11 research outputs found

    Connectivity-Based Skeleton Extraction in Wireless Sensor Networks

    Full text link

    A Novel Skeleton Extraction Algorithm for 3d Wireless Sensor Networks

    Get PDF
    Wireless sensor network design is critical and resource allocation is a major problem which remains to be solved satisfactorily. The discrete nature of sensor networks renders the existing skeleton extraction algorithms inapplicable. 3D topologies of sensor networks for practical scenarios are considered in this paper and the research carried out in the field of skeleton extraction for three dimensional wireless sensor networks. A skeleton extraction algorithm applicable to complex 3D spaces of sensor networks is introduced in this paper and is represented in the form of a graph. The skeletal links are identified on the basis of a novel energy utilization function computed for the transmissions carried out through the network. The frequency based weight assignment function is introduced to identify the root node of the skeleton graph. Topological clustering is used to construct the layered topological sets to preserve the nature of the topology in the skeleton graph. The skeleton graph is constructed with the help of the layered topological sets and the experimental results prove the robustness of the skeleton extraction algorithm introduced. Provisioning of additional resources to skeletal nodes enhances the sensor network performance by 20% as proved by the results presented in this paper

    Shape Classification Via Contour Matching Using the Perpendicular Distance Functions

    Get PDF
    We developed a novel shape descriptor for object recognition, matching, registration and analysis of two-dimensional (2-D) binary shape silhouettes. In this method, we compute the perpendicular distance from each point on the object contour to the line passing through the fixed point. The fixed point is the centre of gravity of a shape. As a geometrically invariant feature, we measure the perpendicular distance function for each line that satisfies the centre of gravity of an object and one of the points on the shape contour. In the matching stage, we used principal component analysis concerning the moments of the perpendicular distance function. This method gives an excellent discriminative power, which is demonstrated by excellent retrieval performance that has been experimented on several shape benchmarks, including Kimia silhouettes, MPEG7 data set

    Trajectory Adaptive Prediction for Moving Objects in Uncertain Environment

    Full text link
    The existing methods for trajectory prediction are difficult to describe trajectory of moving objects in complex and uncertain environment accurately. In order to solve this problem, this paper proposes an adaptive trajectory prediction method for moving objects based on variation Gaussian mixture model (VGMM) in dynamic environment (ESATP). Firstly, based on the traditional mixture Gaussian model, we use the approximate variational Bayesian inference method to process the mixture Gaussian distribution in model training procedure. Secondly, variational Bayesian expectation maximization iterative is used to learn the model parameters and prior information is used to get a more precise prediction model. Finally, for the input trajectories, parameter adaptive selection algorithm is used automatically to adjust the combination of parameters. Experiment results perform that the ESATP method in the experiment showed high predictive accuracy, and maintain a high time efficiency. This model can be used in products of mobile vehicle positioning

    Adaptive scheme to Control Power Aware for PDR in Wireless Sensor Networks

    Get PDF
    Nowadays Wireless sensor networks playing vital role in all area. Which is used to sense the environmental monitoring, Temperature, Soil erosin etc. Low data delivery efficiency and high energy consumption are the inherent problems in Wireless Sensor Networks. Finding accurate data is more difficult and also it will leads to more expensive to collect all sensor readings. Clustering and prediction techniques, which exploit spatial and temporal correlation among the sensor data, provide opportunities for reducing the energy consumption of continuous sensor data collection and to achieve network energy efficiency and stability. So as we propose Dynamic scheme for energy consumption and data collection in wireless sensor networks by integrating adaptively enabling/disabling prediction scheme, sleep/awake method with dynamic scheme. Our framework is clustering based. A cluster head represents all sensor nodes within the region and collects data values from them. Our framework is general enough to incorporate many advanced features and we show how sleep/awake scheduling can be applied, which takes our framework approach to designing a practical dynamic algorithm for data aggregation, it avoids the need for rampant node-to-node propagation of aggregates, but rather it uses faster and more efficient cluster-to-cluster propagation. To the best of our knowledge, this is the first work adaptively enabling/disabling prediction scheme with dynamic scheme for clustering-based continuous data collection in sensor networks. When a cluster node fails because of energy depletion we need to choose alternative cluster head for that particular region. It will help to achieve less energy consumption. Our proposed models, analysis, and framework are validated via simulation and comparison with Static Cluster method in order to achieve better energy efficiency and PDR

