509 research outputs found

    Epidemic Spreading with External Agents

    Full text link
    We study epidemic spreading processes in large networks, when the spread is assisted by a small number of external agents: infection sources with bounded spreading power, but whose movement is unrestricted vis-\`a-vis the underlying network topology. For networks which are `spatially constrained', we show that the spread of infection can be significantly speeded up even by a few such external agents infecting randomly. Moreover, for general networks, we derive upper-bounds on the order of the spreading time achieved by certain simple (random/greedy) external-spreading policies. Conversely, for certain common classes of networks such as line graphs, grids and random geometric graphs, we also derive lower bounds on the order of the spreading time over all (potentially network-state aware and adversarial) external-spreading policies; these adversarial lower bounds match (up to logarithmic factors) the spreading time achieved by an external agent with a random spreading policy. This demonstrates that random, state-oblivious infection-spreading by an external agent is in fact order-wise optimal for spreading in such spatially constrained networks

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table

    Energy-efficient broadcast in mobile networks subject to channel randomness

    Full text link
    © 2002-2012 IEEE. Wireless communication in a network of mobile devices is a challenging and resource-demanding task, due to the highly dynamic network topology and the wireless channel randomness. This paper investigates information broadcast schemes in 2-D mobile ad hoc networks where nodes are initially randomly distributed and then move following a random direction mobility model. Based on an in-depth analysis of the popular susceptible-infectious-recovered epidemic broadcast scheme, this paper proposes a novel energy and bandwidth-efficient broadcast scheme, named the energy-efficient broadcast scheme, which is able to adapt to fast-changing network topology and channel randomness. Analytical results are provided to characterize the performance of the proposed scheme, including the fraction of nodes that can receive the information and the delay of the information dissemination process. The accuracy of analytical results is verified using simulations driven by both the random direction mobility model and a real-world trace
    • …
    corecore