss 

in the networked three-agent control system, and the 

networked multi-agent predictive control scheme is 

employed. The control protocol is given by (6), i.e.,  

3

1

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))
j

y z e

ij j j i iii i ii i i Ku t K y t|t- K z t a y t|t- -y t|t-  


  
 

for i=1, 2, 3, where 
11 1 1 0( 1) ( ) ( | )ˆt+ t t tz z y r  

 

and

1 1( 1) ( ) ( ) ( ),ˆ ˆ
i i i it+ t t|t- t|t-z z y y   for i=2, 3. The outputs 

yi(t) of the three agents are shown in Figure 4. It can be 

noted from the simulation results that the performance of the 

closed-loop networked three-agent control system is very 

similar to the one of the system without communication 

delay and data loss.  

 
Figure 4  The outputs of the agents (Case 3) 

 

For comparison, the output errors between Case 3 and Case 

1 are shown in Figure 5.  For 0≤t ≤50, there exist the 

output errors between Case 3 and Case 1, which is caused 

by the observers. When the reference input changes from 

r0=1 to r0=2 at t=50, the output errors between Case 3 and 
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Case 1 are zero because the observers of the agents 

converge.  It implies that the performance of the networked 

multi-agent predictive control systems with communication 

delays and data loss is the same as the one of the system 

without network. This shows the networked multi-agent 

predictive control scheme proposed in this paper actively 

compensates for communication delays and data loss 

completely.   

 
Figure 5  The output errors between Case 3 and Case 1  

 

 

V. CONCLUSIONS 

This paper has studied both consensus and stability of 

networked multi-agent control systems with communication 

delays and data loss. To compensate for communication 

delays and data loss actively, the networked multi-agent 

predictive control scheme has been proposed to achieve 

output consensus. The output consensus and input-output 

stability analysis has provided the necessary and sufficient 

conditions of achieving both consensus and stability of the 

closed-loop networked multi-agent predictive control 

systems. It has also been concluded that the consensus and 

stability of closed-loop networked multi-agent predictive 

control systems are not related to communication delays and 

data loss. The example has illustrated that the performance 

of the networked multi-agent predictive control system is 

the same as the one of the multi-agent control system 

without network. 
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