258 research outputs found

    The feeling of anger: From brain networks to linguistic expressions.

    Get PDF
    This review of the neuroscience of anger is part of The Human Affectome Project, where we attempt to map anger and its components (i.e., physiological, cognitive, experiential) to the neuroscience literature (i.e., genetic markers, functional imaging of human brain networks) and to linguistic expressions used to describe anger feelings. Given the ubiquity of anger in both its normative and chronic states, specific language is used in humans to express states of anger. Following a review of the neuroscience literature, we explore the language that is used to convey angry feelings, as well as metaphors reflecting inner states of anger experience. We then discuss whether these linguistic expressions can be mapped on to the neural circuits during anger experience and to distinct components of anger. We also identify relationships between anger components, brain networks, and other affective research relevant to motivational states of dominance and basic needs for safety

    Endogenous Testosterone Modulates Prefrontal–Amygdala Connectivity during Social Emotional Behavior

    Get PDF
    It is clear that the steroid hormone testosterone plays an important role in the regulation of social emotional behavior, but it remains unknown which neural circuits mediate these hormonal influences in humans. We investigated the modulatory effects of endogenous testosterone on the control of social emotional behavior by applying functional magnetic resonance imaging while healthy male participants performed a social approach–avoidance task. This task operationalized social emotional behavior by having participants approach and avoid emotional faces by pulling and pushing a joystick, respectively. Affect-congruent trials mapped the automatic tendency to approach happy faces and avoid angry faces. Affect-incongruent trials required participants to override those automatic action tendencies and select the opposite response (approach-angry, avoid-happy). The social emotional control required by affect-incongruent responses resulted in longer reaction times (RTs) and increased activity at the border of the ventrolateral prefrontal cortex and frontal pole (VLPFC/FP). We show that endogenous testosterone modulates these cerebral congruency effects through 2 mechanisms. First, participants with lower testosterone levels generate larger VLPFC/FP responses during affect-incongruent trials. Second, during the same trials, endogenous testosterone modulates the effective connectivity between the VLPFC/FP and the amygdala. These results indicate that endogenous testosterone influences local prefrontal activity and interregional connectivity supporting the control of social emotional behavior

    Personality influences the neural responses to viewing facial expressions of emotion

    Get PDF
    Cognitive research has long been aware of the relationship between individual differences in personality and performance on behavioural tasks. However, within the field of cognitive neuroscience, the way in which such differences manifest at a neural level has received relatively little attention. We review recent research addressing the relationship between personality traits and the neural response to viewing facial signals of emotion. In one section, we discuss work demonstrating the relationship between anxiety and the amygdala response to facial signals of threat. A second section considers research showing that individual differences in reward drive (behavioural activation system), a trait linked to aggression, influence the neural responsivity and connectivity between brain regions implicated in aggression when viewing facial signals of anger. Finally, we address recent criticisms of the correlational approach to fMRI analyses and conclude that when used appropriately, analyses examining the relationship between personality and brain activity provide a useful tool for understanding the neural basis of facial expression processing and emotion processing in general

    Dorsal Striatum and Its Limbic Connectivity Mediate Abnormal Anticipatory Reward Processing in Obesity

    Get PDF
    Obesity is characterized by an imbalance in the brain circuits promoting reward seeking and those governing cognitive control. Here we show that the dorsal caudate nucleus and its connections with amygdala, insula and prefrontal cortex contribute to abnormal reward processing in obesity. We measured regional brain glucose uptake in morbidly obese (n = 19) and normal weighted (n = 16) subjects with 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET) during euglycemic hyperinsulinemia and with functional magnetic resonance imaging (fMRI) while anticipatory food reward was induced by repeated presentations of appetizing and bland food pictures. First, we found that glucose uptake rate in the dorsal caudate nucleus was higher in obese than in normal-weight subjects. Second, obese subjects showed increased hemodynamic responses in the caudate nucleus while viewing appetizing versus bland foods in fMRI. The caudate also showed elevated task-related functional connectivity with amygdala and insula in the obese versus normal-weight subjects. Finally, obese subjects had smaller responses to appetizing versus bland foods in the dorsolateral and orbitofrontal cortices than did normal-weight subjects, and failure to activate the dorsolateral prefrontal cortex was correlated with high glucose metabolism in the dorsal caudate nucleus. These findings suggest that enhanced sensitivity to external food cues in obesity may involve abnormal stimulus-response learning and incentive motivation subserved by the dorsal caudate nucleus, which in turn may be due to abnormally high input from the amygdala and insula and dysfunctional inhibitory control by the frontal cortical regions. These functional changes in the responsiveness and interconnectivity of the reward circuit could be a critical mechanism to explain overeating in obesity

