472 research outputs found

    Logical disagreement : an epistemological study

    Get PDF
    While the epistemic signiïŹcance of disagreement has been a popular topic in epistemology for at least a decade, little attention has been paid to logical disagreement. This monograph is meant as a remedy. The text starts with an extensive literature review of the epistemology of (peer) disagreement and sets the stage for an epistemological study of logical disagreement. The guiding thread for the rest of the work is then three distinct readings of the ambiguous term ‘logical disagreement’. Chapters 1 and 2 focus on the Ad Hoc Reading according to which logical disagreements occur when two subjects take incompatible doxastic attitudes toward a speciïŹc proposition in or about logic. Chapter 2 presents a new counterexample to the widely discussed Uniqueness Thesis. Chapters 3 and 4 focus on the Theory Choice Reading of ‘logical disagreement’. According to this interpretation, logical disagreements occur at the level of entire logical theories rather than individual entailment-claims. Chapter 4 concerns a key question from the philosophy of logic, viz., how we have epistemic justiïŹcation for claims about logical consequence. In Chapters 5 and 6 we turn to the Akrasia Reading. On this reading, logical disagreements occur when there is a mismatch between the deductive strength of one’s background logic and the logical theory one prefers (oïŹƒcially). Chapter 6 introduces logical akrasia by analogy to epistemic akrasia and presents a novel dilemma. Chapter 7 revisits the epistemology of peer disagreement and argues that the epistemic signiïŹcance of central principles from the literature are at best deïŹ‚ated in the context of logical disagreement. The chapter also develops a simple formal model of deep disagreement in Default Logic, relating this to our general discussion of logical disagreement. The monograph ends in an epilogue with some reïŹ‚ections on the potential epistemic signiïŹcance of convergence in logical theorizing

    MECHANICAL ENERGY HARVESTER FOR POWERING RFID SYSTEMS COMPONENTS: MODELING, ANALYSIS, OPTIMIZATION AND DESIGN

    Get PDF
    Finding alternative power sources has been an important topic of study worldwide. It is vital to find substitutes for finite fossil fuels. Such substitutes may be termed renewable energy sources and infinite supplies. Such limitless sources are derived from ambient energy like wind energy, solar energy, sea waves energy; on the other hand, smart cities megaprojects have been receiving enormous amounts of funding to transition our lives into smart lives. Smart cities heavily rely on smart devices and electronics, which utilize small amounts of energy to run. Using batteries as the power source for such smart devices imposes environmental and labor cost issues. Moreover, in many cases, smart devices are in hard-to-access places, making accessibility for disposal and replacement difficult. Finally, battery waste harms the environment. To overcome these issues, vibration-based energy harvesters have been proposed and implemented. Vibration-based energy harvesters convert the dynamic or kinetic energy which is generated due to the motion of an object into electric energy. Energy transduction mechanisms can be delivered based on piezoelectric, electromagnetic, or electrostatic methods; the piezoelectric method is generally preferred to the other methods, particularly if the frequency fluctuations are considerable. In response, piezoelectric vibration-based energy harvesters (PVEHs), have been modeled and analyzed widely. However, there are two challenges with PVEH: the maximum amount of extractable voltage and the effective (operational) frequency bandwidth are often insufficient. In this dissertation, a new type of integrated multiple system comprised of a cantilever and spring-oscillator is proposed to improve and develop the performance of the energy harvester in terms of extractable voltage and effective frequency bandwidth. The new energy harvester model is proposed to supply sufficient energy to power low-power electronic devices like RFID components. Due to the temperature fluctuations, the thermal effect over the performance of the harvester is initially studied. To alter the resonance frequency of the harvester structure, a rotating element system is considered and analyzed. In the analytical-numerical analysis, Hamilton’s principle along with Galerkin’s decomposition approach are adopted to derive the governing equations of the harvester motion and corresponding electric circuit. It is observed that integration of the spring-oscillator subsystem alters the boundary condition of the cantilever and subsequently reforms the resulting characteristic equation into a more complicated nonlinear transcendental equation. To find the resonance frequencies, this equation is solved numerically in MATLAB. It is observed that the inertial effects of the oscillator rendered to the cantilever via the restoring force effects of the spring significantly alter vibrational features of the harvester. Finally, the voltage frequency response function is analytically and numerically derived in a closed-from expression. Variations in parameter values enable the designer to mutate resonance frequencies and mode shape functions as desired. This is particularly important, since the generated energy from a PVEH is significant only if the excitation frequency coming from an external source matches the resonance (natural) frequency of the harvester structure. In subsequent sections of this work, the oscillator mass and spring stiffness are considered as the design parameters to maximize the harvestable voltage and effective frequency bandwidth, respectively. For the optimization, a genetic algorithm is adopted to find the optimal values. Since the voltage frequency response function cannot be implemented in a computer algorithm script, a suitable function approximator (regressor) is designed using fuzzy logic and neural networks. The voltage function requires manual assistance to find the resonance frequency and cannot be done automatically using computer algorithms. Specifically, to apply the numerical root-solver, one needs to manually provide the solver with an initial guess. Such an estimation is accomplished using a plot of the characteristic equation along with human visual inference. Thus, the entire process cannot be automated. Moreover, the voltage function encompasses several coefficients making the process computationally expensive. Thus, training a supervised machine learning regressor is essential. The trained regressor using adaptive-neuro-fuzzy-inference-system (ANFIS) is utilized in the genetic optimization procedure. The optimization problem is implemented, first to find the maximum voltage and second to find the maximum widened effective frequency bandwidth, which yields the optimal oscillator mass value along with the optimal spring stiffness value. As there is often no control over the external excitation frequency, it is helpful to design an adaptive energy harvester. This means that, considering a specific given value of the excitation frequency, energy harvester system parameters (oscillator mass and spring stiffness) need to be adjusted so that the resulting natural (resonance) frequency of the system aligns with the given excitation frequency. To do so, the given excitation frequency value is considered as the input and the system parameters are assumed as outputs which are estimated via the neural network fuzzy logic regressor. Finally, an experimental setup is implemented for a simple pure cantilever energy harvester triggered by impact excitations. Unlike the theoretical section, the experimental excitation is considered to be an impact excitation, which is a random process. The rationale for this is that, in the real world, the external source is a random trigger. Harmonic base excitations used in the theoretical chapters are to assess the performance of the energy harvester per standard criteria. To evaluate the performance of a proposed energy harvester model, the input excitation type consists of harmonic base triggers. In summary, this dissertation discusses several case studies and addresses key issues in the design of optimized piezoelectric vibration-based energy harvesters (PVEHs). First, an advanced model of the integrated systems is presented with equation derivations. Second, the proposed model is decomposed and analyzed in terms of mechanical and electrical frequency response functions. To do so, analytic-numeric methods are adopted. Later, influential parameters of the integrated system are detected. Then the proposed model is optimized with respect to the two vital criteria of maximum amount of extractable voltage and widened effective (operational) frequency bandwidth. Corresponding design (influential) parameters are found using neural network fuzzy logic along with genetic optimization algorithms, i.e., a soft computing method. The accuracy of the trained integrated algorithms is verified using the analytical-numerical closed-form expression of the voltage function. Then, an adaptive piezoelectric vibration-based energy harvester (PVEH) is designed. This final design pertains to the cases where the excitation (driving) frequency is given and constant, so the desired goal is to match the natural frequency of the system with the given driving frequency. In this response, a regressor using neural network fuzzy logic is designed to find the proper design parameters. Finally, the experimental setup is implemented and tested to report the maximum voltage harvested in each test execution