    Approximate convex decomposition based localization in wireless sensor networks

    Full text link
    Accurate localization in wireless sensor networks is the foundation for many applications, such as geographic routing and position-aware data processing. An important research direction for localization is to develop schemes using connectivity information only. These schemes primary apply hop counts to distance estimation. Not surprisingly, they work well only when the network topology has a convex shape. In this paper, we develop a new Localization protocol based on Approximate Convex Decomposition (ACDL). It can calculate the node virtual locations for a large-scale sensor network with arbitrary shapes. The basic idea is to decompose the network into convex subregions. It is not straight-forward, however. We first examine the influential factors on the localization accuracy when the network is concave such as the sharpness of concave angle and the depth of the concave valley. We show that after decomposition, the depth of the concave valley becomes irrelevant. We thus define concavity according to the angle at a concave point, which can reflect the localization error. We then propose ACDL protocol for network localization. It consists of four main steps. First, convex and concave nodes are recognized and network boundaries are segmented. As the sensor network is discrete, we show that it is acceptable to approximately identify the concave nodes to control the localization error. Second, an approximate convex decomposition is conducted. Our convex decomposition requires only local information and we show that it has low message overhead. Third, for each convex subsection of the network, an improved Multi-Dimensional Scaling (MDS) algorithm is proposed to compute a relative location map. Fourth, a fast and low complexity merging algorithm is developed to construct the global location map. Our simulation on several representative networks demonstrated that ACDL has localization error that is 60%-90% smaller as compared with the typical MDS-MAP algorithm and 20%-30% - maller as compared to a recent state-of-the-art localization algorithm CATL.Department of ComputingRefereed conference pape

    Multi-Dimensional Medial Geometry: Formulation, Computation, and Applications

    Get PDF
    Medial axis is a classical shape descriptor. It is a piece of geometry that lies in the middle of the original shape. Compared to the original shape representation, the medial axis is always one dimension lower and it carries many intrinsic shape properties explicitly. Therefore, it is widely used in a large amount of applications in various fields. However, medial axis is unstable to the boundary noise, often referred to as its instability. A small amount of change on the object boundary can cause a dramatic change in the medial axis. To tackle this problem, a significance measure is often associated with the medial axis, so that medial points with small significance are removed and only the stable part remains. In addition to this problem, many applications prefer even lower dimensional medial forms, e.g., shape centers of 2D shapes, and medial curves of 3D shapes. Unfortunately, good significance measures and good definitions of lower dimensional medial forms are still lacking. In this dissertation, we extended Blum\u27s grassfire burning to the medial axis in both 2D and 3D to define a significance measure as a distance function on the medial axis. We show that this distance function is well behaved and it has nice properties. In 2D, we also define a shape center based on this distance function. We then devise an iterative algorithm to compute the distance function and the shape center. We demonstrate usefulness of this distance function and shape center in various applications. Finally we point out the direction for future research based on this dissertation

    Connectivity-Based Skeleton Extraction in Wireless Sensor Networks

    No full text
    Many sensor network applications are tightly coupled with the geometric environment where the sensor nodes are deployed. The topological skeleton extraction for the topology has shown great impact on the performance of such services as location, routing, and path planning in wireless sensor networks. Nonetheless, current studies focus on using skeleton extraction for various applications in wireless sensor networks. How to achieve a better skeleton extraction has not been thoroughly investigated. There are studies on skeleton extraction from the computer vision community; their centralized algorithms for continuous space, however, are not immediately applicable for the discrete and distributed wireless sensor networks. In this paper, we present a novel Connectivity-bAsed Skeleton Extraction (CASE) algorithm to compute skeleton graph that is robust to noise, and accurate in preservation of the original topology. In addition, CASE is distributed as no centralized operation is required, and is scalable as both its time complexity and its message complexity are linearly proportional to the network size. The skeleton graph is extracted by partitioning the boundary of the sensor network to identify the skeleton points, then generating the skeleton arcs, connecting these arcs, and finally refining the coarse skeleton graph. We believe that CASE has broad applications and present a skeleton-assisted segmentation algorithm as an example. Our evaluation shows that CASE is able to extract a well-connected skeleton graph in the presence of significant noise and shape variations, and outperforms the state-of-the-art algorithms

    CASE: Connectivity-Based Skeleton Extraction in Wireless Sensor Networks

    No full text
    Many sensor network applications are tightly coupled with the geometric environment where the sensor nodes are deployed. The topological skeleton extraction has shown great impact on the performance of such services as location, routing, and path planning in sensor networks. Nonetheless, current studies focus on using skeleton extraction for various applications in sensor networks. How to achieve a better skeleton extraction has not been thoroughly investigated. There are studies on skeleton extraction from the computer vision community; their centralized algorithms for continuous space, however, is not immediately applicable for the discrete and distributed sensor networks. In this paper we present CASE: a novel connectivity-based skeleton extraction algorithm to compute skeleton graph that is robust to noise, and accurate in preservation of the original topology. In addition, no centralized operation is required. The skeleton graph is extracted by partitioning the boundary of the sensor network to identify the skeleton points, then generating the skeleton arcs, connecting these arcs, and finally refining the coarse skeleton graph. Our evaluation shows that CASE is able to extract a well-connected skeleton graph in the presence of significant noise and shape variations, and outperforms state-of-the-art algorithms.Department of ComputingRefereed conference pape
    corecore