    Affective Neuronal Selection: The Nature of the Primordial Emotion Systems

    Get PDF
    Based on studies in affective neuroscience and evolutionary psychiatry, a tentative new proposal is made here as to the nature and identification of primordial emotional systems. Our model stresses phylogenetic origins of emotional systems, which we believe is necessary for a full understanding of the functions of emotions and additionally suggests that emotional organizing systems play a role in sculpting the brain during ontogeny. Nascent emotional systems thus affect cognitive development. A second proposal concerns two additions to the affective systems identified by Panksepp. We suggest there is substantial evidence for a primary emotional organizing program dealing with power, rank, dominance, and subordination which instantiates competitive and territorial behavior and is an evolutionary contributor to self-esteem in humans. A program underlying disgust reactions which originally functioned in ancient vertebrates to protect against infection and toxins is also suggested

    Dorsal Striatum and Its Limbic Connectivity Mediate Abnormal Anticipatory Reward Processing in Obesity

    Get PDF
    Obesity is characterized by an imbalance in the brain circuits promoting reward seeking and those governing cognitive control. Here we show that the dorsal caudate nucleus and its connections with amygdala, insula and prefrontal cortex contribute to abnormal reward processing in obesity. We measured regional brain glucose uptake in morbidly obese (n = 19) and normal weighted (n = 16) subjects with 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET) during euglycemic hyperinsulinemia and with functional magnetic resonance imaging (fMRI) while anticipatory food reward was induced by repeated presentations of appetizing and bland food pictures. First, we found that glucose uptake rate in the dorsal caudate nucleus was higher in obese than in normal-weight subjects. Second, obese subjects showed increased hemodynamic responses in the caudate nucleus while viewing appetizing versus bland foods in fMRI. The caudate also showed elevated task-related functional connectivity with amygdala and insula in the obese versus normal-weight subjects. Finally, obese subjects had smaller responses to appetizing versus bland foods in the dorsolateral and orbitofrontal cortices than did normal-weight subjects, and failure to activate the dorsolateral prefrontal cortex was correlated with high glucose metabolism in the dorsal caudate nucleus. These findings suggest that enhanced sensitivity to external food cues in obesity may involve abnormal stimulus-response learning and incentive motivation subserved by the dorsal caudate nucleus, which in turn may be due to abnormally high input from the amygdala and insula and dysfunctional inhibitory control by the frontal cortical regions. These functional changes in the responsiveness and interconnectivity of the reward circuit could be a critical mechanism to explain overeating in obesity

    Always allthe Rage: Anger and its Management

    Get PDF
    Anger is one of the basic human emotions and every person, almost certainly, has experienced it at least once in their lifetime. Anger arises as a result of a perceived threat, frustration or offense. Neuropsychological research has detected several brain areas responsible for excessive anger expression (e.g., anterior cingulate cortex, insula and amygdala), and poor anger management (e.g., orbital and prefrontal cortexes). Some studies show that neurotransmitters norepinephrine and dopamine also play a significant role in this emotion. Despite its classification as a negative emotion, anger, if properly expressed, can be beneficial to the individual and thus considered as beneficial from an evolutionary standpoint - primarily enabling the angered to resolve conflicts in their favor. If one’s anger, however, interferes with everyday functioning, many people decide to seek professional help to prevent further consequences. Since anger cannot be separated from its social environment, anger management approaches range from pharmacological to cognitive-behavioral agents, relaxation therapy, psychodynamic and other approaches. The importance of adequate anger management is supported by the negative consequences of maladaptive anger coping strategies, most notably hypertension and coronary heart disease, as well as deterioration of social relationships

    Endogenous testosterone is associated with lower amygdala reactivity to angry faces and reduced aggressive behavior in healthy young women

    Get PDF
    Testosterone and cortisol have been proposed to influence aggressive behavior by altering the neural processing of facial threat signals. However, this has not been investigated in direct social interactions. Here, we explored the joint impact of testosterone, cortisol, and brain reactivity to anger expressions on women's reactive aggression in the Social Threat Aggression Paradigm (STAP). The STAP is a competitive reaction time task in which the purported opponent displays either an angry or a neutral facial expression at the beginning of each trial and delivers increasingly loud sound blasts to the participants, successfully provoking them. Strikingly, salivary testosterone at scan-time was negatively related to both aggression and basolateral amygdala (BLA) reactivity to angry faces, whereas cortisol had no effect. When the opponent looked angry, BLA-orbitofrontal coupling was reduced, and BLA reactivity was positively related to aggression. The latter relationship was fully mediated by bilateral superior temporal gyrus (STG) activation. Our results thus support previous neurobiological models of aggression, and extend them by demonstrating that fast amygdala responses to threat modulate STG activity in order to favor aggressive retaliation. Furthermore, our study agrees with recent evidence underscoring a fear-reducing and strategically prosocial effect of testosterone on human social behavior
    corecore