    Investigating the learning potential of the Second Quantum Revolution: development of an approach for secondary school students

    Get PDF
    In recent years we have witnessed important changes: the Second Quantum Revolution is in the spotlight of many countries, and it is creating a new generation of technologies. To unlock the potential of the Second Quantum Revolution, several countries have launched strategic plans and research programs that finance and set the pace of research and development of these new technologies (like the Quantum Flagship, the National Quantum Initiative Act and so on). The increasing pace of technological changes is also challenging science education and institutional systems, requiring them to help to prepare new generations of experts. This work is placed within physics education research and contributes to the challenge by developing an approach and a course about the Second Quantum Revolution. The aims are to promote quantum literacy and, in particular, to value from a cultural and educational perspective the Second Revolution. The dissertation is articulated in two parts. In the first, we unpack the Second Quantum Revolution from a cultural perspective and shed light on the main revolutionary aspects that are elevated to the rank of principles implemented in the design of a course for secondary school students, prospective and in-service teachers. The design process and the educational reconstruction of the activities are presented as well as the results of a pilot study conducted to investigate the impact of the approach on students' understanding and to gather feedback to refine and improve the instructional materials. The second part consists of the exploration of the Second Quantum Revolution as a context to introduce some basic concepts of quantum physics. We present the results of an implementation with secondary school students to investigate if and to what extent external representations could play any role to promote students’ understanding and acceptance of quantum physics as a personal reliable description of the world

    This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science

    Get PDF
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to the newly established quantum information science. Entanglement, involving non-Hermitian operators for its rigorous description, non-unitarity as well as nonlocal and superluminal physical signals “spookily” (by Einstein’s flowery epithet) synchronizing and transferring some nonzero action at a distance, can be considered to be quantum gravity so that its local counterpart to be Einstein’s gravitation according to general relativity therefore pioneering an alternative pathway to quantum gravitation different from the “secondary quantization” of the Standard model. So, the experiments of entanglement once they have been awarded by the Nobel Prize launch particularly the relevant theory of quantum gravitation grounded on “quantum information science” thus granted to be nonclassical quantum mechanics in the shared framework of the generalized quantum mechanics obeying rather quantum-information conservation than only energy conservation. The concept of “dark phase” of the universe naturally linked to the very well confirmed “dark matter” and “dark energy” and opposed to its “light phase” inherent to classical quantum mechanics and the Standard model obeys quantum-information conservation, after which reversible causality or the mutual transformation of energy and information are valid. The mythical Big Bang after which energy conservation holds universally is to be replaced by an omnipresent and omnitemporal medium of decoherence of the dark and nonlocal phase into the light and local phase. The former is only an integral image of the latter and borrowed in fact rather from religion than from science. Physical, methodological and proper philosophical conclusions follow from that paradigm shift heralded by this year’s Nobel Prize in physics. For example, the scientific theory of thinking should originate from the dark phase of the universe, as well: probably only approximately modeled by neural networks physically belonging to the light phase thoroughly. A few crucial philosophical sequences follow from the break of Pauli’s paradigm: (1) the establishment of the “dark” phase of the universe as opposed to its “light” phase, only to which the Cartesian dichotomy of “body” and “mind” is valid; (2) quantum information conservation as relevant to the dark phase, furthermore generalizing energy conservation as to its light phase, productively allowing for physical entities to appear “ex nihilo”, i.e., from the dark phase, in which energy and time are yet inseparable from each other; (3) reversible causality as inherent to the dark phase; (4) the interpretation of gravitation only mathematically: as an interpretation of the incompleteness of finiteness to infinity, for example, following the Gödel dichotomy (“either contradiction or incompleteness”) about the relation of arithmetic to set theory; (5) the restriction of the concept of hierarchy only to the light phase; (6) the commensurability of both physical extremes of a quantum and the universe as a whole in the dark phase obeying quantum information conservation and akin to Nicholas of Cusa’s philosophical and theological worldview

    Operator Counterparts of Types of Reasoning

    Get PDF

    Views from a peak:Generalisations and descriptive set theory

    Get PDF
    This dissertation has two major threads, one is mathematical, namely descriptive set theory, the other is philosophical, namely generalisation in mathematics. Descriptive set theory is the study of the behaviour of definable subsets of a given structure such as the real numbers. In the core mathematical chapters, we provide mathematical results connecting descriptive set theory and generalised descriptive set theory. Using these, we give a philosophical account of the motivations for, and the nature of, generalisation in mathematics.In Chapter 3, we stratify set theories based on this descriptive complexity. The axiom of countable choice for reals is one of the most basic fragments of the axiom of choice needed in many parts of mathematics. Descriptive choice principles are a further stratification of this fragment by the descriptive complexity of the sets. We provide a separation technique for descriptive choice principles based on Jensen forcing. Our results generalise a theorem by Kanovei.Chapter 4 gives the essentials of a generalised real analysis, that is a real analysis on generalisations of the real numbers to higher infinities. This builds on work by Galeotti and his coauthors. We generalise classical theorems of real analysis to certain sets of functions, strengthening continuity, and disprove other classical theorems. We also show that a certain cardinal property, the tree property, is equivalent to the Extreme Value Theorem for a set of functions which generalize the continuous functions.The question of Chapter 5 is whether a robust notion of infinite sums can be developed on generalisations of the real numbers to higher infinities. We state some incompatibility results, which suggest not. We analyse several candidate notions of infinite sum, both from the literature and more novel, and show which of the expected properties of a notion of sum they fail.In Chapter 6, we study the descriptive set theory arising from a generalization of topology, Îș-topology, which is used in the previous two chapters. We show that the theory is quite different from that of the standard (full) topology. Differences include a collapsing Borel hierarchy, a lack of universal or complete sets, Lebesgue’s ‘great mistake’ holds (projections do not increase complexity), a strict hierarchy of notions of analyticity, and a failure of Suslin’s theorem.Lastly, in Chapter 7, we give a philosophical account of the nature of generalisation in mathematics, and describe the methodological reasons that mathematicians generalise. In so doing, we distinguish generalisation from other processes of change in mathematics, such as abstraction and domain expansion. We suggest a semantic account of generalisation, where two pieces of mathematics constitute a generalisation if they have a certain relation of content, along with an increased level of generality

    An algebraic investigation of Linear Logic

    Full text link
    In this paper we investigate two logics from an algebraic point of view. The two logics are: MALL (multiplicative-additive Linear Logic) and LL (classical Linear Logic). Both logics turn out to be strongly algebraizable in the sense of Blok and Pigozzi and their equivalent algebraic semantics are, respectively, the variety of Girard algebras and the variety of girales. We show that any variety of girales has equationally definable principale congruences and we classify all varieties of Girard algebras having this property. Also we investigate the structure of the algebras in question, thus obtaining a representation theorem for Girard algebras and girales. We also prove that congruence lattices of girales are really congruence lattices of Heyting algebras and we construct examples in order to show that the variety of girales contains infinitely many nonisomorphic finite simple algebras
    • 

    corecore